
Logical Methods in Computer Science
Volume 19, Issue 4, 2023, pp. 37:1–37:37
https://lmcs.episciences.org/

Submitted Apr. 01, 2022
Published Dec. 21, 2023

DECIDABILITY OF TWO TRULY CONCURRENT EQUIVALENCES

FOR FINITE BOUNDED PETRI NETS

ARNALDO CESCO a AND ROBERTO GORRIERI b

a SECO Mind, Via Achille Grandi 20, 52100 Arezzo, Italy
e-mail address: arnaldo.cesco@secomind.com

bDipartimento di Informatica — Scienza e Ingegneria Università di Bologna, Mura A. Zamboni 7,
40127 Bologna, Italy
e-mail address: roberto.gorrieri@unibo.it

Abstract. We prove that the well-known (strong) fully-concurrent bisimilarity and the
novel i-causal-net bisimilarity, which is a sligtlhy coarser variant of causal-net bisimilarity,
are decidable for finite bounded Petri nets. The proofs are based on a generalization
of the ordered marking proof technique that Vogler used to demonstrate that (strong)
fully-concurrent bisimilarity (or, equivalently, history-preserving bisimilarity) is decidable
on finite safe nets.

1. Introduction

The causal semantics of Petri nets has been studied according to the so-called individual
token interpretation, where multiple tokens on the same place are seen as individual entities,
starting from the work of Goltz and Reisig [GR83], further explored and extended in
[Eng91, MMS97]. However, the token game on such nets is defined according to the so-called
collective token interpretation, where multiple tokens on the same place are considered as
indistinguishable. Causal semantics for Petri nets under this more relaxed interpretation is
under investigation (see, e.g., [BD87, MM90] for important contributions in the linear-time
semantics), but a completely satisfactory solution to the general problem is not yet available
(see the survey [vGGS11] and the references therein).

The main aim of this paper is to investigate the decidability of two behavioral equivalences
defined over the causal semantics developed for Petri nets under the individual token
interpretation, based on the concept of causal net [GR83, Eng91, MMS97]. In particular,
we study the well-known fully-concurrent bisimilarity [BDKP91] and a variant of causal-net
bisimilarity [vG15, Gor22] (we call i-causal-net bisimilarity), which have been advocated as
very suitable equivalences to compare the behavior of Petri nets.

Fully-concurrent bisimilarity considers as equivalent those markings that can perform the
same partial orders of events. Its definition was inspired by previous notions of equivalence
on other models of concurrency: history-preserving bisimulation, originally defined in [RT88]

Key words and phrases: Behavioral equivalences, True concurrency, Fully-concurrent bisimilarity, Causal-
net bisimilarity, i-Causal-net bisimilarity, Decidability.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-19(4:37)2023
© A. Cesco and R. Gorrieri
CC⃝ Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0002-3417-1890
https://orcid.org/0000-0001-5502-0584
http://creativecommons.org/about/licenses

37:2 A. Cesco and R. Gorrieri Vol. 19:4

under the name of behavior-structure bisimulation, and then elaborated on in [vGG89]
(who called it by this name) and also independently defined in [DDNM89] (who called it
by mixed ordering bisimulation). Causal-net bisimilarity [vG15, Gor22], which coincides
with structure-preserving bisimilarity [vG15], observes not only the partial order of events,
but also the size of the distributed state: more precisely, if two markings are related by a
causal-net bisimulation, then they generate the same causal nets.

We think that causal-net bisimilarity is more accurate than fully-concurrent bisimilarity
because it is resource-aware. In fact, in the implementation of a system, a token is an
instance of a sequential process, so that a processor is needed to execute it. If two markings
have different size, then a different number of processors is necessary. Hence, a semantics
such as causal-net bisimilarity, which relates markings of the same size only, is more accurate
as it equates distributed systems only if they require the same amount of execution resources.
Van Glabbeek [vG15] argued that structure-preserving bisimilarity (hence, also causal-net
bisimilarity) is the most appropriate behavioral equivalence for Petri nets, as it is the only
one respecting a list of 9 desirable requirements he proposed. Moreover, [Gor20] offers, in
the area of information flow security, further arguments in favor of concrete, resource-aware
equivalences that, differently from fully-concurrent bisimilarity, observe also the size of the
distributed state.

However, we think that causal-net bisimilarity is a bit too discriminating, because of
a peculiar aspect in its definition: the bijective mappings from the current marking of the
causal net to the two markings under scrutiny are defined before the bisimulation game
starts, and this may impede to equate some markings generating the same causal nets.
(An illustrative example explaining this shortcoming is outlined in Example 3.11.) For
this reason, we propose in this paper a variant definition, where the bijective mappings
of the current markings are not defined (i.e., the mappings of the maximal conditions of
the causal net are left open) before the bisimulation game starts; on the contrary, they are
actually constructed progressively as long as the computation proceeds. More precisely,
the selection of the matching transitions is made before fixing the mapping, or equivalently,
the mapping is partially computed after choosing the matching transitions. This variant
bisimilarity, we call i-causal-net bisimilarity (where the prefix i- denotes that it works up to
the choice of the isomorphism of the current markings), is slightly coarser than causal-net
bisimilarity, but still ensuring that related markings generate the same causal nets, so that
it is resource-aware, too, even if it does not respect all the desiderata listed by van Glabbeek
in [vG15] (e.g., it does not respect inevitability [MOP89], i.e., if two systems are equivalent,
and in one the occurrence of a certain action is inevitable, then so is it in the other one.)
The definition of i-causal-net bisimilarity is the first contribution of this paper.

The results about the decidability of truly concurrent behavioral equivalences are rather
rare [Vog91, JM96, Vog95, MP97] and are often limited to the class of finite safe nets, i.e.,
nets whose places can hold one token at most. Our main aim is to extend some of these
decidability proofs to the case of bounded nets.

In his seminal paper [Vog91], Vogler demonstrated that (strong) fully-concurrent bisimi-
larity is decidable on finite safe nets. His proof is based on an alternative characterization of
fully-concurrent bisimulation, called ordered marking bisimulation (OM bisimulation, for
short), which is based on the idea of representing the current global state of the net system
as a marking equipped with a pre-ordering on its tokens, that reflects the causal ordering of
the transitions that produced the tokens. However, the ordered marking idea works well if

Vol. 19:4 DECIDABILITY OF TWO TRULY CONCURRENT EQUIVALENCES 37:3

the marking is a set (as it is the case for safe nets), and so it is not immediate to generalize
it to bounded nets, whose markings are, in general, multisets.

The second contribution of this paper is the definition of an alternative token game
semantics for Petri nets which is defined according to the individual token philosophy, rather
than the collective token philosophy, as it is customary for Petri nets. Differently from the
first, rather complex, definition of this sort, proposed in [vG05], we achieve this goal by
representing each token simply as a pair (s, i), where s is the name of the place where the
token is on, and i is a natural number (an index) assigned to the token in such a way that
different tokens on the same place have different indexes. In this way, a multiset over the
set of places (i.e., a marking) is turned into a set of indexed places. The main advantage of
having turned multisets into sets is that Vogler’s ordered marking idea can be used also in
this richer context, yielding ordered indexed markings.

The third contribution of the paper is to show that (strong) fully-concurrent bisimulation
can be equivalently characterized as a suitable bisimulation over ordered indexed markings,
called OIM bisimulation, generalizing the approach by Vogler [Vog91]. An OIM bisimulation
is formed by a set of triples, each composed of two ordered indexed markings and a relation
between these two ordered indexed markings that respects the pre-orders. The decidability
of (strong) fully-concurrent bisimilarity on finite bounded nets follows by observing that the
reachable indexed markings are finitely many, so the ordered indexed markings of interest
are finitely many as well, so that there can only be finitely many candidate relations (which
are all finite) to be OIM bisimulations.

The fourth contribution of the paper is to show that our generalization of Vogler’s proof
technique can be adapted to prove the decidability on bounded finite nets also of i-causal-net
bisimilarity. This result is obtained by showing that it can be equivalently characterized as
a suitable bisimulation over ordered indexed markings, called OIMC bisimulation, which is
a variant of OIM bisimulation with similar finiteness properties.

The paper is organized as follows. Section 2 recalls the basic definitions about Petri
nets. Section 3 recalls the causal semantics, including the definition of causal-net bisimilarity
and (strong) fully-concurrent bisimilarity, and proposes the novel i-causal-net bisimilarity.
Section 4 introduces indexed markings and the alternative token game semantics according
to the individual token philosophy. Section 5 describes indexed ordered markings and their
properties. Section 6 introduces OIM bisimulation, proves that its equivalence coincides with
(strong) fully-concurrent bisimilarity and, moreover, shows that it is decidable. Section 7
proves that also i-causal-net bisimilarity is decidable. Finally, in Section 8 we discuss related
literature, we hint that other truly concurrent behavioral equivalences are decidable for finite
bounded Petri nets and we also suggest some future research.

A preliminary version of this paper appeared in the proceedings of the 22nd Italian
Conference on Theoretical Computer Science, Bologna, Italy, September 13-15, 2021 [CG21].

2. Basic Definitions

Definition 2.1. (Multiset) Let N be the set of natural numbers. Given a finite set S, a
multiset over S is a functionm : S → N. The support set dom(m) ofm is {s ∈ S

∣∣ m(s) ̸= 0}.
The set of all multisets over S, denoted by M(S), is ranged over by m. We write s ∈ m
if m(s) > 0. The multiplicity of s in m is given by the number m(s). The size of m,
denoted by |m|, is the number

∑
s∈S m(s), i.e., the total number of its elements. A multiset

37:4 A. Cesco and R. Gorrieri Vol. 19:4

m such that dom(m) = ∅ is called empty and is denoted by θ. We write m ⊆ m′ if
m(s) ≤ m′(s) for all s ∈ S. Multiset union ⊕ is defined as: (m⊕m′)(s) = m(s)+m′(s); it
is commutative, associative and has θ as neutral element. Multiset difference ⊖ is defined
as: (m1 ⊖m2)(s) = max{m1(s) −m2(s), 0}. The scalar product of a number j with m is
the multiset j ·m defined as (j ·m)(s) = j · (m(s)). By si we also denote the multiset with
si as its only element. Hence, a multiset m over S = {s1, . . . , sn} can be represented as
k1 · s1 ⊕ k2 · s2 ⊕ . . .⊕ kn · sn, where kj = m(sj) ≥ 0 for j = 1, . . . , n.

Definition 2.2. (Place/Transition net) A labeled Place/Transition Petri net (P/T net
for short) is a tuple N = (S,A, T), where

• S is the finite set of places, ranged over by s (possibly indexed),
• A is the finite set of labels, ranged over by ℓ (possibly indexed), and
• T ⊆ (M(S) \ {θ})×A×M(S) is the finite set of transitions, ranged over by t (possibly
indexed).

Given a transition t = (m, ℓ,m′), we use the notation:

• •t to denote its pre-set m (which cannot be an empty multiset) of tokens to be consumed;
• l(t) for its label ℓ, and
• t• to denote its post-set m′ of tokens to be produced.

Hence, transition t can be also represented as •t
l(t)−→ t•. We also define the flow function

flow : (S × T) ∪ (T × S) → N as follows: for all s ∈ S, for all t ∈ T , flow(s, t) = •t(s) and
flow(t, s) = t•(s) (note that •t(s) and t•(s) are integers, representing the multiplicity of
s in •t and t•, respectively). We will use F to denote the flow relation {(x, y)

∣∣ x, y ∈
S ∪ T ∧ flow(x, y) > 0}. Finally, we define pre-sets and post-sets also for places as follows:
•s = {t ∈ T

∣∣ s ∈ t•} and s• = {t ∈ T
∣∣ s ∈ •t}.

In the graphical description of finite P/T nets, places (represented as circles) and
transitions (represented as boxes) are connected by directed arcs. The arcs may be labeled
with the number representing how many tokens of that type are to be removed from (or
added to) that place, as specified by function flow; no label on the arc is interpreted as the
number one, i.e., one token flowing on the arc. This numerical label of the arc is called its
weight.

Definition 2.3. (Marking, P/T net system) A multiset over S is called a marking.
Given a marking m and a place s, we say that the place s contains m(s) tokens, graphically
represented by m(s) bullets inside place s. A P/T net system N(m0) is a tuple (S,A, T,m0),
where (S,A, T) is a P/T net and m0 is a marking over S, called the initial marking. We
also say that N(m0) is a marked net.

The sequential semantics of a marked net is defined by the so-called token game,
describing the flow of tokens through it. There are several possible variants of the token
game (see, e.g., [vG05]). Below we present the standard token game, following the so-
called collective interpretation, according to which multiple tokens on the same place are
indistinguishable, while in Section 4 we introduce a novel variant following the so-called
individual interpretation.

Definition 2.4. (Token game) A transition t is enabled at m, denoted m[t⟩, if •t ⊆ m.
The firing of t enabled at m produces the marking m′ = (m⊖ •t)⊕ t•, written m[t⟩m′.

Definition 2.5. (Firing sequence, reachable marking) A firing sequence starting at m
is defined inductively as follows:

Vol. 19:4 DECIDABILITY OF TWO TRULY CONCURRENT EQUIVALENCES 37:5

• m[ϵ⟩m is a firing sequence (where ϵ denotes an empty sequence of transitions) and
• if m[σ⟩m′ is a firing sequence and m′[t⟩m′′, then m[σt⟩m′′ is a firing sequence.

If σ = t1 . . . tn (for n ≥ 0) and m[σ⟩m′ is a firing sequence, then there exist m1, . . . ,mn+1

such that m = m1[t1⟩m2[t2⟩mn[tn⟩mn+1 = m′, and σ = t1 . . . tn is called a transition
sequence starting at m and ending at m′. The set of reachable markings from m is [m⟩ =
{m′ ∣∣ ∃σ.m[σ⟩m′}. Note that the set of reachable markings may be countably infinite for
finite P/T nets.

Definition 2.6. (Classes of finite P/T Nets) A finite marked P/T net N = (S,A, T,m0)
is:

• safe if each place contains at most one token in each reachable marking, i.e., ∀m ∈
[m0⟩, ∀s ∈ S, m(s) ≤ 1.

• bounded if the number of tokens in each place is bounded by some k for each reachable
marking, i.e., ∃k ∈ N such that ∀m ∈ [m0⟩,∀s ∈ S we have that m(s) ≤ k. If this is the
case, we say that the net is k-bounded (hence, a safe net is just a 1-bounded net).

3. Causality-based Semantics

We first outline some definitions (in particular, causal net, folding and process), adapted from
the literature (cf., e.g., [GR83, BD87, Old91, Vog91, vG15, Gor22]), that are necessary to
introduce causal-net bisimilarity [vG15, Gor22] and fully-concurrent bisimilarity [BDKP91].
Then we propose some novel definitions (in particular, partial folding and partial process)
that are necessary to introduce the novel i-causal-net bisimilarity.

3.1. Causal Nets and Processes.

Definition 3.1. (Acyclic net) A P/T net N = (S,A, T) is acyclic if its flow relation F is
acyclic (i.e., ̸ ∃x such that xF+x, where F+ is the transitive closure of F).

The concurrent semantics of a marked P/T net is defined by a particular class of acyclic
safe nets, where places are not branched (hence they represent a single run) and all arcs
have weight 1. This kind of net is called causal net. We use the name C (possibly indexed)
to denote a causal net, the set B to denote its places (called conditions), the set E to denote
its transitions (called events), and L to denote its labels.

Definition 3.2. (Causal net) A causal net is a finite marked net C(m0) = (B,L,E,m0)
satisfying the following conditions:

(1) C is acyclic;
(2) ∀b ∈ B |•b| ≤ 1 ∧ |b•| ≤ 1 (i.e., the places are not branched);

(3) ∀b ∈ B m0(b) =

{
1 if •b = ∅
0 otherwise;

(4) ∀e ∈ E •e(b) ≤ 1 ∧ e•(b) ≤ 1 for all b ∈ B (i.e., all the arcs have weight 1).

We denote by Min(C) the set m0, and by Max(C) the set {b ∈ B
∣∣ b• = ∅}.

Note that any reachable marking of a causal net is a set, i.e., this net is safe; in fact,
the initial marking is a set and, assuming by induction that a reachable marking m is a set
and enables e, i.e., m[e⟩m′, then also m′ = (m⊖ •e)⊕ e• is a set, as the net is acyclic (with

37:6 A. Cesco and R. Gorrieri Vol. 19:4

unbranched places) and because of the condition on the shape of the post-set of e (weights
can only be 1).

As the initial marking of a causal net is fixed by its shape (according to item 3 of
Definition 3.2), in the following, in order to make the notation lighter, we often omit the
indication of the initial marking (also in their graphical representation), so that the causal
net C(m0) is simply denoted by C.

Definition 3.3. (Moves of a causal net) Given two causal nets C = (B,L,E,m0) and
C ′ = (B′, L, E′,m0), we say that C moves in one step to C ′ through e, denoted by C[e⟩C ′, if
•e ⊆ Max(C), E′ = E ∪ {e} and B′ = B ∪ e•; in other words, C ′ extends C by one event e.

