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A B S T R A C T

Continuum parallel robots (CPRs) are mainly constituted by flexible links arranged in parallel between a
rigid platform and a rigid base, and they promise remarkable performance in human–robot collaboration
applications. New CPRs modelling strategies and their experimental validation are continuously investigated
due to the nonlinear phenomena complexity and the high computational effort required to solve them. This
work focuses on the experimental validation of CPRs equilibrium stability prediction. We demonstrate that
models based on planar displacement assumptions may fail in the equilibrium stability prediction, even though
the CPR is nominally planar. A new CPR prototype for planar applications is proposed, designed, and tested
for the scope. Unstable configurations that limit the robot workspace are theoretically and experimentally
investigated. A singularity type, related to out-of-the-plane uncontrolled motions of the planar CPR, is
experimentally identified for the first time. Experiments demonstrate that, even though the prototype is
theoretically planar, a planar model neglecting out-of-the-plane phenomena is inadequate to assess equilibrium
stability limits.
. Introduction

Continuum robots (CRs) are usually constituted by flexible com-
onents and designed to achieve safe human–robot interactions in
shared environment. Commonly, CRs resemble serial manipulators

nd may suffer from reduced payload capability, which limits their
pplicability. Nevertheless, CRs are usually well suited for small-scale
urgical tasks where their intrinsic compliance grants various advan-
ages [1]. Continuum parallel robots (CPRs) [2] were later introduced
or achieving a good trade-off between the higher payload capability
ypical of rigid links parallel manipulators and the intrinsic safety of
ontinuum robots. CPRs promise interesting features for large-scale or
ollaborative industrial tasks where the inherent flexibility of CPRs may
e used as a safety feature. The basic concept of a continuum parallel
obot was introduced in [2], where several flexible beams placed in a
ough-Stewart-like parallel arrangement were translated at their base

o move a rigid platform. Although similar robot architectures were
ater proposed [3–5], there is a growing number of different CPR
esigned explicitly for the task they are intended for [6–8]. Relevant ex-
mples of CPRs applications include pick-and-place [9] or micrometre
ositioning [10].
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CRs modelling received significant attention from the research com-
munity, and the literature is vast [11]. Alternative models provide a
different trade-off between accuracy and computational complexity,
and choosing the appropriate model for the problem at hand is an open
question. To this end, experimental data and simulations of different
models have been compared in many works [12–14]. Pose accuracy,
namely, the model ability to correctly predict the position and orien-
tation of the robot’s end-effector (EE), received significant attention:
lumped parameter approximations [15,16], piecewise constant strains
models [17], and shooting approaches [18,19], are some of the most
relevant examples of experimentally verified CRs models. For CPRs,
the pose accuracy of the shooting method was investigated in [9,10]
on a 2, and 3-DoF planar CPRs, respectively, and in [20] on a 6-
DoF CPR; additionally, [21] focused on model parameter calibration.
The constant curvature approach, which is suitable for tendon-driven
links, was also tested in [22] and, finally, discretization through small
segments was experimentally validated for spatial CPRs in [23].

Although pose accuracy is a significant issue for control, other robot
properties are relevant for characterization and performance evalua-
tion. Due to the high elasticity and possibly limited payload capability
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Fig. 1. Three different possible designs of the 𝑅𝐹𝑅𝐹𝑅 robot. (a) Two motors on the same side in distinct locations, (b) two motors on opposite sides on distinct locations,
(c) two motors on the same side, same location. Figure (d) qualitatively illustrates how mechanical interference reduces the WS with Design 1. Figure (e) shows the trend of
out-of-the-plane EE displacement (𝛥𝑝𝑧) with Design 2, and (f) illustrates the WS with Design 3. The links length is 0.560 m, while 𝑙𝐴𝐵 = 0.2 m for (d), (e), and 𝑙𝐴𝐵 = 0 for (f).
of CRs, robot stiffness and workspace (WS) extension are widely investi-
gated. A CPRs stiffness prediction obtained by a discretization approach
was experimentally validated in [24], and the WS of a 6-DoF prototype
experimentally verified in [25] by comparing theoretical and actual
posed on several WS slices. Recently, the phenomena limiting CPRs
workspace became of interest since their understanding may produce
better-performing designs. At WS limits, CPRs may experience stable-
to-unstable transition [26], analogously to serial CRs [27]. An optimal
control approach was proposed in [26] to assess CPRs equilibrium
stability, and experiments were conducted to verify the correct equi-
librium stability prediction. Even though optimal control approaches
bring rigorous derivation of equilibrium stability conditions, the com-
plexity of the analysis is relevant. Conversely, discrete energy-based
methods [28] bring simplicity to the equilibrium stability analysis.

The novel contribution of this paper is related to the experimental
validation of CPRs equilibrium stability assessment. In particular, we
demonstrate that models based on planar displacement assumptions
may fail in the equilibrium stability prediction, even though the CPR
is nominally planar. To this end, a CPR prototype for planar appli-
cations is originally proposed. The prototype has a 𝑅𝐹𝑅𝐹𝑅 overall
topology [29,30] and, thanks to its actuation system, links interference
with each other is avoided throughout the robot WS, leading to a large
attainable Cartesian WS area. Moreover, the EE motion is planar by
design since the forces exchanged between the links and the EE are
parallel to the motion plane, and the overall torque applied on the
mechanism is normal to the motion plane. The robot capability in terms
of joint-space range (JS), Cartesian WS size, and equilibrium stability
(verified with the energetic approach of [28]) are compared by using
a model that assumes planar displacements and a full spatial model.
Experiments are conducted to (i) verify that a model using planar
displacements assumptions is not adequate to predict the equilibrium
2

stability of the proposed prototype and (ii) to assess the accuracy of
our equilibrium stability prediction. A singularity type, related to out-
of-the-plane uncontrolled motions of the planar CPR, is experimentally
identified for the first time.

The paper is structured as follows. Section 2 illustrates the robot
design and its prototyping. Then, Section 3 recalls the derivation of
discretized CPR geometrico-static equations, singularity conditions and
equilibrium stability assessment. Section 4 is devoted to the robot
JS/WS analysis. Section 5 is dedicated to the experimental verifica-
tion of equilibrium stability prediction, and conclusions are drawn in
Section 6.

2. Prototype design

This Section focuses on the 𝑅𝐹𝑅𝐹𝑅 prototype design proposed in
this paper. The 𝑅𝐹𝑅𝐹𝑅 topology was introduced in [29], and its WS
computation was studied in [30]. The 𝑅𝐹𝑅𝐹𝑅 robot has two rotative
motors (𝑅) whose axes are attached to the proximal section of two
flexible beams (𝐹 ). The distal sections of the beams are connected
through a passive revolute joint (𝑅), and the robot EE is coincident
with the passive revolute joint 𝑅. All the 𝑅 joint axes are nominally
parallel.

2.1. Architecture selection

The proposed design aims at realizing a nominally planar CPR with
the largest workspace possible. To keep planar the EE displacement, the
external forces applied to the EE and the forces exchanged between
the legs and the EE need to belong to the motion plane, with the
resultant torque normal to the motion plane only. In addition, the EE ,
the links, and the motor axes should not mechanically interfere with



Mechatronics 95 (2023) 103064F. Zaccaria et al.

