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Abstract: In the present paper, the process of estimating the important statistical properties of extreme
wind loads on structures is investigated by considering the effect of large variability. In fact, for the
safety design and operating conditions of structures such as the ones characterizing tall buildings,
wind towers, and offshore structures, it is of interest to obtain the best possible estimates of extreme
wind loads on structures, the recurrence frequency, the return periods, and other stochastic properties,
given the available statistical data. In this paper, a Bayes estimation of extreme load values is
investigated in the framework of structural safety analysis. The evaluation of extreme values of
the wind loads on the structures is performed via a combined employment of a Poisson process
model for the peak-over-threshold characterization and an adequate characterization of the parent
distribution which generates the base wind load values. In particular, the present investigation is
based upon a key parameter for assessing the safety of structures, i.e., a proper safety index referred to
a given extreme value of wind speed. The attention is focused upon the estimation process, for which
the presented procedure proposes an adequate Bayesian approach based upon prior assumptions
regarding (1) the Weibull probability that wind speed is higher than a prefixed threshold value, and
(2) the frequency of the Poisson process of gusts. In the last part of the investigation, a large set of
numerical simulations is analyzed to evaluate the feasibility and efficiency of the above estimation
method and with the objective to analyze and compare the presented approach with the classical
Maximum Likelihood method. Moreover, the robustness of the proposed Bayes estimation is also
investigated with successful results, both with respect to the assumed parameter prior distributions
and with respect to the Weibull distribution of the wind speed values.

Keywords: Bayes estimation; extreme value theory; peak-over-threshold; Poisson processes; wind
loads on structures; structural safety analysis

1. Introduction

In the present research work, a Bayes method is illustrated for the extreme wind speed
characterization and estimation, with the purpose of its application in the framework of
structural safety and wind engineering, by an adequate application of extreme value the-
ory [1]. This topic has indeed brought about an increasing number of studies in recent years,
both for the risk evaluation and reliability analysis of structures, see among others [2–10],
and in wind energy production assessments [11,12]. This modeling procedure is challeng-
ing due to the various studies that exist in the literature regarding wind speed probability
distributions. The recent advances in wind engineering motivated many studies in the
literature to focus on wind speed (WS) probability distribution. For this purpose, significant
interest has been focused on the extreme values (EV)’s characterization of WS, both for
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evaluating the risk, safety, and reliability of structures, and for assessing the maximum
wind energy production [13].

It must be outlined that in most of the above studies devoted to wind energy character-
ization, the WS probability distribution, quantiles, and other relevant statistical attributes
are generally evaluated by ignoring the temporal autocorrelation function, since they
mostly depend on the probability distribution function, i.e., without explicitly taking time
into account. This means that random variables are used instead of stochastic processes, as
would be more realistic. In the following, instead, a dynamic approach is pursued in terms
of stochastic processes.

The forecast of extreme wind speed values, or wind gusts, plays a crucial role both in
structural safety, structural reliability, and risk evaluation analyses and in environmental
studies. Indeed, this topic is of interest both in safety design, operating conditions of
structures, and in environmental and energy studies. In fact, in case of intolerably high
wind speeds, it is known that wind turbines are designed to be cut out as a means of safety
and protection against possible damages [12,14–22]. With reference to the aspect of energy
production and by keeping in mind the cubic rule relationship between the wind power
and the wind speed, it is not trivial to put into evidence that the extreme upper quantiles of
wind power are very sensitive to the corresponding quantiles of wind speed, so that an
inaccurate quantiles estimation may involve relatively large errors in the evaluation of the
expected wind energy production [23].

However, in the literature on wind energy studies and probability extremes, it has
been emphasized that the EV estimation is a complex task, since large sample sizes are
often required. In the case of insufficient sample sizes, many models can be employed,
from the classical Weibull distribution to the more recent Log-logistic, Lomax, or Burr
distribution, which generally perform quite similarly in the central part of the real WS
distribution, i.e., with about the same values of central parameters such as the mean and
the median values [24].

With reference to the structural safety design and the operating conditions of structures
including, but not limited to, tall buildings, offshore structures, and wind towers, and
starting from the available statistical data, it is critical to determine the best possible
method for the estimation of extreme wind loads on structures, the return periods, and
other stochastic properties. With the purpose of overcoming the above-mentioned concerns,
the present paper proposes a Bayes approach for the estimation of the EV probability
distribution, which may be suitable under various models based upon the characterization
of extreme WS by means of a proper Poisson process of exceedances, by following a
methodology introduced in the extreme value theory of stochastic processes and applied
within the framework of structural safety analysis. This methodology can be regarded
as strictly related to the so-called peaks-over-threshold (POT) method, which is based
upon the stochastic process of the time instants in which the wind-speed exceeds a given
threshold [25]. The results of the numerical simulations confirm the absolute and relative
efficiency of the proposed model, as well as the robustness of the proposed estimation
method.

2. Wind Speed Extreme Values Evaluation by Means of Stochastic Processes:
The Peaks-Over-Threshold Approach

In the following, a dynamic approach is adopted, i.e., the wind speed is regarded
as the realization of a stochastic process in time, as it is indeed from a rigorous point of
view, see, e.g., [25–27]. By adopting a structural engineering framework, the focus is on the
development of a methodology capable of guaranteeing adequate levels of structural safety
margins. Since the operational lifetimes of such towers and structures are typically many
years, the designers need to estimate the extreme values of wind speeds, i.e., the maximum
wind gust amplitude over a predefined time. In this paper, we will denote as gust a wind
gust amplitude over a given time interval [28].
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First, the stochastic process of WS values over time is denoted by W = W(t), and let θ be
a sufficiently high value, that is a threshold value, of WS such as that all WS values higher
than θ can be considered as a gust. This threshold value depends on the structure under
consideration and possibly on given guidelines and it is typically used for defining the
“cut-off” value of the WS. In several cases such as for tower structures or structures which
involve the use of machineries, the threshold value also depends on machine features, so it
is left unspecified here.