Definition 3.4. (Folding and Process) A folding from a causal net C = (B,L,E,m0) into
a net system N(m0) = (S,A, T,m0) is a function ρ : B∪E → S∪T , which is type-preserving,
i.e., such that ρ(B) ⊆ S and ρ(E) ⊆ T , satisfying the following:

• L = A and l(e) = l(ρ(e)) for all e ∈ E;
• ρ(m0) = m0, i.e., m0(s) = |ρ−1(s) ∩m0|;
• ∀e ∈ E, ρ(•e) = •ρ(e), i.e., ρ(•e)(s) = |ρ−1(s) ∩ •e| for all s ∈ S;
• ∀e ∈ E, ρ(e•) = ρ(e)•, i.e., ρ(e•)(s) = |ρ−1(s) ∩ e•| for all s ∈ S.

A pair (C, ρ), where C is a causal net and ρ a folding from C to a net system N(m0), is a
process of N(m0), written also as π.

Definition 3.5. (Partial orders of events from a process) From a causal net C =
(B,L,E,m0), we can extract the partial order of its events EC = (E,⪯), where e1 ⪯ e2 if
there is a path in the net from e1 to e2, i.e., if e1F

∗e2, where F
∗ is the reflexive and transitive

closure of F, which is the flow relation for C. Given a process π = (C, ρ), we denote ⪯
as ≤π, i.e., given e1, e2 ∈ E, e1 ≤π e2 if and only if e1 ⪯ e2. Given two partial orders of
events EC1 = (E1,⪯1) and EC2 = (E2,⪯2), we say that they are isomorphic if there exists an
order-preserving bijection f : E1 → E2, i.e., such that e1 ⪯1 e2 if and only if f(e1) ⪯2 f(e2).
In such a case, we say that f is an isomorphism between EC1 and EC2 .

Definition 3.6. (Moves of a process, event sequence) Let N(m0) = (S,A, T,m0) be a
net system and let (Ci, ρi), for i = 1, 2, be two processes of N(m0). We say that (C1, ρ1)

moves in one step to (C2, ρ2) through e, denoted by (C1, ρ1)
e−→ (C2, ρ2), if C1[e⟩C2 and

ρ1 ⊆ ρ2. If π1 = (C1, ρ1) and π2 = (C2, ρ2), we denote the move as π1
e−→ π2.

An event sequence starting at a process π is defined as follows:

• π[ϵ⟩π is an event sequence (where ϵ denotes an empty sequence of events) and

• if π[σ⟩π′ is an event sequence and π′ e−→ π′′, then π[σe⟩π′′ is an event sequence.

Proposition 3.7. Assume that π = (C, ρ) is a process of N(m0) such that π
e−→ π′ = (C ′, ρ′),

i.e. π moves in one step trough e to π′. Then, ∀b ∈ Max(C) , ∀b′ ∈ e•, if •b ≤π′ •b′, then
∃b′′ ∈ •e such that •b ≤π

•b′′.

Proof. By Definition 3.5, •b ≤π′ •b′ means that there exists a path in C ′ starting from •b and
ending at •b′. Let us choose b′′ to be the condition immediately before •b′ in that path. It
follows that there exists a path in C starting from •b and ending at •b′′: then, by Definition
3.5, we get the thesis.

Vol. 19:4 DECIDABILITY OF TWO TRULY CONCURRENT EQUIVALENCES 37:7

3.2. Causal-net Bisimilarity and Fully-concurrent Bisimilarity. We now recall the
definition of causal-net bisimulation [vG15, Gor22], a process-based equivalence relating
both the history of two executions and their (distributed) state.

Definition 3.8. (Causal-net bisimulation) Let N = (S,A, T) be a finite P/T net. A
causal-net bisimulation is a relation R, composed of triples of the form (ρ1, C, ρ2), where, for
i = 1, 2, (C, ρi) is a process of N(m0i) for some m0i, such that if (ρ1, C, ρ2) ∈ R then

i) ∀t1, C ′, ρ′1 such that (C, ρ1)
e−→

(C ′, ρ′1), where ρ′1(e) = t1, ∃t2, ρ′2 such that (C, ρ2)
e−→ (C ′, ρ′2), where ρ′2(e) = t2, and

(ρ′1, C
′, ρ′2) ∈ R;

ii) symmetrically, ∀t2, C ′, ρ′2 such that (C, ρ2)
e−→ (C ′, ρ′2), where ρ′2(e) = t2, ∃t1, ρ′1 such

that
(C, ρ1)

e−→ (C ′, ρ′1), where ρ′1(e) = t1, and (ρ′1, C
′, ρ′2) ∈ R.

Two markings m1 and m2 of N are cn-bisimilar (or cn-bisimulation equivalent), denoted by
m1 ∼cn m2, if there exists a causal-net bisimulation R containing a triple (ρ01, C

0, ρ02), where
C0 contains no events and ρ0i (Min(C0)) = ρ0i (Max(C0)) = mi for i = 1, 2.

Causal-net bisimilarity [vG15, Gor22], which coincides with structure-preserving bisimi-
larity [vG15], observes not only the partial orders of events, but also the size of the distributed
state; in fact, it observes the causal nets. A weaker equivalence, observing only the par-
tial orders of the events performed, is fully-concurrent bisimulation (fc-bisimulation, for
short) [BDKP91]. Here we present the strong version, where all the events are considered
observable.

Definition 3.9. (Fully-concurrent bisimilarity) Given a finite P/T net N = (S,A, T),
a fully-con-current bisimulation is a relation R, composed of triples of the form (π1, f, π2)
where, for i = 1, 2, πi = (Ci, ρi) is a process of N(m0i) for some m0i and f is an isomorphism
between EC1 and EC2 , such that if (π1, f, π2) ∈ R then:

i) ∀t1, e1, π′
1 such that π1

e1−→ π′
1, where ρ′1(e1) = t1, there exist e2, t2, π

′
2, f

′ such that

(1) π2
e2−→ π′

2 where ρ′2(e2) = t2 and l(t1) = l(t2),
(2) f ′ = f ·∪ {e1 7→ e2},
(3) (π′

1, f
′, π′

2) ∈ R;
ii) symmetrically, if π2 moves first.

Two markings m1,m2 of N are fc-bisimilar, denoted by m1 ∼fc m2 if a fully-concurrent
bisimulation R exists, containing a triple (π0

1, ∅, π0
2) where π0

i = (C0
i , ρ

0
i) is such that C0

i

contains no events and ρ0i (Min(C0
i)) = ρ0i (Max(C0

i)) = mi for i = 1, 2.

Of course, ∼cn is finer than ∼fc. This can be proved [vG15] by observing that if R1 is a
causal-net bisimulation, then R2 = {(C, ρ1), id, (C, ρ2)

∣∣ (ρ1, C, ρ2) ∈ R1}, where id is the
identity function on E, is an fc-bisimulation. This implication is strict, as illustrated by the
following example.

Example 3.10. In Figure 1 a simple finite P/T net N is given. It is easy to see that C1

(resp. C2) corresponds to a process π1 (resp. π2) of N(s1) (resp. N(s3)), where ρ1 (resp.
ρ2) maps each condition bi to the place si having the same subscript and each event to
the corresponding transition having the same shape. In the graphical depiction of causal
nets, we will omit the initial marking for simplicity, since it can be inferred by looking at
conditions of the causal net with empty preset.
Consider places s1 and s3: we have s1 ∼fc s3 and this is proved by relation

37:8 A. Cesco and R. Gorrieri Vol. 19:4

N)

s1

a

s2

s3

a

C1)

b1

ea1

b2

C2)

b3

ea2

Figure 1: A finite P/T net N and two causal nets: C1 corresponds to the maximal process
of N(s1) and C2 corresponds to the maximal process of N(s3).

s1 s2 s3

a a a

r1 r2 r3

a a

b1 b2 b3

a

Figure 2: Two non-cn-bisimilar markings, but with the same causal nets

R = {(((b1, {a}, ∅, b1), b1 7→ s1), ∅, ((b3, {a}, ∅, b3), b3 7→ s3)), (π1, ea1 7→ ea2 , π2)}.
Indeed, ((b1, {a}, ∅, b1), b1 7→ s1) is a process of N(s1) and ((b3, {a}, ∅, b3), b3 7→ s3) is a
process of N(s3), as both processes contain no events and are such that minimal and
maximal conditions are the same and mapped on the corresponding initial markings. If

((b1, {a}, ∅, b1), b1 7→ s1) moves first by ((b1, {a}, ∅, b1), b1 7→ s1)
ea1−→ π1, then the other

process ((b3, {a}, ∅, b3), b3 7→ s3) can respond with ((b3, {a}, ∅, b3), b3 7→ s3)
ea2−→ π2, and

(π1, ea1 7→ ea2 , π2) ∈ R. Symmetrical is the case when ((b3, {a}, ∅, b3), b3 7→ s3) moves first,
and so it is omitted.

However, it is not true that s1 ∼cn s3, because C1 and C2 are not isomorphic and
therefore it is not possible to build a causal-net bisimulation.

3.3. I-causal-net Bisimilarity. Causal-net bisimulation may be criticized because it may
fail to equate nets that, intuitively, should be considered equivalent, as they can perform
the same causal nets, as illustrated in the following example.

Example 3.11. Consider the nets in Figure 2 and the two markings s1 ⊕ s2 ⊕ s3 and
r1 ⊕ r2 ⊕ r3. Let us consider the initial causal net C0 composed of three conditions b1, b2, b3
only. Whatever are the initial mappings ρ01 and ρ02 from conditions to places, it is always
possible for the first net to perform a transition that is not matched by the second net. For
instance, assume that these mappings are the trivial ones, i.e., ρ01 maps bi to si and ρ02 maps
bi to ri for i = 1, 2, 3. Then, if the first net performs the transition (s1 ⊕ s3, a, θ), the second
net cannot reply because r1 ⊕ r3 is stuck. However, these two nets should be considered
equivalent, because what they can do is just one single causal net, which is isomorphic to
the one on the right of Figure 2.

Therefore, we want to relax the definition of causal-net bisimulation in order to equate
the two nets discussed in the example above. The problem is essentially that causal-net
bisimulation requires to fix the mappings of the current markings before the transition is

Vol. 19:4 DECIDABILITY OF TWO TRULY CONCURRENT EQUIVALENCES 37:9

selected, while it should be more correct to fix the mapping after the transition is selected,
in order to work up to the choice of the isomorphism. To achieve this, we have to rephrase
the definition of causal-net bisimulation by exploiting more relaxed definitions of folding and
process. In particular, the partial folding below is defined as a folding (cf. Definition 3.4)
except that the mapping may be undefined, actually it is undefined only on the maximal
conditions of the causal net; this has the consequence that (i) the mapping of the initial
conditions of the causal net is included in the initial marking of the net (of course, it coincides
only if the mapping is defined for all the initial conditions) and (ii) the post-set of each event
has the same size of the post-set of the corresponding transition (while the actual mapping
of its post-set can be only partially included in the post-set of the corresponding transition).

Definition 3.12. (Partial Folding and Partial Process) A partial folding from a causal
P/T net C = (B,L,E,m0) into a P/T net system N(m0) = (S,A, T,m0) is a partial
function ρ : B∪E → S∪T , which is type-preserving, i.e., such that ρ(B) ⊆ S and ρ(E) ⊆ T ,
satisfying the following:

(1) ∀b ∈ Max(C), ρ(b) is undefined, while ∀b ̸∈ Max(C), ρ(b) is defined and ∀e ∈ E, ρ(e)
is defined;

(2) L = A and l(e) = l(ρ(e)) for all e ∈ E;
(3) |m0| = |m0|;
(4) ρ(m0) ⊆ m0, i.e., |ρ−1(s) ∩m0| ≤ m0(s);

1

(5) ∀e ∈ E, ρ(•e) = •ρ(e), i.e., ρ(•e)(s) = |ρ−1(s) ∩ •e| for all s ∈ S;
(6) ∀e ∈ E, |e•| = |ρ(e)•| and ρ(e•) ⊆ ρ(e)•, i.e., |ρ−1(s) ∩ e•| ≤ ρ(e)•(s) for all s ∈ S.

A pair (C, ρ), where C is a causal net and ρ a partial folding from C to a net system N(m0),
is a partial process of N(m0).

Given a process π = (C, ρ), it is possible to derive a unique partial process π′ = (C, ρ′) –
where ρ′ is undefined on Max(C), while it is defined as ρ on all the other conditions and on
all the events of C – we call its associated partial process.

Definition 3.13. (Moves of a partial process) Let N(m0) = (S,A, T,m0) be a net
system and let (Ci, ρi), for i = 1, 2, be two partial processes of N(m0). We say that (C1, ρ1)

moves in one step to (C2, ρ2) through e, denoted by (C1, ρ1)
e
↣ (C2, ρ2), if we have C1[e⟩C2

and ρ1 ⊆ ρ2.

Example 3.14. Consider the marked net N(s1 ⊕ s2) and the three causal nets C0, C1 and
C2 in Figure 3, where by ea (or eb) we mean the event with label a (or b). The initial
partial process for N(s1 ⊕ s2) is given by the pair π0 = (C0, ∅), where the mapping is
empty (or undefined); the only nontrivial condition that must be satisfied is (3) of Definition
3.12; hence, π0 is a partial process, indeed. Let us denote by an the transition (s2, a, s3).
Consider the mapping ρ1 = {b2 7→ s2, ea 7→ an}. It is easy to see that π1 = (C1, ρ1) is a
partial process for N(s1 ⊕ s2), as also conditions (4), (5) and (6) of Definition 3.12 are

satisfied. Note also that π0
ea
↣ π1 because C0[ea⟩C1 and ∅ ⊆ ρ1. Now consider the mapping

ρ2 = {b1 7→ s1, b2 7→ s2, b3 7→ s3, ea 7→ an, eb 7→ bn}, where by bn we denote the transition
(s1 ⊕ s3, b, s4). It is easy to see that π2 = (C2, ρ2) is a partial process for N(s1 ⊕ s2), as also

1To be precise, as ρ is a partial function, by ρ(m0) ⊆ m0 we mean that if ρ(m0) returns a marking, then
that marking is contained in m0. In general, if B ia a set of conditions and ρ is defined only on a subset
B′ ⊆ B, then ρ(B) = ρ(B′); in case B′ = ∅, then ρ(B) is undefined. The same proviso applies also to the
condition ρ(e•) ⊆ ρ(e)• in the last item of this definition.

37:10 A. Cesco and R. Gorrieri Vol. 19:4

N)

s1 s2

a

s3

b

s4

C0)

b1 b2

C1)

b1 b2

ea

b3

C2)

b1 b2

ea

b3

eb

b4

Figure 3: A finite marked P/T net N and three causal nets

conditions (4), (5) and (6) of Definition 3.12 are satisfied. Note also that π1
eb
↣ π2 because

C1[eb⟩C2 and ρ1 ⊆ ρ2.

The novel behavioral equivalence we propose is the following i-causal-net bisimulation,
where the prefix i− stands for up to the isomorphism of the current markings.

Definition 3.15. (i-causal-net bisimulation) Let N = (S,A, T) be a P/T net. An
i-causal-net bisimulation (icn-bisimulation, for short) is a relation R, composed of triples of
the form (ρ1, C, ρ2), where, for i = 1, 2, (C, ρi) is a partial process of N(m0i) for some m0i,
such that if (ρ1, C, ρ2) ∈ R then

i) ∀t1, C ′, ρ′1 such that (C, ρ1)
e
↣ (C ′, ρ′1) with ρ′1(e) = t1, there exist t2, ρ

′
2 such that

(C, ρ2)
e
↣ (C ′, ρ′2), with ρ′2(e) = t2, and (ρ′1, C

′, ρ′2) ∈ R;

ii) and symmetrically, ∀t2, C ′, ρ′2 such that (C, ρ2)
e
↣ (C ′, ρ′2) with ρ′2(e) = t2, there exist

t1, ρ
′
1 such that (C, ρ1)

e
↣ (C ′, ρ′1), with ρ′1(e) = t1, and (ρ′1, C

′, ρ′2) ∈ R.

Two markings m1 and m2 of N are icn-bisimilar, denoted by m1 ∼icn m2, if there exists an
i-causal-net bisimulation R containing a triple of the form (ρ0, C0, ρ0), where:

• C0 contains no events,
• ρ0 is undefined for all b ∈ C0 (i.e., it is the empty function, also denoted by ∅) and,
• for i = 1, 2, (C0, ρ0) is a partial process of N(mi) for mi (i.e., this is the same as requiring
that |Max(C0)| = |m1| = |m2|).

Note that if m1 ∼icn m2, then |m1| = |m2| because an i-casual-net bisimulation R must
contain the triple (ρ0, C0, ρ0) mentioned above. Moreover, whenever a triple (ρ1, C, ρ2) ∈ R
is reached by the icn-bisimulation game, we know that the current markings m′

1 and m′
2,

reached from the initials m1 and m2, respectively, must have the same size, equal to that of
Max(C).

Of course, ∼icn is an equivalence relation because the identity relation defined as Id =
{(ρ, C, ρ)

∣∣ (C, ρ) is a partial process of N(m0)} is an icn-bisimulation, the inverse relation

R−1 of an icn-bisimulation R is an icn-bisimulation and, finally, the relational composition
R1◦R2 of the icn-bisimulations R1 and R2 is an icn-bisimulation. Moreover, ∼cn is finer than
∼icn because if R1 is a causal-net bisimulation, then R2 = {(ρ′1, C, ρ′2)

∣∣ (ρ1, C, ρ2) ∈ R1},

Vol. 19:4 DECIDABILITY OF TWO TRULY CONCURRENT EQUIVALENCES 37:11

where for i = 1, 2, (C, ρ′i) is the partial process associated to (C, ρi), is an i-causal-net
bisimulation.