D
o

2

d
c

f
o
m
o
s
w

s
w

each other: this feature is a great limiting factor for parallel robots
WS size [31]. Some design candidates are the 2-DoF pick-and-place
continuum robot of [9], and the 𝑅𝐹𝑅𝐹𝑅 of [6], but also many rigid-
link five-bar mechanisms may be a source of inspiration [32]. The three
most straightforward solutions are hereby discussed:

• Design 1 (Fig. 1(a)). The two 𝑅 motors are attached on the same
side of the working plane at a distance 𝑙𝐴𝐵 > 0. This design brings
simplicity and great accessibility. Thanks to a clevis fastener, flex-
ible links are aligned at the same EE cross-section and connected
to the passive joint 𝑅 [9], and the EE is in static equilibrium.
However, mechanical interference between the links and motor
shafts reduces the robot WS. We used the workspace algorithm
of [33] to compute the WS boundaries generated by mechanical
interferences, and a reduction of the WS to roughly half of the 𝑥𝑦
plane occurs (Fig. 1(d) reports the robot WS obtained with 𝑙𝐴𝐵 =
0.2 m, links length 0.56 m and no external loads). Preliminary
design explorations (not shown here for brevity) showed that the
influence of mechanical interference reduces by lowering 𝑙𝐴𝐵 ; on
the other hand, 𝑙𝐴𝐵 cannot be reduced to zero due to actuators
encumbrance;

• Design 2 (Fig. 1(b)). The two 𝑅 motors are attached on the
opposite side of the working plane at a distance 𝑙𝐴𝐵 ≥ 0. The
flexible beams are connected at different EE cross-sections (as [6,
32]), and there is no potential mechanical interference between
robot links and motor axes. Unfortunately, the links wrenches
will generate a resultant torque which is not normal to the
motion plane, and the EE cannot lie in the nominal plane without
additional constraining systems. We studied this phenomenon by
computing the robot WS with a spatial robots model [34], and
we measured the EE out-of-the-plane displacement 𝛥𝑝𝑧, namely
the distance of the EE reference point from the reference motion
plane. For instance, Fig. 1(e) illustrates 𝛥𝑝𝑧 over the robots WS
in the case 𝑙𝐴𝐵 = 0.2, links length 0.56 m, no external loads
and offset between the plane of the motors 0.020 m. When the
EE points toward the WS centre, 𝛥𝑝𝑧 increases to unacceptable
values. This issue may be solved by considering EE-constraining
systems (e.g. the vaacum system of [35]). However, such a con-
straining system modifies the external actions acting on the robot.
In this design, lowering 𝑙𝐴𝐵 reduces 𝛥𝑝𝑧, but even with 𝑙𝐴𝐵 = 0,
𝛥𝑝𝑧 remains at unacceptable values. These simulations are not
reported here for brevity;

• Design 3 (Fig. 1(c)). The two actuated revolute joints 𝑅 are placed
on the same side of the working plane, and they are coaxial
(𝑙𝐴𝐵 = 0). Flexible links 1 and 4 are synchronously moved by
the same motor, whereas the other actuator rotates links 2,3. This
design ensures no mechanical interference, the EE can maintain
a planar configuration, ensuring a large accessible WS (Fig. 1(f)).
However, the design complexity increases.

Design 3 is the most favourable for realizing a nominally planar 2-
oF system with the largest workspace, without requiring the addition
f external constraints, and thus is selected for experiments.

.2. Prototype manufacture

The proposed prototype is illustrated in Fig. 2. To facilitate its
escription, we can subdivide the robot into three groups: flexible
hains, the EE , and the actuation unit.

The beams that transmit the motion from the actuators to the EE
orm the flexible chains. As represented in Fig. 2(a), we can distinguish
ne inner and two outer chains. While four flexible beams make the for-
er, each outer chain is made by two flexible beams. Beams are made

f fibreglass rods of 2 mm diameter. Several possible materials are well
uited for CRs (e.g. NiTinol alloys [4], Nylon [9], spring steel [24]), and
e selected fibreglass mainly for its good tradeoff between lightweight,
3
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compliance, and widespread availability on the market. Even if a single
beam of a larger diameter could be used to realize each flexible chain,
we decided to use several beams in parallel. For a given flexural inertia
moment, a single beam with a larger diameter is highly stressed since
strains are proportional to the cross-section diameter. Instead, many
small-diameter beams may guarantee an equivalent inertia moment,
but the strain on each beam is reduced. We also mounted connecting
constraints on each chain to increase the stiffness of the robot in the
orthogonal direction to the working plane. This way, each flexible chain
resembles a beam with a rectangular cross-section.1

The EE is illustrated in Fig. 2(b). The distal sections of the kinematic
chains are connected to rigid clamps, as is done for the proximal
section. The inner chain is clamped at the EE on 𝐸𝐴, while outer chains
are connected to 𝐸𝐵 , 𝐸𝐶 . Two marker supports are attached at both
sides of the EE to balance the EE load statically. The total mass of the
EE is 218 g.

The actuation unit (Fig. 2(c)) is composed of Two DC Maxon motors
DCX32L, equipped with a three-stage planetary gearbox (reduction
ratio 150:1), and a transmission system specifically designed to drive
the flexible chains according to Design 3. The transmission working
principle is the following (see Fig. 2(d)): a rotation of the shaft 𝑆1
causes an angular displacement of pulley 𝑃1𝐴. A synchronous belt
transmits the rotation of 𝑃1𝐴 to the pulley 𝑃2𝐴. Similarly, shaft 𝑆2
actuates pulleys 𝑃1𝐵 , 𝑃1𝐶 and synchronous belts transmits the rotations
to pulleys 𝑃2𝐵 , 𝑃2𝐶 , respectively. A set of three concentric shafts (see
Fig. 2(e)) is used to transmit the rotation of the pulley to the beam
clamps (named 𝐶𝐴, 𝐶𝐵 , 𝐶𝐶 ). Shaft 𝑆𝐴 connects pulley 𝑃2𝐴 to 𝐶𝐴 and,
in a similar fashion, shafts 𝑆𝐵 , 𝑆𝐶 connects pulleys 𝑃2𝐵 , 𝑃2𝐶 to 𝐶𝐵 , 𝐶𝐶 ,
respectively. Since 𝑃2𝐵 , 𝑃2𝐶 rotate synchronously, also 𝐶𝐵 , 𝐶𝐶 , display
the same angular motion. The proximal section of the inner chain is
installed on 𝐶𝐴, while the proximal sections of the outer chains are
placed at 𝐶𝐵 , 𝐶𝐶 .

Finally, a dSPACE 2018-B board completes the automation, control-
ling the DC motors.

3. Modelling

This Section briefly describes the energy-based modelling approach
employed in this paper. We focus on the description of a spatial CPR
model, which is the most general, and additional details on how to
simplify it to a planar one can be found in Section 3.3. Let us consider
an initially straight slender beam of length 𝐿, and 𝑠 is the curvilinear
coordinate that spans [0, 𝐿] (Fig. 3(a)). 0 is a fixed frame, and the pose
of each reference frame 𝑠, which is attached to each cross-section of
the beam in its centre, can be represented as:

𝐠(𝑠) =
[

𝐑(𝑠) 𝐩(𝑠)
𝟎 1

]

(1)

where 𝐑 ∈ 𝑆𝑂(3),𝐩 ∈ R3. The evolution of the beam pose over the
𝑠-coordinate is given by:

𝐠′(𝑠) = 𝐠(𝑠)�̂�(𝑠) (2)

with (.)′ = 𝑑∕𝑑𝑠, and �̂� ∈ 𝑠𝑒(3) is the skew-symmetric representation of
the strain 𝝃(𝑠) = [𝐮, 𝐯] ∈ R6, where 𝐮, 𝐯 ∈ R3 are the angular and linear
rate of change, respectively. Assuming that shear and extensibility are
negligible and that the local 𝑧 axis is normal to the cross-section, we
have 𝐯 = 𝐞1 = [0, 0, 1]𝑇 . Material properties are considered linear,
elastic, isotropic, and constant over the length, and only distributed

1 A single beam with a rectangular cross-section would be a good design
olution, but the market availability of beams with rectangular cross-section
hose constitutive material has high admissible strains is significantly lower

han circular beams.
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Fig. 2. The CPR prototype is shown in (a), a top view of the prototype is given in (b) to highlight the actuation unit, and a view of the EE is provided in (c). Then, (d) provides
an assonometric view of the transmission system, and (e) illustrates a cross-section of the actuation unit: components that rotate at the same angular velocity are shaded with the
same colour.
Fig. 3. (a): flexible beam parametrization; (b) schematics of a CPR.
forces 𝐟 ∈ R3 are applied over the beam. The total potential energy of
the beam can be obtained as [36]:

𝑉𝑏𝑒𝑎𝑚 = ∫

𝐿

0

(

𝐮(𝑠)𝑇𝐊𝐵𝑇 𝐮(𝑠) − 𝐟𝑇 𝐩(𝑠)
)

