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a b s t r a c t 

A fortification game (FG) is a three-level, two-player hierarchical game, also known as defender-attacker- 

defender game, in which at the uppermost level, the defender selects some assets to be protected from 

potential malicious attacks. At the middle level, the attacker solves an interdiction game by depreciating 

unprotected assets, i.e., reducing the values of such assets for the defender, while at the innermost level 

the defender solves a recourse problem over the surviving or partially damaged assets. Fortification games 

have applications in various important areas, such as military operations, design of survivable networks, 

protection of facilities or power grid protection. In this work, we present an exact solution algorithm for 

FGs, in which the recourse problems correspond to (possibly NP-hard) combinatorial optimization prob- 

lems. The algorithm is based on a new generic mixed-integer linear programming reformulation in the 

natural space of fortification variables. Our new model makes use of fortification cuts that measure the 

contribution of a given fortification strategy to the objective function value. These cuts are generated 

when needed by solving separation problems, which correspond to (modified) middle-level interdiction 

games. We design a branch-and-cut-based solution algorithm based on fortification cuts, their strength- 

ened versions and other speed-up techniques. We present a computational study using the knapsack for- 

tification game and the shortest path fortification game. For the latter one, we include a comparison with 

a state-of-the-art solution method from the literature. Our algorithm outperforms this method and allows 

us to solve previously unsolved instances with up to 330 386 nodes and 1 202 458 arcs to optimality. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Fortification games (FGs), also known as defender-attacker- 

efender (DAD) problems, have applications in various important 

reas, such as military operations, the design of survivable net- 

orks, protection of facilities, or power grid protection ( Lozano & 

mith, 2017; Smith & Song, 2020 ). A FG is a three-level hierarchi- 

al game with two players, usually denoted as defender and at- 

acker : At the third (innermost) level the defender wants to solve 

ome optimization problem (denoted as recourse problem) which 

epends on some resources ( assets ). At the second level, the at- 

acker can select a subset of the assets to attack while anticipating 

he optimal response of the defender. Depending on the problem 

etting, this attack can either destroy the assets, or depreciate their 

sefulness for the defender. The goal of the attacker is to make 
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he result of the optimization problem of the defender as worse as 

ossible. Such a two-level attacker-defender problem described so 

ar is known as interdiction game (IG) in which case the actions 

f the attacker are called interdictions . In FGs, at the first (outer- 

ost) level, the defender tries the anticipate the decisions of the 

ttacker and to fortify some of its assets against potential attacks. 

hen determining her policy, the defender is aware that fortified 

ssets cannot be interdicted by the attacker and of the possibility 

f recourse actions at a later time. 

We focus on a particular family of fortification games which is 

efined as follows. Let N be the set of assets, f i ≥ 0 be the cost 

or fortification of each asset i ∈ N, and B F be the fortification bud- 

et. Similarly, let g i ≥ 0 be the interdiction cost for each asset i ∈ N,

nd B I be the interdiction budget. Finally, let d i ≥ 0 denote the de- 

reciation of asset i ∈ N due to interdiction. In the following, we 
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ill denote by w , x and y the incidence vector of a fortification, an

nterdiction, and a recourse strategy, respectively. Accordingly, we 

enote by W = { w ∈ { 0 , 1 } n : ∑ 

i ∈ N f i w i ≤ B F } the set of feasible for-

ifications and by X = { x ∈ { 0 , 1 } n : ∑ 

i ∈ N g i x i ≤ B I } the set of possi-

le interdictions if there would be no fortifications, where n = | N| .
n addition, we let X(w ) = X ∩ { x ∈ R 

n : x ≤ 1 − w } be the set of

easible interdictions for a given fortification strategy w , and we 

enote by Y ⊆ { 0 , 1 } n the feasible region of the recourse problem,

hich is assumed to be non-empty. Note that the feasible region 

f the recourse problem does not depend on the interdiction de- 

isions, and is bounded by definition. Using these definitions, the 

Gs studied in this work can be defined as 

 

∗ = min 

w ∈ W 

max 
x ∈ X(w ) 

min 

y ∈ Y 

{ 

c T y + 

∑ 

i ∈ N 
d i x i y i 

} 

. (0-1 FG) 

emark 1. Notice that according to our definition of (0-1 FG) , in- 

erdiction decisions do not affect the feasible region Y of the re- 

ourse problem, and each such decision is associated with a cost 

ncrease/penalty d i ≥ 0 . However, without loss of generality, this 

efinition also allows to model problems in which the attacker 

rohibits the use of the interdicted assets, i.e., where Y (x ) = Y ∩
 y ∈ R 

n : y ≤ 1 − x } . In this case, the resulting problem 

 

∗ = min 

w ∈ W 

max 
x ∈ X(w ) 

min 

y ∈ Y (x ) 
c T y 

an be reformulated as 

 

∗ = min 

w ∈ W 

max 
x ∈ X(w ) 

min 

y ∈ Y 

{ 

c T y + 

∑ 

i ∈ N 
M i x i y i 

} 

or sufficiently large M i (see, e.g., Fischetti, Ljubi ́c, Monaci, & Sinnl, 

019 ), i.e., in problem (0-1 FG) we set d i := M i . 

Finally, we notice that more general types of fortification games 

ave been introduced in the literature. For example, Alderson, 

rown, Carlyle, & Wood (2011) considered the case in which the 

easible region of the innermost problem depends on w as well 

i.e., we have Y (w, x ) instead of Y (x ) ), whereas Brown, Carlyle,

almerón, & Wood (2006) addressed situations in which the third 

evel variables are not necessarily binary and there might exist 

ome available capacity which is invulnerable to the attack (e.g., 

 ≤ u 0 + u (1 − x ) ). These more general settings are out of scope of

his paper, and we focus on a particular version defined by the 

roblem ( 0-1 FG ). 

.1. Contribution and outline 

In this work, we present an exact solution algorithm for ( 0-1 

G ). The algorithm is based on a new generic mixed-integer pro- 

ramming (MIP) formulation for ( 0-1 FG ) which makes use of valid 

nequalities, denoted as fortification cuts . These cuts are used to 

easure the objective function value for given fortification strate- 

ies, and are generated when needed by solving separation prob- 

ems, which correspond to (modified) IGs. 

The detailed contribution and outline is summarized as follows. 

• We present a general solution framework for the problem ( 0- 

1 FG ) whose recourse can be an arbitrary (possibly NP-hard) 

combinatorial optimization problem with linear objective func- 

tion and binary variables. Thus, we extend theory and method- 

ology of the existing exact algorithms for fortification games, 

the majority of which requires the recourse problems to be 

convex. 
• We introduce a single-level MIP reformulation for ( 0-1 FG ) us- 

ing fortification cuts, present alternative methods for strength- 

ening these cuts, and discuss their efficient separation. 
1027
• We propose further algorithmic enhancements, that speed-up 

the separation problem, based on heuristic solutions of the in- 

terdiction problem. 
• We describe the application of our generic solution algorithm 

to two concrete problems, namely the knapsack fortification 

game and the shortest path fortification game, and present 

an extensive computational study of the performance of our 

algorithm. This analysis is aimed at evaluating the contribution 

of different ingredients of our algorithm as well as at com- 

paring its effectiveness with other exact approaches from the 

literature. 

The paper is organized as follows. In the remainder of this 

ection, we provide an overview of previous and related work, 

hereas in Section 2 we introduce our reformulation and derive 

he fortification cut for a given intersection strategy. Moreover, we 

iscuss methods for strengthening a given cut and analyze the as- 

ociated separation problem. Other general speed-up techniques 

hat are used in our solution algorithm are presented in Section 3 . 

ections 4.1 and 4.2 describe two applications that can be mod- 

led as an FG. A detailed computational study on both problems 

s given in Section 5 , where we discuss further, problem-specific 

mplementation details, assess the efficiency of the various ingre- 

ients of the algorithm, and compare the results of our method 

ith state-of-the-art exact approaches from the literature. Finally, 

ection 6 draws some conclusions and reports possible new lines 

f research. 

.2. Previous and related work 

Closely related to FGs are IGs, which are two-player two-level 

tackelberg games used to model attacker-defender settings. The 

ttacker, who acts first, has limited resources. An attack disables 

ome of the defender’s assets, reduces their capacity, or increases 

heir cost. At the lower level, the defender solves the recourse 

roblem over the set of surviving or partially damaged assets. 

he goal of the attacker is to find an optimal interdiction strat- 

gy, while anticipating defender’s response. IGs arise in military 

pplications ( Brown et al., 2006 ), in controlling the spread of in- 

ectious diseases ( Assimakopoulos, 1987; Furini, Ljubi ́c, Malaguti, & 

aronuzzi, 2020; 2022; Shen, Smith, & Goli, 2012; Tanınmış , Aras, 

 Altınel, 2021 ), in counter-terrorism ( Wang, Yin, & An, 2016 ), or

n monitoring of communication networks ( Furini, Ljubi ́c, Martin, 

 Segundo, 2019; Furini, Ljubi ́c, Segundo, & Zhao, 2021 ). Very of- 

en, IGs are defined over networks, in which the attacker reduces 

he capacities of nodes or edges, or even completely removes some 

f them from the network ( Cochran et al., 2011 ). Some of the most

amous examples of so-called network-interdiction games include 

nterdiction of shortest paths ( Israeli & Wood, 2002 ) or network 

ows ( Akgün, Tansel, & Wood, 2011; Lim & Smith, 2007; Smith 

 Lim, 2008 ). However, IGs turn out to be much more difficult if 

he recourse problem is NP-hard, like maximum knapsack ( Caprara, 

arvalho, Lodi, & Woeginger, 2016; Della Croce & Scatamacchia, 

020; Fischetti et al., 2019 ) or maximum clique ( Furini et al., 2019;

urini et al., 2021 ), making the associated IG a �P 
2 -hard prob- 

em ( Lodi, Ralphs, & Woeginger, 2014 ). A separate line of research 

which is not addressed in this paper) is dedicated to problems 

alled Stackelberg security games. There, the attacker commits to a 

ixed (randomized) strategy, whereas the defender responds with 

 pure strategy, see, e.g., the recent survey in Sinha, Fang, An, Kiek- 

ntveld, & Tambe (2018) and also Clempner (2022) . 

