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Abstract 

This paper proposes an improved 2D arc-star-shaped structure with a negative Poisson’s ratio, whereas the 

analytical and finite element analyses were performed. Furthermore, the model of the improved 2D arc-star-shaped 

structure was produced by using selective laser sintering additive technology and scanned after that by using the 

optical measurement technique on the ATOS COMPACT SCAN 5M scanner to obtain experimental 

measurements. It has been observed that for the same geometric parameters, a higher value of the negative 

Poisson’s ratio is obtained compared to the initial 2D arc-star structure with the most often lower value of relative 

density, which directly leads to lower consumption of the material. 
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1. Introduction 

Poisson's ratio is defined as the ratio of transverse and axial material deformations under the action of axial static 

forces. In the case of bulk-form of the materials, the value of Poisson's ratio is positive. However, the industry's 

need for ultra-lightweight structures has led to the emergence of a new group of artificially designed materials 

known as mechanical metamaterials. These materials, in addition to forming an ultra-light structure, can provide 

the same, better, or give some new properties to the structure with their design. Additive manufacturing has a 

special and significant role in the creation and development of mechanical metamaterials. The development of 

these technologies allowed designers great freedom when constructing structures. The possibility to assign some 

new properties to ultra-light structures has led to the emergence of a new group of metamaterials that have a 

negative Poisson's ratio (NPR in the further). Mechanical metamaterials with NPR, have the main character that 

under the effect of axial static pressure forces, they have transverse shrinkage. Because of this characteristic, they 

have a very good ability to absorb energy, so they are widely used in various branches of industry such as the 

aviation industry, the space industry, biomedicine, the sports industry, etc. Mechanical metamaterials with NPR 

consist of an "auxetic" structure. First of all, there were different forms of auxetic honeycomb structures [1–6]. 

Since then, there have been many researches, analytical, numerical, or experimental, in which the redesign of the 

auxetic structure of the honeycomb is carried out to increase the value of NPR or energy absorption capacity [7–

29]. 

In addition to the auxetic honeycomb structures, other structures can provide us with NPR due to their shape. An 

example of such a structure is a star-shaped structure which, due to its shape, provides NPR values in both vertical 

and horizontal directions. In references [30–32], various shapes of star structures were made by using additive 

manufacturing, and then their mechanical properties and NPR values were examined. Jin et al. [33] studied the 

mechanical properties of a structure obtained by combining star and auxetic honeycomb structures. Liu et al. [34] 

proposed a novel star-shaped cellular structure with great elastic properties as a candidate for multiple morphing 

applications. Ai and Gao [35] developed a new analytical model for three types of 2D periodic star-shaped auxetic 

structures that possess orthotropic symmetry and exhibit NPR. Li et al. [36] proposed a novel 2D metamaterials 

with variable values of NPR as well as with negative thermal expansion. Zhang et al. [37] analyzed a new 2D arc-



star structure (2D-AS in the further) analytically, numerically, and experimentally, based on the traditional star 

structure, which can achieve negative, zero, and positive values of Poisson's ratio. 

This research is based on 2D-AS [37], to obtain higher NPR values while consuming less material by modifying 

the structure's geometry. The goal is to initially establish a relation between the geometric parameters of 2D-AS 

and its improved version (i2D-AS in the further). After that, an analytical model will be formed to obtain Poisson's 

ratio. The established analytical model will be verified by applying the finite element method (FEM in the further) 

as well as deformation measurements on the real model obtained by selective laser sintering technology (SLS in 

the further). Finally, it is interesting to compare the NPR values of 2D-AS and i2D-AS to judge whether the 

proposed changes to the 2D-AS geometry gave the desired result. 

2. Design of the improved 2D-AS structure 

Figure 1(a-c) describes the idea of the redesign of the representative volume element (RVE in the further) of the 

2D-AS structure. Namely, the original RVE of the 2D-AS structure shown in Fig. 1(a) was modified by removing 

the straight parts of the structure as well as the part of the arc of radius r, both painted in red on Fig. 1(b) and at 

the same time replaced it with the black colored arc shown in the same figure. As a result, the RVE of the i2D-AS 

structure shown in Fig. 1(c) was obtained. 