𝑑𝑠 (3)

where 𝐊𝐵𝑇 = diag(𝐾𝑥, 𝐾𝑦, 𝐾𝑧) is the local material stiffness matrix,
𝐾𝑥, 𝐾𝑦 are the flexural stiffness around the local 𝑥𝑠, 𝑦𝑠, and 𝐾𝑧 is the
local torsional stiffness around 𝑧𝑠. In general, 𝐾𝑥 = 𝐸𝐼𝑥, 𝐾𝑦 = 𝐸𝐼𝑦, 𝐾𝑧 =
𝐺𝐽𝑧, where 𝐸 is the Young’s modulus, 𝐺 is the shear modulus, 𝐼𝑥, 𝐼𝑦, 𝐽𝑧
are the principal inertia moments of the cross-section.
4

Then, let us consider a CPR made by 𝑛 flexible beams (Fig. 3(b)): we
assume each beam to be actuated at the proximal Section only (points
𝐴𝑖, with 𝑖 the index representing the ith beam), 𝑞𝑎𝑖 is the ith actuated
variable, and 𝐪𝑎 ∈ R𝑛 collects the actuated variables. At the distal
Section, a passive joint connects each flexible link to the rigid platform
(points 𝐵𝑖). The frame 𝑝 is attached to the rigid platform. Its pose
is described by (𝐩𝑝,𝝋) ∈ R𝑛𝑐 , where 𝑛𝑐 = 3 for the planar case, 𝑛𝑐 = 6
for the spatial case, and 𝐩𝑝,𝝋 represent the position and the orientation
parameters of the platform w.r.t. 0, respectively. Assuming to have the
same number of controlled and actuated variables, the vector 𝐪𝑝 ∈ R𝑛 is
introduced to stack the controlled variables, which is usually a subset
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of 𝐩𝑝,𝝋. Last, we introduce 𝐪𝑢 ∈ R𝑛𝑐−𝑛 to collect the remaining non-
controlled platform-pose variables. The total potential energy of the
CPR is obtained as:

𝑉𝑡𝑜𝑡(𝐪𝑎,𝐪𝑒,𝐪𝑢,𝐪𝑝) =
𝑛
∑

𝑖=1
𝑉𝑏𝑒𝑎𝑚𝑖

+ 𝑉𝑝𝑙𝑎𝑡 (4)

where 𝑉𝑝𝑙𝑎𝑡 = −𝐟𝑇𝑃 𝐩𝑝, and 𝐟𝑃 a platform load constant w.r.t. the
fixed frame. Three-dimensional moments that are non-conservative are
considered to not appear.

CPRs equilibrium configurations can be found by imposing that 𝑉𝑡𝑜𝑡
is stationary [28]. A straightforward way to find critical points of 𝑉𝑡𝑜𝑡 is
to apply discretization strategies [11], and a finite set of discretization
coordinates 𝐪𝑒 is introduced to parametrize the elastic deformations
of the beams. In this paper, we decided to employ the assumed strain
mode discretization approach of [34], since it ensures a good trade-off
between accuracy and computational time. The assumed strain mode
approach is based on the discretization of 𝐮𝑖 of the ith beam through
base functions as [37]:

𝐮𝑖(𝑠) ≃ 𝐍(𝑠)𝑇 𝐪𝑒𝑖 (5)

where 𝐍 ∈ R3×𝑁𝑓 is a matrix of base functions (such as orthogonal
Legendre polynomials [34]), 𝑁𝑓 is the number of variables that dis-
cretizes 𝐮𝑖, 𝐪𝑒𝑖 ∈ R𝑁𝑓 is the vector of the discretization variables of the
ith beam, and 𝐪𝑒 ∈ R𝑚, 𝑚 = 𝑛(3 × 𝑁𝑓 ) contains all the discretization
variables. Then, to recover 𝐠 at each 𝑠, we numerically integrate Eq. (2).
where �̂� is build by considering the approximated strain as in Eq. (5).
Consequently, after the discretization process, 𝑉𝑡𝑜𝑡 = 𝑉𝑡𝑜𝑡(𝐪𝑎, 𝐱), with
𝐱 = [𝐪𝑑 ,𝐪𝑝],𝐪𝑑 = [𝐪𝑒,𝐪𝑢], and a robot configuration is an equilibrium
configuration if, for a fixed value of 𝐪𝑎, 𝐱 is a critical point of 𝑉𝑡𝑜𝑡 [38].
However, due to the closed-loop architecture of CPRs, variables are
related by geometric constraints, here denoted as 𝜱 = 𝜱(𝐪𝑎, 𝐱) = 𝟎 ∈
R𝑛𝜙 without loss of generality.2 In this case, critical point of 𝑉𝑡𝑜𝑡 are
characterized by Lagrange conditions [38]: 𝐱 is a critical point of 𝑉𝑡𝑜𝑡
if, assuming ∇𝐱𝜱 full rank, there exists a vector of Lagrange multipliers
𝝀 ∈ R𝑛𝜙 such as:
{

∇𝐱 = ∇𝐱𝑉𝑡𝑜𝑡 + ∇𝐱𝜱𝑇 𝝀 = 𝟎
∇𝝀 = 𝜱 = 𝟎

(6)

with  = 𝑉𝑡𝑜𝑡 +𝜱𝑇 𝝀. Eq. (6) is an undetermined system of 𝑚+ 𝑛𝑐 + 𝑛𝛷
equations in 𝑚 + 𝑛 + 𝑛𝑐 + 𝑛𝛷 unknowns that represents the geometrico-
static model of a CPR. Geometrico-static problems3 can be stated in an
unified way as [28]:

𝐅 =

⎧

⎪

⎨

⎪

⎩

∇𝐱𝑉𝑡𝑜𝑡 + ∇𝐱𝜱𝑇 𝝀 = 𝟎
𝜱 = 𝟎
𝐞𝑝 = 𝟎

(7)

where 𝐞𝑃 = 𝐪𝑝 − 𝐪𝑑𝑝 for the inverse geometrico-static problem (IGSP),
𝐞𝑃 = 𝐪𝑎 − 𝐪𝑑𝑎 for the forward geometric-static problem (FGSP), and
the superscript (.)𝑑 denotes desired values. Both IGSP and FGSP are
square systems of dimension 𝑚 + 𝑛 + 𝑛𝑐 + 𝑛𝛷 that can be solved thanks
to nonlinear root-finding techniques. By using the assumed strain mode
approach [34], 𝐠 at each cross-section is obtained by numerical integra-
tion of Eq. (2). Thus, the terms of Eq. (7) that requires the derivative of
𝐠 w.r.t. 𝐱 are obtained by numerical integration of an additional set of
ODEs, integrated together with Eq. (2). The expression of these terms
is long, and its detailed description is not in the scope of this paper. We
address the interested reader to a dedicated technical report [39].

2 Additional details on how to derive 𝜱 can be found in [28,34].
3 With FGSP we consider the evaluation of 𝐪𝑒,𝐪𝑢,𝐪𝑝,𝝀 for given external

loads and assigned 𝐪𝑎. On the other hand, the 𝐼𝐺𝑆𝑃 means the evaluation of
𝐪 ,𝐪 ,𝐪 ,𝝀 for given external loads and assigned 𝐪 .
5

𝑒 𝑢 𝑎 𝑝
Fig. 4. Schematics of the Prototype modelling.

3.1. Equilibrium stability and singularities

After the derivation of FGSP and IGSP, we seek to evaluate the
equilibrium stability of the robot configuration and singularity condi-
tions. To obtain singularity conditions, we linearize Eq. (6) at a generic
equilibrium configuration [28]:
[

𝐀
𝐀𝜱

]

𝛥𝐪𝑎 +
[

𝐔
𝐔𝜱

]

𝛥𝐪𝑑 +
[

𝐏
𝐏𝜱

]

𝛥𝐪𝑝 +
[

𝜦
𝟎

]

𝛥𝝀 +
[

𝐖
𝟎

]

𝛥𝐟𝑝 = 𝟎 (8)

where:

1. 𝐀 = ∇𝐪𝑎
(

∇𝐱
)

, 𝐔 = ∇𝐪𝑑
(

∇𝐱
)

2. 𝐏 = ∇𝐪𝑃
(

∇𝐱
)

, 𝜦 = ∇𝝀
(

∇𝐱
)

,𝐖 = ∇𝐟𝑃
(

∇𝐱
)

3. 𝐀𝛷 = ∇𝐪𝑎𝜱 , 𝐔𝛷 = ∇𝐪𝑑𝜱 , 𝐏𝛷 = ∇𝐪𝑃 𝜱

The terms of Eq. (8) requires the computation of the second derivatives
of 𝐠 w.r.t. 𝐪𝑎 and 𝐱. As for the first derivatives of 𝐠 w.r.t. 𝐱 of Eq. (7),
also these terms are obtained by integration of an additional set of
ODEs and the details on how the integration is carried out are reported
in [39], for brevity sake.