Let NW(t) denote the stochastic counting process of the WS values which cross the
barrier θ, i.e., the number of the peaks-over-threshold of WS, see, e.g., [29], and let us
denote by Tk the time of the k-th gust occurrence. The literature on the extreme values of
stochastic processes provides the necessary conditions, which are generally satisfied as
discussed by [30,31], provided that the barrier level θ is large enough. Hereinafter, this
process is defined as a gust counting process. In such conditions, the NW(t) process is
characterized by the well-known Poisson probability law p(k,t) expressing the probability
that NW(t) attains a given integer value k. Such a probability law is given by:

P(j, t) ≡ P[NW(t) = j] = e−αt ·
(
αt)j

j!
j = 0, 1, . . . , ∞

(1)

In (1), α is the mean number of up-crossings in the unit time. The mean, or expected value,
and variance of the process NW(t) are numerically equal and given by:

E[NW(t)] = Var [NW(t) ] = αt (2)

The gust amplitude at time Tk is a random variable, herein indicated as WAk, which
represents the wind amplitude at time Tk. In the following, the times Tk will be denoted as
the Poisson times. It is obvious that an adequate safety or reliability index for characterizing
the extreme values of the stochastic process NW(t) is the maximum gust amplitude over the
interest time interval, which is also an index of the damage that the gust process can cause
to the system. This can be accomplished by associating to the stochastic process NW(t) and
the random variables WAk (k = 1, 2, . . ., NW(t)), with the following stochastic process:

MW(t) = max[WA1, WA2,. . ., WANW], if NW(t) ≥ 0
MW(t) = 0, otherwise

(3)

MW(t) is a stochastic counting process, constituted by the maximum of a random number
NW(t) of elements forming the succession of gust amplitudes. It is remarked that, for each
time t, MW(t) is a (continuous) random variable RV which is given by the maximum of a
countable random number N = N(t) of continuous RVs WAk.

Let Ω(ζ,t) be the cumulative distribution function (CDF) of MW(t) at time t, evaluated
at a value ζ of WS:

Ω (ζ,t) = P[MW(t) < ζ] (4)

If, for safety reasons, a high threshold or a safety level z is assigned to the maximum
of the EWS values ζ of (4) occurring in a given safety time interval (0, s), the following
structural safety index (SSI), which is also a stochastic process with respect to the time
index s, can be consequently defined:

σ(z,s): = Ω (z,s) (5)

Indeed, with reference to the time horizon (0, s) under study for safety, it is obvious
that Ω(s,z) = P[MW(s) < z] is the probability that z is never exceeded and this can introduce
a justification to the term safety index. The above SSI is expressible in an analytical form in
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terms of the probability distribution of the RVs WAk. In fact, it is remarked that for every
assigned integer value n of NW(t), the following relationship holds:

[max[WA1, WA2,. . ., WAn] < z]
if and only if [(WA < z)∩. . .∩(WAn < z)]

(6)

The RVs WAk are assumed to be statistically independent and identically distributed
with the common, time-independent, cumulative distribution function FW(x):

FW(x) = P(WAk ≤ x) , ∀ k = 1, 2, . . . n (7)

After some manipulations, implying the power series expansion of a function like
[Φ(x) = exp(g(x)], for any given continuous function g(x), the following compact expression
can be obtained for the above function σ(s,z) under the Poisson hypothesis for NW(t), see
Appendix A for details:

σ(z, s) = exp[−αs(1− FM(z))] (8)

Such an equation can be further refined once the parent distribution FM(z) is known or
estimated. A list of possible candidate parent distributions will be illustrated in Section 3.

As a function of time s, the SSI is an Exponential complementary CDF [32], as it may
easily be noticed by expressing it as:

σ(z, s) = exp(−αsq(z)) (9)

where it is recalled that α (denoted in the sequel as the Poisson frequency) is the expected
gust frequency, i.e., the expected number of gust occurrences per unit of time, and q = q(z)
= 1 − FM(z) = P(WAj > z) is the overcrossing probability (OP) of the safety level z by any
single gust amplitude WAj.

Equation (8) can be also expressed as

σ(z, s) = exp(−s/T) (10)

where T = 1/αq is the so-called return period [1] associated to the extreme values of the
stochastic process MW(t). In this case, T = T(z) is to be interpreted as the mean recurrence
time between two successive overcrossing occurrences of the safety level z, the dependence
on z being related to the function q = q(z).

It is remarked that, under the assumed hypotheses, the OP q = q(z) neither depends
on the index j, nor on the time, while of course the whole SSI depends on the time interval
s. The function q = q(z), which is related to the gust CDF, may of course assume various
expressions. According to the proposed approach, inference for the above model can be
adequately accomplished by following a Bayesian approach as shown in the following
Section 4, see also [33]. Such a Bayesian approach is applied both to the parameter α and to
q = q(z)= 1 − FM(z) in Equation (8), once q has been made explicit by following some of
the models, as discussed in Section 3.

3. An Overview on Parametric WS Extreme Value Distribution Models to Be Adopted
as Parent Distributions in the POT Approach

This section provides an overview on the most adopted parametric WS extreme value
distribution models which may be adopted as parent distributions in the POT approach,
i.e., as analytical expressions of the function q = q(z) = 1 − FM(z) appearing in Equation (8).
In particular, the CDF detailed in this section can be used for expressing the wind speed
CDF FM(x), which should be evaluated at x = z, representing the safety level, in terms of
WS values.
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3.1. Weibull Distribution (Type III)

This distribution was first introduced by Weibull [34]. The two-parameter Weibull
distribution with a scale parameter φ and a shape parameterω can be written as follows:

PDF

f (x, ϕ, ω) =
ω

ϕ

(
x
ϕ

)ω−1
exp
(
−
(

x
ϕ

)ω)
(11)