In FGs, the defender tries to “interdict” the attacker, by antici- 

ating the attacker’s malicious activities, i.e., the defender tries to 

rotect the most vulnerable assets before the attack is taking place. 

ven though there exists a large body of literature dedicated to IGs, 

ee, e.g., recent surveys in Beck, Ljubi ́c, & Schmidt (2022) ; Smith & 
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ong (2020) and Kleinert, Labbé, Ljubi ́c, & Schmidt (2021) , there 

re very few articles dealing with more difficult three-level opti- 

ization problems arising in the context of FGs. When it comes to 

ethodology used to solve FGs, there are several ideas proposed 

n the literature for deriving single-level reformulations for FGs. 

• The first group of methods relies on duality theory and is typ- 

ically applied to FGs in which the recourse problem is a lin- 

ear/convex program. Hence, after dualization (and potential lin- 

earization) of the recourse problem, the three-level model is 

turned into a bilevel min-max mixed-integer formulation. The 

latter is then solved using specialized techniques like Benders 

decomposition or a cutting plane approach, see, e.g., Brown 

et al. (2006) and Smith, Lim, & Sudargho (2007) , respectively. 

The major advantage of combining the second and the third- 

level through dualization is that it allows to derive a bilevel 

program that can nowadays be solved using some of the state- 

of-the-art solvers for mixed-integer bilevel optimization (see, 

e.g., Fischetti, Ljubi ́c, Monaci, & Sinnl, 2017; Fischetti, Ljubi ́c, 

Monaci, & Sinnl, 2018; Tahernejad, Ralphs, & DeNegre, 2020; 

Yue, Gao, Zeng, & You, 2019 ). However, this approach often 

leads to large bilevel programs, which limits its applicability to 

instances of modest size. 
• The second group comprises methods based on enumerating 

all possible fortification strategies and solving the underlying 

interdiction problem induced by each strategy using an exact 

algorithm. Such ideas have been applied in e.g., Cappanera & 

Scaparra (2011) ; Church & Scaparra (2007) ; Scaparra & Church 

(2008a) . This approach is typically useful when the fortification 

budget is given through a cardinality constraint, where only a 

small number of items can be fortified. In that case, the size 

of the search space (in terms of fortification decisions) can be 

controlled and enumeration of these decisions can be embed- 

ded into a branching framework. However, the computational 

limitations of this method are easily reached for problems 

where the search space grows too fast, for example when the 

number of allowed fortified items is too large or when the 

budget constraint it is replaced by a more general knapsack-like 

constraint. 
• The third method is a sampling-based approach recently pro- 

posed by Lozano & Smith (2017) . The sampling is applied to the 

set of possible solutions of the third level, and a single-level re- 

formulation in the space of binary fortification variables ( w ) is 

derived. The reformulation contains an exponential number of 

constraints, which are dynamically separated using a cutting- 

plane method. Since only a subset of possible recourse solu- 

tions is taken into account, the reformulation is not exact and 

has to be embedded into an iterative framework in which lower 

and upper bounds are tightened until the convergence criteria 

are met. In particular, for any given fortification strategy vector 

w , a subset of sampled third-level solutions is used as a basis 

to derive valid lower and upper bounds by solving IGs based 

on the sampled third-level solutions. The overall method is 

completed by an iterative outer optimization over w -variables, 

where specific interdiction strategies are eliminated using 

no-good-cut-like covering inequalities. We note that in this 

iterative outer optimization the problem in w -variables needs 

to be solved to integer optimality in each iteration. Thanks 

to the sampling, this method does not require the recourse 

problem to be convex, and can be applied to a larger class of 

problems, involving non-linear, or discrete variables in the third 

level. 

Heuristics are much more prevalent than exact methods in 

he existing literature on FGs. The most recent generic heuris- 

ics for FGs have been proposed by Fakhry, Hassini, Ezzeldin, & 

l-Dakhakhni (2022) . Finally, when it comes to applications, FGs 
1028 
tem from similar settings as for the IGs. Three-level DAD mod- 

ls to protect electric power grids have been used by Brown 

t al. (2006) ; Lai, Illindala, & Subramaniam (2019) ; Xiang & Wang 

2018) ; Yuan, Zhao, & Zeng (2014) , and Fakhry et al. (2022) .

mith et al. (2007) proposed to design networks that can sur- 

ive network-flow attacks by using FGs. Similarly, Sarhadi, Tulett, 

 Verma (2017) used a DAD model for protection planning of 

reight intermodal transportation networks. Other FG models for 

rotecting transportation networks can be found in Jin, Lu, Sun, 

 Yin (2015) ; Starita & Scaparra (2016) , and Starita, Scaparra, & 

’Hanley (2017) . In the context of supply chain networks and pro- 

ection of facilities, we highlight DAD models presented by Church 

 Scaparra (2007) ; Scaparra & Church (2008b) , and Zheng & Albert 

2018) . Recently, a trilevel critical node problem used for limiting 

he spread of a viral attack in a given network has been consid- 

red in Baggio, Carvalho, Lodi, & Tramontani (2021) . We point out 

hat our list of applications of FGs is far from being comprehensive, 

nd we refer an interested reader to further references provided in 

ozano & Smith (2017) ; Sarhadi et al. (2017) ; Starita & Scaparra 

2016) , and Lai et al. (2019) . 

In our approach, we reformulate the problem as a single-level 

IP in the natural space of fortification variables w . Differently 

han the approach proposed by Lozano & Smith (2017) our cuts 

re used in a branch-and-cut scheme and they also do not cut off

easible solutions. Moreover, our approach works on the complete 

pace of the recourse problem and not just by using a sampling of 

he recourse problem solutions. Thus, contrary to Lozano & Smith 

2017) we do not need to iteratively solve MIPs to obtain both up- 

er and lower bounds. Instead, we just need to solve a single MIP, 

n which we add our fortification cuts as needed. The fortification 

uts are obtained by solving IGs which are parameterized in the 

bjective function by the current (linear programming relaxation) 

olution value of w in a branch-and-bound node. One particular 

eature of our approach is the fact that IGs at the lower level can 

e solved using any kind of a black-box algorithm. Specifically, de- 

ending on the structure of the interdiction problem, one could 

mploy some of the state-of-the-art methods for certain classes 

f binary interdiction games ( Contardo & Sefair, 2022; Tanınmış & 

innl, 2022; Wei & Walteros, 2022 ) as a strategy for separating our 

ortification cuts. 

In this sense, our approach is a generalization of the Benders- 

ike decomposition used in Brown et al. (2006) and Smith et al. 

2007) for convex recourse problems. We show that their idea of 

enalization of the objective function can be efficiently used also 

or discrete recourse problems (where reformulation by convexity 

oes not work), with tight penalization coefficients and without 

sing big-M penalization terms, as long as fortification decisions 

re binary. From an algorithmic perspective, our approach is sim- 

lar to the approach for IGs in Fischetti et al. (2019) as we imple-

ent a branch-and-cut procedure in which the cuts are separated 

sing an exact solver of the lower-level problem. However, our ap- 

roach does not impose any conditions on the structure of the un- 

erlying interdiction problem, such as the downward monotonic- 

ty used in Fischetti et al. (2019) . Instead, the only requirements 

eeded for the validity of our approach are that (i) the fortification 

ecisions are binary, (ii) the fortified items cannot be interdicted, 

nd (iii) the interdiction strategy does not affect the set of possible 

ecourse actions. 

. Solution framework 

In this section, we first introduce a single-level reformulation 

f ( 0-1 FG ) in the space of fortification variables w which uses the

amily of fortification cuts . Afterwards, we present different meth- 

ds for strengthening these cuts and discuss methods for their sep- 

ration. 
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.1. Single-level reformulation and fortification cuts 

Let �I (x ) be the value function of the interdiction game associ- 

ted to a given interdiction strategy x ∈ X , i.e., 

I (x ) = min 

y ∈ Y 

{ 

c T y + 

∑ 

i ∈ N 
d i x i y i 

} 

. 

imilarly, let �F (w ) be the value function of the fortification game 

or a given fortification strategy w ∈ W , i.e., 

F (w ) = max 
x ∈ X(w ) 

min 

y ∈ Y 

{ 

c T y + 

∑ 

i ∈ N 
d i x i y i 

} 

= max 
x ∈ X(w ) 

�I (x ) 

= max 
x ∈ X 

{ 

�I (x ) −
∑ 

i ∈ N 
M i x i w i 

} 

. (1) 

The last equations holds for sufficiently large coefficients M i , 

ue to the fact that the linking constraints between the fortifica- 

ion and subsequent interdiction are given by x ≤ 1 − w . Using this 

otation, problem ( 0-1 FG ) can equivalently be written as 

 

∗ = min 

w ∈ W 

θ (2) 

≥ �F (w ) . (3) 

Eq. (1) implies that, for any w ∈ W and ˆ x ∈ X , we have 

F (w ) ≥ �I ( ̂  x ) −
∑ 

i ∈ N 
M i ̂  x i w i , (4) 

hich leads to the single level reformulation of the fortification 

ame 

 

∗ = min 

w ∈ W 

θ (5) 

≥ �I ( ̂  x ) −
∑ 

i ∈ N 
M i ̂  x i w i ∀ ̂

 x ∈ X. (6) 

Given the possible exponential number of inequalities (6) , this 

eformulation is suitable for being solved using a cutting-plane 

r a branch-and-cut approach in which they are initially omitted 

nd then added as needed during the solution process. The result- 

ng formulation in which some of the constraints (6) are relaxed, 

s referred to as relaxed master problem . There are two potential 

rawbacks in using formulation (5) and (6) in practical applica- 

ions. First, if not carefully chosen, the values of M i can lead to 

ery weak dual bounds and potentially underperforming branch- 

nd-bound trees. Second, to separate inequalities (6) one has to 

olve the middle-level IG, a problem which can be �P 
2 

-hard, for 

P-hard recourse problems. To address the first issue, we show in 

heorem 1 that tight values for the M i coefficients can be easily 

erived, no matter the structure of the recourse problem. We then 

how how these fortification cuts , can be strengthened to tighten 

he dual bounds. We address the separation issue in Section 2.4 . 

heorem 1. Constraints (6) can be replaced with the following forti- 

cation cuts: 

≥ �I ( ̂  x ) −
∑ 

i ∈ N 
d i ̂  x i w i ∀ ̂

 x ∈ X. (7) 

roof. We need to show that �F (w ) ≥ �I ( ̂  x ) − ∑ 

i ∈ N d i ̂  x i w i for all

 ∈ W and ˆ x ∈ X , i.e., that (4) holds for M i = d i . 