Example 3.16. Let us consider the net N discussed in Example 3.11 (more precisely, N is
the union of the two nets, considered unmarked). By asl we denote the a-labeled transition
with preset s1 ⊕ s2, by asc that with preset s1 ⊕ s3, by asr that with preset s2 ⊕ s3, by arl that
with preset r1 ⊕ r2 and, finally, by arr that with preset r2 ⊕ r3.

Moreover, we denote by C0 the causal net with no events and conditions b1, b2, b3,
while we denote by C1 the causal net extending C0 with one a-labeled event e1 such that
•e1 = b1 ⊕ b2 and e•1 = θ, as depicted on the right of Figure 2. Similarly, we define C2 as the
extension of C0 with one a-labeled event e2 such that •e2 = b1 ⊕ b3 and e•2 = θ, and also C3

as the extension of C0 with one a-labeled event e3 such that •e3 = b2 ⊕ b3 and e•3 = θ.
We can prove that s1 ⊕ s2 ⊕ s3 ∼icn r1 ⊕ r2 ⊕ r3 as the following relation
R = {(∅, C0, ∅),

((b1 7→ s1, b2 7→ s2, e1 7→ asl), C
1, (b1 7→ r1, b2 7→ r2, e1 7→ arl)),

((b1 7→ s1, b2 7→ s3, e1 7→ asc), C
1, (b1 7→ r1, b2 7→ r2, e1 7→ arl)),

((b1 7→ s2, b2 7→ s3, e1 7→ asr), C
1, (b1 7→ r2, b2 7→ r3, e1 7→ arr)),

((b1 7→ s1, b3 7→ s2, e2 7→ asl), C
2, (b1 7→ r1, b3 7→ r2, e2 7→ arl)),

((b1 7→ s1, b3 7→ s3, e2 7→ asc), C
2, (b1 7→ r1, b3 7→ r2, e2 7→ arl)),

((b1 7→ s2, b3 7→ s3, e2 7→ asr), C
2, (b1 7→ r2, b3 7→ r3, e2 7→ arr)),

((b2 7→ s1, b3 7→ s2, e3 7→ asl), C
3, (b2 7→ r1, b3 7→ r2, e3 7→ arl)),

((b2 7→ s1, b3 7→ s3, e3 7→ asc), C
3, (b2 7→ r1, b3 7→ r2, e3 7→ arl)),

((b2 7→ s2, b3 7→ s3, e3 7→ asr), C
3, (b2 7→ r2, b3 7→ r3, e3 7→ arr))},

is an icn-bisimulation containing a triple of the form (∅, C0, ∅), where (C0, ∅) is a partial
process of both N(s1 ⊕ s2 ⊕ s3) and N(r1 ⊕ r2 ⊕ r3). Indeed, these two markings are icn-
bisimilar, but not cn-bisimilar, because it is not possible to build a causal-net bisimulation
by fixing the initial isomorphism before choosing the matching transitions.

As a final observation, we remark that, contrary to causal-net bisimulation, the definition
of fully-concurrent bisimulation could be also rephrased in terms of partial processes, instead
of (normal) processes, i.e., each triple (π1, f, π2) in the relation is such that π1 and π2 are
partial processes. This because what is actually observed is only that f is an isomorphism
between EC1 = (E1,⪯1) and EC2 = (E2,⪯2), so that there is no need to fix the mapping
on the maximal conditions before the fully-concurrent bisimulation game starts. In other
words, also fully-concurrent bisimulation can be actually defined up to the choice of the
isomorphism from maximal conditions of the current causal net to the tokens of the current
marking.

We will prove that ∼icn is finer than ∼fc in Section 7 (cf. Theorem 7.6), as a byproduct of
the alternative characterizations of i-causal-net bisimilarity and fully-concurrent bisimilarity
in terms of OIMC bisimilarity and OIM bisimilarity, respectively. This implication is strict,
as illustrated by the following example.

Example 3.17. Consider the nets
N = ({s1, s2, s3, s4}, {a}, {(s1⊕ s2, a, s3⊕ s4)}) and N ′ = ({s′1, s′2, s′3}, {a}, {(s′1, a, s′3)}).

Of course, s1 ⊕ s2 ∼fc s
′
1 ⊕ s′2, as the generated partial orders are the same (and also the

related markings have the same size), but s1 ⊕ s2 ≁icn s′1 ⊕ s′2, as the generated causal nets
are different.

37:12 A. Cesco and R. Gorrieri Vol. 19:4

4. Indexed Marking Semantics

We define an alternative, novel token game semantics for Petri nets according to the individual
token philosophy. A token is represented as an indexed place, i.e., as a pair (s, i), where
s is the name of the place where the token is on, and i is an index assigned to the token
such that different tokens on the same place have different indexes. In this way, a standard
marking is turned into an indexed marking, i.e., a set of indexed places.

Definition 4.1. (Indexed marking) Given a finite net N = (S,A, T), an indexed marking
is a function k : S −→ Pfin(N) associating to each place a finite set of natural numbers, such
that the associated (de-indexed) marking m is obtained as m(s) = | k(s) | for each s ∈ S. In
this case, we write α(k) = m. The support set dom(k) is {s ∈ S

∣∣ k(s) ̸= ∅}. The set of all
the indexed markings over S is denoted by K(S). An indexed place is a pair (s, i) such that
s ∈ S and i ∈ N. A finite set of indexed places {(s1, i1), . . . , (sn, in)} ∈ Pfin(S × N) is also
another way of describing an indexed marking.2 Hence, K(S) = Pfin(S × N). Each element
of an indexed marking, i.e., each indexed place, is a token.

An indexed marking k ∈ K(S) is closed if k(s) = {1, 2, . . . , | k(s) |} for all s ∈ dom(k),
i.e., there are no holes in the indexing. If there exists a marked net N(m0) and a closed
indexed marking k0 such that α(k0) = m0, we say that k0 is the initial indexed marking of
N , and we write N(k0).

Note that, given a marked net N(m0), the initial indexed marking k0 is unique, because
such k0 is the only closed function from S to Pfin(N) such that α(k0) = m0. However,
it is interesting to observe that this modeling of the initial indexed marking is actually
up to isomorphism of the choice of the initial index assignment to multiple tokens on the
same place. For instance, if we have a marking composed of two tokens on place s, say
a and b (to distinguish them), then both {(sa, 1), (sb, 2)} and {(sa, 2), (sb, 1)} are possible
initial indexings. However, this difference is completely inessential for the treatment that
follows, as the two behavioral relations we study are defined up to isomorphism of the chosen
initial assignment. In fact, in the example above, this unique initial indexed marking is
{(s, 1), (s, 2)}, that summarizes the two, more concrete marking representations above, up
to isomorphism, but still giving individuality to each token for the future by means of the
index associated to the place.

We define the difference between an indexed marking k and a marking m (such that
m(s) ≤ |k(s)| for all s ∈ S) where for each s, m(s) arbitrary tokens are removed from k
(hence, this operation is nondeterministic) as ⊟ : K(S) −→ M(S) −→ P(K(S))

k ⊟ θ = {k}
k ⊟ (s⊕m) = (k ⊟ s)⊟m

{k1, . . . kn}⊟m = k1 ⊟m ∪ . . . ∪ kn ⊟m

k ⊟ s = {k′
∣∣ k′(s′) = k(s′) if s′ ̸= s, while k′(s′) = k(s) \ {n} if s′ = s and n ∈ k(s)}

2Being a set, we are sure that ̸ ∃j1, j2 such that sj1 = sj2 ∧ ij1 = ij2 , i.e., each token on a place s has an
index different from the index of any other token on s.

Vol. 19:4 DECIDABILITY OF TWO TRULY CONCURRENT EQUIVALENCES 37:13

and the deterministic operation of union of an indexed marking k and a marking m as
⊞ : K(S) −→ M(S) −→ K(S)

k ⊞ θ = k

k ⊞ (s⊕m) = (k ⊞ s)⊞m

k ⊞ s = k′

where for all s′ ∈ S , k′(s′) is defined as:

k′(s′) =

{
k(s′) if s′ ̸= s

k(s) ∪ {n} if s′ = s, n = min(N \ k(s))

where we use min(H), with H ∈ P(N), to denote the least element of H. Note that the
difference between an indexed marking and a marking is a set of indexed markings: since it
makes no sense to prefer a single possible execution over another, all possible choices for
n ∈ k(s) are to be considered. The token game is modified accordingly, taking into account
the individual token interpretation.

Definition 4.2. (Token game with indexed markings) Given a net N = (S,A, T) and
an indexed marking k ∈ K(S) such that m = α(k), we say that a transition t ∈ T is enabled
at k if •t ⊆ m, denoted kJt⟩. If t occurs, the firing of t enabled at k produces the indexed
marking k′, denoted kJt⟩k′, if
- ∃k′′ ∈ k ⊟ •t and
- k′ = k′′ ⊞ t•.

Note that there can be more than one indexed marking produced by the firing of t, but
for all k′ such that kJt⟩k′, it is true that α(k′) = m⊖ •t⊕ t•.

From now on, indexed markings will be always represented as sets of indexed places,
i.e., we denote an indexed marking k by {(s1, n1) . . . (si, ni)} where | k | = i.

a)

s1

1

u

s2 1
2 3

v

s3

2

s1

1

u

s2 1 3

v

s3 1

2

b)

s1

u

s2 1 2
3 4

v

s3 1

2

c)

Figure 4: Execution of the transition labeled by v, then of the transition labeled by u, on
a net with initial marking m0 = s1 ⊕ 3s2. Tokens to be consumed are in red,
generated ones in blue.

Example 4.3. In Figure 4(a) a simple marked net N is given. The initial marking is
m0 = s1 ⊕ 3s2, and it is not difficult to see that the net system N(m0) is 5-bounded. The
initial indexed marking is k0 = {(s1, 1), (s2, 1), (s2, 2), (s2, 3)}.

37:14 A. Cesco and R. Gorrieri Vol. 19:4

Let us suppose that transition t2, labeled by v, occurs. There are three possible ways to
remove a token from s2: removing (s2, 1), or removing (s2, 2), or removing (s2, 3). Indeed, the
operation k0 ⊟ •t2 yields a set of three possible indexed markings, each one a possible result
of the difference: {{(s1, 1), (s2, 2), (s2, 3)}, {(s1, 1), (s2, 1), (s2, 3)}, {(s1, 1), (s2, 1), (s2, 2)}}.
Let us choose, for the sake of the argument, that the token deleted by t2 is (s2, 2), i.e.
choose k′ = {(s1, 1), (s2, 1), (s2, 3)}. The union k′ ⊞ t•2 easily yields the indexed marking
k1 = {(s1, 1), (s2, 1), (s2, 3), (s3, 1)}, as depicted in Figure 4(b). Note that the choice of k′

was arbitrary and two other values of k1 are possible. Indeed, from Definition 4.2, we know
that the transition relation on indexed markings is nondeterministic. However, the resulting
marked net is the same for all three cases, that is, the same of Figure 4(b) without indexes.
Now we suppose that (given the indexed marking k1 above) transition t1, labeled by u,
occurs. In that case, k1 ⊟ •t1 yields the singleton set {{(s2, 1), (s2, 3), (s3, 1)}} of indexed
markings, and so we take k′′ = {(s2, 1), (s2, 3), (s3, 1)}. Since t•1 = s2 ⊕ s2, we show in
detail how k′′ ⊞ t•1 is computed. First, we apply the definition for union with non-singleton
multisets: k′′ ⊞ (s2 ⊕ s2) = (k′′ ⊞ s2)⊞ s2. Then, we compute k′′ ⊞ s2: since the least free
index for the place s2 is 2, k′′ ⊞ s2 = {(s2, 1), (s2, 2)(s2, 3), (s3, 1)}. Now we apply again
the definition: note that this time the least free index for s2 is 4, and the final result is
k2 = {(s2, 1), (s2, 2)(s2, 3), (s2, 4), (s3, 1)}. The resulting marked net is depicted in Figure
4(c).

The notation for tokens in the token game has become less intuitive, so in Table 1 we
provide a comparison between the one used in the previous sections and the one we will use
in the following part of this work. Given a transition t such that kJt⟩k′ and m[t⟩m′, where
α(k) = m and α(k′) = m′, assume k′′ ∈ k ⊟ •t such that k′ = k′′ ⊞ t•.

generated deleted untouched

m[t⟩m′ t• •t m⊖ •t
kJt⟩k′ k′ \ k′′ k \ k′′ k′′

Table 1: Different notation for tokens in the token game. On the first line, the collective
case. On the last one, the individual case.

Definition 4.4. (Firing sequence with IM) Given a finite net N = (S,A, T) and an
indexed marking k, a firing sequence starting at k is defined inductively as follows:

• kJϵ⟩k is a firing sequence (where ϵ denotes an empty sequence of transitions) and
• if kJσ⟩k′ is a firing sequence and k′Jt⟩k′′, then kJσt⟩k′′ is a firing sequence.

The set of reachable indexed markings from k is Jk⟩ = {k′
∣∣ ∃σ . kJσ⟩k′}. Given a net N(k0)

with k0 an initial indexed marking, we call IM(N(k0)) the set of reachable indexed marking
of N(k0). When the initial indexed marking k0 is clear from the context, we may just write
IM(N).

Proposition 4.5. Given a finite bounded net N = (S,A, T,m0), the set IM(N) ⊆ K(S) of
reachable indexed markings is finite.

Proof. Since N(m0) is bounded, an index h ∈ N exists such that the net is h-bounded. The
initial indexed marking k0, with α(k0) = m0, being closed, is such that no indexed places
in k0 has an index larger than h. Each token in a reachable indexed marking k has always

Vol. 19:4 DECIDABILITY OF TWO TRULY CONCURRENT EQUIVALENCES 37:15

index less than, or equal to h, because the net is h-bounded and, by definition of ⊞, in
the token game we choose always the least available index for a newly produced token.
Therefore, IM(N) is finite because IM(N) ⊆ Pfin(S × {1, . . . , h}), which is finite as S is
finite as well.

5. Ordered Indexed Marking Semantics

Vogler [Vog91] introduces ordered markings (OM for short) to describe the state of a safe
marked net. An ordered marking consists of a safe marking together with a preorder which
reflects precedences in the generation of tokens. This is reflected in the token game for OM:
if s precedes some s′′ in the old OM and s′′ is used to produce a new token s′, then s must
precede s′ in the new OM. The key idea of Vogler’s decidability proof for safe nets is that
the OM obtained by a sequence of transitions of a net is the same as the one induced by a
process, whose events correspond to that sequence of transitions, on the net itself. Vogler
defines OM bisimulation and shows that it coincides with fully-concurrent bisimulation.
Since ordered markings are finite objects and the reachable ordered markings are finitely
many, the candidate relations to be OM bisimulations are finite and finitely many, so that
OM bisimilarity is decidable. He himself hinted at a possibility [Vog91] of extending the
result to bounded nets, but suggested that it would have been technically quite involved
[Vog91](p. 503).

We adapt his approach by defining a semantics based on ordered indexed markings,
taking into account the individual token interpretation of nets, and proving that an extension
to bounded nets is indeed possible.

Definition 5.1. (Ordered indexed marking) Given a P/T net N = (S,A, T) and an
indexed marking k ∈ K(S), the pair (k,≤) is an ordered indexed marking if ≤⊆ k × k is
a preorder, i.e. a reflexive and transitive relation. The set of all possible ordered indexed
markings of N is denoted by OIM(N).

If k0 is the initial indexed marking of N , we define the initial ordered indexed marking,
denoted by init(N(k0)), as (k0, k0 × k0), where the initial preorder relates each token with
each other one. If the initial indexed marking k0 is clear from the context, we write simply
init(N) to denote the initial ordered indexed marking.

Definition 5.2. (Token game with ordered indexed markings) Given a P/T net
N = (S,A, T) and an ordered indexed marking (k,≤), we say that a transition t ∈ T is
enabled at (k,≤) if kJt⟩; this is denoted by (k,≤)Jt⟩. The firing of t enabled at (k,≤) may
produce an ordered indexed marking (k′,≤′) – and we denote this by (k,≤)Jt⟩(k′,≤′) –
where:

• ∃k′′ ∈ k ⊟ •t and k′ = k′′ ⊞ t•, and
• for all (sh, ih), (sj , ij) ∈ k′ , (sh, ih) ≤′ (sj , ij) if and only if:
(1) (sh, ih), (sj , ij) ∈ k′′ (i.e., the two tokens belong to the untouched part of the indexed

marking) and (sh, ih) ≤ (sj , ij), or
(2) (sh, ih), (sj , ij) ∈ k′ \ k′′ (i.e., the two tokens are generated by the firing), or
(3) (sh, ih) ∈ k′′, (sj , ij) ∈ k′ \ k′′ and ∃(sl, il) ∈ k \ k′′ (i.e., (sl, il) is a token consumed

by the firing of t) such that (sh, ih) ≤ (sl, il).

Note that, as for indexed markings, many different ordered indexed markings are
produced from the firing of t. This means that also the transition relation for ordered

37:16 A. Cesco and R. Gorrieri Vol. 19:4

indexed markings is nondeterministic. Moreover, in the same fashion as Vogler’s work
[Vog91], the preorder reflects the precedence in the generation of tokens, which is not strict,
i.e., if tokens (s1, n1) and (s2, n2) are generated together (case (2) above) we have both
(s1, n1) ≤ (s2, n2) and (s2, n2) ≤ (s1, n1).