CDF

F(x, ϕ, ω) = 1− exp
(
−
(

x
ϕ

)ω)
(12)

An additional location parameter µ can be inserted as follows, with a new PDF and
CDF denoted as f1(x) and F1(x) and expressed as functions of the above ones f(x) and F(x),
respectively:

PDF
f 1(x) = f (x − µ) (x > µ) (13)

CDF
F1(x) = F(x − µ) (x > µ) (14)

The two-parameter Weibull distribution has been widely used in the literature in-
cluding the estimation of wind speeds. On the other hand, the three-parameter Weibull
distribution expressed a high accuracy in the low wind speeds’ estimation due to the shift
caused by the location parameter [34,35]. Therefore, it has been used to estimate wind
energy, characterize wind speed, and estimate the automatic wind power system [36].
Nevertheless, Weibull distribution is not suitable for the estimation of extreme values of
wind speed which have little influence on the parameters of the Weibull distribution. Con-
sequently, beyond a certain threshold, other extreme value distributions must be used [37].

3.2. Gumbel Distribution (Type I)

This distribution is widely used for modeling extreme events [38]. It fits extreme wind
speeds according to many studies, see, e.g., [39]:

PDF:

f (x, χ, δ) =
1
δ

exp
(
− (x− χ)

δ
− exp

(
− (x− χ)

δ

))
(15)

where x is the random variable (RV), χ is the location parameter, and δ is the scale parameter
(δ > 0).

CDF:

F(x, χ, δ) = exp
(
−exp

(
− (x− χ)

δ

))
(16)

3.3. Inverse Weibull Distribution (Fréchet Distribution Type II)

The Inverse Weibull (IW) distribution was first introduced by Maurice Fréchet [40]
to fit extreme events including extreme wind speeds, see also [41]. Two-parameter IW
distribution, having a scale parameter ϕ and a shape parameter ω, can be expressed as:

PDF

f (x, ϕ, β) =
β

ϕ

( ϕ

x

)ω+1
exp
(
−
( ϕ

x

)ω)
(17)

CDF
F(x, ϕ, ω) = 1− exp

(
−
( ϕ

x

)ω)
(18)

Three-parameter IW distribution can be derived by adding a location parameter µ as
follows:

PDF

f (x, α, β, µ) =
β

α

(
α

x− µ

)β+1
exp

(
−
(

α

x− µ

)β
)

(19)
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CDF

F(x, α, β, µ) = 1− exp

(
−
(

α

x− µ

)β
)

(20)

3.4. The Generalized Extreme Value Distribution

The generalized extreme value (GEV) distribution is widely used to estimate extreme
events and it can be deduced by combining the latter three distributions [42]. The CDF of
the generalized value distribution is described as follows:

F(x, α, β, µ) = exp

(
−
(

1 + β

(
x− µ

α

)−1/β
))

(21)

where α > 0, the shape parameter β and the location parameter µ are real values. The
GEV distribution is quite versatile and α has a substantial effect on its skewness [43].
The generalized extreme value distribution is a heavy-right-tail distribution compared to
Weibull distribution. The latter allows for estimating extreme wind values above a certain
threshold with high accuracy. However, the estimation of the threshold of the extreme
wind speeds is still challenging [44].

4. Bayes Inference for the Structural Safety Index under Extreme Wind Loads
4.1. Bayes Inference Methods

As it is well known [1,22,45–47], Bayesian inference methods consider the unknown
parameters as RVs, with their own probability distributions, while for classical estimation
methods, they are unknown constants. Under this framework, this feature of Bayesian
inference methods allows us to use some a priori information to characterize an a priori
distribution of the parameters. This paves the way, according to the Bayes theorem [44], to
compute the distribution of the parameters conditioned to the observational data. Hence,
such a procedure also displays the accuracy of the estimated parameters in terms of
probability, i.e., it allows the computation of the probability in such a way that, for the
given observed sample, the parameters lie in a specific interval. This interval constitutes
the Bayesian Credibility Interval, i.e., the Bayesian counterpart of the Confidence Interval of
classical estimation. The application of such methods in EV studies is discussed in Coles [1].

In this section the Bayesian estimation of the SSI is illustrated and developed, while in
the next section, the results of a series of numerical simulations are presented, to show the
feasibility and efficiency of the above estimation method. Furthermore, a brief account of
the robustness analysis of the developed methodology is given in Section 6 to evaluate the
efficiency of the estimation also in the presence of possible departures from the assumed
hypotheses regarding the prior distributions. Indeed, assessing the prior distribution of
the parameters under study is a crucial, and often difficult, point of the Bayesian inference
methodology [45–47].

4.2. Bayesian Estimation of the SSI

In the expression of the SSI:

σ(z, s) = exp(−αsq) (22)

it is recalled that α represents the expected gust frequency, i.e., the expected number of
gust occurrence per unit time, and q = q(z) = 1 − FM(z) = P(WAj > z) is the probability
that a single WS value exceeds the safety level z. According to most reported research,
see, e.g., [11,12,29], in the following, it will be assumed that a two-parameter Weibull
distribution is a well-fitting model for the WS distribution. Using a parametrization slightly
different from the one in the previous section, and denoting the scale parameter by λ and a



Math. Comput. Appl. 2023, 28, 111 7 of 19

shape parameter by γ, the CDF of such a Weibull model can be written as follows for any
given WS value x:

FM(x) = 1 − exp(−λzγ) (23)

So, the complete expression of the SSI is:

σ(z, s) = exp(−α s exp (−λzγ)) (24)

So, with respect to the variable z, the SSI assumes the form of an extreme value
distribution, in particular, a Double Exponential distribution, belonging to the class of
Gumbel distributions. It is remarked that in the present approach, a new demonstration
of such extreme value distribution is proposed. Here, the Bayesian estimation process is
introduced for the above SSI. More precisely, for numerical reasons, attention is focused on
the minus logarithm of the SSI, i.e., the function:

H(z, s) = − log (σ(z, s)) = α s exp (−λzγ) (25)

Apart from the numerical aspects, an interesting meaning can be assigned to the
function H as the equivalent of the cumulative hazard rate (CHR) of reliability studies, as
outlined in Appendix B. For simplicity, we here maintain the same name and acronym CHR
for denoting such function, and it is also remarked that, differently from the SSI, which
should be kept as large as possible, the CHR must be as small as possible. As obvious on
intuitive grounds, it increases with time s and decreases with the safety level z.