For the singularity analysis, there is little interest in the variation
𝛥𝝀, since degeneracies of 𝜦 are unlikely to occur, in practice [28].
Being 𝐙 the matrix spanning the left nullspace of 𝜦 i.e. 𝐙𝑇𝜦 = 𝟎, we
eliminate 𝛥𝝀 by multiplying the first row of Eq. (8) by 𝐙𝑇 :

𝐀𝛥𝐪𝑎 + 𝐔𝛥𝐪𝑑 + 𝐏𝛥𝐪𝑝 +𝐖𝛥𝐟𝑝 = 𝟎 (9)

where:

𝐀 =
[

𝐙𝑇𝐀
𝐀𝜱

]

,𝐔 =
[

𝐙𝑇𝐔
𝐔𝜱

]

,𝐏 =
[

𝐙𝑇𝐏
𝐏𝜱

]

,𝐖 =
[

𝐙𝑇𝐖
𝟎

]

(10)

To derive singularity conditions, the inverse and forward kinemato-
static problems are established [28]. The inverse kinematostatic prob-
lem means to evaluate 𝛥𝐪𝑎, 𝛥𝐪𝑑 for given 𝛥𝐪𝑝, 𝛥𝐟𝑝, that is:
[

𝛥𝐪𝑎
𝛥𝐪𝑑

]

= −[𝐀 𝐔]−1(𝐏𝛥𝐪𝑝 +𝐖𝛥𝐟𝑝) (11)

Eq. (11) is solvable as long as 𝐓1 = [𝐀 𝐔] is full-rank, and rank defi-
ciencies of 𝐓1 are named Type-1 singularities [28]. These singularities
are related to limits of IGSP and impossible motions of 𝐪𝑝. On the other
hand, the forward kinematostatic problem means to evaluate 𝛥𝐪𝑝, 𝛥𝐪𝑑
for given 𝛥𝐪𝑎, 𝛥𝐟𝑝, that is:
[

𝛥𝐪𝑝
]

= −[𝐏 𝐔]−1(𝐀𝛥𝐪𝑎 +𝐖𝛥𝐟𝑝) (12)

𝛥𝐪𝑑



Mechatronics 95 (2023) 103064F. Zaccaria et al.
Fig. 5. Experimental benchmarks. Figure (a) illustrates the Young’s’s modulus estimation setup, Figure (b) shows the strain limit estimation setup and Figure (c) gives details on
the strain limit estimation setup.
Eq. (12) is solvable as long as 𝐓2 = [𝐏 𝐔] is full-rank, and degeneracies
of 𝐓2 are named Type-2 singularities [28] Robot configurations where
𝐓2 is degenerate are related to the limits of the FGSP solution and
uncontrollable 𝐪𝑝 motions. Then, we evaluate equilibrium stability by
determining the reduced Hessian matrix 𝐇𝑟 of the total potential energy
as [28]:

𝐇𝑟 = 𝐙𝑇 𝜕2
𝜕𝐱2

𝐙 = 𝐙𝑇 [

𝐏 𝐔
]

𝐙 (13)

The configuration is stable if 𝐇𝑟 is positive definite. Please note that, as
long as 𝐙 is full rank, 𝐓2 is singular if and only if 𝐇𝑟 is rank deficient
(see [28] for the proof). Thus, Type-2 singularities are associated with
the variation of the stability pattern.

3.2. Distributed material coefficients computation

The specific design of the flexible chains needs to be accounted for
in the robot model (Fig. 4). Each chain comprises a rigid base attached
to the motor shaft, rigidly rotating with it, some flexible beams fixed
to the motor shaft, several connecting constraints between the flexible
beams, and finally another rigid tip attached to the EE revolute joint.
As previously mentioned, connecting constraints increase the robot
stiffness in the orthogonal direction to the motion plane. However,
accounting for their effect in the robot model is not trivial. We can
simulate each beam and each connecting constraint using the assumed
mode approach [37], leading to computationally expensive models. Al-
ternatively, other modelling strategies may be used: piecewise constant
curvature approaches [40], or piecewise constant strains [41] fits well,
but they may require a large number of elastic coordinates. Thus, we
decided to consider each flexible chain as a single equivalent beam
(Fig. 4) modelled using the assumed strain mode approximation [37].
In this way, we reduce the number of elastic variables in 𝐪𝑒 necessary to
represent the flexible chains while considering the effect of connecting
constraints.

To represent each flexible chain as a single equivalent beam, we
need to calculate an equivalent matrix 𝐊𝐵𝑇 (Eq. (3)) that represents
the overall effect of several beams in parallel connected by connecting
constraints. Assuming linear isotropic elasticity of the equivalent beam,
we use rules of springs in series and in parallel to evaluate two
flexural stiffness and the torsional modulus for each flexible chain. By
proceeding in this way (see A for the mathematical derivation), we
obtained:

𝐊𝐵𝑇−𝑖𝑛 = 𝐸𝐼 diag(4, 48𝑛2𝑏 , 60𝑛
2
𝑏 , ℎ

2) (14)

𝐊𝐵𝑇−𝑜𝑢𝑡 = 𝐸𝐼 diag(2, 24𝑛2𝑏 , 12𝑛
2
𝑏 , ℎ

2) (15)

where 𝐊𝐵𝑇−𝑖𝑛 is the stiffness of the inner chain, 𝐊𝐵𝑇−𝑜𝑢𝑡 is the stiffness
of a single outer chain, 𝑛 is the number of segments, and ℎ is the
6

𝑏

distance between the beams, assumed to be equal for each of them. By
looking at the expressions of Eqs. (15), it is clear that adding connecting
constraints increases the robot stiffness in the direction orthogonal to
the motion plane. Also, since we neglect the torsion that acts on each
beam, the equivalent parameters depend on the Young’s modulus only:
this parameter should be identified appropriately to obtain accurate
results.

3.3. Remarks on planarity assumptions

The proposed prototype (Fig. 2) is theoretically planar, and using
a planar model to simulate it appears legitimate. A planar model
brings mathematical simplicity and a reduced number of variables to
be considered [42]. However, as we later show with experiments, a
planar model neglecting out-of-the-plane phenomena is inadequate to
assess equilibrium stability limits, and ultimately the workspace size.
This Section highlights the most relevant differences between a spatial
model and a planar CPR model.

Let us consider Fig. 3. For a prescribed CPR motion plane, a planar
CPR model assumes that:

• the cross-section of each beam and the EE only perform planar
displacements belonging to the reference plane;

• the cross-section of each beam and the EE rotate about an axis
orthogonal to the reference plane;

• all the forces belongs to the reference plane, and all the torques
are orthogonal to the said plane only;

Under these assumptions, the beams pose can be defined by 𝐩(𝑠), 𝜃(𝑠),
namely the position and the orientation angle of the frame 𝑠 w.r.t.
0, respectively. In this case, 𝐠 ∈ 𝑆𝑂(2) and 𝝃 = [𝑢, 𝐯] ∈ 3. The
scalar quantity 𝑢 is the beam curvature and 𝐯 = [1, 0] ∈ R2 if shear
and extensibility are negligible. The total potential energy of the beam
𝑉𝑏𝑒𝑎𝑚 of Eq. (3) becomes:

𝑉𝑏𝑒𝑎𝑚 = ∫

𝐿

0
𝐾𝑥𝑢(𝑠)2 − 𝐟𝑇 𝐩(𝑠)𝑑𝑠 (16)

It should be noted that the beams torsion and the out-of-the-plane
curvature do not appear on 𝑉𝑏𝑒𝑎𝑚 since the beams possible motions
do not allow these deformations. Then, 𝐩𝑝 ∈ R2, 𝜃𝑝 ∈ R describes the
position and the orientation angle of 𝑝 w.r.t. 0, respectively. 𝑉𝑡𝑜𝑡 is
obtained as in Eq. (4), and constraints equations are formalized as in a
spatial model but with a lower dimension of 𝜱.