Given w ∈ W and ˆ x ∈ X , consider an interdiction policy x ′ de- 

ned by selecting those assets in ˆ x that are not fortified by w , i.e.,

 

′ 
i 
= ˆ x i (1 − w i ) , for all i ∈ N. Since x ′ ≤ ˆ x and ˆ x ∈ X , we have x ′ ∈ X .

y applying inequality (4) to w and x ′ , and noting that x ′ 
i 
w i = 0 for

ll i ∈ N, we derive that � (w ) ≥ � (x ′ ) holds. 
F I 

1029 
We complete the proof by showing that 

I (x ′ ) ≥ �I ( ̂  x ) −
∑ 

i ∈ N 
d i ̂  x i w i . (8) 

y contradiction, assume that inequality (8) is not satisfied, i.e., 

I ( ̂  x ) − ∑ 

i ∈ N d i ̂  x i w i > �I (x ′ ) , and let y ′ ∈ Y be an optimal recourse

trategy for interdiction strategy x ′ . Using the definition of value 

unction �I (x ′ ) , we obtain 

I ( ̂  x ) −
∑ 

i ∈ N 
d i ̂  x i w i > c T y ′ + 

∑ 

i ∈ N 
d i x 

′ 
i y 

′ 
i . (9) 

sing notations N 1 = { i ∈ N : ˆ x i w i = 1 } = { i ∈ N : ˆ x i = 1 , x ′ 
i 
= 0 } , and

 2 = N \ N 1 , inequality (9) can be rewritten as 

I ( ̂  x ) > c T y ′ + 

∑ 

i ∈ N 2 
d i x 

′ 
i y 

′ 
i + 

∑ 

i ∈ N 1 
d i , (10) 

ince x ′ 
i 
= 0 for all i ∈ N 1 , and ˆ x i w i = 1 for all i ∈ N 1 . Since x ′ 

i 
= ˆ x i 

or all i ∈ N 2 , and d i ≥ d i ̂  x i y 
′ 
i 

for all i ∈ N, it follows that 

I ( ̂  x ) > c T y ′ + 

∑ 

i ∈ N 2 
d i ̂  x i y 

′ 
i + 

∑ 

i ∈ N 1 
d i ̂  x i y 

′ 
i = c T y ′ + 

∑ 

i ∈ N 
d i ̂  x i y 

′ 
i (11)

hich shows that y ′ is a feasible recourse strategy for interdiction 

trategy ˆ x whose cost is strictly smaller than �I ( ̂  x ) . This contradic- 

ion concludes the proof. �

.2. Strengthening the fortification cuts with enumeration 

In this section, we introduce sufficient conditions under which 

 vector of coefficients produces a valid cut strengthening a given 

ortification cut. 

heorem 2. Let ˆ x ∈ X be a feasible interdiction strategy and denote 

y S( ̂  x ) = { i ∈ N : ˆ x i = 1 } the associated set of interdicted assets. Let
˜ 
 ∈ R 

n be a vector satisfying the following conditions: 

1. ˜ d i ≤ d i , for all i ∈ N, 

2. 
∑ 

i ∈ P 
˜ d i ≥ �I ( ̂  x ) − �I (x ′ ) for each P ⊆ S( ̂  x ) such that there exists 

a feasible fortification strategy w ∈ W : w i = 1 for all i ∈ P , and x ′ 
is the interdiction strategy with x ′ 

i 
= 0 for all i ∈ P , and x ′ 

i 
= ˆ x i oth-

erwise. 

Then, the inequality 

≥ �I ( ̂  x ) −
∑ 

i ∈ N 
˜ d i ̂  x i w i (12) 

s valid for (0-1 FG) and dominates the fortification cut (7) for inter- 

iction strategy ˆ x . 

roof. Let ˆ x ∈ X be a feasible interdiction strategy, ˜ d ∈ R 

n be a vec- 

or satisfying Conditions 1 and 2 above, and w ∈ W be any fea-

ible fortification strategy. Using ˆ x and w , define P = { i ∈ N : ˆ x i =
 , w i = 1 } ⊆ S( ̂  x ) , which clearly satisfies the description in Condi-

ion 2 since the condition must hold for each P ⊆ S( ̂  x ) associated 

ith some w ∈ W . In addition, consider an interdiction strategy x ′ 
uch that x ′ 

i 
= ˆ x i (1 − w i ) for all i ∈ N. By definition of P and using

ondition 2, we get 

I ( ̂  x ) −
∑ 

i ∈ N 
˜ d i ̂  x i w i = �I ( ̂  x ) −

∑ 

i ∈ P 
˜ d i ≤ �I (x ′ ) ≤ θ, (13) 

here the last inequality follows from the fact that θ ≥ �F (w ) ≥
I (x ′ ) since x ′ ∈ X(w ) , as in the proof of Theorem 1 . Thus,

q. (12) is valid since (13) holds for all w ∈ W . 

Finally, Condition 1 ensures that cut (12) dominates its counter- 

art (7) associated with the same interdiction strategy ˆ x . �

The theorem above provides conditions for determining 

tronger cuts. While the trivial choice of ˜ d = d is always feasible 

ith respect to these conditions, a tighter cut could potentially be 
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btained by finding a vector ˜ d which is minimal with respect to 

ome norm while still satisfying the conditions, since smaller d̃ 

ould imply a tighter cut. We note that for a given interdiction 

trategy ˆ x , checking whether a given vector ˜ d satisfies to Condition 

 may be computationally challenging. Indeed, one has to evalu- 

te the recourse value of the attacker solution S( ̂  x ) \ P for each

 ⊆ S( ̂  x ) whose elements can be contained in a feasible fortifica- 

ion strategy. In Section 3.3 , we describe a heuristic approach to 

fficiently obtain a non-trivial vector ˜ d satisfying the conditions of 

heorem 2 . 

emark 2. The right-hand-side of Condition 2 in Theorem 2 can 

e replaced by min { �I ( ̂  x ) − �I (x ′ ) , ∑ 

i ∈ P d i } , where �I (x ′ ) is a

ower bound on �I (x ′ ) . For the problems whose recourse level is 

omputationally hard to solve, a dual bound could be used to pro- 

uce a faster strengthening procedure. Although the resulting cut 

ay be weaker than the one obtained using �I (x ′ ) , it is still as

ood as (7) since ˜ d i ≤ d i , for all i ∈ N. 

.3. Strengthening the fortification cuts with a lower bound 

In this section we show an alternative and computationally less 

xpensive way to obtain stronger fortification cuts. The theorem 

elow assumes that a valid lower bound on z ∗ is available. For α ∈ 

 , we define (α) + = max { α, 0 } . 
heorem 3. Let ˆ x ∈ X be a feasible interdiction strategy and z be a 

ower bound on z ∗. Then, the inequality 

≥ �I ( ̂  x ) −
∑ 

i ∈ N 
min { (�I ( ̂  x ) − z ) + , d i } ̂  x i w i (14) 

s valid for (0-1 FG) and dominates the fortification cut (7) for inter- 

iction strategy ˆ x . 

roof. Since z is a lower bound on z ∗ = min w ∈ W 

�F (w ) , we have

F (w ) ≥ z , for all w ∈ W . Let L = { i ∈ N : �I ( ̂  x ) − z < d i } be the

et of indices for which the coefficient in fortification cut (14) is 

maller than the one in (7) . Then we have 

�I ( ̂  x ) −
∑ 

i ∈ N 
min { (�I ( ̂  x ) − z ) + , d i } ̂  x i w i = �I ( ̂  x ) 

−
∑ 

i ∈ L 
(�I ( ̂  x ) − z ) + ˆ x i w i −

∑ 

i ∈ N\ L 
d i ̂  x i w i . 

f ˆ x i w i = 0 for all i ∈ L , then (14) is equivalent to (7) . Otherwise,

e obtain 

I ( ̂  x ) −
∑ 

i ∈ L 
(�I ( ̂  x ) − z ) + ˆ x i w i −

∑ 

i ∈ N\ L 
d i ̂  x i w i ≤ �I ( ̂  x ) − (�I ( ̂  x ) − z ) + ≤ z ,

(15) 

hich leads to �F (w ) ≥ z ≥ �I ( ̂  x ) − ∑ 

i ∈ N min { (�I ( ̂  x ) − z ) + , d i }
ˆ  i w i . �

emark 3. Notice that z ∗ ≥ min y ∈ Y c T y , i.e., the objective value of 

he fortification problem cannot be smaller than the recourse ob- 

ective value in case of no interdiction. Thus, a valid lower bound 

n z ∗ to be used for deriving strengthened cuts (14) can be com- 

uted as z = min y ∈ Y c T y . 

The following corollary shows that the results provided in 

heorems 2 and 3 above can be combined to obtain a valid cut. 

t follows from the validity of (12) and inequality (15) . 

orollary 1. Let ˆ x ∈ X be a feasible interdiction strategy, ˜ d ∈ R 

n be a 

ector satisfying the conditions in Theorem 2 , and z be a lower bound 

n z ∗. Then, the inequality 

≥ �I ( ̂  x ) −
∑ 

i ∈ N 
min { (�I ( ̂  x ) − z ) + , ˜ d i } ̂  x i w i (16) 

s valid for (0-1 FG) . 
1030 
emark 4. When �I ( ̂  x ) − z is small compared to the original cut 

oefficient d, it is likely that most of the final coefficients after 

ombined strengthening will be equal to �I ( ̂  x ) − z , which renders 

he effort to initially compute ˜ d i values unnecessary. In this case, 

ne could opt for the lower bound based strengthening which can 

e obtained in constant time if z is available. 