 

Fig. 1. RVE:  (a) 2D-AS [37]; (b) The redesign of the 2D-AS; (c) i2D-AS. 

The following geometric parameters are common for both RVE of the structures, 2D-AS and i2D-AS (see Fig. 2): 

the length L, the height h, depth d, the thickness t, the arc radius r, the arc angle θ, the total length of the structure 



along the horizontal and vertical direction Lx and Ly, respectively, as well as the coefficients a and b that must 

satisfy the following conditions 0<a<1 and 0<b<1.  

Moreover, the parameters θ and r are defined in reference [37] as follows: 

, (1) 

. 
(2) 

 

In addition to the mentioned common parameters, for the description of the RVE of the i2D-AS structure it is 

necessary to introduce some new parameters shown in Figs. 2(b) and (c): the arc of the new radius R, the arc angle 

ψ of the truncated radius r, the angle φ representing the difference between the old angle θ  and the new angle ψ 

of radius r, as well as the angle α formed by the lines DE and AE. 

 
Fig. 2. Geometric parameters of the RVE: (a) 2D-AS [37]; (b) i2D-AS; (c) detailed view of the i2D-AS. 

!"#$%"& !"
#"

θ =

!"#
!"#
θ

=



Looking at the triangle AED in Fig. 2(c), first by projecting the side AE onto the horizontal direction, we obtain: 

. (3) 

Also, applying the sine theorem to this triangle yields: 

 (4) 

By solving the previous two equations, the unknown parameters R, j, and a can be expressed as a function of the 

above-defined parameters. Due to the existence of trigonometric functions, these dependencies are not easy to 

show explicitly in symbolic form, but they can be determined later in numerical examples by specifying numerical 

values of the input parameters h, ah, and bh. 

Finally, let's note that the angle y can be obtained by subtracting the angle j from the angle q: 

. (5) 

Based on all previously defined geometric parameters, the relative density of the i2D-AS can be determined as 

follows: 

. (6) 

 

3.  Poisson’s ratio of the i2D-AS 

3.1 Analytical model 

To study the Poisson’s ratio of i2D-AS, it is sufficient to analyze its RVE, which is extracted from the structure as 

shown in Fig. 3. 
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Fig. 3. Extracting of RVE from the i2D-AS. 

The following assumptions of RVE will be used when creating the analytical model: the deformations are small 

so they belong to the elastic area, the thickness of RVE is much smaller compared to its length, and the RVE is a 

part of an infinite structure so there is no need for considering boundary effect.  

Due to the symmetry of the load and the RVE itself, further analysis can be carried out on the half of the RVE, as 

it is shown in Fig. 4. 

 

Fig. 4. The half of the RVE from the i2D-AS. 

Now, the previously presented half of the RVE was divided into two quarters, left and right, as shown in Fig. 5. 

The influence of the left quarter of the RVE on the right one, and vice versa, is described by the internal reaction 



forces YO and YO’  and reaction couple of moments MO and MO’ which occur in pairs and have the same intensity 

but opposite directions. 

 

Fig. 5. Dividing one-half of the RVE of the i2D-AS into two quarters. 

The values of reaction force YO and a couple of moments Mo can be determined from the condition that the vertical 

displacement, as well as the angle of rotation of points O and O', are equal, so by applying Castigliano's second 

theorem, we get : 

 (7) 

 

 (8) 

where E is Young’s modulus, I represents the RVE cross-section moment of inertia, 

  (9) 

represents the final values of angles δi, and 
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  (10) 

is the radius of the three introduced fields. 

Bending moments in all of the introduced fields can be determined as: 

  (11) 

  (12) 

where: 

  (13) 

  (14) 

 (15) 

By substituting the expressions (9-15) into equations (7) and (8) and solving for the unknowns YO and MO, we get: 

 , (16) 

. (17) 

Since the values of the reactions YO and MO have now been determined, when calculating the displacement of 

point O only a quarter of the RVE can be observed. Here, the right quarter of the RVE from the Fig. 5 is selected.  