A major advantage of using a planar model is the reduced number
of discretization variables employed. When using Eq. (5), 𝑚 = 𝑛(3×𝑁𝑓 )
elastic coordinates are introduced to discretize 𝐮 while, in a planar
model, 𝑢 ∈ R and 𝑚 = 𝑛𝑁𝑓 . Then, Eq. (7) is formulated equivalently,
but the number of equations reduces since the dimension of 𝐱 reduces.
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Fig. 6. Jointspace and Cartesian workspace obtained by using planar displacements assumptions. The Cartesian workspace is represented in (a), and the jointspace in (b). Stable
and unstable configurations are depicted in blue and yellow, respectively. Type-1 singularities are shown in red and Type-2 singularities in black.
Singularity conditions and the equilibrium stability assessment are
performed in the same fashion in a planar or spatial model but with
different dimensions of 𝐓1,𝐓2 and 𝐇𝑟.

4. Robot analysis

In this Section, we focus on material characterization and JS/WS
evaluation of the proposed prototype. To obtain accurate JS/WS pre-
dictions, model parameters should be identified appropriately. While
robot geometric parameters can be directly measured with limited
uncertainty, material parameters are affected by a greater variability.
Therefore, the following subsection focuses on material parameters
calibration.

4.1. Material characterization

It is well known from material science that standardized tests for
fibreglass may be conducted to evaluate the Young’s modulus 𝐸, and
the strain limit 𝜖𝑚𝑎𝑥 [43]. These experimental setups require complex
and expensive equipment that may not be available. On the other
hand, a simple model-based bending test may be conducted for flexible
beams to identify at least 𝐸 [3,44,45]. In this test, a clamped beam
is subjected to several known loading conditions, and the Young’s
modulus is selected as the one that minimizes the error between model
predictions and experimental measures (Fig. 5(a)). To this end, 𝑛𝐿 loads
are applied to the tip of a clamped beam. Being 𝑗 = 1,… , 𝑛𝐿 the index
representing the jth different load condition, 𝐩𝑒𝑗 is the experimentally
measured tip deflection, and 𝐩𝑚𝑗 the model predicted tip position,
which depends on 𝐸. The Young’s modulus is found by solving the
nonlinear least squares problem [45]:

𝐸 = argmin𝐸

𝑛𝐿
∑

𝑗=1
‖𝐩𝑚𝑗 − 𝐩𝑒𝑗‖22 (17)

or, equivalently, as the solution of the following nonlinear equations:

𝐺(𝐸) = 𝜕
𝜕𝐸

𝑛𝐿
∑

𝑗=1
‖𝐩𝑚𝑗 − 𝐩𝑒𝑗‖22 = 2

𝑛𝐿
∑

𝑗=1

(

𝐩𝑚𝑗 − 𝐩𝑒𝑗
)𝑇 𝐉𝑚𝑗 = 0 (18)

with 𝐉𝑚𝑗 =
𝜕𝐩𝑚𝑗
𝜕𝐸 . The terms 𝐩𝑚𝑗 , 𝐉𝑚𝑗 depend on the selected beam model:

n this work, 𝐩𝑚𝑗 , and 𝐉𝑚𝑗 are obtained thanks to the use of the assumed
train mode approach of [37], but their expression is not reported
or brevity. We performed the Young’s’s modulus evaluation with ten
ifferent beams, and each beam was subjected to 𝑛𝐿 = 20 different load

conditions. As shown in Fig. 5(a), a known tip load was applied to
the beam, and the corresponding tip position 𝐩𝑒𝑗 was measured with
a measurement grid. The resulting Young’s’s modulus was determined
7

as 𝐸 = 36.1 GPa, in agreement with the provider range of [25, 40] GPa.
Since measurement errors may potentially influence the calibrated
value, we propose a methodology to estimate how a measurement error
is reflected on the calibrated 𝐸. Being 𝐩𝑚𝑒𝑠 =

[

𝐩𝑚1,… ,𝐩𝑚𝑖,…𝐩𝑚𝑛
]

∈
R2𝑛𝐿 the vector that collects the measurements, linearizing Eq. (18)
yields:
𝜕𝐺
𝜕𝐸

𝑑𝐸 + 𝜕𝐺
𝜕𝐩𝑚𝑒𝑠

𝑑𝐩𝑚𝑒𝑠 = 0 (19)

with:

𝜕𝐺
𝜕𝐸

∈ R ; 𝜕𝐺
𝜕𝐸

= 2
𝑛𝐿
∑

𝑖=1

(

𝐉𝑇𝑚𝑖𝐉𝑚𝑖 +
(

𝐩𝑚𝑖 − 𝐩𝑒𝑖
)𝑇 𝜕𝐉𝑚𝑖

𝜕𝐸

)

(20)

𝜕𝐺
𝜕𝐩𝑚𝑒𝑠

∈ R1×2𝑛𝐿 ; 𝜕𝐺
𝜕𝐩𝑚𝑒𝑠

= −2
[

𝐉𝑚1,… , 𝐉𝑚𝑖,… , 𝐉𝑚𝑛
]

(21)

By further manipulations, we get:

𝑑𝐸 = −
( 𝜕𝐺
𝜕𝐸

)−1 ( 𝜕𝐺
𝜕𝐩𝑚𝑒𝑠

)

𝑑𝐩𝑚𝑒𝑠 = 𝐖𝑑𝐩𝑚𝑒𝑠 (22)

The matrix 𝐖 ∈ R1×2𝑛𝐿 correlates 𝑑𝐸 to 𝑑𝐩𝑚𝑒𝑠, Assuming 𝐖 as
deterministic, and assuming each component of 𝐩𝑚𝑒𝑠 to be affected of
a measurement error with normal distribution  (0, 𝜎2𝑥), the Young’s
modulus error follows a normal distribution  (0, 𝜎2𝐸 ), where 𝜎𝐸 [46]:

𝜎𝐸 =
√

𝐖𝐖𝑇 𝜎𝑥 = 𝑤𝜎𝑥 (23)

By considering the measurements used for the Young’s modulus cal-
ibration, we obtained 𝑤 = 12.3 ⋅ 10−2 𝐺𝑃𝑎

𝑚𝑚 , and 𝑤 represent how a
measurement error is projected on a variation of the calibrated 𝐸.
For instance, a measurement error of 2 mm (which is realistic with
the employed methodology) results in a variation of 0.246 GPa of
𝐸, which is less than 1% of the computed values of 𝐸. Thus, the
simple methodology employed fits the system at hand, which would not
significantly benefit from more accurate tip position measurements.

The second material parameter to be evaluated is the strain limit
𝜖𝑚𝑎𝑥, which will be used during the JS/WS evaluation to verify that no
leg rupture will occur. As before, instead of performing standard tests,
we propose a simplified procedure that can be easily reproduced for
fragile materials. The setup is represented in Fig. 5(b): a flexible beam
of radius 𝑟 is placed between a V-shaped component and a tool with
a circular tip of radius 𝑅 (see Fig. 5(c)). The tool is pressed onto the
beam, which then assumes the same curvature of the tool 𝑢 = 1∕𝑅,
where pressed. Therefore, the strain on the constant curvature portion
is:

𝜖 = 𝑟𝑢 = 𝑟
𝑅

(24)

To estimate 𝜖𝑚𝑎𝑥, we test the beam with several tools characterized
by decreasing 𝑅 until a brittle fracture of the beam occurs. Then, the
last value of 𝑅 where the beam deforms without damage is used to
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Fig. 7. Jointspace and Cartesian workspace obtained using a full spatial model. The Cartesian workspace is represented in (a), and the jointspace in (b). Stable and unstable
configurations are depicted in blue and yellow, respectively. Type-1 singularities are shown in red and Type-2 singularities in black. Singularities, where 𝐔 is degenerate, are
plotted in green.
compute 𝜖𝑚𝑎𝑥 with Eq. (24). We performed this procedure with the
same beams used for the Young’s modulus calibration, and we obtained
𝜖𝑚𝑎𝑥 = 2.75%, which is in accordance with the provider specification of
𝜖𝑚𝑎𝑥 ≥ 2%. Please also note that the simplified procedure we proposed
ensures an underestimation of the real 𝜖𝑚𝑎𝑥: a finite number of tools
is used, and the exact 𝜖𝑚𝑎𝑥 is only approximated by the last value of
𝜖 where the beam deforms without damage. In the case more accurate
characterization of 𝜖𝑚𝑎𝑥 is required, which is not our case; standard tests
are recommended [43].