Finally, the Bayesian estimation process is introduced for the above CHR function, for
given values of s and z, to be considered as fixed values. It is noted that the variation of
time s can be dealt with as briefly discussed in Appendix B. A large sample of estimation
results based on numerical simulations [48] is illustrated and discussed in Section 5.

First, as in the majority of studies concerning Weibull distribution [11,12,34], it is
assumed that the scale parameter λ is random, due to environment variations, while the
shape parameter γ is assumed as known. Further studies will be devoted to allow for
the case in which also the shape parameter is random. The input data for the estimation
are a joint prior PDF, denoted as g(l,α), for interest parameters λ and α. As well known,
such parameters to be estimated are regarded as RVs. Accordingly, they possess a PDF
which can be integrated and updated with field data, denoted by D, by the Bayes’ theorem
reported below:

g(λ,α|D) = Kg(λ,α)L(D|λ,α) (26)

where:

• L(D|λ, α) is the Likelihood (PDF or, in the case of a discrete observation, as in the
present case, probability mass functions) of the data D conditional to the parameters
(λ,α);

• K is a constant (with respect to the parameter values), such that its reciprocal value is:

K−1 =
∫ +∞

o

∫ +∞

o
g(λ,α)L(D| λ,α)dλdα (27)

As well known, the best Bayes estimate, in the mean square error (MSE) sense of a
given function x = x(λ,α), is provided by the posterior mean:

ξ◦ = E[ξ|D] =
∫ +∞

o

∫ +∞

o
ξ(λ,α)g(λ,α|D)dλdα (28)

where x◦ denotes an estimate of the generic parameter x.
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In the case under study, the quantity to be estimated is the above CHR whose MSE
estimate is expressed by:

H◦ = E[H|D] =
∫ +∞

o

∫ +∞

o
αsexp(−λ zγ)g(λ,α|D)dλdα (29)

The properties of such an estimator shall be compared with the ones of the tradi-
tional Maximum Likelihood (ML), H◦L, which can be easily expressed in terms of the ML
estimates of (λ,α), denoted as (λ′,α′), which can be deduced as follows:

1. For what concerns the Weibull parameter λ, let a random sample X = (X1, X2, . . ., Xm)
be available of RVs representing m WS values, assumed as statistically independent
and identically distributed, following the above Weibull distribution. Therefore, as
well known [32], if the shape parameter γ is known, the ML estimate of λ is given by:

λ′ =
m

∑m
k=1 Xγ

k
(30)

2. As far as the Poisson parameter α is concerned, let a random sample Y = (Y1, Y2,
. . ., Yn) be available of RVs representing n gust inter-arrival times observed in the
safety interval (0, s), i.e., Y1 represents the time to the 1st gust, Y2 represents the time
between the 1st and 2nd gust, and so on. Accordingly, it is well known that such RVs
are Exponential RVs with parameter α [32], and the ML estimate of α is given by:

α′ =
n

∑n
k=1 Yk

(31)

The two random samples of WS values and Exponential times, (X1, X2, . . ., Xn) and
(Y1,Y2, . . ., Ym), respectively, are assumed to be statistically independent from each other.
This Bayes inference employs the well-known conjugate [45–47] priors for the RVs (λ,α),
i.e., the Gamma prior PDF [32]. In Section 6, within the framework of robustness studies,
also other prior models will be considered.

The Gamma PDF is a PDF with positive parameters n and δ (the shape and scale
parameter, respectively) expressed, for a given parameter ρ, by:

gampd f (ρ, n, δ) = (1/ δnΓ(n))ρn−1exp
(
−ρ

δ

)
(32)

where Γ(ν) is the Euler–Gamma Function evaluated at ν (ν >0):

Γ(v) =
∫ ∞

0
tv−1exp(−t)dt (33)

The mean value and variance of the distribution are:

E[α] = nδ, Var[α] = nδ2 (34)

Moreover, the above two RVs (λ,α) are assumed to be statistically independent. Ac-
cordingly, by denoting with the suffix “0” the prior PDF parameters, in the Gamma prior
case, the joint prior PDF is expressed as:

g(λ,α) = gampd f (λ; m0, x0)gampd f (α; n0, δ0) (35)

The prior hyper-parameters (m0, χ0, n0, and δ0) are chosen based on prior knowledge
or expert’s opinion. The fact that the above PDF are conjugate priors lies in the property
that the posterior PDF is still a Gamma PDF with updated parameters. Once the above two
random samples (X1, X2, . . ., Xn) and (Y1,Y2, . . ., Ym) are observed, by denoting by suffix
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“1” the posterior PDF parameters, it is straightforward to deduce that the prior joint PDF
g(λ,α) is given by:

g(λ,α|D) = gampd f (λ; m1, x1)gampd f (α; n1, δ1) (36)

where:
m1 = m0 + m; x1 =

x0

1 + U(X)x0
(37)

n1 = n0 + m; δ1 =
δ0

1 + V(Y)δ0
(38)

U(X) = ∑m
k=1 Xγ

k ; V(Y) = ∑n
k=1 Yk (39)

Moreover, once the data D are assigned, the posterior conditional independence of
λ and α also holds. Finally, by using the properties of Gamma distribution and of the
Euler–Gamma function, the Bayes estimate of the SSI are evaluated as follows, according
to (14):

H◦ = E[H|D] =
∫ +∞

o

∫ +∞
o αs exp(−λ zγ)g(λ,α|D)dλdα

=
∫ +∞

o

∫ +∞
o αsexp(−λ zγ)gampd f (λ; m1, x1)gampd f (α; n1, δ1)dλdα

(40)