.4. Separation of fortification cuts 

As already mentioned, our approach for solving the problem 

 0-1 FG ) is a branch-and-cut algorithm based on reformulation 

5) with (strengthened) fortification cuts (7) . At each node of the 

ranch-and-cut tree, valid inequalities are added when violated, 

o ensure correctness of the algorithm, improve the dual bound 

t the node, and possibly allow fathoming. Although in principle 

ne could add to the formulation any valid violated inequality, a 

ut that is maximally violated is typically sought. Thus, given a so- 

ution, say (w 

∗, θ ∗) , for the linear programming (LP)-relaxation of 

he current model, one is required to solve the separation problem, 

hich is an IG, 

F (w 

∗) = max 
x ∈ X(w 

∗) 
min 

y ∈ Y 

{ 

c T y + 

∑ 

i ∈ N 
d i x i y i 

} 

(17) 

nd check whether �F (w 

∗) > θ ∗ or not. Notice that this separa- 

ion problem itself is a mixed-integer bilevel linear program, which 

s usually NP-hard and possibly even �P 
2 -hard ( Caprara, Carvalho, 

odi, & Woeginger, 2014 ) in case of an integer recourse problem. 

eparation problem (17) can be reformulated as follows using Ben- 

ers decomposition as done by Israeli (1999) . 

SEP) �F (w 

∗) = max 
x,t 

t (18) 

t ≤ c T ˆ y + 

∑ 

i ∈ N 
d i ̂  y i x i ∀ ̂

 y ∈ 

ˆ Y (19) 

∑ 

i ∈ N 
g i x i ≤ B I (20) 

x i ≤ 1 − w 

∗
i ∀ i ∈ N (21) 

x ∈ { 0 , 1 } n (22) 

ere ˆ Y denotes the set of extreme points of the convex hull of the 

easible solutions of the recourse problem, see, e.g., Cochran et al. 

2011) ; Fischetti et al. (2019) . In our generic framework, we solve 

SEP) using a branch-and-cut scheme in which we add violated in- 

erdiction cuts (19) when needed, for both integer and fractional 

alues of x variables. Solving the separation problem yields a vio- 

ated fortification cut if �F (w 

∗) > θ ∗, while one can conclude that 

w 

∗, θ ∗) is a feasible solution to (2) , (3) otherwise. 

Strengthening the interdiction cut Given the computational com- 

lexity of the separation problem (SEP), one may be interested in 

etermining a violated, but not necessarily maximally violated for- 

ification cut. To this aim, it is enough to find a feasible solution to 

SEP) having an objective value strictly larger than θ ∗. Hence, we 

ropose to reformulate the separation problem by imposing an ar- 

ificial upper bound, a real number � > θ ∗, on its optimal objective 

alue. To this end, the interdiction cuts (19) can be strengthened 

s shown in the following theorem. 

heorem 4. Given a solution (w 

∗, θ ∗) and a real number � > θ ∗,

onsider the following formulation: 

SEP-L) �� 
F (w 

∗) = max 
x,t 

t 

t ≤ c T ˆ y + 

∑ 

i ∈ N 
min { (� − c T ˆ y ) + , d i } ̂  y i x i ∀ ̂

 y ∈ 

ˆ Y 

(23) 

(20)-(22) 
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Algorithm 1 InitialFortificationCuts. 

Input: An optimal recourse solution y 0 in case of no interdiction 

Output: A set of initial fortification cuts (7) 

1: for each i ∈ N : y 0 
i 

= 1 do 

2: Initialize theinterdiction strategy ˆ x ← e i , define ˆ B I ← B I − g i 
3: Initialize the candidate set for interdiction R N ← N \ { i } 
4: while R N � = ∅ do 

5: Solve the recourse problem for ˆ x to obtain an optimal so- 

lution y ∗

6: Obtain the new candidate set R N = { i ∈ N : ˆ x i = 0 , y ∗
i 

= 

1 , g i ≤ ˆ B I } 
7: if R N � = ∅ then 

8: Select i ∗ = arg max i ∈ R N 
d i 
g i 

9: Set ˆ x i ∗ ← 1 , and update the budget ˆ B I ← 

ˆ B I − g i ∗
10: Generate a fortification cut (7) for ˆ x 

3

a

l

n

p

L

w

(  

�

t

A

I

O

a

c

i

t

a
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e

A

o

s
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s

et (x ∗, t ∗) be an optimal solution to (SEP-L). If �� 
F 
(w 

∗) > θ ∗, then

F (w 

∗) > θ ∗ and x ∗ gives a fortification cut (7) which is violated at 

w 

∗, θ ∗) . Otherwise, (w 

∗, θ ∗) is a feasible solution to (0-1 FG) . 

roof. Observe that the problem (SEP-L) is always feasible and 

ounded, hence there exists an optimal solution (x ∗, t ∗) with 

he associated objective value �� 
F 
(w 

∗) , and t ∗ = �� 
F 
(w 

∗) ≤ �F (w 

∗) .
he inequality �� 

F 
(w 

∗) ≤ �F (w 

∗) follows from the fact that the 

nly difference between (SEP) and (SEP-L) is the replacement of 

onstraints (19) from (SEP) with constraints (23) in (SEP-L), and 

n (23) the individual coefficients of the x -variables are either 

he same as in (19) or smaller. Therefore, if �� 
F 
(w 

∗) > θ ∗, then

lso �F (w 

∗) > θ ∗ and thus x ∗ gives a violated cut. Otherwise, 

.e., if �� 
F 
(w 

∗) ≤ θ ∗, then there exists some ˆ y for each x ∈ X(w 

∗)
hat makes the RHS of (23) less than or equal to θ ∗. Moreover, 

23) and (19) are identical at such ˆ y and x pairs, which means 

F (w 

∗) = �� 
F 
(w 

∗) ≤ θ ∗. In this case there exists no violated cut at

w 

∗, θ ∗) . �

In other words, this strengthened interdiction cut may project 

he true objective value of the recourse problem to a smaller value, 

ut if the optimal objective value �F (w 

∗) of (SEP) is strictly greater 

han θ ∗, then the optimal objective value �� 
F 
(w 

∗) of (SEP-L) is also 

reater than θ ∗. As a result, if (SEP-L) yields a solution ( ̂  x , ̂  t ) with
ˆ 
 > θ ∗, then 

ˆ t could be less than �I ( ̂  x ) which is the constant part

f the fortification cut (7) . Thus, the recourse problem should be 

olved for ˆ x one more time to obtain �I ( ̂  x ) . Note that Lozano &

mith (2017) also propose a strengthening procedure for interdic- 

ion cuts, however using a global upper bound on z ∗. Although this 

pproach is valid in our case too, our strengthening is more ag- 

ressive since � is not necessarily an upper bound, but is treated 

s one. 

In Section 3.2 , we propose various additional strategies to speed 

p the separation procedure. 

. Algorithmic details for an efficient implementation 

In this section we address the most important algorithmic el- 

ments necessary for an efficient implementation of our solution 

ramework. 

.1. Initialization 

We set an initial lower bound on θ by solving the recourse 

roblem with no interdiction as mentioned in Remark 3 , i.e., we 

dd the constraint θ ≥ min y ∈ Y c T y to our model. 

We also initialize our model with a set of initial fortifica- 

ion cuts. These cuts are produced using the interdiction strate- 

ies computed by Algorithm 1 . This algorithm takes an optimal 

ecourse solution y 0 in the absence of interdiction as input, and 

terates over the assets used in this solution. For each such asset 

 , an interdiction strategy is obtained via first interdicting i , then 

eciding the remaining interdiction actions in a greedy fashion. In 

he greedy part, we pick one element with maximum depreciation- 

ost ratio among all those that can still be added to the cur- 

ent interdiction strategy without exceeding the interdiction bud- 

et. Notice that the number of initial cuts, i.e., the interdiction 

trategies that Algorithm 1 generates, depends on the support size 

f the initial recourse solution y 0 . Notice that the main loop of 

lgorithm 1 is repeated at most | N| times. Thus, assuming that 

ach recourse problem can be solved in time at most T R and us- 

ng notation I max = max S⊆N, 
∑ 

i ∈ S g i ≤B I 
| S| for the maximum number 

f items that can be interdicted, its rumtime is O (| N| I max T ) . 
R 

1031
.2. On Implementing the separation of fortification cuts 

We solve the formulation (5) and (6) by means of a branch- 

nd-cut algorithm, in which feasible solutions (w 

∗, θ ∗) of the re- 

axed master problem such that w 

∗ is integer are separated when 

eeded. Let (w 

∗, θ ∗) be a feasible solution of the relaxed master 

roblem at the current branching node, e.g., the solution of the 

P-relaxation at the current node or a heuristic solution, where 

 

∗ is integer. Generating a violated fortification cut associated to 

w 

∗, θ ∗) (if such exists) corresponds to finding ˆ x ∈ X(w 

∗) such that

I ( ̂  x ) > θ ∗. 

Greedy integer separation . To search for such ˆ x , we first invoke 

he greedy heuristic described in Algorithm 2 . This procedure iter- 

lgorithm 2 GreedyInterdiction. 

nput: Current solution (w 

∗, θ ∗) of the relaxed master problem 

utput: ˆ x ∈ X(w 

∗) , possibly giving a violatedcut (7) 

1: Initialize theinterdiction strategy ˆ x ← 

�
 0 andremaining interdic- 

tion budget ̂  B I ← B I 
2: Initialize the candidate set for interdiction R N ← N

3: while R N � = ∅ do 

4: Solve the recourse problem for ˆ x to obtain an optimal solu- 

tion y ∗

5: Obtain the new candidate set R N = { i ∈ N : ˆ x i = 0 , y ∗
i 

= 1 , g i ≤
ˆ B I } 

6: if R N � = ∅ then 

7: Select i ∗ ∈ arg max i ∈ R N 
d i (1 −w 

∗
i 
) 

g i 

8: Set ˆ x i ∗ ← 1 , and update the budget ˆ B I ← 

ˆ B I − g i ∗
9: Return ˆ x 

tively defines an interdiction strategy (initially ˆ x = 

�
 0 ) and a 

andidate set for interdiction (initially including all assets). At each 

teration, the recourse problem associated with the currently in- 

erdicted assets is solved, the candidate set is updated accordingly, 

nd an asset is selected and added to the interdiction strategy. The 

rocedure ends when the candidate set for interdiction is empty, 

eaning that no asset that has been selected in the recourse strat- 

gy can be added to the interdiction strategy. Thus, the runtime of 

lgorithm 2 is bounded by the product of the maximum number 

f items that may be interdicted simultaneously and time time for 

olving each recourse problem, i.e., it is O (I max T R ) when using the 

otation introduced above. 