4.2. Joint space and cartesian workspace analysis

Once the robot model is established and the material parameters
identified, we can evaluate the robot motion capabilities in terms of
JS/WS computation. The flooding algorithm of [30] is used for this
scope: the flooding algorithm is an explorative algorithm based on a
grid discretization of the target space (e.g. the JS or WS). Several phe-
nomena define the JS/WS limits and by using the flooding algorithm,
we considered:

• Singularities. As explained in Section 3, singularities define the
JS/WS boundaries. A configuration is considered singular if the
inverse condition number of 𝐓1 or 𝐓2 is below a defined threshold
(10−5 in our case)4;

• Equilibrium stability. We checked stability by looking at the
positive definiteness of 𝐇𝑟;

• Strain limits on the flexible links: we evaluate if the strain on each
leg does not exceed 𝜖𝑚𝑎𝑥 = 2.75%.

The results of the JS and WS of our prototype are reported in Figs. 6,
7. We performed our evaluation by considering planar displacement
assumptions (Fig. 6) and by using a full spatial model (Fig. 7). The
discretization through assumed mode is performed by using four modes
on each allowed deformation mode, and thus 𝑚 = 12 ⋅ 2 legs for the
spatial model and 𝑚 = 4 ⋅ 2 legs for the planar model. Gravitational
loads such as EE weight and beams distributed weight are considered.
No configuration exceeded the strain limit of 𝜖𝑚𝑎𝑥 = 2.75%.

First, let us consider the case where planar displacements assump-
tions are introduced in the robot model: Fig. 6(a) illustrates theWS, and
Fig. 6(b) the JS. Region 1⃝ is a region where the robot assumes stable
configurations. Singularity curve 𝑇 1𝑎, that is, a Type-1 singularity
where 𝐓1 is degenerate with 𝐀 and 𝐔 full rank, delimits 1⃝ from

4 Matrix 𝐓1,𝐓2 have nonhomogeneous units: the use of the inverse condi-
tion number is valid as long as we intend to detect the degeneracy of the
corresponding matrices, and not to analyse robots performances.
8

Fig. 8. The experimental setup used for experiments.

one side and represent the external WS boundary (Fig. 6(a)): there
is no solution to the IGSP at each point of 𝑇 1𝑎, and the robot EE
cannot exceed 𝑇 1𝑎 with imposed EE position. Singularity curve 𝑇 2𝑎 is
a Type-2 singularity where 𝐓2 is degenerate with 𝐏 and 𝐔 full rank,
and it defines the inner JS limits (Fig. 6(b)): at each point of 𝑇 2𝑎
there exists no static solution to the FGSP and, by crossing 𝑇 2𝑎, the
robot equilibrium becomes unstable [28]. Between 𝑇 1𝑎 and 𝑇 2𝑎, there
exists a small stable region named 2⃝ (magnified in Fig. 6(b)) where
the robot equilibrium is stable. These configurations can be reached
by commanding the robot joints, but region 2⃝ cannot be reached by
imposing the EE position since 𝑇 1𝑎 cannot be crossed with imposed EE
position. On the other side, the singularity curve 𝑇 2𝑏, which delimits
the JS limits, is a parallel singularity where 𝐓2 is singular. Singularity
curve 𝑇 2𝑏 encircles a small WS region named 3⃝ where the robot
equilibrium is unstable.5

Second, we now consider the case where a full spatial model is used:
the WS and the JS are illustrated in Fig. 7(a), Fig. 7(b), respectively. We
can observe that singularity curve 𝑇 1𝑎, 𝑇 2𝑎, 𝑇 2𝑏 are equally predicted
by a model with planar displacement assumptions and by a full spatial
model. However, the use of a full spatial model reveals an additional
singularity curve named 𝑇𝐿, which is a curve where both 𝐓1 and 𝐓2 are
singular because 𝐔 is singular. The singularity curve 𝑇𝐿 defines a new

5 Since 𝑇 defines the JS limits, 3⃝ is not visible in Fig. 6(b).
2
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Fig. 9. Superimposition between theoretical and experimental data. Results for the model with planar displacement assumptions are reported in (a) for the jointspace range (a)
and (b) the Cartesian workspace. Then, the jointspace range and the Cartesian workspace obtained with a full model are reported in (c), and (d), respectively. Stable and unstable
configurations are depicted in blue and yellow, respectively. Type-1 singularities are shown in red and Type-2 singularities in black. Singularities, where 𝐔 is degenerate, are
lotted in green.
egion 4⃝, where the spatial model predicts an unstable equilibrium,
nd the extension of the stable region 1⃝ is consequently reduced.

For each point inside 4⃝, both planar and spatial model predicts the
ame robot configuration in terms of 𝐪𝑎, 𝐱, but the equilibrium stability
s predicted differently. This discrepancy between a model with planar
isplacement assumptions and a full spatial model is remarkable and,
o the best of our knowledge, identified for the first time in CPRs.

Thus, experiments are conducted to verify which simulation prediction
is realistic.

5. Experiments

The aim of this Section is to experimentally validate the analysis
conducted in Section 4 about the JS/WS prediction of the proposed
rototpe. We first address the question of whether a model with planar
ssumptions is adequate to model our prototype or not. Then, we focus
n the experimental reconstruction of singularity curves that delimits
he prototype range of motions, namely 𝑇 2𝑎 and 𝑇𝐿. For each curve,

we compare simulation with experimental data to assess the accuracy
of our prediction.

To acquire experimental data, we employed the experimental setup
illustrated in Fig. 8. A fixed camera was used to record images of the
Charuco Board marker attached to the EE , and these pictures were then
processed using an OpenCV Python library [47] to reconstruct the EE
pose. For each reconstructed pose of the EE , the motors’ angular posi-
tion was also logged, assuming the motors’ PID controller steady-state
error to be negligible.
9

5.1. JS and WS verification

In this subsection, we verify the correctness of the JS/WS simulation
we performed in Section 4. To do this, we move the robot in several
stable configurations with EE positions equally distributed over the
WS, and we store motor angles and EE position at each configurations.
We also seek to reach exterior WS limits, by moving the EE as far as
possible from the motor axis, and inner WS limits, by moving the EE
toward the motor axis.0 Fig. 9 displays the superimposition between
experimental data and simulations. Experimental joint angles are su-
perimposed over the computed JS, while measured EE positions over
the theoretical WS. The model with planar displacements assumptions
is used in Figs. 9(a), 9(b) and the full spatial model is employed in
Figs. 9(c), 9(d).

By looking at Fig. 9, we observe that experimental data qualitatively
agrees with the simulations obtained by using a full spatial model
is used, while the experiments are in disaccordance with a model
that employs planar displacement assumptions. In particular, we can
state that the stable motion capabilities of the robot are delimited by
singularity curves 𝑇 2𝑎, 𝑇𝐿. While 𝑇 2𝑎 is equally predicted by both
models, 𝑇𝐿 is only visible by using a full model. We may find an
analogy between these singularities and the constraint singularities
appearing in rigid-link lower-mobility parallel robots [48]. For these
robots, constraint singularities do not appear in the reduced kinematics
model which neglects the possibilities of the robot platform to move
along certain (a priori) constrained directions of the space. They may
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Fig. 10. Snapping phenomenon at the 𝑇 2𝑎 curve: when quasi-statically reaching the singular configuration (a), the robot dynamically snaps (b), and it reaches a new stable
configuration (c).
Fig. 11. External border reconstruction. Three different configurations close to the singularity curve 𝑇 2𝑎 are illustrated.
be found if and only if the complete static-equilibrium model, allowing
all possible motions in 3D, is analysed. Analogously to what happens for
these constraints singularities, singularities characterized by the curve
𝑇𝐿 in the present work may be observed if and only if the full (spatial)
kinemato-static model of the robot is analysed.