Example 5.3. Consider again the net in Figure 4 and the first part of the execution of Ex-
ample 4.3, i.e., k0Jt2⟩k1, where k0 = {(s1, 1), (s2, 1), (s2, 2), (s2, 3)} and k1 = {(s1, 1), (s2, 1),
(s2, 3), (s3, 1)}. According to Definition 5.1, the initial ordered indexed marking is (k0,≤0),
where ≤0= k0 × k0. When t2 fires, token (s2, 2) is removed and token (s3, 1) is generated,
while all other tokens are untouched. Let us denote the preorder induced by the firing of
t2 as ≤1. According to item 2 of Definition 5.2, since (s3, 1) is generated by the firing of
t2, we have (s3, 1) ≤1 (s3, 1). According to item 1 of Definition 5.2, the preorder on all
tokens untouched by t2 remains the same, therefore, e.g., (s2, 3) ≤1 (s1, 1) and viceversa.
Furthermore, consider (s1, 1) and (s3, 1): we have that t2 generates (s3, 1), deletes (s2, 2)
and leaves (s1, 1) untouched. Since (s1, 1) ≤0 (s2, 2), by item 3 of Definition 5.2 we have
(s1, 1) ≤1 (s3, 1). The same reasoning applies to all untouched tokens. Summing up, we have
(k0,≤0)Jt2⟩(k1,≤1) where ≤1 = ≤0 \{((si, ni), (sj , nj)) ∈ k0

∣∣ (si, ni) = (s2, 2) ∨ (sj , nj) =
(s2, 2)} ∪ {((s1, 1), (s3, 1)), ((s2, 1), (s3, 1)), ((s2, 3), (s3, 1)), ((s3, 1), (s3, 1))}.

Definition 5.4. (Firing sequence with OIM) A firing sequence starting at (k,≤) is
defined inductively as follows:

• (k,≤)Jϵ⟩(k,≤) is a firing sequence (where ϵ denotes an empty sequence of transitions) and
• if (k,≤)Jσ⟩(k′,≤′) is a firing sequence and (k′,≤′)′Jt⟩(k′′,≤′′), then (k,≤)Jσt⟩(k′′,≤′′) is
a firing sequence.

The set of reachable ordered indexed markings from (k,≤) is
J(k,≤)⟩ = {(k′,≤′)

∣∣ ∃σ . (k,≤)Jσ⟩(k′,≤′)}.
Given an initial indexed marking k0, the set of all the reachable ordered indexed markings
of N(k0) (starting from init(N(k0)) = (k0, k0 × k0)) is denoted by Jinit(N)⟩.

Proposition 5.5. Given a bounded net N = (S,A, T,m0), Jinit(N)⟩ is finite.

Proof. The set IM(N) of reachable indexed markings is finite by Proposition 4.5. The set
of possible preorders for an indexed marking k = {(s1, n1) . . . (sj , nj)} ∈ IM(N) is finite,
because ≤⊆ k × k. Therefore, Jinit(N)⟩ is finite.

5.1. Ordered indexed marking and causality-based semantics. If π = (C, ρ) is
a process of a marked net N(m0) and k0 is the initial indexed marking for N(m0) (i.e.
α(k0) = m0 and k0 is closed), we also say that π is a process of N(k0). Given a firing
sequence of a net N(k0), there is an operational preorder on tokens obtained by Definition
5.4, and a preorder ≤π derived from the causal net C of a process π which models that
execution.

In order to relate the execution of an event sequence σ of π and its corresponding
firing sequence ρ(σ) on the actual net N(k0), one must define how maximal conditions in
the process π are mapped to indexed places. Indeed, the firing sequence ρ(σ) on N(k0),
corresponding to the execution of an event sequence σ of π, might generate many ordered
indexed markings, depending on the choice of the initial mapping from conditions to tokens of
the initial markings as well as on the choice of the mapping from newly generated conditions
of a new event e to multiple tokens on the same place generated by the corresponding

Vol. 19:4 DECIDABILITY OF TWO TRULY CONCURRENT EQUIVALENCES 37:17

transition ρ(e), as illustrated in the following Example 5.8. To reconcile abstract process
semantics and concrete indexed marking semantics, we inductively define a process sequence
for π, which contains both an event sequence σ for π and a mapping δ from maximal
conditions of the process π to indexed places of the current marking of the net.

In the following, we may denote an indexed place (s, i) as p when it is not needed to
make place s and index i explicit.

Definition 5.6. (Process sequence for a process) Given a marked net N(k0) and
≤0= k0 × k0, a process sequence is inductively defined as follows:

• (k0,≤0)Jϵ, δ0|⟩(k0,≤0) is a process sequence for π0 = (C0, ρ0), i.e., a process of N(k0)
with empty set of events, where ϵ denotes the empty event sequence and δ0 is a bijective
mapping between Max(C0) and k0 such that for each b ∈ Max(C0), δ0(b) = (ρ0(b), i) for
some (ρ0(b), i) ∈ k0;

• if (k0,≤0)Jσ, δ|⟩(k,≤) is a process sequence for π = (C, ρ) and π
e−→ π′ = (C ′, ρ′), then

we have that (k0,≤0)Jσe, δ′|⟩(k′,≤′) is a process sequence for π′, where:
- Let k′′ = k \ δ(•e).3 Then, k′ = k′′ ⊞ ρ′(e)•.
- δ′ is a bijective mapping between Max(C ′) and k′ defined as δ′(b) = δ(b) if b ∈ Max(C),
while on Max(C ′) \Max(C) = e•, δ′ is a map from e• to k′ \ k′′ = {(ρ′(b), i)

∣∣ b ∈ e•

∧(ρ′(b), i) ∈ k′} such that δ′(b) = (ρ′(b), i) for some (ρ′(b), i) ∈ k′.
- For all p1, p2 ∈ k′, p1 ≤′ p2 if and only if
(1) p1, p2 ∈ k \ δ(•e) and p1 ≤ p2, or
(2) p1, p2 ∈ δ′(e•), or
(3) p1 ∈ k \ δ(•e) , p2 ∈ δ′(e•) and ∃p′1 ∈ δ(•e) such that p1 ≤ p′1.

Remark 5.7. (Process sequence for a partial process) Note that the definition of
process sequence can be defined also w.r.t. partial processes. In fact, given ≤0= k0 × k0,

• (k0,≤0)Jϵ, δ0|⟩(k0,≤0) is a process sequence for the partial process π0 = (C0, ρ0), i.e.,
a partial process of N(k0) with empty set of events, where ϵ denotes the empty event
sequence and δ0 is a bijective mapping between Max(C0) and k0;

• if (k0,≤0)Jσ, δ|⟩(k,≤) is a process sequence for the partial process π = (C, ρ) and π
e
↣ π′ =

(C ′, ρ′), then we have that (k0,≤0)Jσe, δ′|⟩(k′,≤′) is a process sequence for π′, where:
- Let k′′ = k \ δ(•e). Then, k′ = k′′ ⊞ ρ′(e)•.
- δ′ is a bijective mapping between Max(C ′) and k′ defined as δ′(b) = δ(b) if b ∈ Max(C),
while on Max(C ′) \Max(C) = e•, δ′ is a map from e• to the set k′ \ k′′.

- For all p1, p2 ∈ k′, p1 ≤′ p2 is defined as above.

Hence, in the following, we simply say that (k0,≤0)Jσ, δ|⟩(k,≤) is a process sequence for
π = (C, ρ), where the fact that π is a process or a partial process is almost irrelevant. In
particular, in Section 6 we will use this definition w.r.t. processes, while in Section 7 w.r.t.
partial processes.

The definition of process sequence (w.r.t. processes or partial processes) is nondetermin-
istic. First, the initial step allows for different choices for the initial δ0 function, which is
a concrete mapping from minimal conditions to tokens of the initial indexed marking k0
(respecting the function ρ0 in case we consider processes instead of partial processes); and
then, in the inductive case, δ′ can be any bijection from the newly generated conditions to
the newly generated tokens in k′ (respecting ρ′, in case we consider processes). However,

3By abuse of notation, we write δ(•e) for the set {δ(b)
∣∣ b ∈ •e}.

37:18 A. Cesco and R. Gorrieri Vol. 19:4

this kind of nondeterminism is just apparent, because δ works on the concrete net and, by
the indexes chosen initially for each minimal condition as well as for the new (i.e., generated)
tokens in the same place, different concrete runs (i.e., with a different indexing of tokens
due to a different choice of δ) may originate isomorphic processes only, as illustrated by the
following example.

a)

b1 b12 b22 b32

ev

b3

eu

b42 b52

b)

s1

u

s2 1 3
4 5

v

s3 1

2

c)

s1

u

s2 1 2
3 4

v

s3 1

2

Figure 5: The causal net of a process and two possible resulting indexed markings starting
from the net of Figure 4(a).

Example 5.8. Consider the net in Figure 4(a), with k0 = {(s1, 1), (s2, 1), (s2, 2), (s2, 3)},
and assume that the initial δ0 maps b1 to s1, and bi2 to (s2, i) for i = 1, 2, 3. Consider
the transition sequence t1 t2 (with label u v). Transition t1 consumes the token (s1, 1) and
generates tokens (s2, 4) and (s2, 5); assume that transition t2 consumes the token (s2, 2) and
generates the token (s3, 1). Given that there is no causality between the firing of the two
transitions, the process π, whose causal net is in Figure 5(a), models that execution, with
trivial mappings (i.e., the mapping δ after the execution of the two transitions maps bi2 to
(s2, i) for i = 1, 3, 4, 5 and b3 to (s3, 1)). Let σ = euev be the event sequence of the process
π, such that ρ(σ) = t1 t2.

Consider now to swap the execution order of these two independent transitions, so that
the transition sequence now is t2 t1 (with label v u), where t2 consumes the token (s2, 2) and
generates the token (s3, 1), while t1 consumes the token (s1, 1) and generates the tokens
(s2, 2) and (s2, 4). Again, there is no causality between them and so the process, whose causal
net is in Figure 5(a), models that execution, with trivial mappings albeit different from the
first one (in particular, the mapping δ′ after the execution of the transition sequence t2 t1
is such that δ′(b42) = (s2, 2) and δ′(b52) = (s2, 4)). Indeed, the two processes are isomorphic
(but the latter with a different event sequence σ′ = eveu such that ρ(σ′) = t2 t1). However,
the resulting indexed markings (cf. Figure 5(b) and (c)) are different. As a matter of fact,
the process sequence which gives origin to the net in Figure 5(b) ends with a mapping δ
whose image is the set {(s2, 1), (s2, 3), (s2, 4), (s2, 5), (s3, 1)}, while the one related to Figure
5(c), i.e., δ′, has the set {(s2, 1), (s2, 2)(s2, 3), (s2, 4), (s3, 1)} as image.

Indeed, it is not even enough to keep track of the order of events to compute the resulting
indexed markings: one must also consider how conditions are mapped to individual tokens
initially. In fact, if we consider a different initial δ′0 (compatible with the initial ρ0, that is
not modified, if we consider processes instead of partial processes) mapping b32 on (s2, 2)

Vol. 19:4 DECIDABILITY OF TWO TRULY CONCURRENT EQUIVALENCES 37:19

and b22 on (s2, 3), and the same transition sequence t1 t2 above, where, however, the second
transition consumes the token (s2, 3) and generates the token (s3, 1), we get the same process
π of Figure 5(a) (with the same event sequence σ on π), but the final indexed marking is
{(s2, 1), (s2, 2)(s2, 4), (s2, 5), (s3, 1)}.

Of course, there is also an instance of the transition sequence t1 t2 (with label u v) of
the net, where t2 consumes one of the tokens produced by t1, but in this case the transition
sequence of the process (and the process itself) would be different. However, note that after
firing t1, the resulting indexed marking is {(s2, 1), (s2, 2)(s2, 3), (s2, 4), (s2, 5)}. Now, δ′ can
be chosen in such a way that b42 is mapped to (s2, 4) and b52 is mapped to (s2, 5). If t2 consumes
the token (s2, 4), then the reached indexed marking is {(s2, 1), (s2, 2)(s2, 3), (s2, 5), (s3, 1)}.
However, the same process can be obtained by choosing δ′ in such a way that b42 is mapped
to (s2, 5) and b52 is mapped to (s2, 4), with t2 that consumes token (s2, 5), but in such a case
the resulting indexed marking is {(s2, 1), (s2, 2)(s2, 3), (s2, 4), (s3, 1)}.

Lemma 5.9. (A minimality condition for ≤) Let π = (C, ρ) be a process of N(k0) and,
moreover, let (k0,≤0)Jσ, δ|⟩(k,≤) be a process sequence for π. For all b ∈ Max(C) (i.e., for
all b such that δ(b) ∈ k), if b ∈ Min(C) then:

• δ(b) ∈ k0, and
• for all b′ ∈ Max(C), we have δ(b) ≤ δ(b′).

Proof. By induction on the length of σ.

In other words, if b ∈ Max(C) and also b ∈ Min(C), then the current token (ρ(b), i) ∈ k
was actually already present in the initial indexed marking k0 and it is also minimal for the
preorder ≤. Note that the lemma above holds even in case π = (C, ρ) is a partial process of
N(k0).

Theorem 5.10. (Coherence of ≤ and process) Let π = (C, ρ) be a process of N(k0) and,
moreover, let (k0,≤0)Jσ, δ|⟩(k,≤) be a process sequence for π. Then, for all b, b′ ∈ Max(C)
we have:

δ(b) ≤ δ(b′) ⇐⇒

b ∈ Min(C) (1)

or
•b ̸= ∅ ∧ •b′ ̸= ∅ ∧ •b ≤π

•b′ (2)

Proof. We prove the implication in the two directions. First, we prove that the antecedent
implies the consequent by induction on the length of σ.

• case 0: σ = ϵ.
Since init(N)Jϵ, δ0|⟩init(N), we have C = C0 and b ∈ Max(C0) = Min(C0). Condition
(1) is satisfied.

• case n+1: σ = λe where e ̸∈ λ.
The induction hypothesis is that init(N)Jλ, δ|⟩(k,≤) is a process sequence for π, where the

thesis holds for (k,≤). The step is (k,≤)Jt⟩(k′,≤′) and π = (C, ρ)
e−→ (C ′, ρ′) = π′ with

ρ′(e) = t. Let k′′ ∈ k⊟ •ρ′(e) such that k′ = k′′⊞ ρ′(e)• and δ′ defined as in Definition 5.6.
Then, init(N)Jλe, δ′|⟩(k′,≤′) is a process sequence for π′. We have to prove the thesis for
(k′,≤′).
The proof is by cases on the definition of δ′(b) ≤′ δ′(b′). We omit trivial cases.
- if δ′(b) ∈ k′′ , δ′(b′) ∈ k′ \k′′ and ∃ b′′ such that δ(b′′) ∈ k\k′′ where δ′(b) = δ(b) ≤ δ(b′′):

37:20 A. Cesco and R. Gorrieri Vol. 19:4

+ if δ′(b) is such that b ∈ Min(C ′):
condition (1) is satisfied.

+ if δ′(b) is such that b ̸∈ Min(C ′):
then b ̸∈ Min(C), too, so that, since δ(b) ≤ δ(b′′), by induction we have •b ≤π

•b′′.
As b′′ ∈ •e and b′ ∈ e•, it is true that •b′′ ≤π′ •b′, and by transitivity •b ≤π′ •b′.
Therefore, condition (2) is satisfied.

Then, we prove that the consequent implies the antecedent by induction on the length
of σ.

• case 0: σ = ϵ.
Since each b ∈ Max(C0) is minimal, we have that δ(b) ≤ p for all p ∈ k0 because
≤= k0 × k0.

• case n+1: σ = λe where e ̸∈ λ.
The induction hypothesis is that init(N)Jλ, δ|⟩(k,≤) is a process sequence for π, where the

thesis holds for (k,≤) and π. The step is (k,≤)Jt⟩(k′,≤′) and π = (C, ρ)
e−→ (C ′, ρ′) = π′

with ρ′(e) = t. Let k′′ ∈ k⊟•ρ′(e) such that k′ = k′′⊞ρ′(e)• and δ′ defined as in Definition
5.6. Then, init(N)Jλe, δ′|⟩(k′,≤′) is a process sequence for π′. We have to prove the thesis
for (k′,≤′) and π′. The proof is by inspection on the hypotheses:
- if condition (1) holds: since δ′(b) is minimal for ≤′ by Lemma 5.9, the thesis follows.
- if condition (2) holds: there are 4 possible combinations of δ′(b), δ′(b′). We omit trivial
cases.
+ if δ′(b) ∈ k′′ and δ′(b′) ∈ k′ \ k′′:

Then, since δ′(b′) ∈ k′ \ k′′, by Proposition 3.7, it is true that there exists b′′ ∈ •e such
that •b ≤π

•b′′, and δ(b′′) ∈ k\k′′. Then, by inductive hypothesis, δ′(b) = δ(b) ≤ δ(b′′).
Therefore, since δ′(b′) ∈ k′ \ k′′ and δ(b′′) ∈ k \ k′′, we have δ′(b) ≤′ δ′(b′).

+ if δ′(b′) ∈ k′′ and δ′(b) ∈ k′ \ k′′: absurd, since •b ≤π′ •b′.