Then, let us consider the following integrals:∫ +∞

o
αgampd f (α; n1, δ1)dα = n1δ1 (41)

which is indeed the expected value of a Gamma RV with parameters (n1,δ1), see also
Equation (34), and

∫ ∞

0
exp(−x zγ) gampd f (x, m1, x1)dx =

(
β

β + zγ

)m1

; β =
1
x1

(42)

(see Appendix C). The above equations imply that the Bayes estimator of H is expressed
as follows:

E[H|D] = n1δ1s
(

β

β + zγ

)m1

(43)

Thus, it has been shown that using the conjugate priors for the RVs (λ,α), i.e., the
Gamma prior PDF for both λ and α, implies a compact analytical expression for the Bayes
estimator of index H. The same may not hold, as it will be briefly discussed in the framework
of robustness studies, if other prior models are considered. However, such an issue poses
no particular problems since nowadays numerical methods for the evaluation of posterior
means are well established [45–47].

5. Numerical Applications for the Evaluation of the Performances of the Proposed
Bayesian Estimators

In the present section, and in the following one, some large sets of numerical ap-
plications are illustrated in order to measure the efficiency and accuracy of the Bayesian
estimator. Since analytical results about estimate errors (to be defined below) are not
available, such numerical applications consist of the Monte Carlo simulation [47], and
aim to:

1. Evaluate various indexes of performance (such as the bias and the Mean Square Error)
of the Bayes estimator;

2. Compare the proposed Bayesian estimators with the classical ones, in particular with
the more largely adopted Maximum Likelihood (ML) estimates.

The numerical applications were conducted for various sample sizes and various
input data values. For the sake of brevity, only a significant subset of the results is reported.
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In this section, the simulated data (i.e., the parameter λ governing the PDF of wind
speed) and the Poisson frequency α, together with their relevant samples, allowing the SSI
estimation as outlined in previous section, were generated from the assumed prior PDFs
on (λ,α), while in the next section, the robustness of the estimates is analyzed with respect to
different prior PDFs.

In every simulation:

- First, the Poisson frequency α, and the scale Weibull parameter λ are generated
according to their assumed Gamma prior PDFs.

- Data are generated on the succession of times between gusts over the given safety
time interval s (here taken as s = 1 year) by a Poisson Process of mean frequency α;

- Data are generated on the observed WS values by means of a Weibull RV with scale
parameter λ generated according to its Gamma prior PDF introduced above, while
the shape parameter γ is fixed according to the assumed values of the OP q = P(X > z),
X being the WS RV and z an extremal WS value, here assumed equal to 35 m/s as a
typical gust value [12,21–23].

Among the many sets of possible parameter values, the following twelve sets of values
(A1, A2, B1, B2, C1, C2, D1, D2, F1, and F2) are illustrated herein. The first six sets (A1
through C2) are relevant to a return period of 20 years, the following six sets (D1 through
C2) are relevant to a return period of 50 years. The sets are characterized by the mean or
expected values of α and λ, E[α] and E[λ], respectively, and by their coefficient of variation
(CV), CV[α] and CV[λ].

The CV Values were chosen equal to 0.20 (for the cases with suffix 1, such as A1,
B1, . . .) and 0.40 (for the cases with suffix 2, such as, A2, B2, . . .) to represent different
degrees of prior information. The values E[λ] and γ were chosen in order to correspond
to expected q values typical for an extremal WS value, i.e., q = 0.020 (cases Ak), q = 0.010
(cases Bk), and q = 0.005 (cases Ck). The 12 cases are summarized in Table 1.

Table 1. Combinations of prior values with respect to mean value and coefficient of variation (CV) of
the input random variable (RV) α and λ.

Case E[α] E[λ] CV[α] CV[λ]

A1 2.5 0.0125 0.20 0.20
A2 2.5 0.0125 0.40 0.40
B1 5.0 0.0085 0.20 0.20
B2 5.0 0.0085 0.40 0.40
C1 10 0.0062 0.20 0.20
C2 10 0.0062 0.40 0.40
D1 1.0 0.0125 0.20 0.20
D2 1.0 0.0125 0.40 0.40
E1 2.0 0.0085 0.20 0.20
E2 2.0 0.0085 0.40 0.40
F1 4.0 0.0062 0.20 0.20
F2 4.0 0.0062 0.40 0.40

In each simulation, two samples are generated, the n-sized sample of the Poisson
times (T1, T2, . . ., Tn) and the m-sized sample of the WS values (X1, X2, . . ., Xm). The
value m has been chosen equal to 30. Subsequently, for each sample size n a number of
N = 104 replications have been performed, and the Bayes estimate of H was deduced. In
particular, the results for various sample sizes (n = 5, n = 15, n = 30, n = 50, indicated in
the 1st column) are reported in Tables 2–15, in terms of the following indices (indicated in
columns 2 through 7):

I1 = Average Bias of the Bayes estimator;
I2 = Average Bias of the ML estimator;
I3 = Mean Square Error of the Bayes estimator (MSEB);
I4 = Mean Square Error of the ML estimator (MSEL);
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R1 = ratio of I2 to I1;
R2 = ratio of I4 to I3, i.e., relative efficiency of the Bayes estimator.
In order to explicit the above indexes, letω be a parameter to be estimated and letω◦ be

its estimator (be it the Bayes or the ML estimator), and let M[ω◦] and M[ω] be, respectively,
the average values of theωj

◦ andωj values over the N performed simulations, i.e.,

M[ω◦] = (1/N)∑N
k=1 ω◦k ; M[ω] = (1/N)∑N

k=1 ωk (44)

Then, the Average Bias of the estimator is expressed by:

M[ω◦] −M[ω] (45)

In the Tables, both for I1 and I2, and also for the ratio R1, the absolute value of the
Average Bias is reported.