In the next Sections, we are going to separately investigate 𝑇 2𝑎 and
𝑇𝐿 curves, to understand the physical phenomena happening when
crossing singularities, and to assess the accuracy of our equilibrium
stability reconstruction.

5.2. Exterior WS boundary

The exterior WS boundary is defined by singularity curve 𝑇 2𝑎, that
is a Type-2. As theorized in [28], Type-2 singularity delimits stable-to-
unstable transitions. In particular, we experimentally observed that 𝑇 2𝑎
is associated with a snapping phenomenon (see accompanying video at
min.0 sec.7). When quasi-statically reaching a singular configuration, a
non-null motion of the EE occurs even though the motors are braked,
and the robot dynamically snaps, as shown in Fig. 10. The snapping
motion occurring about the 𝑇 2𝑎 curve belongs to the motion plane: this
is reasonable since both planar and spatial models equally predicted
the phenomenon. To reconstruct the 𝑇 2𝑎 curve, we placed the robot
in stable configurations as close as possible to the stability limit. The
motor angles are slowly adjusted to move near 𝑇 2𝑎, aiming not to cross
it. Once the robot snaps, the joint values and the Cartesian configu-
ration prior to snapping are recorded as a JS or WS border points.
Some examples of these configurations near the 𝑇 2𝑎 are depicted in
Figs. 11(a), 11(b), 11(c).

To assess the accuracy of our equilibrium stability prediction, we
tested 38 different configurations near 𝑇 2𝑎, with EE positions equally
distributed over the WS. For each test, we name 𝐪𝑒𝑥𝑝,𝐩𝑒𝑥𝑝 the ex-
perimental motor angle, and the camera-acquired EE position where
the singularity happens, respectively. We also introduce 𝐪 that is the
10

𝑡

Fig. 12. Graphical representation of the variables necessary for the errors definitions.

Table 1
Motor angles, EE position, and model errors for the
𝑇 2𝑎 reconstruction.

𝑒𝑞 [◦] 𝑒𝑝 [mm] 𝑒𝑚 [mm]

Mean 2, 68 23, 13 19, 37
Median 2, 78 17, 04 16, 46
Max 6, 56 67, 53 45, 50
Dev.Std 1, 59 14, 28 10, 63

theoretical motors angles where the instability should happen: 𝐪𝑡 is
defined as the point that lies over 𝑇 2𝑎 closest to 𝐪𝑒𝑥𝑝. Finally, we
define 𝐩𝑡 as the Cartesian point that corresponds to 𝐪𝑡 (see Fig. 12 for
a graphical illustration). For each configuration, we define:

𝑒𝑞 = ‖𝐪𝑒𝑥𝑝 − 𝐪𝑡‖2 (25)

𝑒𝑝 = ‖𝐩𝑒𝑥𝑝 − 𝐩𝑡‖2 (26)

where 𝑒𝑞 , 𝑒𝑝 are named motor angles error and EE position error,
respectively. Table 1 summarizes the results: a mean 𝑒𝑞 = 2.68◦ is
obtained, which corresponds to a mean 𝑒𝑝 = 23, 13 mm (4.10% w.r.t.
total link length of 564 mm).
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Fig. 13. Instability at the 𝑇𝐿 curve: when quasi-statically reaching the singular configuration (a), the robot EE moves out-of-the-plane (b). The EE is manually blocked (c) to not
brake the robots legs.
Fig. 14. Inner border reconstruction. Three different configurations close to the singularity curve 𝑇𝐿 are illustrated.
The causes of error are numerous: hardware inaccuracies (e.g., fric-
tion, belt elasticity, gearbox clearance) and model errors (such as
parameter uncertainties, distributed parameter assumption, and dis-
cretization inaccuracy). To investigate the discretized model errors, we
compute 𝐩𝑚, that is the EE position obtained by solving the FGSP with
motor angles 𝐪𝑒𝑥𝑝 (see Fig. 12). We also define 𝑒𝑚 as:

𝑒𝑚 = ‖𝐩𝑒𝑥𝑝 − 𝐩𝑚‖2 (27)

where 𝑒𝑚 represents the model error. The mean value of 𝑒𝑚, obtained
with the use of four assumed modes [34], is 18, 56 mm (3, 29%),
which is comparable to 𝑒𝑝. To exclude the discretization model by the
causes of inaccuracy, we compared the 𝑒𝑚 obtained by the shooting-
based model of [3,49] and our model. By solving the FGSP over each
𝐪𝑒𝑥𝑝, the model of [3] results in a mean 𝑒𝑚 = 17, 71 mm, comparable
to the results of our model.

5.3. Inner WS boundary

The inner WS boundary if defined by singularity curve 𝑇𝐿, where
both 𝐓1,𝐓2 are rank deficient since 𝐔 is rank deficient. According to the
terminology of [28], this is a leg singularity. This elastic equilibrium
limit is different from the snapping phenomena of 𝑇 2𝑎. Similarly to
𝑇 2𝑎, a non-null EE motion occurs about the singularity curve even if
the motors are braked. However, the uncontrolled EE motion results
in an out-of-the-plane link deflection and EE motion (as illustrated in
Fig. 13). A demo of this phenomenon is reported in the accompanying
video at minute 0 s 38. When the robot lies in 1⃝, the motors rotations
generate only in-plane EE motion but, after crossing 𝑇𝐿, the motors
rotations generates an out-of-the-plane EE motion that was not possible
before crossing 𝑇𝐿 (even if this motion is not controllable).

We tested 22 different configurations with the EE uniformly placed
on 𝑇𝐿 (see Figs. 14(a), 14(b), 14(c) for some near-singular configura-
tion examples). As in the previous case, we focused on the motor error
11
Table 2
Motor angles, EE position, and model errors for the
𝑇𝐿 reconstruction.

𝑒𝑞 [◦] 𝑒𝑝 [mm] 𝑒𝑚 [mm]

Mean 4, 17 27, 86 20, 59
Median 3, 99 26, 75 19, 50
Max 8, 03 44, 77 31, 52
Dev.Std 1, 98 8, 44 5, 89

𝑒𝑞 , the EE position error 𝑒𝑝, and the model error 𝑒𝑚 (Table 2 summarizes
the results). We obtained a mean 𝑒𝑞 = 4.17◦, which corresponds to a
mean 𝑒𝑝 = 27.86 mm (4.94% w.r.t. total link length of 564 mm).

As for 𝑇 2𝑎, we investigate the discretized-model error: the mean
values of 𝑒𝑚, obtained with the use of four assumed modes [34], is 20,
58 mm (3, 65%). A similar result is obtained with the shooting-based
model of [3], with a mean error of 𝑒𝑚 = 19.11 mm (3, 39%).

5.4. Discussion of the results

Globally, we obtained a significant agreement between the experi-
mental data and the equilibrium stability prediction provided by a full
spatial model, as qualitatively illustrated in Fig. 9. In particular, we can
state that the 𝑇𝐿 singularity curve is correctly predicted by a spatial
model only: this is reasonable since a planar model disregards out-of-
the-plane phenomena. Although planar CPRs are frequently analysed
with planar models [22,29,42], this paper clearly showed that planar
models are insufficient in predicting stability limits, and thus JS/WS
limits of such a prototype.

The experimental reconstruction of 𝑇 2𝑎 and 𝑇𝐿 curves confirm
the accuracy of our equilibrium-stability prediction approach since
the difference between theoretical and experimental motor angles at
singularities (𝑒 ) is very low (≤5◦). The EE position error 𝑒 , less than
𝑞 𝑝
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Fig. 15. Comparison of WS by varying the number of connecting constraints (𝑛𝑏). (a) the actual solution, 𝑛𝑏 = 8, (b) 𝑛𝑏 = 20, (c) 𝑛𝑏 = 50. Stable and unstable configurations are
depicted in blue and yellow, respectively. Type-1 singularities are shown in red, and Type-2 singularities in black. Singularities, where 𝐔 is degenerate, are plotted in green.
≤ 5% of the length of the link, is acceptable considering the current
state-of-the-art (see [45]). As causes of errors, model simplification is
one of the possible reasons, but we primarily need to consider that all
the measurements are conducted in the proximity of singular configu-
rations, where any small error (e.g. belt elasticity, gearbox clearance)
may be possibly reflected in significant variations of the configuration
variables. We tested the model accuracy in several stable positions far
from singularities (see Fig. 9, stable points), and the average model
error with four assumed modes is 𝑒𝑚 = 12.81 mm (2.27%), significantly
lower than 19.37 mm and 20.59 mm of configurations near 𝑇 2𝑎 and 𝑇𝐿,
respectively.