Note that this theorem holds even in case π = (C, ρ) is a partial process of N(k0), with
a proof that is a minor adaptation of the one given above.

Theorem 5.11. Let π = (C, ρ) be a (partial) process of N(k0) such that init(N)Jσ, δ|⟩(k,≤)
is a process sequence for π. We have that (k,≤) moves to (k′,≤′) through the transition t if
and only if π moves to π′ through some event e, which is mapped to t, and σe is a process

sequence for π′. More formally, (k,≤)Jt⟩(k′,≤′) if and only if, for some e, we have (π
e
↣ π′

or) π
e−→ π′, where ρ′(e) = t and init(N)Jσe, δ′|⟩(k′,≤′) is a process sequence for π′.

Proof. By hypothesis, init(N)Jσ, δ|⟩(k,≤) is a process sequence for π = (C, ρ). Then, we
prove the two implications separately.

⇒) If (k,≤)Jt⟩(k′,≤′), then we can extend π to π′ through some event e, which is

mapped to t: π
e−→ π′ (or π

e
↣ π′), with ρ′(e) = t and k′′ = k \ δ(•e) and k′ = k′′ ⊞ ρ′(e)•.

By Definition 5.2, we have that (k′,≤′) is computed exactly as required by the definition of
process sequence for π′; indeed, init(N)Jσe, δ′|⟩(k′,≤′) is a process sequence for π′, with δ′

computed as in Definition 5.6.

⇐) If π
e−→ π′ (or π

e
↣ π′), with ρ′(e) = t and init(N)Jσe, δ′|⟩(k′,≤′) is a process

sequence for π′, then we observe that k′′ = k \ δ(•e) and k′ = k′′ ⊞ ρ′(e)•. This implies that
(k′,≤′) is computed, according to Definition 5.6, exactly as required by Definition 5.2, so
that (k,≤)Jt⟩(k′,≤′).

Vol. 19:4 DECIDABILITY OF TWO TRULY CONCURRENT EQUIVALENCES 37:21

Example 5.12. In Figure 6(a), the same 5-bounded P/T net N as Figure 4 is depicted,
together with its empty process (we omit to represent its initial marking). Figure 6(b,c)
shows how the process corresponding to the transition sequence t2 t1 grows. We consider the
same execution as in Example 4.3, i.e. k0Jt2⟩k1Jt1⟩k2. For simplicity’s sake, in the following
each condition will be mapped to the place having same subscript and each event will be
mapped to the transition having same label. We will denote each process πi as the one
thus corresponding to causal net Ci. Before any transition fires, we have init(N) = (k0,≤0)
where ≤0= k0 × k0 by Definition 5.1.

Not surprisingly, all conditions bji are minimal in the causal net C0 and mapped to
tokens in (k0,≤0). The firing of t2 deletes token (s2, 2) and generates token (s3, 1); moreover,
since (s2, 1) ≤0 (s2, 2) we have (s2, 1) ≤1 (s3, 1). Note that b12 ∈ Min(C1) but b3 ̸∈ Min(C1).
After the firing of t1, there are four tokens in place s2. However, since (s2, 2) and (s2, 4) are
generated by t1, they are greater in ≤2 than (s2, 1) and (s2, 3). This can also be seen at the
process level: b12 and b32 are minimal conditions of C2, while b42 and b52 are not. On the other
hand, note that, just as b42 and b3 are not minimal in C2 but also not related by ≤π2 , also
(s2, 2) and (s3, 1) are not related by ≤2.

6. Fully-concurrent Bisimilarity is Decidable

We now define a novel bisimulation relation based on ordered indexed markings (oim, for
short), generalizing the similar idea in [Vog91].

An OIM bisimulation is a relation composed of triples of the form ((k1,≤1), (k2,≤2), β),
such that relation β ⊆ k1 × k2 relates tokens of the two indexed markings k1 and k2. The
initial triple of an OIM bisimulation is (init(N(k1)), init(N(k2)), k1 × k2). Then, whenever
the first oim moves with a transition t1, the second oim must respond with a transition t2
such that not only the label of the two transitions is the same, but also the two transitions
must consume individual tokens related via β. As individual tokens only interest us as far as
precedences in their generation are concerned, we do not require that the tokens consumed
by t1 are in a bijective correspondence to those consumed by t2; we do not even require that
an individual token consumed by the first transition is itself related to another consumed by
the second one; it is enough that each token consumed by t1 precedes a (possibly different)
token consumed by t1 that is related via β to a token consumed by t2: this allows preserving
causality among the generated events.

Moreover, if (k1,≤1)Jt1⟩(k′1,≤′
1) and (k2,≤2) responds with (k2,≤2)Jt2⟩(k′2,≤′

2), then it
is required that ((k′1,≤′

1), (k
′
2,≤′

2), β
′) is in the OIM bisimulation, where the new relation β′

is obtained from β by retaining all the pairs of individual tokens related by β but untouched
by the two transitions, and by adding all the pairs of individual tokens generated by the two
matching transitions.

Definition 6.1. (OIM bisimulation) Let N = (S,A, T) be a P/T net. An OIM
bisimulation is a relation B ⊆ OIM(N) × OIM(N) × P((S × N) × (S × N)) such that if
((k1,≤1), (k2,≤2), β) ∈ B, then:

37:22 A. Cesco and R. Gorrieri Vol. 19:4

a)

s1

1

u

s2 1
2 3

v

s3

2

Jt2 ⟩

(C0

b1 b12 b22 b32

[e
v ⟩

b)

s1

1

u

s2 1 3

v

s3 1

2

Jt1 ⟩

(C1

b1 b12 b22 b32

ev

b3

[e
u ⟩

c)

s1

u

s2 1 2
3 4

v

s3 1

2

(C2

b1 b12 b22 b32

ev

b3

eu

b42 b52

Figure 6: Execution of the transition labeled by v, then u, on the net of Figure 4 and
corresponding process (only the mapping of maximal conditions to tokens is
displayed). Tokens to be consumed are red, generated ones blue.

Vol. 19:4 DECIDABILITY OF TWO TRULY CONCURRENT EQUIVALENCES 37:23

• ∀t1, k′1,≤′
1 such that (k1,≤1)Jt1⟩(k′1,≤′

1), (where we assume k′′1 ∈ k1 ⊟ •t1 such that k′1 =
k′′1 ⊞ t•1), there exist t2, k

′
2,≤′

2 (where we assume k′′2 ∈ k2 ⊟ •t2 such that k′2 = k′′2 ⊞ t•2),
and for β′ defined as: ∀p1 ∈ k′1, ∀p2 ∈ k′2

p1 β
′ p2 ⇐⇒

p1 ∈ k′′1 , p2 ∈ k′′2 and p1 β p2

or

p1 ∈ k′1 \ k′′1 , p2 ∈ k′2 \ k′′2
the following hold:
- (k2,≤2)Jt2⟩(k′2,≤′

2) where ((k′1,≤′
1), (k

′
2,≤′

2), β
′) ∈ B and l(t1) = l(t2);

- ∀p1 ∈ k1\k′′1 , ∃p′1 ∈ k1\k′′1 , ∃p′2 ∈ k2\k′′2 such that p1 ≤1 p
′
1 ∧ p′1 β p′2 and, symmetrically,

∀p2 ∈ k2 \ k′′2 , ∃p′2 ∈ k2 \ k′′2 , ∃p′1 ∈ k1 \ k′′1 such that p2 ≤2 p
′
2 ∧ p′1 β p′2

• symmetrically, if (k2,≤2) moves first.

Two markings m1 and m2 of N are OIM bisimilar, denoted m1 ∼oim m2, if there exists
an OIM bisimulation B containing the triple (init(N(k1)), init(N(k2)), k1 × k2) where, for
i = 1, 2, ki is the initial (i.e., closed) indexed marking such that mi = α(ki).

Next, we show that fully-concurrent bisimilarity ∼fc and OIM-bisimilarity ∼oim coincide
on P/T nets, by first proving that fully-concurrent bisimilarity implies OIM-bisimilarity,
and then by proving that OIM-bisimilarity implies fully-concurrent bisimilarity. The basic
idea behind these proofs is that two tokens are related by β if and only if the transition
generating one of the two is mapped by the order-isomorphism f to the transition generating
the other one.

Theorem 6.2. (FC-bisimilarity implies OIM-bisimilarity) Let N = (S,A, T) be a net.
Given two markings m01,m02 of N , if m01 ∼fc m02, then m01 ∼oim m02.

Proof. If m01 ∼fc m02, then there exists an fc-bisimulation R1 containing the triple
(π0

1, ∅, π0
2), where π0

i = (C0
i , ρ

0
i) is such that C0

i contains no events and ρ0i (Min(C0
i)) =

ρ0i (Max(C0
i)) = m0i for i = 1, 2.

Given closed indexed markings k0i such that m0i = α(k0i) for i = 1, 2, let us consider

R2
def
= {((k1,≤1), (k2,≤2), β)|(π1, f, π2) ∈ R1 and

for i = 1, 2, πi is a process of N(k0i) and

init(N(k0i))Jσi, δi|⟩(ki,≤i) is a process sequence for πi and

f(σ1) = σ2 and

∀p1 ∈ k1,∀p2 ∈ k2 : p1 β p2 if and only if

∃b1 ∈ Max(C1) such that δ1(b1) = p1 and

∃b2 ∈ Max(C2) such that δ2(b2) = p2 and

either b1 ∈ Min(C1) ∧ b2 ∈ Min(C2)

or •b1 ̸= ∅ ∧ •b2 ̸= ∅ ∧ f(•b1) =
•b2}.

If we prove that R2 is an OIM bisimulation, then since (π0
1, ∅, π0

2) ∈ R1, init(N(k0i))Jϵ, δ0i|⟩
init(N(k0i)) is a process sequence for π0

i and ρ0i (Min(C0
i)) = ρ0i (Max(C0

i)) = k0i where
α(k0i) = m0i for i = 1, 2, by definition of R2 it follows that (init(N(k01)), init(N(k02)), k01×
k02) ∈ R2 and therefore m01 ∼oim m02.

Assume ((k1,≤1), (k2,≤2), β) ∈ R2. By symmetry, we consider only the case when
(k1,≤1) moves first. Let (k1,≤1)Jt1⟩(k′1,≤′

1). By definition of R2, there is a process sequence

37:24 A. Cesco and R. Gorrieri Vol. 19:4

init(N(k01))Jσ1, δ1|⟩(k1,≤1) for π1. Hence, by Theorem 5.11, it follows that π1
e1−→ π′

1 with
ρ′1(e1) = t1, and that init(N(k01))Jσ1e1, δ′1|⟩(k′1,≤′

1) is a process sequence for π′
1.

As (π1, f, π2) ∈ R1, it follows that π2
e2−→ π′

2 with ρ′2(e2) = t2 and (π′
1, f

′, π′
2) ∈ R1, where

f ′ extends f by f ′(e1) = e2. By def. of R2, a process sequence init(N(k02))Jσ2, δ2|⟩(k2,≤2)
for π2 exists; moreover, init(N(k02))Jσ2e2, δ′2|⟩(k′2,≤′

2) is a process sequence for π′
2, so that,

by Theorem 5.11, we have (k2,≤2)Jt2⟩(k′2,≤′
2).

Summing up, we have that (π′
1, f

′, π′
2) ∈ R1, init(N(k01))Jσ1e1, δ′1|⟩(k′1,≤′

1) is a process
sequence for π′

1, init(N(k02))Jσ2e2, δ′2|⟩(k′2,≤′
2) is a process sequence for π′

2, f
′(σ1e1) = σ2e2,

and moreover, for β′ defined as follows:

∀p1 ∈ k′1,∀p2 ∈ k′2 : p1 β
′ p2 if and only if

∃b1 ∈ Max(C ′
1) such that δ′1(b1) = p1 and,

∃b2 ∈ Max(C ′
2) such that δ′2(b2) = p2 and,

either b1 ∈ Min(C ′
1) ∧ b2 ∈ Min(C ′

2)

or •b1 ̸= ∅ ∧ •b2 ̸= ∅ ∧ f ′(•b1) =
•b2},

we get that ((k′1,≤′
1), (k

′
2,≤′

2), β
′) ∈ R2 by definition of R2.

Therefore, we have proved that to the move (k1,≤1)Jt1⟩(k′1,≤′
1), (k2,≤2) can reply with

the move (k2,≤2)Jt2⟩(k′2,≤′
2), where ((k′1,≤′

1), (k
′
2,≤′

2), β
′) ∈ R2 and l(t1) = l(t2). Hence,

in order to prove that ((k1,≤1), (k2,≤2), β) is a OIM bisimulation triple, as required, it
remains to prove that the definition of β′ arising from R2, i.e., the unique β′ such that the
triple ((k′1,≤′

1), (k
′
2,≤′

2), β
′) ∈ R2 for (π′

1, f
′, π′

2) ∈ R1, is coherent with the one of Definition
6.1, i.e., it implies both

(1) ∀p1 ∈ k′1 , p2 ∈ k′2

p1 β
′ p2 ⇐⇒

p1 ∈ k′′1 , p2 ∈ k′′2 and p1 β p2 (i)

or

p1 ∈ k′1 \ k′′1 , p2 ∈ k′2 \ k′′2 (ii)

and
(2) ∀p1 ∈ k1\k′′1 , ∃p′1 ∈ k1\k′′1 , ∃p′2 ∈ k2\k′′2 such that p1 ≤1 p

′
1 ∧ p′1 β p′2, and symmetrically

∀p2 ∈ k2 \ k′′2 , ∃p′2 ∈ k2 \ k′′2 , ∃p′1 ∈ k1 \ k′′1 such that p2 ≤2 p
′
2 ∧ p′1 β p′2 .

Proof 1) The two implications are proved separately.
Proof =⇒: assume p1 = δ′1(b1) and p2 = δ′2(b2). Then:

- If b1 ∈ Min(C ′
1) and b2 ∈ Min(C ′

2):
then for i = 1, 2, bi ∈ Max(Ci), too. This implies pi ∈ k′′i and p1βp2, satisfying
condition (i).

- if •b1 ̸= ∅ ∧ •b2 ̸= ∅ ∧ f ′(•b1) =
•b2:

Let us consider events e′1, e
′
2 such that b1 ∈ e′•1 and b2 ∈ e′•2 . There are four possible

cases:
+ if e′1 = e1 and e′2 = e2: since p1 = δ′1(b1) and t1 = ρ′1(e1) = ρ′1(e

′
1), we have

p1 ∈ k′1 \ k′′1 . For the same reason, p2 ∈ k′2 \ k′′2 and therefore condition (ii) holds.
+ if e′1 ̸= e1 and e′2 ̸= e2: then b1 is maximal also in C1 because e′1 occurred before e1,

hence p1 ∈ k′′1 . For the same reason, p2 ∈ k′′2 . Since ((k1,≤1), (k2,≤2), β) ∈ R2 and
f(•b1) =

•b2, then p1βp2, therefore condition (i) holds.
+ other cases: absurd since f ′(e1) = e2.

Vol. 19:4 DECIDABILITY OF TWO TRULY CONCURRENT EQUIVALENCES 37:25

Proof ⇐=: Since p1 ∈ k′1 and p2 ∈ k′2, there exist b1 and b2 such that p1 = δ′1(b1) and

p2 = δ′2(b2).
- if p1 ∈ k′′1 , p2 ∈ k′′2 and p1 β p2 :
We need to separate two cases for p1.
+ if b1 ∈ Min(C ′

1): since p1 β p2, it is true that b2 ∈ Min(C ′
2).

+ if b1 ̸∈ Min(C ′
1): then

•b1 ̸= ∅ and, as p1 β p2, also
•b2 ̸= ∅. As p1 ∈ k′′1 , p2 ∈ k′′2 ,

and ((k1,≤1), (k2,≤2), β) ∈ R2, we have bi ∈ Max(Ci) and f(•b1) =
•b2, and by

conservative extension of f to f ′ we get the thesis.
- if p1 ∈ k′1 \ k′′1 , p2 ∈ k′2 \ k′′2 :
then since δ′1(b1) = p1 we have •b1 = e1, therefore

•b1 ̸= ∅. The same applies to p2,
and since f ′(e1) = e2, we have f ′(•b1) =

•b2.

Proof 2) Let us consider events e1, e2 such that π1
e1−→ π′

1, π2
e2−→ π′

2 and f ′(e1) = e2, with
(π′

1, f
′, π′

2) ∈ R1. We assume a token p1 ∈ k1 \k′′1 such that there exists b1 with δ1(b1) = p1.

Note that, since π1
e1−→ π′

1, it is true that b1 ∈ Max(C1) and b1 ∈ •e1. We are to prove
that ∃p′1 ∈ k1 \ k′′1 , ∃p′2 ∈ k2 \ k′′2 such that p1 ≤1 p

′
1 and p′1 β p′2. In the following, in some

cases we have p1 = p′1: if that is true, then p1 ≤1 p
′
1 by reflexivity of ≤1.