The Mean Square Error (MSE) is evaluated on the estimated (ω◦j) and true (ωj) values
of the parameterω of the N simulated samples as:

MSE =
1
N ∑N

j=1

(
ω◦ j −ωj)2 (46)

The accuracy and the efficiency of Bayesian estimates are respectively measured by
the ratios R1 and R2: the more such indexes exceed 1, the better the Bayesian estimates
perform compared to the ML ones.

The above MSEs have been obtained at the end of each simulation as the averages
over the N sampled estimator’s square errors.

By observing the MSEB and MSEL indexes and their ratio, it is remarked that the
efficiency of the Bayesian estimation increases, as always occurs when the number of data
are exiguous. Moreover, in the considered framework, it is useful to highlight that the
proposed Bayes estimation is performs very well, and it is more effective with respect
to the classical ML estimation as clearly shown by the R2 values, also when many data
are available, whereas, typically, it is well known that the ML estimation becomes more
efficient as the sample size n increases, see, e.g., [45–47]. As expected, the results are more
favorable to the Bayes estimation in the case of a smaller CV, i.e., when the CV is 0.20 with
respect to the case in which the CV is 0.40, since a smaller CV implies a smaller degree of
uncertainty in the prior hypotheses.

Table 2. Simulation results showing the efficiency of the Bayes estimator, n = sample size (CASE A1).

n I1 I2 I3 I4 R1 R2

3 0.0003 0.0402 0.0013 0.0328 134.00 24.459

10 0.0001 0.0128 0.0013 0.0043 1280.0 3.3843

30 0.0004 0.0072 0.0012 0.0026 18.000 2.1199

50 0.0001 0.0067 0.0012 0.0024 67.000 2.0881

Table 3. Simulation results showing the efficiency of the Bayes estimator, n = sample size (CASE A2).

n I1 I2 I3 I4 R1 R2

3 0.0015 0.0604 0.0081 0.0937 40.267 11.510

10 0.0009 0.0147 0.2632 0.0064 16.333 1.8751

30 0.0007 0.0074 0.2275 0.0054 10.5714 1.3242

50 0.0007 0.0065 0.0050 0.0064 9.2857 1.2727
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Table 4. Simulation results showing the efficiency of the Bayes estimator, n = sample size (CASE B1).

n I1 I2 I3 I4 R1 R2

3 0.0001 0.0393 0.0012 0.0356 393.00 30.391

10 0.0001 0.0121 0.0011 0.0039 121.00 3.4329

30 0.0001 0.0076 0.0011 0.0023 76.00 2.0557

50 0.0007 0.0070 0.0010 0.0022 10.000 2.1293

Table 5. Simulation results showing the efficiency of the Bayes estimator, n = sample size (CASE B2).

n I1 I2 I3 I4 R1 R2

3 0.0023 0.0797 0.0184 0.2008 34.652 10.896

10 0.0010 0.0204 0.0144 0.0255 20.400 1.7716

30 0.0011 0.0135 0.0086 0.0121 12.273 1.4104

50 0.0013 0.0092 0.0096 0.0120 7.0769 1.2497

Table 6. Simulation results showing the efficiency of the Bayes estimator, n = sample size (CASE C1).

n I1 I2 I3 I4 R1 R2

3 0.0001 0.0612 0.0042 0.0895 689.26 21.378

10 0.0005 0.0228 0.0039 0.0133 48.134 3.4005

30 0.0001 0.0188 0.0042 0.0105 212.51 2.5315

50 0.0008 0.0167 0.0036 0.0095 21.429 2.6396

Table 7. Simulation results showing the efficiency of the Bayes estimator, n = sample size (CASE C2).

n I1 I2 I3 I4 R1 R2

3 0.0003 0.1441 0.0534 0.8182 480.33 15.323

10 0.0022 0.0295 0.0374 0.0629 13.409 1.6813

30 0.0002 0.0224 0.0333 0.0471 112.00 1.4151

50 0.0009 0.0182 0.0326 0.0426 20.222 1.3097

Table 8. Simulation results showing the efficiency of the Bayes estimator, n = sample size (CASE D1).

n I1 I2 I3 I4 R1 R2

3 0.0001 0.0182 0.0002 0.0064 303.00 30.874

10 0.0001 0.0058 0.0002 0.0008 57.856 4.0475

30 0.0001 0.0033 0.0002 0.0005 40.680 2.6513

50 0.0001 0.0030 0.0002 0.0005 30.284 2.4474

Table 9. Simulation results showing the efficiency of the Bayes estimator, n = sample size (CASE D2).

n I1 I2 I3 I4 R1 R2

3 0.0003 0.0273 0.0013 0.0184 86.989 13.819

10 0.0002 0.0058 0.0010 0.0019 37.953 1.8903

30 0.0003 0.0035 0.0008 0.0011 13.351 1.3916

50 0.0004 0.0021 0.0008 0.0010 5.9105 1.2317
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Table 10. Simulation results showing the efficiency of the Bayes estimator, n = sample size (CASE E1).

n I1 I2 I3 I4 R1 R2

3 0.0001 0.0030 0.0002 0.0049 30.284 2.4471

10 0.0001 0.0055 0.0002 0.0008 54.692 4.3385

30 0.0001 0.0034 0.0002 0.0005 34.352 2.5000

50 0.0007 0.0070 0.0010 0.0020 10.000 2.0293

Table 11. Simulation results showing the efficiency of the Bayes estimator, n = sample size (CASE E2).

n I1 I2 I3 I4 R1 R2

3 0.0023 0.0360 0.0030 0.0394 15.663 13.354

10 0.0010 0.0092 0.0023 0.0050 9.2208 2.1669

30 0.0011 0.0061 0.0096 0.0120 5.5473 1.7217

50 0.0013 0.0092 0.0014 0.0024 7.0769 1.4104

Table 12. Simulation results showing the efficiency of the Bayes estimator, n = sample size (CASE F1).