If this GreedyInterdiction heuristic does not produce a vi- 

lated cut, the separation problem (SEP) described in Section 2.4 is 

olved by means of a branch-and-cut algorithm. We now present 
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g

ome strategies that are used to improve the performance when 

olving the model (SEP). 

Solution limit as a stopping criterion As already observed, any 

easible solution to (SEP) with an objective value larger than θ ∗

ields a violated cut. Accordingly, one can avoid the computation 

f a maximally violated cut, and halt the execution of the enumer- 

tive algorithm for (SEP) as soon as the incumbent objective value 

ecomes larger than θ ∗. In general, a solution limit s max ≥ 1 can 

e imposed to prematurely terminate the solution of (SEP) once at 

east s max incumbent solutions with an objective value larger than 

∗ are found. 

Setting a lower cutoff value Another strategy that could be help- 

ul in solving (SEP) is to set the lower cutoff value of the used 

IP solver to θ ∗ + ε where ε is a small constant. In this way, one 

an prune all the nodes with an upper bound less than θ ∗ + ε, i.e.,

odes that cannot produce a violated interdiction cut. If there is 

o x ∈ X(w 

∗) with �I (x ) ≥ θ ∗ + ε, then (SEP) becomes infeasible

ue to the lower cutoff value, which can be considered as an indi- 

ator of bilevel feasiblity of (w 

∗, θ ∗) since X(w ) � = ∅ for any value

f w . In that case, no cuts are added. With this lower cutoff strat- 

gy, whenever the incumbent fortification strategy is updated, the 

ssociated interdiction strategy is not readily available. Therefore, 

hen an optimal/incumbent solution (w 

∗, θ ∗) to ( 0-1 FG ) is found,

t is possible to obtain the optimal attacker response by iterating 

ver all the fortification cuts added to the master problem, i.e., 

reviously obtained interdiction strategies ˆ x . Any ˆ x ∈ X(w 

∗) with 

I ( ̂  x ) = θ ∗ is an optimal response to w 

∗. If none is found, the at-

acker problem is solved optimally for w 

∗. 

While solving (SEP), both integer and fractional x ∗ are sepa- 

ated. The lower cutoff and the solution limit strategies described 

bove are employed to speed up the separation process. Based on 

ur preliminary experiments, we set the solution limit parameter 

 max to one. Finally, all feasible solutions to the recourse problem 

btained after solving (SEP) in previous iterations are stored and 

dded as initial cuts of the form (19) in future solving attempts. 

We remark that the same enhancements can be applied to the 

lternative separation model (SEP-L) presented in Section 2.4 . 

.3. On implementing the strengthening of the fortification cut 

In order to strengthen a fortification cut based on Theorem 2 , 

ne may solve an LP, e.g., min ˜ d ∈ R n 
∑ 

i ∈ S( ̂ x ) 
˜ d i subject to the condi- 

ions of Theorem 2 , after computing all the RHS values appearing 

n Condition 2. Our preliminary experiments showed that solving 

his LP was rather time consuming. We thus developed a heuris- 

ic method, reported in Algorithm 3 , which is more time efficient 

nd which produces cuts that are usually very similar to the cuts 
lgorithm 3 EnumerativeStrengthening. 

nput : ˆ x ∈ X 

utput : Valid coefficients ˜ d for the strengthened fortification cut 

12) 

1: Initialize the strengthened cut coefficients as ˜ d ← 

�
 0 

2: for all ∅ � = P ⊆ S( ̂  x ) s.t. 
∑ 

i ∈ P f i ≤ B F do 

3: Define attacker solution x ′ such that x ′ 
i 
= 0 for all i ∈ P , and 

x ′ 
i 
= ˆ x i otherwise 

4: Solve the recourse problem to obtain �I (x ′ ) , compute �P = 

�I ( ̂  x ) − �I (x ′ ) 
5: while 

∑ 

i ∈ P ˜ d i < �P do 

6: Randomly pick i ∈ P such that ˜ d i < d i , set ˜ d i ← 

˜ d i + 

min { d i − ˜ d i , �P −
∑ 

i ∈ P ˜ d i } 
7: if ˜ d = d then 

8: return 

˜ d 

9: return 

˜ d 
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btained by solving the LP. This procedure receives an interdiction 

trategy ˆ x as input and returns strengthened coefficients ˜ d that sat- 

sfy the condition in Theorem 2 . 

The heuristic works as follows: initially, all coefficients are set 

o zero. Then, all sets P ⊆ S( ̂  x ) associated with a feasible w (i.e.,
 

i ∈ P f i ≤ B F ) are considered and, for each set, the correspond- 

ng attacker solution x ′ is defined. Then, the cost reduction �P = 

I ( ̂  x ) − �i (x ′ ) with respect to the recourse cost for ˆ x is split 

mong ˜ d coefficients, provided these figures satisfy Condition 1 of 

heorem 2 . Note that unnecessary computations can be avoided 

y considering only the subsets P such that there is a feasible re- 

ourse solution with y i = 1 , for all i ∈ P , as the combined effect of

ortifying any two assets on the recourse objective can be larger 

han the sum of their individual effects only if they can simultane- 

usly be used in a recourse solution. In order to do that, one may 

xploit the structures of the recourse problems, if known. This is 

xplained in more detail in Section 5 within the problem specific 

mplementation aspects of the two applications we describe next. 

n addition, any iteration could be halted whenever the sum of the 

urrent ˜ d coefficients is larger than the maximum value �P could 

ake, i.e., �I ( ̂  x ) − min y ∈ Y c T y . 

For what concerns the strengthening of fortification cuts based 

n a lower bound as described in Section 2.3 , we initialize the 

lobal lower bound as z = min y ∈ Y c T y . This value is updated dy- 

amically as the best known lower bound obtained from the LP 

elaxation objective value changes in the branching tree. When- 

ver the fortification cut is strengthened with z , the cut is globally 

alid and added as a global cut. In addition, let (w 

∗, θ ∗) be an op-

imal solution of the LP-relaxation at the current branching node; 

f θ ∗ > z , i.e, the lower bound of the current branch is tighter than 

he global one, a locally valid and tighter cut may be derived by 

sing θ ∗ as the strengthening bound. 

. Applications 

In this section, we present the two applications for which we 

onduct a numerical study. A main difference between the two 

est-cases is in the computational complexity of the associated re- 

ourse problems; indeed, this turns out to be an NP-hard problem 

n the first case and a polynomially solvable problem in the second 

ne. 

.1. Knapsack fortification game 

The first case-study we consider is the knapsack fortification 

ame (KFG). The classical 0-1 knapsack problem (KP) is one of the 

ost studied discrete optimization problems, because of its prac- 

ical and theoretical relevance, and because it arises as a subprob- 

em in many more complex problems (see, e.g., Kellerer, Pferschy, 

 Pisinger, 2004 ). In this problem, we are given a set N of items,

he i th item having profit d i ≥ 0 and weight a i ≥ 0 and a knap-

ack having capacity b. Its bilevel counterpart, also known as the 

napsack interdiction game, is commonly used as a benchmark for 

esting solvers for discrete bilevel optimization; see, e.g., Caprara 

t al. (2014, 2016) ; Contardo & Sefair (2022) ; Della Croce & Scata-

acchia (2020) ; DeNegre (2011) ; Fischetti et al. (2017, 2019) ; Tang, 

ichard, & Smith (2016) . A relevant application of the knapsack in- 

erdiction game is described in DeNegre (2011) : Company D (a de- 

ender) wishes to determine its marketing strategy for a given set 

of potential target regions, where a i represent the cost needed 

o employ a marketing campaign in region i ∈ N and d i represents 

he profit achieved by targeting this region. The available market- 

ng budget is b. We also assume that there exists a competitor, 

ompany A (an attacker) who can interdict the marketing strategy 

f company D by targeting the same regions. For company A the 
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ost for targeting the region i ∈ N is g i ≥ 0 , and the overall avail-

ble budget is B I > 0 . If both companies A and D target the same

egion, the profit of company D drops to zero. The goal of company 

 is to target a subset of regions from N, under the given bud-

et constraint, in such a way that the maximum profit achieved by 

ompany D is minimized. 

In the fortification knapsack game studied in this paper, com- 

any D is aware of the interdiction strategy of company A and 

ries to take some preventive measures in order to protect itself 

rom adversarial actions of company A. Company D searches to re- 

nforce its own marketing campaign with some additional more 

ggressive and more costly marketing activities that will prevent 

ompany A from targeting certain regions from the set N. The re- 

nforcement/fortification cost for region i ∈ N is given as f i ≥ 0 , and 

he overall fortification budget is B F > 0 . 

Hence, in the three-level fortification version of KP, first the de- 

ender chooses a set of items to fortify against interdiction while 

especting the fortification budget. Then, the attacker interdicts 

ome of the non-fortified items within the interdiction budget. 

astly, the defender determines the recourse action, by solving a 

P over non-interdicted items, i.e., by choosing a subset of non- 

nterdicted items giving the maximum profit while not exceed- 

ng the knapsack capacity. The feasible regions of the first and 

he second levels are denoted by W = { w ∈ { 0 , 1 } n : ∑ 

i ∈ N f i w i ≤
 F } and X(w ) = X ∩ { x ∈ R 

n : x ≤ 1 − w } , respectively, where X =
 x ∈ { 0 , 1 } n : ∑ 

i ∈ N g i x i ≤ B I } . The tri-level game is thus formulated

y the following program: 

 

∗ = max 
w ∈ W 

min 

x ∈ X(w ) 
max 

y 

∑ 

i ∈ N 
d i y i (24) 

∑ 

i ∈ N 
a i y i ≤ b (25) 

y i ≤ 1 − x i ∀ i ∈ N (26) 

y i ∈ { 0 , 1 } ∀ i ∈ N (27) 

ince the recourse problem satisfies the down-monotonicty as- 

umption ( Fischetti et al., 2019 ), the interdiction constraints 

26) can be replaced by penalty terms in the objective function 

ith M i = d i as explained in Remark 1 . With necessary transfor- 

ations for a defender with a maximization objective, the single 

evel formulation of the KFG becomes 

FG : z ∗ = max 
w ∈ W 

θ (28) 

θ ≤ �I ( ̂  x ) + 

∑ 

i ∈ N 
d i ̂  x i w i ∀ ̂

 x ∈ X. (29) 

We note that the KFG is �p 
3 

-hard already for the special case 

 i = a i , for all i ∈ N as shown by Nabli, Carvalho, & Hosteins (2022) .