There are two possible cases for b1:
- if b1 ∈ Min(C1):
There are two possible subcases:
+ ∃b′2 ∈ •e2 such that b′2 ∈ Min(C2):

Then by definition of δ2 there exists a token p′2 = δ2(b
′
2). By definition of β, we have

p1 β p′2.
+ otherwise:

Since π2
e2−→ π′

2, there exists a condition b′2 ∈ Max(C2) such that δ2(b
′
2) = p′2, where

token p′2 ∈ k2 \ k′′2 . Let us consider the event e′2 ∈ EC2 such that e′2 = •b′2. Since
f is an isomorphism between EC1 and EC2 , there exists event e′1 ∈ EC1 such that
f(e′1) = e′2; moreover, there exists b′1 ∈ Max(C1) such that e′1 =

•b′1 and δ1(b
′
1) = p′1.

Since b1 ∈ Min(C1), by Lemma 5.9 it is true that p1 is minimal for ≤1, and therefore
p1 ≤1 p

′
1. Finally, since e′1 =

•b′1, e
′
2 =

•b′2 and f(e′1) = e′2, we have p′1 β p′2.
- if b1 ̸∈ Min(C1):
Let p′1 = δ1(b

′
1) ∈ k1 \ k′′1 such that •b1 ≤π1

•b′1 and ̸ ∃p = δ1(b) ∈ k1 \ k′′1 such that
•b′1 <π1

•b. Hence, p1 ≤1 p′1 and •b′1 = e′1 is a maximal proper predecessor of e1 in
EC′

1
. Since f is an isomorphism between EC1 and EC2 , there exists e′2 ∈ EC2 such

that e′2 = f(e′1). Since e′1 is an immediate predecessor of e1 in EC′
1
, by definition

of isomorphism f ′, it is true that also e′2 is an immediate predecessor of e2 in EC′
2
.

Therefore, it is possible to choose a condition b′2, with δ2(b
′
2) = p′2, such that not only

e′2 =
•b′2, but also b′2 ∈ •e2. Finally, we have e′1 =

•b′1, e
′
2 =

•b′2 and f(e′1) = e′2, hence
p′1 β p′2.

The proof of the case for p2 ∈ k2 \ k′′2 is symmetrical and therefore omitted.

As mentioned above, the case in which (k2,≤2) moves first is symmetrical and so omitted.
Therefore, R2 is an OIM bisimulation and m01 ∼oim m02.

Now we prove the reverse implication, so that, at the end, we get that ∼oim and ∼fc

coincide.

Theorem 6.3. (OIM-bisimilarity implies FC-bisimilarity) Let N = (S,A, T) be a net.
Given two markings m01,m02 of N , if m01 ∼oim m02, then m01 ∼fc m02.

37:26 A. Cesco and R. Gorrieri Vol. 19:4

Proof. If m01 ∼oim m02, then there exists an OIM bisimulation R1 containing the triple
(init(N(k01)), init(N(k02)), k01 × k02), where α(k01) = m01, α(k02) = m02, and k01, k02 are
closed.
Let us consider

R2
def
= {(π1, f, π2)

∣∣ ((k1,≤1), (k2,≤2), β) ∈ R1 and

for i = 1, 2, πi = (Ci, ρi) is a process of N(k0i) and

f is an isomorphism EC1 −→ EC2 and

init(N(k0i))Jσi, δi|⟩(ki,≤i)is a process sequence for πi and

f(σ1) = σ2 and

∀p1 ∈ k1, ∀p2 ∈ k2 : p1 β p2 if and only if

∃b1 ∈ Max(C1) such that δ1(b1) = p1 and

∃b2 ∈ Max(C2) such that δ2(b2) = p2 and

either b1 ∈ Min(C1) ∧ b2 ∈ Min(C2)

or •b1 ̸= ∅ ∧ •b2 ̸= ∅ ∧ f(•b1) =
•b2}.

If we prove that R2 is an fc-bisimulation, then we have that m01 ∼fc m02. In fact, consider
for i = 1, 2 the empty process (C0

i , ρ
0
i) (i.e., C0

i contains no events and ρ0i (Min(C0
i)) =

ρ0i (Max(C0
i)) = m0i). Since (init(N(k01)), init(N(k02)), k01 × k02) ∈ R1 and, for i = 1, 2,

(C0
i , ρ

0
i) is a process of N(k0i) and init(N(k0i))Jϵ, δ0i|⟩init(N(k0i)) is a process sequence

for π0i and α(k0i) = m0i, by definition of R2 it follows that (π0
1, ∅, π0

2) ∈ R2, and therefore
m01 ∼fc m02.

Assume (π1, f, π2) ∈ R2. By symmetry, we consider only the case when π1 moves first.

Let π1
e1−→ π′

1 where ρ′1(e1) = t1.
By definition of R2, there is a process sequence init(N(k01))Jσ1, δ1|⟩(k1,≤1) for π1;

moreover, init(N(k01))Jσ1e1, δ′1|⟩(k′1,≤′
1) is a process sequence for π′

1. Hence, by Theorem
5.11, it follows that (k1,≤1)Jt1⟩(k′1,≤′

1).
As ((k1,≤1), (k2,≤2), β) ∈ R1, then there exist t2, k

′
2,≤′

2, β
′ such that (k2,≤2)Jt2⟩(k′2,≤′

2)
and ((k′1,≤′

1), (k
′
2,≤′

2), β
′) ∈ R1. By definition of R2, a process sequence init(N(k02))

Jσ2, δ2|⟩(k2,≤2) for π2 exists. By Theorem 5.11 we have π2
e2−→ π′

2, where ρ′2(e2) = t2 and
init(N(k02))Jσ2e2, δ′2|⟩(k′2,≤′

2) is a process sequence for π′
2. Note that, for i = 1, 2, π′

i is a
process of N(k0i).

We extend f to f ′ with the mapping f ′(e1) = e2: since f is an isomorphism between

EC1 and EC2 , and π1
e1−→ π′

1, π2
e2−→ π′

2, in order to prove that f ′ is an isomorphism between
EC′

1
= (E′

1,⪯′
1) and EC′

2
= (E′

2,⪯′
2) such that f ′(σ1e1) = σ2e2, we have only to prove that

f maps the predecessors of e1 to those of e2 (and viceversa). For this check we need the
following two facts:

(1) if e ⪯′
1 e1 then f ′(e) ⪯′

2 f
′(e1), where e is an event that immediately precedes e1, hence,

e ⪯′
1 e1 and there exists b1 such that b1 ∈ e• and b1 ∈ •e1;

(2) if e′ ⪯′
2 e2 then f ′−1(e′) ⪯′

1 f
′−1(e2), where e′ is an event that immediately precedes e2,

hence, e′ ⪯′
2 e2 and there exists b2 such that b2 ∈ e′• and b2 ∈ •e2.

Since these two facts are essentially symmetric, we will prove only the first one.
If b1 ∈ e• and b1 ∈ •e1, then δ1(b1) = p1 ∈ k1 \ k′′1 . By Definition 6.1, there exist

p′1 ∈ k1 \ k′′1 (hence, b′1 ∈ •e1 such that δ1(b
′
1) = p′1) and p′2 ∈ k2 \ k′′2 (hence, b′2 ∈ •e2 such

that δ2(b
′
2) = p′2) such that p1 ≤1 p′1 and p′1βp

′
2. Since p1 ≤1 p′1, we know by Theorem

Vol. 19:4 DECIDABILITY OF TWO TRULY CONCURRENT EQUIVALENCES 37:27

5.10 that •b1 ≤π1
•b′1, i.e., e ⪯1

•b′1; this implies that f(e) ⪯2 f(•b′1). By definition of R2,
(π1, f, π2) ∈ R2 ensures that p′1βp

′
2 implies f(•b′1) =

•b′2; thus, f(e) ⪯′
2 f ′(e1), as required,

because f(e) ⪯2 f(
•b′1) =

•b′2 ⪯′
2 e2 = f ′(e1).

Summing up, we have that ((k′1,≤′
1), (k

′
2,≤′

2), β
′) ∈ R1, for i = 1, 2, π′

i is a pro-
cess of N(k0i), f

′ is an isomorphism between EC′
1
and EC′

2
, init(N(k01))Jσ1e1, δ′1|⟩(k′1,≤′

1)

is a process sequence for π′
1, init(N(k02))Jσ2e2, δ′2|⟩(k′2,≤′

2) is a process sequence for π′
2,

f ′(σ1e1) = σ2e2, and moreover, for β′ defined as follows:

∀p1 ∈ k′1,∀p2 ∈ k′2 : p1 β
′ p2 if and only if

∃b1 ∈ Max(C ′
1) such that δ′1(b1) = p1 and

∃b2 ∈ Max(C ′
2) such that δ′2(b2) = p2 and

either b1 ∈ Min(C ′
1) ∧ b2 ∈ Min(C ′

2)

or •b1 ̸= ∅ ∧ •b2 ̸= ∅ ∧ f ′(•b1) =
•b2},

we get that (π′
1, f

′, π′
2) ∈ R2 by definition of R2. To complete the proof, we need to check

that the definition of β′ in the triple ((k′1,≤′
1), (k

′
2,≤′

2), β
′) ∈ R1, from Definition 6.1 of OIM

bisimulation, is coherent with the one obtained from R2 for the triple (π′
1, f

′, π′
2) ∈ R2, i.e.,

that:

∀b1 ∈ Max(C ′
1) ,∀b2 ∈ Max(C ′

2). p1 ∈ k′1 , p2 ∈ k′2 where δ′1(b1) = p1 and δ′2(b2) = p2,

p1 β
′ p2 (as by R2) ⇐⇒

p1 ∈ k′′1 , p2 ∈ k′′2 and p1 β p2 (i)

or

p1 ∈ k′1 \ k′′1 , p2 ∈ k′2 \ k′′2 (ii)

We prove the two implications separately.

Proof =⇒) by cases on the definition of β′:

- if •b1 = ∅ ∧ •b2 = ∅ :
Then b1 ∈ Min(C ′

1) and b2 ∈ Min(C ′
2). For this reason, p1 ∈ k′′1 , p2 ∈ k′′2 and p1 β p2,

satisfying condition (i).
- if •b1 ̸= ∅ ∧ •b2 ̸= ∅ ∧ f ′(•b1) =

•b2:
There are two cases for the event which generates b1:
+ if •b1 = e1: then since f ′(•b1) = e2, we have •b2 = e2; hence p1 ∈ k′1 \ k′′1 and

p2 ∈ k′2 \ k′′2 , satisfying condition (ii).
+ if •b1 ̸= e1: then, p1 ∈ k′′1 and, since •b1 ̸= ∅, there exists e′1, that occured before

e1, such that •b1 = e′1. By the fact that f ′ is an isomorphism between EC′
1
and EC′

2
,

there exists also e′2, that occurred before e2 (hence, p2 ∈ k′′2), where f ′(e′1) = e′2 such
that •b2 = e′2. Note that we also have that f is an isomorphism between EC1 and EC2

such that f(•b1) =
•b2. Hence, we have p1 β p2, satisfying condition (i).

Proof ⇐=) by cases:

- if p1 ∈ k′′1 and p2 ∈ k′′2 and p1 β p2:
then there are two possible cases for b1:
+ if b1 ∈ Min(C ′

1):
then, since p1 does not move, b1 ∈ Min(C1) and, since p1 β p2, also b2 ∈ Min(C2).

+ if b1 ̸∈ Min(C ′
1):

then •b1 ≠ ∅; however, since b1 does not move, because p1 ∈ k′′1 (and also p2 ∈ k′′2),

37:28 A. Cesco and R. Gorrieri Vol. 19:4

we have that, due to β, •b2 ̸= ∅ and f(•b1) =
•b2, and by conservative extension of f ,

f ′(•b1) =
•b2.

- if p1 ∈ k′1 \ k′′1 and p2 ∈ k′2 \ k′′2 :
then •b1 = e1 and •b2 = e2 and f ′(e1) = e2 by definition of β′, since they are maximal.

As mentioned above, the case in which π2 moves first is symmetrical and so omitted.
Therefore, R2 is an fc-bisimulation and m01 ∼fc m02.

Theorem 6.4. (OIM-bisimilarity and FC-bisimilarity coincide) Let N = (S,A, T) be
a net and m1,m2 two markings of N . m1 ∼oim m2 if and only if m1 ∼fc m2.

Proof. By Theorems 6.2 and 6.3, we get the thesis.

Theorem 6.5. (FC-bisimilarity is decidable for finite bounded nets) Given N(m1)
and N(m2) bounded nets, it is decidable to check whether m1 ∼fc m2.

Proof. By Theorem 6.4, it is enough to check whether there exists an OIM bisimulation B
for the given net N and initial indexed markings k01 and k02, with α(k0i) = mi for i = 1, 2.
If we restrict B to B′ = {((k1,≤1), (k2,≤2), β) ∈ B

∣∣ (ki,≤i) ∈ Jinit(N(k0i))⟩ for i = 1, 2}
we have that B′ is still an OIM bisimulation for m1,m2. Indeed, by definition init(N(k0i)) ∈
Jinit(N(k0i))⟩; moreover, if ((k1,≤1), (k2,≤2), β) ∈ B′ and (k1,≤1)Jt1⟩(k′1,≤′

1), then it is
true that (k2,≤2)Jt2⟩(k′2,≤′

2) and (k′i,≤′
i) is reachable from init(N(k0i)) for i = 1, 2.

Then, to state that m1 ∼oim m2, it is enough to consider the ordered indexed markings
contained in Jinit(N(k01))⟩ and Jinit(N(k02))⟩ and, by Proposition 5.5, these oims are
finitely many. Moreover, given two reachable ordered indexed markings (k1,≤1) and (k2,≤2),
there are finitely many relations β ⊆ k1 × k2 to consider, as k1 and k2 are finite objects.
Therefore, we can check by exhaustive search whether one of the finitely many possible finite
sets of triples of type ((k1,≤1), (k2,≤2), β) is an OIM bisimulation.

We conclude this section with some comments on the complexity of the decision procedure.
Assume that the net has s places, t transitions and it is h-bounded. Then there will be at
most hs tokens in every reachable marking, and since the possible preorders on hs elements
are 2O(hs·log(hs)), there are at most 2O(hs·log(hs)) ordered indexed markings. Since β is a
binary relation on tokens, it contains at most O((hs)2) elements; therefore, there are at most

2O(hs·log(hs)) possible elements of B. Note that, according to Definition 5.2, it is possible
to construct a labeled transition system where states are ordered indexed markings and
transitions are derived from T . Therefore, it is possible to construct an OIM bisimulation
starting from the labeled transistion system containing init(N(k01)) and init(N(k02)). The
algorithm consumes all reachable states of the transition system; for each pair of triples, it
requires scanning O(t2(hs)2) transitions for the bisimulation game (because the transition
relation on ordered indexed markings is nondeterministic) and O((hs)3) tokens for the

condition on β. Therefore the upper bound for our decision procedure is 2O(hs·log(hs)+log(t)).
Note that our exhaustion algorithm has no worse time complexity than other proposed
algorithms [MP97, JM96].

7. I-causal-net Bisimilarity is Decidable

In the same fashion as in the previous section, we now prove that also i-causal-net bisimilarity
is decidable by defining a new, decidable equivalence based on ordered indexed markings
and showing that it coincides with i-causal-net bisimilarity.

Vol. 19:4 DECIDABILITY OF TWO TRULY CONCURRENT EQUIVALENCES 37:29

As in the previous section, an OIMC bisimulation is a relation composed of triples of
the form ((k1,≤1), (k2,≤2), β), where the related indexed markings must have the same size
(i.e., | k1 | = | k2 |) and the two matching transitions not only must have the same label, but
also must consume individual tokens related via β. However, here we are concerned not
only with precedences in individual token generation, but also in individually matching each
consumed token; this means that we require that the tokens consumed by the first transition
are in a bijective correspondence via β to those consumed by the second one, so that the
same causal nets are really generated. This is a stronger condition than the one of Definition
6.1 which, inspired by Vogler’s proof in [Vog91], only related tokens up-to their generation.

Definition 7.1. (OIMC bisimulation) Let N = (S,A, T) be a P/T net. An OIMC
bisimulation is a relation B ⊆ OIM(N) × OIM(N) × P((S × N) × (S × N)) such that if
((k1,≤1), (k2,≤2), β) ∈ B, then:

• | k1 | = | k2 |
• ∀t1, k′1,≤′

1 if (k1,≤1)Jt1⟩(k′1,≤′
1) (where we assume that k′′1 ∈ k1 ⊟ •t1 such that k′1 =

k′′1 ⊞ t•1), then there exist t2, k
′
2,≤′

2 (where we assume k′′2 ∈ k2⊟ •t2 such that k′2 = k′′2 ⊞ t•2),
and for β′ defined as: ∀p1 ∈ k′1, ∀p2 ∈ k′2

p1 β
′ p2 ⇐⇒

p1 ∈ k′′1 , p2 ∈ k′′2 and p1 β p2

or

p1 ∈ k′1 \ k′′1 , p2 ∈ k′2 \ k′′2

the following hold:
- (k2,≤2)Jt2⟩(k′2,≤′

2) where ((k′1,≤′
1), (k

′
2,≤′

2), β
′) ∈ B and l(t1) = l(t2) and

- β contains a bijection from (k1\k′′1) to (k2\k′′2), i.e., there is a bijection g : k1\k′′1 → k2\k′′2
such that if g(p1) = p2, then p1βp2.

• symmetrically, if (k2,≤2) moves first.

Two markings m1 and m2 of N are OIMC bisimilar, denoted m1 ∼oimc m2, if there exists
an OIMC bisimulation B containing the triple (init(N(k01)), init(N(k02)), k01 × k02) where,
for i = 1, 2, k0i is the initial (i.e., closed) indexed marking such that mi = α(k0i).