To the authors’ knowledge, this is the first time a singularity of
matrix 𝐔 is discovered and experimentally verified for CPRs with
actuation at their base. In tendon-driven CPRs, singularities of 𝐔 were
identified in [45]. In that case, degeneracies of 𝐔 were associated
with leg singularities where multiple tendons were slack. However, the
physical phenomena we experience is different. To better understand
what happens in our case, let us consider the forward kinemato-static
problem of Eq. (12), here reported:
[

𝛥𝐪𝑝
𝛥𝐪𝑑

]

= 𝐉𝛥𝐪𝑎 + 𝐂𝛥𝐟𝑝 (28)

where 𝐉 = −[𝐏 𝐔]−1𝐀 ∈ R(𝑛𝑐+𝑚)×𝑚 is called Jacobian matrix, and
𝐂 = −[𝐏 𝐔]−1𝐖 ∈ R(𝑛𝑐+𝑚)×3 is named compliance matrix. When the
manipulator approaches the singularity curve 𝑇𝐿, matrix 𝐔 becomes
rank deficient. Then, by inspection of 𝐂, we noted that submatrix 𝐂𝑢
relating 𝛥𝐪𝑢 = 𝐂𝑢𝛥𝐟𝑝 is ill-conditioned, displaying negligible stiffness in
the direction orthogonal to the robot motion plane. This further con-
firms the inability of the model with planar displacement assumptions
in the identification of 𝑇𝐿 since it fails to detect the lack of stiffness in
the out-of-the-plane direction.

As the manipulator displays negligible stiffness in the direction
orthogonal to the robot motion plane when approaching 𝑇𝐿, we ex-
plore how the stiffness of the links influences this phenomenon. To do
this, we vary the number of connecting constraints 𝑛𝑏, increasing the
torsional stiffness of the beams (see Eq. (15)). Starting from the current
solution with 𝑛𝑏 = 8, by increasing the number of 𝑛𝑏, the unstable WS
area reduces, as shown in Fig. 15. In particular, by selecting 𝑛𝑏 ≥ 50,
almost all the Cartesian WS is theoretically reachable.

6. Conclusions

This paper addressed the experimental validation of equilibrium
stability of CPRs predictions. We demonstrated the inability of a model
based on planar displacement assumptions to predict the equilibrium
stability of a planar CPR. A new planar CPR was proposed for the
12

scope. The prototype was designed to be nominally planar and such that
Fig. 16. Derivation of distributed parameters.

no mechanical interference between robot components could occur.
Because of the prototype architecture, we also originally proposed
a material parameter modelling methodology for the specific design
of the flexible chains employed. Finally, we experimentally identified
a singularity related to out-of-the-plane uncontrolled motions of the
planar CPR for the first time.
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Appendix A. Distributed parameters derivation

As shown in Fig. 16, we model our flexible chain as a series of
flexible segments, with 𝑠 = 1,… , 𝑛𝑏 indicating the index of each
segment, and 𝑛𝑏 the number of segments. Segments are assumed to have
the same length 𝐿𝑠 = 𝐿∕𝑛𝑏 and, since we employ circular cross-section
eams, 𝐼𝑥 = 𝐼𝑦 = 𝐼 . We start by considering the inner chain made by
our links: assuming the width of the intermediate constraints on the 𝑧

direction to be negligible, the flexible chain is equivalent to four beams
in parallel, and 𝑘𝑥 is given by:

𝑘𝑥 =
4
∑

𝑖=1
𝑘𝑥𝑖 = 4𝐸𝐼

𝐿3
; 𝑘𝑥𝑖 =

𝐸𝐼
𝐿3

(A.1)

We then consider 𝑘𝑦: under small deformation assumptions,6 each
segment is equivalent to four parallel beams clamped at both ends.
Thus, the stiffness of each segment 𝑘𝑦𝑠 can be simply obtained as:

𝑘𝑦𝑠 = 412𝐸𝐼
𝐿3
𝑠

= 𝑛3𝑏
48𝐸𝐼
𝐿3

(A.2)

and the overall stiffness 𝑘𝑦 is the stiffness of 𝑛𝑏 elements in series:

1
𝑘𝑦

=
𝑛𝑏
∑

𝑠=1

1
𝑘𝑦𝑠

⇒ 𝑘𝑦 = 𝑛2𝑏
48𝐸𝐼
𝐿3

(A.3)

The computation of the torsional stiffness is not as straightforward,
and it is detailed below. First, let us consider Fig. 16, where ℎ is the
distance between the beams, assumed to be equal for each of them. Due
to the symmetry of the system, we can obtain the 𝑘𝑧𝑠 of sth segment
by considering only half system:

𝑘𝑧𝑠 = 2𝑘𝑏 (A.4)

where 𝑘𝑏 is the contribution of two beams. In order to characterize the
torsional stiffness, we want to relate the torsion angle 𝜃 to the external
moment 𝑀 . An external moment 𝑀 is equivalent to two forces 𝐹1, 𝐹2
pplied to the beams, that is:

= 𝐹1𝑑1 + 𝐹2𝑑2 (A.5)

where 𝑑1, 𝑑2 are the beams distances to the link centreline (see Fig. 16).
Then, by the application of 𝐹1 and 𝐹2, the beams display tip displace-
ments 𝑥1 and, 𝑥2 respectively. By considering beams as clamped at
both ends, assuming small deformations and the local beam torsion
over its own axis to be negligible, 𝐹1, 𝐹2 are proportional to the tip
isplacements 𝑥1, 𝑥2 as follows:

1 =
12𝐸𝐼
𝐿3
𝑠

𝑥1; 𝐹2 =
12𝐸𝐼
𝐿3
𝑠

𝑥2 (A.6)

By inserting Eq. (A.6) into Eq. (A.5), we obtain:

𝑀 = 12𝐸𝐼
𝐿3
𝑠

(

𝑥1𝑑1 + 𝑥2𝑑2
)

(A.7)

Under small deformation assumptions, we can approximate 𝑥1 ≃
𝑑1𝜃, 𝑥2 ≃ 𝑑2𝜃. Then, by introducing 𝑑1 = ℎ∕2, 𝑑2 = 3ℎ∕2, we obtain:

𝑀 = 30𝐸𝐼
𝐿3
𝑠

ℎ2𝜃 (A.8)

and we obtain 𝑘𝑏 by the definition of the torsional stiffness:

𝑘𝑏 =
𝑀
𝜃

= 30𝐸𝐼
𝐿3
𝑠

ℎ2 (A.9)

by inserting Eq. (A.9) into Eq. (A.4), we obtain:

𝑘𝑧𝑠 =
60𝐸𝐼
𝐿3
𝑠

ℎ2 = 𝑛3𝑏
60𝐸𝐼
𝐿3

ℎ2 (A.10)

6 Please note that small deformations do not implicates small displacements.
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Then, 𝑘𝑧 is the stiffness of 𝑛𝑏 torsional springs in series, that is:

1
𝑘𝑧

=
𝑛𝑏
∑

𝑠=1

1
𝑘𝑧𝑠

⇒ 𝑘𝑧 = 60𝑛2𝑏ℎ
2𝐸𝐼
𝐿3

(A.11)

Finally, 𝐊𝐵𝑇 is obtained by normalizing over 𝐿3:

𝐊𝐵𝑇−𝑖𝑛 = 𝐸𝐼 diag(4, 48𝑛2𝑏 , 60𝑛
2
𝑏ℎ

2) (A.12)

where the subscript ()𝑖𝑛 individuates the inner chain with four beams,
and diag the 3 × 3 diagonal matrix whose entries are placed over
its principal diagonal. Similarly, the stiffness of a single outer chain
𝐊𝐵𝑇−𝑜𝑢𝑡 is:

𝐊𝐵𝑇−𝑜𝑢𝑡 = 𝐸𝐼 diag(2, 24𝑛2𝑏 , 12𝑛
2
𝑏ℎ

2) (A.13)

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.mechatronics.2023.103064.
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