.2. Shortest path fortification game 

The second application we consider is the shortest path fortifi- 

ation game (SPFG), originally introduced by Cappanera & Scaparra 

2011) and later also considered by Lozano & Smith (2017) . This 

s a three-level extension of the shortest-path interdiction game of 

sraeli & Wood (2002) . The latter is defined on a directed graph 

 = (V, A ) where V and A denote the set of nodes and arcs, re-

pectively. For each arc (i, j) ∈ A , we are given c i j ≥ 0 which is the

ominal cost of traversing this arc, and d i j ≥ 0 which is the ad- 

itional traversing cost due to its interdiction. An interdictor tries 

o maximize the length of the shortest s − t path by interdicting 

t most B I > 0 arcs of the network. To motivate SPFG, Cappanera 

 Scaparra (2011) show that fortifying the arcs found through the 

hortest-path interdiction model (also called the most critical arcs ) 
1033 
ay be suboptimal, thus highlighting the importance of explic- 

tly including protection decisions into a three-level fortification 

odel. Thus, in the SPFG, the outer-most level consists in select- 

ng a set of arcs to protect from the interdiction by an attacker in 

rder to minimize the length of the shortest s − t path. Then, the 

ttacker interdicts some of the non-fortified arcs, with the goal of 

aximizing the shortest path in the interdicted graph. At a third 

evel, a recourse step is executed by solving a shortest path prob- 

em in the interdicted network. The mathematical formulation of 

he game is given as 

 

∗ = min 

w ∈ W 

max 
x ∈ X(w ) 

min 

y 

∑ 

(i, j) ∈ A 
(c i j + d i j x i j ) y i j (30) 

∑ 

j :(i, j ) ∈ A 
y i j −

∑ 

j:( j,i ) ∈ A 
y ji = 

{ 

1 i = s 
0 i ∈ V \ { s, t} 
−1 i = t 

∀ i ∈ V (31) 

 i j ≥ 0 ∀ (i, j) ∈ A. (32) 

he feasible regions of the first and second level problems 

re described by cardinality constraints, i.e., W = { w ∈ { 0 , 1 } m :
 

(i, j) ∈ A w i j ≤ B F } , X = { x ∈ { 0 , 1 } m : 
∑ 

(i, j) ∈ A x i j ≤ B I } , and X(w ) =
 ∩ { x ∈ R 

m : x ≤ 1 − w } , where m denotes the the number of arcs.

he fortification game is reformulated by the following single level 

ormulation following the steps described in Section 2 . 

PFG : z ∗ = min 

w ∈ W 

θ (33) 

θ ≥ �I ( ̂  x ) −
∑ 

(i, j) ∈ A 
d i j ̂  x i j w i j ∀ ̂

 x ∈ X (34) 

here X includes all feasible interdiction patterns. Notice that re- 

lacing �I ( ̂  x ) with 

∑ 

(i, j) ∈ A (c i j + d i j ̂  x i j ) ̂  y i j , where ˆ y is an optimal 

ath under costs c i j + d i j ̂  x i j , gives the following fortification cut: 

≥
∑ 

(i, j) ∈ A 

(
c i j ̂  y i j + d i j ( ̂  y i j − w i j ) ̂  x i j 

)
. (35) 

et (i, j) be an arc such that ˆ x i j = 1 and ˆ y i j = 0 . Then, its contribu-

ion to the right-hand-side cost reduces to −d i j w i j . This means that 

f (i, j) would be fortified (and thus not interdicted), the shortest 

ath length would be reduced by at most d i j . 

. Computational results 

In this section we discuss the results of our computational 

tudy which has two main objectives. First, to assess the computa- 

ional performance of the proposed algorithms by comparison with 

he existing literature. Second, to analyze the computational effec- 

iveness of the proposed algorithmic enhancements and determine 

he limitations of the new approach. We present computational re- 

ults on two data sets from the literature for each of the two case- 

tudies we consider. Our algorithm has been implemented in C++, 

nd makes use of IBM ILOG CPLEX 12.10 (in its default settings) 

s mixed-integer linear programming solver. All experiments are 

un on a single thread of an Intel Xeon E5-2670v2 machine with 

.5 gigahertz processor and using a memory limit of 8 gigabyte. 

nless otherwise indicated, a time limit of one hour was imposed 

or each run. Throughout this section we use the following nota- 

ion to describe the components of our algorithm: bound based 

trengthening (B), enumerative strengthening (E), greedy integer 

eparation (G), strengthening of interdiction cuts (I), and any com- 

ination of these letters to denote the settings involving the cor- 

esponding methods. The detailed results of our experiments are 

rovided in the online supplement. 
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.1. Results for the KFG 

In the following, we first describe problem specific implementa- 

ion details of the B&C for the KFG. Then, we discuss the results of 

ur experiments on two data sets derived from publicly available 

nstances for the Knapsack Interdiction Problem. 

.1.1. Implementation details for the KFG 

While solving (SEP) for the KFG, separation of integer solutions 

ccounts to solving a KP. Though specific efficient codes are avail- 

ble for the exact solution of KP instances (see, e.g., procedure 

ombo in Martello, Pisinger, & Toth, 1999 ), we solve this problem 

s a general MIP. We perform the separation of fractional solu- 

ions using the classical greedy algorithm for the knapsack prob- 

em; notice that, an exact separation of fractional solutions is not 

eeded for the correctness of the algorithm. Similarly, in Step 4 

f Algorithm 2 , the recourse is solved greedily. Preliminary exper- 

ments showed that the strengthening of interdiction cuts, though 

roducing violated cuts, leads to attacker solutions of poor quality, 

hich reduces the strength of the fortification cuts. Besides, we 

id not observe any significant reduction in the solution time of 

SEP) for a given defender (fortification) solution, thus, for the KFG 

e focus on the algorithm configurations without interdiction cut 

trengthening. 

As to the enumerative strengthening procedure described in 

ection 2.2 , instead of solving the recourse problem exactly (i.e., 

olving the KP as an MIP) we only solve its LP relaxation, cf. 

tep 4 of Algorithm 3 . In this way we obtain, with limited com-

utational effort, a valid dual bound that can be used for strength- 

ning according to the observation in Remark 2 . As described in 

ection 3.3 , a set P satisfying the conditions for strengthening can 

e removed from consideration if it includes items that cannot be 

sed together in some feasible recourse solution. To eliminate such 

 , we simply check the knapsack constraint for the recourse solu- 

ion y having y i = 1 , ∀ i ∈ P and y i = 0 , ∀ i / ∈ P . If it is violated, we

ove to the next iteration. During the solution of any instance, if 

0 successive trials of enumerative strengthening do not produce 

 strictly tighter cut, we do not employ this feature for the newly 

enerated cuts. 

.1.2. TRS knapsack interdiction dataset 

In this section, we consider the 150 instances introduced by 

ang et al. (2016) for the Knapsack Interdiction Problem, and add a 

ortification level involving a cardinality constraint on the number 

f items that can be fortified. In the original instances, the num- 

er of items is n ∈ { 20 , 22 , 25 , 28 , 30 } and maximum number of

tems to interdict is B I ∈ {
 n/ 4 � , 
 n/ 2 � , 
 3 n/ 4 �} . The profit d i and

eight a i of each item are sampled uniformly in { 1 , . . . , 100 } and

he knapsack capacity is b = 
 n −B I 
2 n 

∑ n 
i =1 a i � . 10 random instances 

re available for each parameter combination. We use the forti- 

cation budget levels B F = 3 and B F = 5 , thus producing a set of

00 benchmark instances, denoted as TRS. We solved each instance 

ith several algorithm settings, including components B, E, and G 

n an incremental way. In Fig. 1 , we show the cummulative distri- 

ution of root gaps and solution times for the TRS instances. It can 

e seen that bound based strengthening slightly reduces the solu- 

ion times although it does not produce consistent improvements 

n terms of root gaps. The next component, enumerative strength- 

ning, improves both measures, while its effect on the root gaps is 

ore evident. It turns out that enhancing the integer separation by 

he greedy algorithm improves the performance as well, in partic- 

lar for what concerns the maximum time needed for solving the 

nstances, which is significantly smaller with the setting BEG than 

ith the other settings considered. All 300 instances are solved op- 

imally within 100 seconds under all four settings. With BEG, the 

aximum solution time is 18 seconds (cf. Fig. 1 ). 
1034 
.1.3. CCLW knapsack interdiction dataset 

Our second benchmark for the KFG is derived from the in- 

tances proposed by Caprara et al. (2016) for the Knapsack Inter- 

iction Problem. In this data set, the number of items takes value 

n { 35 , 40 , 45 , 50 , 55 } . The profits d i , weights a i , and interdiction

osts g i take random values in [0 , 100] . For each size there are ten

nstances in which the interdiction budget B I = 
 (ID/ 11) 
∑ n 

i =1 a i � 
ncreases with the ID of the instance, 1 ≤ ID ≤ 10 . The knapsack ca- 

acity b takes a random value in 
 B I − 10 , B I + 10 � . In this case too,

e introduce an additional fortification level, and impose a cardi- 

ality constraint for the defender. We solved these 50 instances 

or B F ∈ { 3 , 5 } , thus producing a set of 100 benchmark instances

enoted as CCLW. 

Fig. 2 shows the cumulative distribution of root gaps and solu- 

ion times for the instances in this benchmark set. It can be seen 

hat bound based strengthening does not have an effect in both 

easures. This is mostly due to the fact that we are able to pro- 

uce only a few strengthened cuts, as the value of �( ̂  x ) − z is usu-

lly larger than d i in our experiments. Enumerative strengthening 

oes not contribute to decreasing the solution times because of its 

ime complexity, which depends on the interdiction budget; how- 

ver this strategy decreases the root gap on average. We observed 

n our experiments that the root gap reduction is larger for smaller 

udget levels, which can be found in the detailed results provided 

n the online supplement. We also observe smaller number of B&C 

odes when enumerative strengthening is activated, although we 

o not report details about this kind of measure here. Similar to 

he results on the TRS data set, the component causing the largest 

arginal improvement in solution times is greedy integer separa- 

ion ( G ). We observe in our experiments that Algorithm 2 is able to

nd good interdiction strategies quickly, which makes the separa- 

ion process more efficient compared to the default setting where 

e stop solving (SEP) once a violated fortification is found. We are 

ble to solve 95 out of 100 instances optimally in one hour when 

sing setting BEG. 