Note that two matching transitions must the same preset size (by the condition on
the existence of a bijection g from (k1 \ k′′1) to (k2 \ k′′2)); moreover, since | k1 | = | k2 | and
| k′1 | = | k′2 |, we have that the two matching transitions must have the same postset size,
i.e., | k′1 \ k′′1 | = | k′2 \ k′′2 |.

We prove that OIMC-bisimilarity and i-causal-net bisimilarity coincide on P/T nets, by
first showing that i-causal-net bisimilarity implies OIMC-bisimilarity, and then by showing
that OIMC-bisimilarity implies i-causal-net bisimilarity.

Theorem 7.2. (ICN-bisimilarity implies OIMC-bisimilarity) Let N = (S,A, T) be a
net. Given two markings m01,m02 of N , if m01 ∼icn m02, then m01 ∼oimc m02.

Proof. If m01 ∼icn m02, then there exists an icn-bisimulation R1 containing a triple
(ρ0, C0, ρ0), where C0 contains no events, ρ0 = ∅ is undefined for all b ∈ C0 and, for
i = 1, 2, (C0, ρ0) is a partial process of N(m0i) for m0i (i.e., this is the same as requiring
that |Max(C0)| = |m01| = |m02|). Given k0i closed indexed marking such that m0i = α(k0i)

37:30 A. Cesco and R. Gorrieri Vol. 19:4

for i = 1, 2, let us consider

R2
def
= {((k1,≤1), (k2,≤2), β)|(ρ1, C, ρ2) ∈ R1 and, for i = 1, 2,

πi = (C, ρi) is a partial process of N(k0i) and

init(N(k0i))Jσ, δi|⟩(ki,≤i) is a process sequence for πi and

∀p1 ∈ k1, with b1.δ1(b1) = p1, ∀p2 ∈ k2, with b2.δ2(b2) = p2,

we have that: p1βp2 if and only if •b1 =
•b2}.

If we prove that R2 is an OIMC bisimulation, then, as (ρ0, C0, ρ0) ∈ R1 and, for i = 1, 2,
we have that π0i = (C0, ρ0) is a partial process for N(k0i), init(N(k0i))Jϵ, δ0i|⟩init(N(k0i))
is a process sequence for π0i and ∀b1, b2 ∈ C0 we have •b1 = ∅ = •b2, it follows that
(init(N(k01)), init(N(k02)), k01×k02) ∈ R2 by definition of R2 and, therefore, m01 ∼oimc m02.

Assume ((k1,≤1), (k2,≤2), β) ∈ R2. By symmetry, we consider only the case when
(k1,≤1) moves first. Let (k1,≤1)Jt1⟩(k′1,≤′

1).
By definition of R2, a process sequence init(N(k01))Jσ, δ1|⟩(k1,≤1) for π1 = (C, ρ1) exists.

By Theorem 5.11 it follows that π1 = (C, ρ1)
e
↣ (C ′, ρ′1) = π′

1 where ρ
′
1(e) = t1 and, moreover,

that init(N(k01))Jσe, δ′1|⟩(k′1,≤′
1) is a process sequence for π′

1. Since (ρ1, C, ρ2) ∈ R1, it

follows that π2 = (C, ρ2)
e
↣ (C ′, ρ′2) = π′

2, where ρ′2(e) = t2 and (ρ′1, C
′, ρ′2) ∈ R1. By

definition of R2, a process sequence init(N(k02))Jσ, δ2|⟩(k2,≤2) for π2 exists; moreover,
init(N(k02))Jσe, δ′2|⟩(k′2,≤′

2) is a process sequence for π′
2 (as π2 and π′

2 are partial processes
of N(k02)). Hence, by Theorem 5.11 we have (k2,≤2)Jt2⟩(k′2,≤′

2).
Summing up, we have that (ρ′1, C

′, ρ′2) ∈ R1, for i = 1, 2, π′
i is a partial process of N(k0i),

init(N(k01))Jσe, δ′1|⟩(k′1,≤′
1) is a process sequence for π′

1, init(N(k02))Jσe, δ′2|⟩(k′2,≤′
2) is a

process sequence for π′
2, and moreover, for β′ defined as follows:

∀p1 ∈ k′1, with b1.δ
′
1(b1) = p1, ∀p2 ∈ k′2, with b2.δ

′
2(b2) = p2,

we have that: p1β
′p2 if and only if •b1 =

•b2,

we get that ((k′1,≤′
1), (k

′
2,≤′

2), β
′) ∈ R2 by definition of R2.

Therefore, we have proved that to the move (k1,≤1)Jt1⟩(k′1,≤′
1), (k2,≤2) can reply with

the move (k2,≤2)Jt2⟩(k′2,≤′
2), where ((k′1,≤′

1), (k
′
2,≤′

2), β
′) ∈ R2 and l(t1) = l(t2). Hence,

in order to prove that ((k1,≤1), (k2,≤2), β) is a OIMC bisimulation triple, as required, it
remains to prove that the definition of β′ arising from R2, i.e., the unique β′ such that the
triple ((k′1,≤′

1), (k
′
2,≤′

2), β
′) ∈ R2 for (ρ′1, C

′, ρ′2) ∈ R1, is coherent with the one of Definition
7.1, i.e., it implies both

(1) ∀p1 ∈ k′1 , ∀p2 ∈ k′2

p1 β
′ p2 (as by R2) ⇐⇒

p1 ∈ k′′1 , p2 ∈ k′′2 and p1 β p2 (i)

or

p1 ∈ k′1 \ k′′1 , p2 ∈ k′2 \ k′′2 (ii)

and
(2) there is a bijection g : k1 \ k′′1 → k2 \ k′′2 such that if g(p1) = p2, then p1βp2.

Proof 1)
The two implications are proved separately.
– if δ′1(b1) = p1 β

′ p2 = δ′2(b2) ⇐⇒ •b1 = •b2:
There are four possibilities for p1, p2:

Vol. 19:4 DECIDABILITY OF TWO TRULY CONCURRENT EQUIVALENCES 37:31

- if p1 ∈ k′1 \ k′′1 and p2 ∈ k′2 \ k′′2 : condition (ii) is trivial.
- if p1 ∈ k′′1 and p2 ∈ k′′2 : then δ′1(b1) = δ1(b1) = p1 and δ′2(b2) = δ2(b2) = p2, so that,
since ((k1,≤1), (k2,≤2), β) ∈ R2, the hypothesis •b1 = •b2 ensures that p1 β p2 holds.
Then, condition (i) is satisfied.

- other cases: absurd, because •b1 = •b2.
– if (i) or (ii) hold:

- if (i) holds: since ((k1,≤1), (k2,≤2), β) ∈ R2, we have that p1βp2 iff •b1 = •b2 for
pi = δi(bi) for i = 1, 2. Since p1, p2 do not move, we have that pi = δ′i(bi) for i = 1, 2,
and then, since •b1 =

•b2, the thesis p1 β
′ p2 follows.

- if (ii) holds: Since p1 and p2 are generated, we have that there exists an event e and
two conditions b1 and b2 such that e = •b1 =

•b2 with δ′i(bi) = pi for i = 1, 2. Hence,
p1 β

′ p2.
Proof 2)
Note that, for i = 1, 2, δi maps the preset of e bijectively to the tokens in the preset
of ti. Hence, if g maps each δ1(b) to δ2(b) for each b ∈ •e, then this is a bijection from
k1 \ k′′1 to k2 \ k′′2 . Since •b = •b, then we have that δ1(b) β δ2(b) by the choice of
((k1,≤1), (k2,≤2), β) ∈ R2.

Note that | k′1 | = | k′2 |, as we already have | k1 | = | k2 |, | k1\k′′1 | = | k2\k′′2 | and | k′1\k′′1 | =
| e• | = | k′2 \ k′′2 |. Therefore, not only we have proved that ((k′1,≤′

1), (k
′
2,≤′

2), β
′) ∈ R2, but

also that the triple ((k1,≤1), (k2,≤2), β) is an OIMC bisimulation triple, as required.
As mentioned above, the case in which (k2,≤2) moves first is symmetrical and so omitted.

Therefore, R2 is an OIMC bisimulation, and thus m01 ∼oimc m02.

Theorem 7.3. (OIMC-bisimilarity implies ICN-bisimilarity) Let N = (S,A, T) be a
net. Given two markings m01,m02 of N , if m01 ∼oimc m02, then m01 ∼icn m02.

Proof. If m01 ∼oimc m02, then there exists an OIMC bisimulation R1 containing the tuple
(init(N(k01)), init(N(k02)), k01 × k02), where α(k01) = m01, α(k02) = m02, and k01, k02 are
closed. Let us consider

R2
def
= {(ρ1, C, ρ2)|((k1,≤1), (k2,≤2), β) ∈ R1 and, for i = 1, 2,

πi = (C, ρi) is a partial process of N(k0i) and

init(N(k0i))Jσ, δi|⟩(ki,≤i) is a process sequence for πi and

∀p1 ∈ k1, with b1.δ1(b1) = p1, ∀p2 ∈ k2, with b2.δ2(b2) = p2,

we have that: p1βp2 if and only if •b1 =
•b2}.

Note that (ρ0, C0, ρ0) ∈ R2, where C0 contains no transitions and ρ0 is undefined for all
b ∈ C0, because (init(N(k01)), init(N(k02)), k01 × k02) ∈ R1 and, for i = 1, 2, π0i = (C0, ρ0)
is a partial process of N(m0i) and init(N(k0i))Jϵ, δ0i|⟩init(N(k0i)) is a process sequence for
π0i. Therefore, if we prove that R2 is an icn-bisimulation, since (ρ0, C0, ρ0) ∈ R2, we have
m01 ∼icn m02.

Assume (ρ1, C, ρ2) ∈ R2, where π1 = (C, ρ1) and π2 = (C, ρ2). By symmetry, we consider

only the case when π1 moves first. Let π1 = (C, ρ1)
e
↣ (C ′, ρ′1) = π′

1, where ρ′1(e) = t1.
By definition of R2, there exists a process sequence init(N(k01))Jσ, δ1|⟩(k1,≤1) for π1;

moreover, init(N(k01))Jσe, δ′1|⟩(k′1,≤′
1) is a process sequence for π′

1. Hence, by Theorem
5.11 we have that (k1,≤1)Jt1⟩(k′1,≤′

1).
Since ((k1,≤1), (k2,≤2), β) ∈ R1, it follows that there exist t2, k

′
2,≤′

2, β
′ such that

(k2,≤2)Jt2⟩(k′2,≤′
2), where ((k′1,≤′

1), (k
′
2,≤′

2), β
′) ∈ R1. By definition of R2, there exists

37:32 A. Cesco and R. Gorrieri Vol. 19:4

a suitable process sequence init(N(k02))Jσ, δ2|⟩(k2,≤2) for π2. Hence, by Theorem 5.11,

it follows that there exists some event e such that π2 = (C, ρ2)
e
↣ (C

′
, ρ′2) = π′

2, where
ρ′2(e) = t2 and that init(N(k02))Jσe, δ′2|⟩(k′2,≤′

2) is a process sequence for π′
2.

We want to argue that event e can be chosen to be exactly event e, so that C
′
= C ′.

In fact, as ((k1,≤1), (k2,≤2), β) ∈ R1, we know that there exists a bijection g from the
tokens consumed by t1 to the tokens consumed by t2 such that if g(p1) = p2, then p1βp2.
By definition of R2, we have that if δ1(b1) = p1 and δ2(b2) = p2, then p1βp2 if and only if
•b1 =

•b2. Since the definition of δ2 on conditions generated by the same event is arbitrary
(i.e., any choice is fine), we can partially redefine it by taking δ2(b1) = p2 so that token
p1 ∈ k1 \ k′′1 and token p2 ∈ k2 \ k′′2 , such that g(p1) = p2, are the image, via δ1 and δ2
respectively, of the same condition b1. Iterating this procedure for all the pairs of tokens
in the bijection g, we get that •e = •e. Moreover, the label of e and e is the same, as
l(t1) = l(t2). Finally, since the sets of the generated tokens k′1 \ k′′1 and k′2 \ k′′2 have the
same size and the choice of the postset of e is completely arbitrary, we can take e• = e•.

Summing up, we have proved that ((k′1,≤′
1), (k

′
2,≤′

2), β
′) ∈ R1, for i = 1, 2, π′

i is
a partial process of N(k0i), init(N(k01))Jσe, δ′1|⟩(k′1,≤′

1) is a process sequence for π′
1,

init(N(k02))Jσe, δ′2|⟩(k′2,≤′
2) is a process sequence for π′

2, and, moreover, for β′ defined
as follows:

∀p1 ∈ k′1, with b1.δ
′
1(b1) = p1, ∀p2 ∈ k′2, with b2.δ

′
2(b2) = p2,

we have that: p1β
′p2 if and only if •b1 =

•b2,

we get that (ρ′1, C
′, ρ′2) ∈ R2 by definition of R2. To complete the proof, we need to check

that the definition of β′ in the triple ((k′1,≤′
1), (k

′
2,≤′

2), β
′) ∈ R1, from Definition 7.1 of

OIMC bisimulation, is coherent with the one obtained from R2 for the triple (ρ
′
1, C

′, ρ′2) ∈ R2,
i.e., that the following condition holds:

∀b1 ∈ Max(C ′), ∀b2 ∈ Max(C ′) . p1 ∈ k′1 , p2 ∈ k′2 with δ′1(b1) = p1, δ
′
2(b2) = p2

p1 β
′ p2 (as by R2) ⇐⇒

p1 ∈ k′′1 , p2 ∈ k′′2 and p1 β p2 (i)

or

p1 ∈ k′1 \ k′′1 , p2 ∈ k′2 \ k′′2 (ii)

We prove the two implications separately.

Proof ⇐=) Assume p1 = δ′1(b1) and p2 = δ′2(b2). We prove the thesis by assuming (i) or (ii)

above:
- if p1 ∈ k′′1 and p2 ∈ k′′2 and p1 βp2:
Since the tokens do not move, and also ((k1,≤1), (k2,≤2), β) ∈ R1, we have p1 β p2 ⇔
•b1 =

•b2.
- if p1 ∈ k′1 \ k′′1 and p2 ∈ k′2 \ k′′2 :
Since (C, ρi)

e
↣ (C ′, ρ′i) where ρ′i(e) = ti for i = 1, 2, then t1 and t2 are mapped on the

same event e. Therefore •b1 = e = •b2.
Proof =⇒) Consider the event e, that is an event of C ′ and not of C, such that ρ′1(e) = t1

and ρ′2(e) = t2. There are four possibilities for p1 = δ′1(b1) and p2 = δ′2(b2) such that
•b1 =

•b2:

Vol. 19:4 DECIDABILITY OF TWO TRULY CONCURRENT EQUIVALENCES 37:33

- if p1 ∈ k′′1 and p2 ∈ k′′2 :
Since the tokens did not move, and ((k1,≤1), (k2,≤2), β) ∈ R1, we have •b1 =

•b2 ⇔
p1 β p2. Therefore, condition (i) holds.

- if p1 ∈ k′1 \ k′′1 and p2 ∈ k′2 \ k′′2 :
then p1 β

′ p2 by condition (ii).
- other cases: absurd, since •b1 =

•b2.

As mentioned above, the case in which π2 = (C, ρ2) moves first is symmetrical and so
omitted. Therefore, R2 is an icn-bisimulation and so m01 ∼icn m02.

Theorem 7.4. (OIMC-bisimilarity and ICN-bisimilarity coincide) Let N = (S,A, T)
be a net and m1,m2 two markings of N . m1 ∼oimc m2 if and only if m1 ∼icn m2.

Proof. By Theorems 7.2 and 7.3, we get the thesis.

Theorem 7.5. (ICN-bisimilarity is decidable for finite bounded nets) Given N(m1)
and N(m2) bounded nets, it is decidable to check whether m1 ∼icn m2.

Proof. By Theorem 7.4, it is enough to check whether there exists an OIMC bisimulation B
for the given net N and initial markings m1,m2 (with indexed initial markings k01 and k02).
The proof then follows the same steps of Theorem 6.5.

Note that the complexity of this procedure, being very similar to that discussed at the
end of Section 6, is again 2O(hs·log(hs)+log(t)).

Theorem 7.6. (ICN-bisimilarity is finer than FC-bisimilarity) Let N = (S,A, T) be
a net and m1,m2 two markings of N . If m1 ∼icn m2, then m1 ∼fc m2.

Proof. By Theorem 7.4, we have that ∼icn coincides with ∼oimc. Note that an OIMC
bisimulation is actually also an OIM bisimulation, so that ∼oimc⊆∼oim. By Theorem 6.4, we
have that ∼oim coincides with ∼fc, so that the thesis ∼icn⊆∼fc follows trivially. (Example
3.17 shows that the implication is strict.)

8. Conclusion and Future Research

We have extended Vogler’s proof technique in [Vog91], based on ordered markings, that he
used to prove decidability of (strong) fully-concurrent bisimilarity for safe nets, to bounded
nets by means of indexed ordered markings. The extension is flexible enough to be applicable
also to other similar equivalences, such as i-causal-net bisimilarity, a novel behavioral
equivalence slightly coarser than causal-net bisimilarity [vG15, Gor22]. While decidability of
fully-concurrent bisimilarity for bounded nets was already proved by Montanari and Pistore
[MP97], our result for i-causal-net bisimilarity is, of course, new.