n I1 I2 I3 I4 R1 R2

3 0.0001 0.0277 0.0007 0.0176 276.62 26.076

10 0.0005 0.0103 0.0006 0.0026 20.611 4.1730

30 0.0001 0.0085 0.0007 0.0021 84.976 3.0592

50 0.0008 0.0075 0.0006 0.0019 9.4355 3.2291

Table 13. Simulation results showing the efficiency of the Bayes estimator, n = sample size (CASE F2).

n I1 I2 I3 I4 R1 R2

3 0.0003 0.0651 0.0086 0.1607 217.11 18.749

10 0.0022 0.0133 0.0006 0.0124 6.0609 2.0580

30 0.0002 0.0101 0.0053 0.0093 50.624 1.7308

50 0.0009 0.0082 0.0052 0.0084 9.1404 1.5990

Table 14. Simulation results showing the robustness of the Bayes estimator with respect to the prior
PDF, n = sample size (CASE G—Lognormal prior PDF).

n I1 I2 I3 I4 R1 R2

3 0.0014 0.0238 0.0010 0.0126 17.345 12.755

10 0.0008 0.0067 0.0009 0.0019 8.2474 2.1920

30 0.0008 0.0031 0.0007 0.0011 3.7931 1.4668

50 0.0012 0.0030 0.0007 0.0009 2.4435 1.3598

Table 15. Simulation results showing the robustness of the Bayes estimator with respect to the prior
PDF, n = sample size (CASE H—Uniform prior PDF).

n I1 I2 I3 I4 R1 R2

3 0.0046 0.0637 0.0096 0.1206 13.848 12.565

10 0.0040 0.0196 0.0078 0.0188 4.9000 2.4005

30 0.0036 0.0089 0.0066 0.0094 2.4722 1.4163

50 0.0054 0.0047 0.0060 0.0071 0.8704 1.1849
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6. A Robustness Analysis with Respect to the Assumed Prior and Wind Speed PDFs

In this last section, a small subset of many other simulations referring to different prior
PDFs of the relevant RVs and parameters to be estimated is reported and illustrated. The
purpose is to perform an adequate robustness analysis of the estimation process herein
proposed in two cases:

(1) with respect to departures from the assumptions of the Gamma prior PDFs of the
previous section;

(2) with respect to departures from the assumptions of the Weibull PDF of WS samples
of the previous section.

First, a robustness analysis with respect to prior PDFs is investigated. Indeed, sat-
isfactory results are obtained, as those illustrated in the previous section, as consistent
with Bayesian statistical theory, as long as the Bayes estimates are evaluated assuming the
consistent a priori distribution of Z, i.e., the one (herein the Gamma distribution with the
given parameters) actually used in performing the simulation of the random samples.

However, choosing the prior distribution is not trivial, especially in view of its subjec-
tivity, since it represents the information available on the possible values of the parameters
to be estimated, together with the degree of uncertainty about them. Accordingly, it is
useful to assess the robustness of the proposed methodology when the prior hypotheses
about such distribution are not valid. In the sequel, simulations have been performed and
robustness analyses have been successfully carried out by assuming different models, such
as the Lognormal and the Uniform ones [32], as prior PDFs for both α and λ, instead of the
previously assumed Gamma PDF.

For the sake of brevity, in this section, only the results relevant to the Lognormal model
(case G) and the Uniform model (case H) as a prior PDF for both α and λ are reported.
Moreover, only the most unfavorable cases are reported in Tables 14 and 15, i.e., the ones
with a higher CV, while maintaining the same mean values of the prior PDF, as in previous
section.

In summary, the characteristic features of the two cases selected for the robustness
analysis are reported here below:

(1) Case G: Lognormal prior PDFs for both α and λ with the same mean value and CV of
the Gamma PDF assumed for the computations;

(2) Case H: Uniform prior PDFs for both α and λwith same mean value and CV of the
Gamma PDF assumed for the computations.

In Tables 14 and 15, for the sake of brevity, only the results relevant to case D2 (see
previous section) are shown, since this is generally the most unfavorable case, i.e., with
ratios R1 and R2 smaller than in other cases.

The results of the robustness analysis, as reported in Tables 14 and 15, still confirm the
adequacy of the presented estimation procedure. Indeed, the Bayes estimate errors for the
various assumed prior PDFs are not excessive even in the case of a very limited sample
size and a remarkably unfavorable assumption, such as the Uniform PDF. In particular, it is
worth noticing that in this unfavorable case, the results are still much better with respect to
the ML ones.

Indeed, both indexes, R1 and R2, are remarkably greater than one for every sample
size of every case. This is a noteworthy result, especially in the case of a Uniform prior PDF,
which is obviously very different from the Gamma prior PDF assumed in the computations,
whereas the Lognormal model is not very different from the Gamma model with the same
mean value and CV.

Subsequently, a robustness analysis with respect to a sample PDF of the WS values
is investigated. This investigation implies that, instead of the assumptions of the Weibull
PDF of the WS samples of the previous section, different sample PDFs are assumed, with
the same mean and CV. In the following, by making reference to the case D2, the results
of two more cases are illustrated in Tables 16 and 17, and denoted as I and L, respectively.
They are referred to as:
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A Lognormal PDF for the WS (Table 16);
An Uniform PDF for the WS (Table 17).
In both cases, the prior PDFs are assumed as the Gamma PDFs of the previous

section. Also in these cases, it is noticed that while the results for the Lognormal cases are
similar to those for the Weibull case, as expected, a Uniform PDF is very different from
the assumed Weibull model, and yet the simulation results are comparable with those
previously illustrated in the Weibull case. Only in one case of Table 15 does the ratio R1
assume a value of less than one.