.2. Results for the SPFG 

In the following, we first describe problem specific implemen- 

ation details of the B&C algorithm for the SPFG. Then, we present 

he results of our experiments on two existing data sets from the 

iterature. 

.2.1. Implementation details for the SPFG 

The recourse problem, which is the shortest path problem, is 

olved via Dijkstra’s algorithm ( Dijkstra et al., 1959 ) with a priority 

ueue implementation, wherever needed, e.g., in Algorithms 2 and 

 . While solving (SEP) to obtain a fortification cut, both integer and 

ractional solutions are separated exactly. Separation is carried out 

n O (| A | log | V | ) time. In addition to the lower cutoff and solution

imit strategies, interdiction cut strengthening is used to speed up 

he solution of (SEP). Recall that any value l > θ ∗ can be used to 

ift the interdiction cut. Since all the problem parameters are in- 

egers in out data sets, we choose l = 
 θ ∗ + ε� . Remind that for-

ifying two assets (i.e., arcs) at the same time can be more effec- 

ive than the sum of their individual effects only if the two arcs 

an be used together in a recourse solution (see Section 3.3 ). Ac- 

ordingly, while executing Algorithm 3 , we try to not consider all 

ets P including pairs of arcs that cannot appear together in an 

 − t path. Since checking this exactly would be time consuming, 

e only check if any two arcs in P have the same head or tail and

kip the current iteration if there is such an arc pair, which indi- 

ates that an s − t path cannot include both of these arcs. 
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Fig. 1. Root gaps and solution times of TRS data set instances. 

Fig. 2. Root gaps and solution times of CCLW data set instances. 

Table 1 

The sizes of the grid networks. 

Instance Nodes Arcs 

10 × 10 102 416 

20 × 20 402 1826 

30 × 30 902 4236 

40 × 40 1602 7646 

50 × 50 2502 12,056 

60 × 60 3602 17,466 
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.2.2. Directed grid networks 

For the SPFG, the first data set we use is the directed grid 

etwork instance set generated by Lozano & Smith (2017) follow- 

ng the topology used by Israeli & Wood (2002) and Cappanera & 

caparra (2011) . These instances and the implementation of the so- 

ution algorithm proposed in Lozano & Smith (2017) are available 

t https://doi.org/10.1287/ijoc.2016.0721 . In these networks, in ad- 

ition to a source and a sink node, there are m × n nodes forming a

rid with m rows and n columns. The source (sink) node is linked 

ith each of the grid nodes in the first (last) column. The sizes 

f the networks are shown in Table 1 . We use the cost ( c i j ) and

elay ( d i j ) values provided with the networks, which were gener- 

ted randomly in [1 , c max ] and [1 , d max ] , respectively, using six dif-

erent c max and d max combinations. For each network size, ten in- 

tances with different arc costs/delays are generated. Each instance 
1035 
s solved for six different fortification and interdiction budget level 

onfigurations (B F , B I ) also used in Lozano & Smith (2017) . 

In Fig. 3 the cumulative distributions of root gaps and solution 

imes are plotted for three settings: the basic one “−”, the best 

erforming setting for KFG instances (BEG), and a variant addi- 

ionally considering interdiction cut strengthening (IBEG). The plot 

n the left hand side shows that the root gaps of variant BEG 

re substantially smaller than those of the basic setting. It is also 

lear from the plots that the strengthening of interdiction cuts us- 

ng l = 
 θ ∗ + ε� produces a remarkable improvement. We observed 

hat, using this strategy the number of B&C nodes increased with 

espect to BEG, since attacker solutions with smaller objective val- 

es (and, in turn, weaker fortification cuts) are produced. Nev- 

rtheless, in this case, the separation problem can be solved ex- 

remely efficiently, which overall leads to improved performances. 

Tables 2 and 3 report the average and maximum solution times 

equired by our algorithm with setting IBEG. These figures are 

ompared with the results obtained by the solution algorithm of 

ozano & Smith (2017) , denoted as LS. Since the implementation 

f this algorithm is available online, we were able to run it on the 

ame hardware as our algorithm. The algorithm was coded in Java 

nd we ran it with Gurobi 9.2 as MIP solver. In both tables, rows 

re associated to a network size and a configuration for the forti- 

cation and interdiction budget levels, whereas the three blocks of 

olumns refer to different cost-delay configurations (c max − d max ) , 

https://doi.org/10.1287/ijoc.2016.0721


M. Leitner, I. Ljubi ́c, M. Monaci et al. European Journal of Operational Research 307 (2023) 1026–1039 

Fig. 3. Root gaps and solution times of Grid networks data set. 

Table 2 

SPFG Solution times for the directed grid networks with setting IBEG and with algorithm LS (Part 1). 

(10-5) (10-10) (10-20) 

IBEG LS IBEG LS IBEG LS 

B F B I Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max 

10 × 10 3 3 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.2 

4 3 0.1 0.1 0.1 0.3 0.1 0.2 0.2 0.2 0.1 0.1 0.2 0.2 

3 4 0.1 0.2 0.2 0.3 0.2 0.2 0.3 0.4 0.2 0.2 0.3 0.6 

5 4 0.2 0.2 0.3 0.5 0.2 0.3 0.4 0.5 0.2 0.4 0.4 0.6 

4 5 0.2 0.3 0.4 0.7 0.2 0.3 0.6 1.0 0.3 0.4 0.7 1.5 

7 5 0.3 0.6 1.1 1.7 0.4 0.6 1.1 1.5 0.6 1.0 1.3 1.9 

20 × 20 3 3 0.3 0.5 0.4 1.0 0.3 0.6 0.6 2.1 0.3 0.8 0.6 2.6 

4 3 0.3 0.5 0.5 1.0 0.4 0.8 0.7 2.5 0.4 0.9 0.7 2.7 

3 4 0.4 1.0 0.6 1.3 0.4 0.8 1.0 2.5 0.5 0.8 1.2 5.2 

5 4 0.6 1.4 0.9 1.8 0.8 1.8 1.5 5.1 0.7 1.4 1.7 7.3 

4 5 0.8 1.2 2.1 5.6 0.9 1.6 2.7 9.9 0.9 1.4 3.0 11.4 

7 5 1.7 3.3 3.3 5.9 2.4 3.4 5.1 16.7 2.6 3.9 7.1 31.5 

30 × 30 3 3 0.6 1.0 0.9 1.2 0.6 1.2 1.4 3.8 0.6 1.0 3.6 19.0 

4 3 0.6 0.9 1.1 1.8 0.8 1.3 1.8 4.6 0.8 1.2 3.9 19.6 

3 4 1.2 1.8 1.9 2.7 1.4 2.9 5.6 27.7 1.4 3.1 8.0 35.1 

5 4 1.9 3.4 2.7 3.9 2.1 3.1 5.8 16.4 2.0 2.9 9.2 35.9 

4 5 2.7 4.9 6.4 9.9 2.9 5.9 19.2 110.5 3.4 8.7 21.5 108.7 

7 5 5.6 9.7 12.3 24.5 7.2 13.8 29.2 146.2 7.6 12.8 28.0 115.1 

40 × 40 3 3 1.7 3.5 2.7 6.0 1.8 4.3 5.4 26.9 1.8 4.3 7.8 43.3 

4 3 1.9 3.0 3.6 7.3 2.4 4.6 6.8 32.9 2.2 3.8 9.0 45.6 

3 4 2.7 5.1 3.9 6.3 3.3 8.2 37.4 267.9 3.3 9.3 63.6 540.0 

5 4 4.9 8.4 9.1 30.5 5.3 12.3 42.2 260.8 5.9 14.4 69.9 549.6 

4 5 6.0 11.3 13.7 33.4 10.5 38.8 247.3 1943.5 9.5 30.9 377.7 2786.6 

7 5 15.6 32.4 26.5 76.0 22.9 66.8 486.4 3514.0 27.9 124.1 516.7 4106.4 

50 × 50 3 3 2.1 3.4 4.4 11.1 2.1 4.2 10.7 38.0 2.2 4.7 13.3 41.6 

4 3 2.8 6.8 6.6 25.2 2.8 5.0 19.7 82.2 2.7 5.3 14.4 45.4 

3 4 3.3 8.1 13.1 83.7 5.0 11.8 53.4 240.4 4.8 17.0 52.5 371.5 

5 4 5.9 9.6 15.8 87.6 7.6 20.2 112.9 627.1 8.5 28.1 61.1 416.2 

4 5 9.5 24.0 38.6 276.0 17.7 75.9 219.6 1068.9 14.6 67.5 112.6 858.0 

7 5 24.8 45.9 77.9 518.4 33.5 124.3 407.3 2325.3 38.1 149.2 102.3 624.7 

60 × 60 3 3 4.0 8.1 11.4 30.4 4.4 7.4 21.8 65.6 4.1 6.4 32.0 73.7 

4 3 5.4 13.1 12.6 33.9 5.9 13.3 32.7 143.7 6.1 18.2 38.0 95.8 

3 4 7.1 13.9 15.1 28.2 10.5 18.1 69.6 299.4 11.1 23.3 95.0 426.7 

5 4 12.7 27.9 21.2 54.8 16.7 30.6 134.4 905.8 16.6 28.8 115.8 575.2 

4 5 18.8 26.3 40.5 76.6 35.5 107.3 285.4 915.7 30.4 75.1 265.7 1056.2 

7 5 45.7 80.6 108.6 351.8 87.0 185.0 624.8 3440.4 74.2 127.9 474.1 2155.0 

i  

(

c

a

I

s

o

m

b

F

i

d

i

t  
.e., (10-5), (10-10), and (10-20) in Table 2 ; (10 0-50), (10 0-10 0), and

10 0-20 0) in Table 3 . 

Table 2 contains the results for smallest three cost-delay 

onfigurations, and shows that IBEG yields significantly smaller 

verage and maximum solution times for most of the instances. 

n 104 (107) out of 108 configurations, IBEG produces a strictly 

maller average (maximum) solution time. For many instances 

f larger sizes our algorithm is faster than LS by one order of 
1036 
agnitude. Overall, the performance improvement of IBEG over LS 

ecomes more pronounced as the c max and d max values increase. 