However, the approach of [MP97] is not defined directly on Petri nets, rather it exploits
an encoding of Petri nets into so-called causal automata, a model of computation designed
for handling dependencies between transitions by means of names. In addition to this, their
encoding works modulo isomorphisms, so that, in order to handle correctly the dependency
names, at each step of the construction costly renormalizations are required. Along the same
line, recently history-dependent automata [BMS15a, BMS15b] have been proposed. They are
a much refined version of causal automata, retaining not only events but also their causal
relations. Moreover, they are equipped with interesting categorical properties such as having
symmetry groups over them, which allow for state reductions. As in the former work, the

37:34 A. Cesco and R. Gorrieri Vol. 19:4

latter ones do not work directly on the net and may require minimizations (albeit automatic,
in the case of HD automata). On the contrary, our construction is very concrete and works
directly on the net. Thus, we conjecture that, even if the worst-case complexity is roughly
the same, our algorithm may perform generally better.

Decidability of fully-concurrent bisimilarity using the ordered indexed marking idea was
claimed to have been proved by Valero-Ruiz in his PhD thesis [VR93] for the subclass of
bounded P/T nets where transitions pre- and post-sets are sets. Valero-Ruiz’s approach
differs from ours both in how the proof is conducted and in accuracy. In his work, ordered
indexed markings are defined in such a way that they are always closed, but depending on
the chosen token to remove, there may appear a hole in the indexing (cf. Example 5.3), and
therefore it is stated that the resulting ordered indexed marking may be subject to renaming
to be again closed. This definition does not ensure the individuality of tokens: one token not
used in a transition can be renamed, so that (even if it is not taking part to the transition) its
index before and after the transition is different. Moreover, isomorphism of ordered indexed
marking is defined only on closed ones, therefore it is not clear how the renaming is carried
on. At the same time, it is left implicit how relation ≤ should behave w.r.t. renaming:
since the individuality of tokens cannot be assumed, this is not a trivial detail. Another
critical point is in the definition of the indexed ordered marking-based bisimulation (similar
to Definition 6.1), where the possible renaming of tokens between transition steps is not
taken into account. These inaccuracies undermine Valero-Ruiz’s result on decidability of
fully-concurrent bisimilarity for the subclass of bounded P/T nets where transitions pre-
and post- sets are sets. Therefore, our work can be considered the first one to have proved
it using the ordered indexed marking approach, and on the larger class of bounded nets.

A natural question is whether it is possible to decide these equivalences for larger classes
of nets, notably unbounded P/T nets. However, as Esparza observed in [Esp98], all the
behavioral equivalences ranging from interleaving bisimilarity to fully-concurrent bisimilarity
are undecidable on unbounded P/T nets. So, there is no hope to extend our result about
fc-bisimilarity further. Nonetheless, the proof of undecidability by Janc̆ar [Jan95] does not
apply to (i-)causal-net bisimilarity, so that the decidability of (i-)causal-net bisimilarity over
unbounded P/T nets is open.

We conclude by offering a panorama of decidability results over the spectrum of the
behavioral equivalences fully respecting causality and the branching time, defined over finite
Petri nets, summarized as follows:

∼p ⊆ ∼cn=∼sp ⊆ ∼icn=∼oimc ⊆ ∼sfc ⊆ ∼fc=∼oim

where place bisimilarity ∼p [ABS91, Gor21] is the finest one, then causal-net bisimilarity
∼cn [vG15, Gor22] (which is equivalent to structure-preserving bisimilarity ∼sp [vG15]),
then i-causal-net bisimilarity (which is equivalent to OIMC bisimilarity ∼oimc), then state-
sensitive fully-concurrent bisimilarity ∼sfc [Gor22], and finally fully-concurrent bisimilarity
∼fc [BDKP91] (which is equivalent to OIM bisimilarity ∼oim), which is the coarsest one.

Place bisimilarity ∼p, originally defined in [ABS91], is a behavioral equivalence that,
differently from all the other listed above, is based on relations on the finite set of net
places, rather than on relations on the (possibly infinite) set of reachable markings. This
behavioral relation was recently proved decidable for finite unbounded P/T nets in [Gor21].
In that paper also a novel variant behavioral equivalence, called d-place bisimilarity ∼d, was
introduced; this equivalence, which is coarser than ∼p, finer than fully-concurrent bisimilarity
∼fc, but incomparable with the other equivalences listed above, is the coarsest decidable

Vol. 19:4 DECIDABILITY OF TWO TRULY CONCURRENT EQUIVALENCES 37:35

behavioral equivalence, fully respecting causality and the branching time, defined so far for
finite unbounded P/T nets.

Causal-net bisimilarity ∼cn [vG15, Gor22] is decidable on finite bounded Petri nets. This
can be proved by exploiting its equivalent characterization in terms of structure-preserving
bisimilarity ∼sp [vG15]. In fact, a structure-preserving bisimulation may be seen as a relation
composed of triples of type (marking, bijection, marking), where the first component and
the third component are reachable markings (which are finitely many for finite bounded
nets) and the second component is a bijection between the two (hence, this is one in a set
of at most k! bijections, if the size of the markings is k). Therefore, as the possible triples
can be finitely many for finite bounded P/T nets, there can only be finitely many candidate
relations (which are all finite) to be structure-preserving bisimulations. As mentioned above,
decidability of ∼cn over finite unbounded P/T nets is an open problem. As discussed in
[vG15], causal-net bisimilarity is the coarsest semantics respecting inevitability [MOP89],
i.e., if two systems are equivalent, and in one the occurrence of a certain action is inevitable,
then so is it in the other one.

We have proved that ∼icn is decidable on finite bounded P/T nets by means of the
equivalent characterization in terms of ∼oimc. As mentioned above, decidability of ∼icn over
finite unbounded nets is an open problem. I-causal-net bisimilarity is the coarsest semantics
respecting the structure of the net, i.e., the coarsest bisimulation-based one ensuring that
related markings generate the same causal nets.

State-sensitive fully-concurrent bisimilarity ∼sfc [Gor22] is a slight refinement of fully-
concurrent bisimilarity requiring that the current markings have the same size. Example 3.17
shows that ∼sfc is coarser than ∼icn. Hence, even if ∼sfc is the coarsest equivalence to be
resource-aware, we think that ∼icn is more accurate, as an observer that can really observe
the distributed state should be able to observe the structure of the transitions. It is easy to
observe that ∼sfc can be decided over finite bounded Petri nets, by simply enhancing the
definition of OIM bisimulation: it is enough to add the condition that the current indexed
markings k1 and k2 have the same size, in order to obtain a slightly stronger bisimulation
relation, say OIMS bisimulation, whose induced behavioral equivalence, say ∼oims, is, of
course, decidable as well. Also the decidability of ∼sfc over finite unbounded nets is open,
even if we conjecture that it is undecidable.

Finally, we have proved that fully-concurrent bisimilarity ∼fc, which is the coarsest
equivalence fully respecting causality and the branching time, is decidable for finite bounded
nets by means of its characterization in terms of ∼oim, while, as mentioned above, it is
undecidable for finite P/T nets with at least two unbounded places [Jan95, Esp98].

On BPP nets, i.e., nets whose transitions have singleton preset but whose set of reachable
markings can be infinite, the classification above is largely simplified, as it is possible to
prove [Gor22] that

∼p = ∼cn = ∼icn = ∼sfc = ∼t ⊆ ∼fc = ∼d = ∼ht

where ∼t is team bisimilarity [Gor22], ∼d is d-place bisimilarity [Gor21] and ∼ht is h-team
bisimilarity [Gor22]. All these equivalences can be decided for BPP nets in polynomial time.

As a future work, we plan to extend Vogler’s results in [Vog95] about decidability of
weak fully-concurrent bisimilarity on safe nets with silent moves, to bounded nets with silent
moves, by means of our indexed marking idea.

37:36 A. Cesco and R. Gorrieri Vol. 19:4

Acknowledgements: We would like to thank the anonymous reviewers for useful comments
and suggestions that helped us to improve the presentation of the paper. The second
author wishes to thank Rob van Glabbeek for fruitful discussions on the difference between
causal-net bisimilarity and i-causal-net bisimilarity.

References

[ABS91] C. Autant, Z. Belmesk, and Ph. Schnoebelen. Strong bisimilarity on nets revisited. In Procs.
PARLE ’91, vol. II: Parallel Languages, volume 506 of Lecture Notes in Computer Science, pages
295–312. Springer, 1991. doi:10.1007/3-540-54152-7_71.

[BD87] E. Best and R. Devillers. Sequential and concurrent behaviour in Petri net theory. Theoretical
Computer Science, 55(1):87–136, 1987. doi:10.1016/0304-3975(87)90090-9.

[BDKP91] E. Best, R. Devillers, A. Kiehn, and L. Pomello. Concurrent bisimulations in Petri nets. Acta
Informatica, 28(3):231–264, 1991. doi:10.1007/BF01178506.

[BMS15a] R. Bruni, U. Montanari, and M. Sammartino. A coalgebraic semantics for causality in Petri
nets. Journal of Logical and Algebraic Methods in Programming, 84(6):853–883, 2015. doi:
10.1016/j.jlamp.2015.07.003.

[BMS15b] R. Bruni, U. Montanari, and M. Sammartino. Revisiting causality, coalgebraically. Acta Infor-
matica, 52(1):5–33, 2015. doi:10.1007/s00236-014-0207-9.

[CG21] A. Cesco and R. Gorrieri. Decidability of two truly concurrent equivalences for finite bounded Petri
nets. In Procs. of the 22nd Italian Conf. on Theor. Comp. Scie., volume 3072 of CEUR Workshop
Proceedings, pages 135–149, 2021. URL: https://ceur-ws.org/Vol-3072/paper12.pdf.

[DDNM89] P. Degano, R. De Nicola, and U. Montanari. Partial orderings descriptions and observations of
nondeterministic concurrent processes. In Linear Time, Branching Time and Partial Order in
Logics and Models for Concurrency, volume 354 of Lecture Notes in Computer Science, pages
438–466. Springer, 1989. doi:10.1007/BFb0013030.

[Eng91] J. Engelfriet. Branching processes of Petri nets. Acta Informatica, 28:575–591, 1991. doi:
10.1007/BF01463946.

[Esp98] J. Esparza. Decidability and complexity of Petri net problems: An introduction. In Lectures on
Petri Nets I: Basic Models, volume 1491 of Lecture Notes in Computer Science, pages 374–428.
Springer, 1998. doi:10.1007/3-540-65306-6_20.

[Gor20] R. Gorrieri. Interleaving vs true concurrency: Some instructive security examples. In Procs. Petri
Nets 2020, volume 12152 of Lecture Notes in Computer Science, pages 131–152. Springer, 2020.
doi:10.1007/978-3-030-51831-8_7.

[Gor21] R. Gorrieri. Place bisimilarity is decidable, indeed! CoRR, abs/2104.01392, 2021. arXiv:
2104.01392.

[Gor22] R. Gorrieri. A study on team bisimulation and h-team bisimulation for BPP nets. Theoretical
Computer Science, 897:83–113, 2022. doi:10.1016/j.tcs.2021.09.037.

[GR83] U. Goltz and W. Reisig. The non-sequential behaviour of Petri nets. Information and Control,
57(2):125–147, 1983. doi:10.1016/S0019-9958(83)80040-0.

[Jan95] P. Jančar. Undecidability of bisimilarity for Petri nets and some related problems. Theoretical
Computer Science, 148(2):281–301, 1995. doi:10.1016/0304-3975(95)00037-W.

[JM96] L. Jategaonkar and A. R. Meyer. Deciding true concurrency equivalences on safe, finite nets.
Theoretical Computer Science, 154(1):107–143, 1996. doi:10.1016/0304-3975(95)00132-8.

[MM90] J. Meseguer and U. Montanari. Petri nets are monoids. Information and Computation, 88:105–155,
1990. doi:10.1016/0890-5401(90)90013-8.

[MMS97] J. Meseguer, U. Montanari, and V. Sassone. On the semantics of place/transition Petri
nets. Mathematical Structures in Computer Science, 7(4):359–397, 1997. doi:10.1017/
S0960129597002314.

[MOP89] A. W. Mazurkiewicz, E. Ochmanski, and W. Penczek. Concurrent systems and inevitability.
Theoretical Computer Science, 64:281–304, 1989. doi:10.1016/0304-3975(89)90052-2.

[MP97] U. Montanari and M. Pistore. Minimal transition systems for history-preserving bisimulation. In
Procs. STACS’97, volume 1200 of Lecture Notes in Computer Science, pages 413–425. Springer,
1997. doi:10.1007/BFb0023477.

https://doi.org/10.1007/3-540-54152-7_71
https://doi.org/10.1016/0304-3975(87)90090-9
https://doi.org/10.1007/BF01178506
https://doi.org/10.1016/j.jlamp.2015.07.003
https://doi.org/10.1016/j.jlamp.2015.07.003
https://doi.org/10.1007/s00236-014-0207-9
https://ceur-ws.org/Vol-3072/paper12.pdf
https://doi.org/10.1007/BFb0013030
https://doi.org/10.1007/BF01463946
https://doi.org/10.1007/BF01463946
https://doi.org/10.1007/3-540-65306-6_20
https://doi.org/10.1007/978-3-030-51831-8_7
http://arxiv.org/abs/2104.01392
http://arxiv.org/abs/2104.01392
https://doi.org/10.1016/j.tcs.2021.09.037
https://doi.org/10.1016/S0019-9958(83)80040-0
https://doi.org/10.1016/0304-3975(95)00037-W
https://doi.org/10.1016/0304-3975(95)00132-8
https://doi.org/10.1016/0890-5401(90)90013-8
https://doi.org/10.1017/S0960129597002314
https://doi.org/10.1017/S0960129597002314
https://doi.org/10.1016/0304-3975(89)90052-2
https://doi.org/10.1007/BFb0023477

Vol. 19:4 DECIDABILITY OF TWO TRULY CONCURRENT EQUIVALENCES 37:37

[Old91] E. R. Olderog. Nets, Terms and Formulas, volume 23 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1991. doi:10.1017/CBO9780511526589.

[RT88] A. Rabinovich and B.A. Trakhtenbrot. Behavior structures and nets. Fundamenta Informaticae,
11(4):357–403, 1988. doi:10.3233/FI-1988-11404.

[vG05] R. J. van Glabbeek. The individual and collective token interpretations of Petri nets. In Procs.
Concur 2005, volume 3653 of Lecture Notes in Computer Science, pages 323–337. Springer, 2005.
doi:10.1007/11539452_26.

[vG15] R. J. van Glabbeek. Structure preserving bisimilarity, supporting an operational Petri net
semantics of CCSP. In Correct System Design — Symposium in Honor of Ernst-Rüdiger Olderog
on the Occasion of His 60th Birthday, volume 9630 of Lecture Notes in Computer Science, pages
99–130. Springer, 2015. doi:10.1007/978-3-319-23506-6_9.

[vGG89] R. J. van Glabbeek and U. Goltz. Equivalence notions for concurrent systems and refinement of
actions. In Procs. MFCS’89, volume 379 of Lecture Notes in Computer Science, pages 237–248.
Springer, 1989. doi:10.1007/3-540-51486-4_71.

[vGGS11] R. J. van Glabbeek, U. Goltz, and J.-W. Schicke. On causal semantics of Petri nets, 2011.
Informatik Bericht Nr. 2011-06, Technische Universität Braunschweig, also available as CoRR
abs/2103.00729. URL: https://arxiv.org/abs/2103.00729.

[Vog91] W. Vogler. Deciding history preserving bisimilarity. In Automata, Languages and Programming
(ICALP ’91), volume 510 of Lecture Notes in Computer Science, pages 495–505. Springer, 1991.
doi:10.1007/3-540-54233-7_158.

[Vog95] W. Vogler. Generalized om-bisimulation. Information and Computation, 118(1):38–47, 1995.
doi:10.1006/inco.1995.1050.

[VR93] V. Valero-Ruiz. Decibilidad de problemas sobre redes de Petri temporizadas. PhD thesis, Universi-
dad Complutense de Madrid, Madrid, 1993. URL: https://eprints.ucm.es/id/eprint/
3439/.

This work is licensed under the Creative Commons Attribution License. To view a copy of
this license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to
Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher
Strasse 2, 10777 Berlin, Germany

https://doi.org/10.1017/CBO9780511526589
https://doi.org/10.3233/FI-1988-11404
https://doi.org/10.1007/11539452_26
https://doi.org/10.1007/978-3-319-23506-6_9
https://doi.org/10.1007/3-540-51486-4_71
https://arxiv.org/abs/2103.00729
https://doi.org/10.1007/3-540-54233-7_158
https://doi.org/10.1006/inco.1995.1050
https://eprints.ucm.es/id/eprint/3439/
https://eprints.ucm.es/id/eprint/3439/

	1. Introduction
	2. Basic Definitions
	3. Causality-based Semantics
	3.1. Causal Nets and Processes
	3.2. Causal-net Bisimilarity and Fully-concurrent Bisimilarity
	3.3. I-causal-net Bisimilarity

	4. Indexed Marking Semantics
	5. Ordered Indexed Marking Semantics
	5.1. Ordered indexed marking and causality-based semantics

	6. Fully-concurrent Bisimilarity is Decidable
	7. I-causal-net Bisimilarity is Decidable
	8. Conclusion and Future Research
	References