Table 16. Simulation results showing the robustness of the Bayes estimator with respect to the WS
PDF, n = sample size (CASE I—Lognormal WS PDF).

n I1 I2 I3 I4 R1 R2

3 0.0013 0.0058 0.0003 0.0030 4.6027 8.8804

10 0.0010 0.0019 0.0003 0.0006 1.8689 1.8726

30 0.0014 0.0039 0.0003 0.0004 2.7857 1.3333

50 0.0014 0.0042 0.0003 0.0004 3.0976 1.4242

Table 17. Simulation results showing the robustness of the Bayes estimator with respect to the WS
PDF, n = sample size (CASE L—Uniform WS PDF).

n I1 I2 I3 I4 R1 R2

3 0.0548 0.1002 0.0037 0.0316 1.8283 8.4545

10 0.0548 0.0693 0.0039 0.0080 1.2653 2.0430

30 0.0545 0.0631 0.0040 0.0059 1.1566 1.4916

50 0.0542 0.0615 0.0040 0.0055 1.1347 1.3924

Finally, it is noted that the estimation results are always scarcely sensitive with respect
to the assumed Gamma prior distributions, and with respect to the assumed Weibull
distribution of the WS values. This observation is confirmed by many other performed
simulation analyses.

7. Conclusions

In structural safety design and in the analyses of the operating conditions of structures
such as the ones related to tall buildings, offshore structures, and wind towers, it is useful
to determine the best possible estimates of extreme wind loads on structures, the return
periods, and other stochastic properties, given the available statistical data.

The present paper proposes a novel approach for the estimation of the probability that
wind speed is lower than a prefixed extreme value, which might be dangerous in terms
of the operating conditions of structures, the safety of structures and wind towers, and
structural reliability. From a probabilistic point of view, the proposed method is based on
the POT method for describing the stochastic processes of WS extremes in time and on a PD
for the parent distribution by exploiting the Bayes estimation method for inference on the
above probability, which allows one to define a proper safety index for the structure with
respect to some pre-established operating conditions. A large set of numerical simulations
have been performed and described in the last part of the paper. The performed numerical
simulations show the absolute and relative efficiency of the model and the effectiveness of
the proposed method of estimation.

In addition, the robustness of the proposed estimation method has also been inves-
tigated and discussed in detail. At this regard, it has been remarked that the performed
investigations show that the present approach provides satisfactory estimates also when
the true prior models are different from the ones assumed in the present work, namely
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the conjugate Gamma PDFs, and the same happens with respect to the Weibull PDF of
wind speed.

Further investigations will also be conducted in future studies to estimate the auto-
correlation function of the wind speed time series [49]. We also highlight that the Weibull
distribution has been adopted in this analysis as a typical and widely adopted model for the
sole purpose of evaluating how the estimation process works. The same efficiency might
be achieved when dealing with other wind speed distributions, such as those examined
in Section 3 or others available in the relevant literature [35,50–52]. The adoption of a
double-period probability model is also worth investigating for future studies, to address
the typical double periodicity of wind [53]. This kind of analysis will be developed in
forthcoming research works.
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Appendix A. Analytical Details on the Expression of the SSI

Herein, some details of the series expansion leading to Equation (8) are reported:

∞
∑

k=0
exp(−αt) (αt)k

k! (FM(z))k =

∞
∑

k=0
exp(−αt) (αFM(z)t)k

k! =

exp(−αt)
∞
∑

k=0

(αFM(z)t)k

k! =

exp(−αt)exp(αFM(z)t) =
exp(−αt(1− FM(z)))

Appendix B. A Reliability Interpretation of the SSI: The CHR Function

Let us introduce some reliability-related quantities, assuming that the threshold value
z of WS with respect to the safety index is the maximum gust amplitude for some operating
conditions of the structure, see also [22]. In other words, let us assume that the value z is
such that the structure fails to satisfy some operating conditions as soon as z is reached.
Then, the Reliability R(t) of the structure in the interval (0,t) is given by σ(t,z) of Equation (8),
where t is a generic time instant.

By introducing the quantity MW(t) of (3), the following identity holds for the Reliability
function with respect to the pre-established operating conditions of the structure:

R(t) = P(MW(t) < z) = σ(t,z)

Formally, at any time t ≥ 0 for which R(t) 6= 0, it is possible to define a hazard rate
function

h(t) = −R′(t)
R(t)

= − d
dt

[log(R(t))] = − d
dt

[log(σ(t, z))]
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As it is well known, the meaning of the hazard rate function h(t), as well as the origin
of its name, lies in the following property, which is easily seen to be equivalent to the above
definition: as ∆x→0+, the product h(x)∆x equals the conditional probability, where the
deficiency in satisfying the operating conditions occurs in the interval (x, x+∆x), given that
the device has been satisfactory until age x, i.e., such a product may be interpreted as the
instantaneous conditional failure probability for a device of age x.

Then, introducing the cumulative hazard rate (CHR) function:

H(t) =
∫ t

0
h(x)dx

one simply obtains the following relationship between H and σ:

H(t) = −[log (σ(t, z))]

On the basis of such an analogy, the CHR has been introduced in this paper, although,
in the present framework, the term deficiency in satisfying some serviceability conditions
used herein could also be interpreted as safety reduction. However, here, as in reliability
studies, the CHR H(t) must be kept as small as possible, while the SSI σ(t,z), on the contrary,
must be kept as large as possible.

Appendix C. On the Analytical Evaluation of the Bayes Estimate of H

E[H(s)] =
∞∫
0

∞∫
0
αsexp(−xzγ)g(α, λ)dαdλ

1
Γ(m1)

∫ ∞
0 exp(−λzγ)βm1

1 λm1−1exp(−λβ1)dλ

= 1
Γ(m1)

∫ ∞
0 β

m1
1 λm1−1exp(−λ(β1 + zγ))dλ

= 1
Γ(m1)

∫ ∞
0

β
m1
1

(β1+zγ)m1 tm1−1exp(−t)dt

= Γ(m1)
Γ(m1)

(
β1

(β1+zγ)

)m1
=
(

β1
(β1+zγ)

)m1
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