Table 3 gives results for the largest cost-delay configurations. 

or these instances, again IBEG outperforms LS for most of the 

nstances. Here, in 100 (103) out of 108 configurations, IBEG pro- 

uces a strictly smaller average (maximum) solution time. As the 

nstances get more difficult, IBEG becomes more advantageous. For 

he most difficult group of instances with n = 60 and (c max − d max )
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Table 3 

SPFG solution times for the directed grid networks with setting IBEG and with algorithm LS (Part 2). 

(100-50) (100-100) (10 0-20 0) 

IBEG LS IBEG LS IBEG LS 

B F B I Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max 

10 × 10 3 3 0.1 0.2 0.1 0.2 0.3 0.4 0.2 0.3 0.1 0.2 0.2 0.2 

4 3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.3 0.2 0.3 

3 4 0.3 0.4 0.3 0.5 0.2 0.4 0.4 0.6 0.3 0.4 0.4 0.9 

5 4 0.3 0.4 0.4 0.5 0.3 0.7 0.5 0.8 0.3 0.5 0.5 0.9 

4 5 0.4 0.5 0.8 1.3 0.5 0.7 1.0 2.0 0.6 0.9 1.1 2.4 

7 5 0.5 1.0 1.3 2.4 0.8 1.2 1.7 3.3 0.9 1.7 1.9 3.4 

20 × 20 3 3 0.5 0.8 0.7 1.9 0.5 0.7 0.7 1.1 0.5 0.9 0.7 1.5 

4 3 0.6 0.9 0.9 1.7 0.6 1.1 0.8 1.2 0.7 1.2 0.8 1.7 

3 4 1.0 1.5 2.1 5.4 1.0 1.3 1.8 4.4 0.9 1.6 1.8 4.6 

5 4 1.7 3.1 2.6 4.8 1.8 3.0 2.4 6.1 1.7 3.3 2.4 5.7 

4 5 2.4 3.4 5.8 14.5 2.7 4.7 7.7 22.6 2.4 4.5 7.8 25.2 

7 5 6.3 9.6 7.7 12.3 5.9 8.9 9.4 22.9 5.5 8.7 9.5 28.7 

30 × 30 3 3 1.2 2.3 2.9 17.5 1.5 3.1 1.9 4.0 1.3 2.2 2.4 6.0 

4 3 1.4 2.9 2.1 9.5 1.7 2.9 2.7 6.8 1.6 2.5 2.7 6.8 

3 4 2.5 5.1 4.6 13.7 2.3 3.3 5.1 14.7 2.4 3.4 4.8 10.8 

5 4 5.1 12.7 7.3 22.3 4.0 7.2 7.6 24.0 3.9 6.1 7.1 22.6 

4 5 6.7 10.0 19.0 97.4 6.0 10.1 22.3 52.6 6.3 10.8 19.6 75.3 

7 5 19.8 47.5 29.9 89.2 16.1 23.4 49.1 218.1 16.1 23.8 42.6 175.1 

40 × 40 3 3 2.3 4.3 3.4 6.7 2.8 4.5 6.9 31.0 2.4 3.6 6.1 18.9 

4 3 3.0 3.9 4.1 6.6 3.2 7.0 9.3 53.3 3.2 7.3 7.5 23.7 

3 4 6.6 11.8 11.3 37.0 6.1 13.9 14.9 40.1 4.9 9.0 13.0 21.0 

5 4 11.0 22.7 16.3 50.3 10.0 18.6 27.2 137.6 8.6 14.4 22.4 85.4 

4 5 21.3 49.9 32.5 78.3 22.9 92.3 75.2 277.6 13.7 33.1 44.9 138.1 

7 5 56.8 95.1 53.0 128.1 57.9 144.5 157.2 934.0 50.4 174.6 114.4 705.3 

50 × 50 3 3 4.3 10.1 10.0 33.0 5.6 18.4 36.4 234.9 5.2 19.4 40.5 182.0 

4 3 5.6 12.4 10.1 27.5 6.0 17.3 49.5 359.1 6.2 23.3 40.8 173.8 

3 4 12.9 37.0 28.7 98.3 15.0 42.9 108.8 763.7 9.5 25.8 76.2 268.2 

5 4 27.3 89.4 61.1 204.3 26.6 102.6 417.3 3678.8 20.0 52.2 104.7 496.7 

4 5 57.3 206.9 120.4 494.4 69.4 251.0 253.2 1436.7 58.5 227.9 309.5 1545.9 

7 5 281.0 1097.6 238.5 1099.6 135.7 402.5 912.6 7746.5 93.4 334.8 469.2 3025.0 

60 × 60 3 3 8.2 25.0 14.0 40.9 9.2 28.2 52.1 338.1 8.3 22.0 62.3 250.7 

4 3 11.4 24.4 17.6 58.2 11.4 34.7 76.2 552.1 12.9 41.9 68.4 297.4 

3 4 21.2 33.8 44.9 92.0 25.7 104.6 260.6 1790.4 23.2 99.1 180.7 866.1 

5 4 45.5 169.6 64.9 194.8 52.7 246.0 254.0 1726.6 33.1 110.1 202.4 1029.8 

4 5 92.5 365.0 148.2 391.5 167.4 854.4 1281.5 7442.6 222.9 1677.1 1120.4 5620.4 

7 5 271.8 761.7 329.8 1325.5 368.6 1608.8 1256.7 6658.2 364.7 2149.1 1493.8 8691.8 

Table 4 

Results for instance set road network . 

IBEG LS 

Instance Nodes Arcs B F B I Avg(s.) Max(s.) Solved Avg(s.) Max(s.) Solved 

DC 9559 39,377 3 3 9.5 15.1 9 35.0 99.2 9 

4 3 14.2 29.4 9 39.9 101.8 9 

3 4 18.1 32.2 9 94.2 453.7 9 

5 4 45.3 68.4 9 104.0 426.5 9 

4 5 51.5 86.3 9 523.6 2959.7 9 

7 5 123.7 230.7 9 608.4 2126.0 9 

RI 53,658 192,084 3 3 88.2 234.2 9 137.7 588.3 9 

4 3 164.3 289.3 9 144.2 570.1 9 

3 4 285.7 960.1 9 463.6 3031.8 9 

5 4 389.0 1432.8 9 465.4 2621.2 9 

4 5 1084.4 5766.4 9 1896.3 13758.4 9 

7 5 1565.7 6042.8 9 2092.1 TL 8 

NJ 330,386 1,202,458 3 3 858.3 1997.3 9 988.5 5442.5 9 

4 3 1078.8 2906.5 9 2057.4 TL 8 

3 4 1576.3 2849.0 9 2217.3 TL 8 

5 4 2968.8 8052.1 9 2557.4 TL 8 

4 5 5695.8 TL 8 2702.0 TL 8 

7 5 10042.3 TL 7 3885.4 TL 8 

Total 159 156 
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d

t

s (100-100) or (100-200), the average solution times with IBEG 

re 80% and 78% smaller, respectively, than their LS counterparts. 

oreover, IBEG solves all instances within the time limit of one 

our. 

.2.3. Real road networks 

For the second part of the SPFG experiments, we consid- 

red the real road network data sets of the cities Washington 
t  

1037 
DC), Rhode Island (RI), and New Jersey (NJ), used by Raith & 

hrgott (2009) and Lozano & Smith (2017) . While the original 

ndirected data sets are available at http://www.diag.uniroma1.it/ 

 

∼challenge9/data/tiger/ , we used the data sets provided by Lozano 

 Smith (2017) where each edge is replaced by two arcs to get 

irected networks and in which connectivity is enforced by addi- 

ional high-cost arcs. The costs of the arcs are equal to the dis- 

ances and the delay is 10,0 0 0 for each arc. On each of the three

http://www.diag.uniroma1.it//~challenge9/data/tiger/
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etworks, the SPFG is solved for nine distinct s − t pairs and us- 

ng the six fortification and interdiction budget combinations used 

or the grid networks, resulting in 162 instances. As these are the 

ost challenging instances considered in our study, the time limit 

s set to four hours for each run. Table 4 reports the sizes of the

etworks as well as average and maximum solution times over 

he nine instances with the same size and budget combination 

or IBEG and LS, as reported in Lozano & Smith (2017) . The ta-

le shows that our default setting IBEG is able to solve 159 over 

62 instances optimally within the time limit. Notice that our B&C 

lgorithm solves three instances more than the sampling based al- 

orithm by Lozano & Smith (2017) , which was run on the same 

achine as IBEG and produced significantly smaller solution times 

han the ones reported in their paper. In addition, when both algo- 

ithms solve all the instances, IBEG is significantly faster than LS: 

he average computing time and the maximum computing times 

re below 48% and 72% on the average, respectively, of their coun- 

erpart for LS. 

. Conclusion 

In this study we address fortification games (FGs), i.e., defender- 

ttacker-defender problems which involve fortification, interdiction 

nd recourse decisions, respectively. These problems are interesting 

rom a theoretical viewpoint and have many real-world applica- 

ions, in, e.g., military operations or the design of robust networks. 

e introduce fortification cuts , which allow for a single-level exact 

eformulation of this complex trilevel optimization problem, and a 

olution approach which uses the cuts within a branch-and-cut al- 

orithm and works in the space of the fortification variables only. 

While mainly focusing on the version where interdicting an as- 

et depreciates its usefulness for the defender, we also show that 

ur methodology is directly applicable to FGs with complete de- 

truction of interdicted assets. After introducing the basic fortifi- 

ation cuts, we present two strengthening procedures that can be 

sed to produce stronger inequalities, and give a detailed descrip- 

ion of the separation procedure. We provide numerical results for 

wo relevant test-cases, namely knapsack fortification games and 

hortest path fortification games. Due to the different structures 

nd computational complexity of their recourse problems, we ob- 

erve different effects of our algorithmic components in our com- 

utational study, and try to give insight about possible reasons. 

Finally, we point out that our solution scheme is generic, and it 

eaves space for problem specific improvements. For example, for 

 given FG, one could solve the associated separation problem by 

eans of a state-of-the-art exact method or using some special- 

zed heuristic instead of the greedy method proposed in this pa- 

er. Moreover, problem-specific valid inequalities or strengthening 

rocedures of the fortification cuts could also be possible. 
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