By doing this, only the downward vertical force YO, along with the moment MO, now acts at point O, as shown in 

Fig. 6. Furthermore, a fictitious force XO=0 is introduced at point O to simplify the determination of its horizontal 

displacement by using the Castigliano's second theorem. 
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Fig. 6. The horizontal and vertical displacement of the point O of the i2D-AS. 

Now, the horizontal and vertical displacement of point O should be obtained as: 

 (18) 

 (19) 

where  

 (20) 

is shear modulus,  is Poisson’s ratio of the bulk-form of the material of the RVE, 

 (21) 

represent the area and moment of inertial of the RVE cross-section, respectively, and  is the shear coefficient. 

Bending moments in all of the three introduced fields shown in Fig. 6 can be determined as: 

 (22) 
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where 

, (23) 

, (24) 

. (25) 

Note that values  (i=1,2,3) are determined above, in equations (13-15). 

Axial and transverse forces in all introduced fields were obtained by projecting the forces onto the tangent and 

normal directions, respectively, so they read: 

, (26) 

, (27) 

, (28) 

, (29) 

, (30) 

. (31) 

Note that after calculating the integrals (18) and (19), it should be taken into account that Xo=0, and that the 

vertical reaction force Yo and the reaction couple of moment Mo are given by the expressions (16) and (17), 

respectively. 

Finally, the Poisson's ratio of the observed RVE can be determined by using the following expression [37]: 

. (32) 
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3.1.1 Numerical example 

This example will consider a comparison of the values of the Poisson’s ratio n and relative density rr of 2D-AS 

and i2D-AS for various values of geometric parameters ah and bh. From now on, the following numerical values 

of the geometric and material parameters will be used: L=30 mm, h=25 mm, t=2 mm, d=3 mm, and =0.4. 

Table 1 shows the values of the n  and rr of the 2D-AS and i2D-AS whereas the value of the parameter bh is fixed 

at 12.5 mm and the value of parameter ah increases from 6 mm to 22 mm with step equal to 2 mm. All values of 

NPR of the i2D-AS are higher relative to the corresponding ones of the 2D-AS. What is particularly important to 

emphasize is that the relative densities rr  of i2D-AS are lower relative to those of 2D-AS for ah=6 mm up to 

ah=18 mm where these values are equal for both structures. Therefore, from ah=6 mm to ah=22 mm, i2D-AS 

gives higher values of NPR, while the relative density is lower compared to 2D-AS. The lower value of relative 

density leads to a lighter structure and less material is needed for its production. For values of ah greater than 

18mm, 2D-AS has a slightly lower relative density relative to i2D-AS, although the value of the NPR of i2D-AS 

is still slightly higher.  

 A graphical presentation of the dependence of Poisson's ratio n and relative density rr on ah for 2D-AS and i2D-

AS is shown in Fig. 7. 

Table 1. 
Dependence of n and rr  on the parameter ah of 2D-AS and i2D-AS. 

ah/mm 6 8 10 12 14 16 18 20 22 

n 
2D-AS 0.1051 -0.0065 -0.1205 -0.2328 -0.3387 -0.4339 -0.5145 -0.5770 -0.6181 

i2D-AS -0.0208 -0.0941 -0.1753 -0.2635 -0.3553 -0.4451 -0.5258 -0.5898 -0.6307 

rr 
2D-AS 0.2001 0.1929 0.1872 0.1827 0.1791 0.1761 0.1736 0.1716 0.1698 

i2D-AS 0.1605 0.1664 0.1708 0.1735 0.1748 0.1750 0.1742 0.1727 0.1709 

 

!ν



  

Fig. 7. Comparison of the 2D-AS and i2D-AS depence on parameter ah for: (a) Poisson’s ratio n, (b) relative 
density rr. 

 

Table 2 shows the values of the n and rr  of the 2D-AS and i2D-AS whereas the value of the parameter ah is fixed 

at 12.5 mm and the value of parameter bh increases from 6 mm to 16 mm with step equal to 2 mm. Here, too, the 

value of the Poisson’s ratio n of the i2D-AS is higher than 2D-AS for each value of bh.  Also, the relative density 

rr of the i2D-AS is lower for bh from 10 to 16 mm, but it is higher for bh from 6 to 8 mm. A graphical 

representation of the dependence of Poisson's ratio n and relative density rr on parameter bh for 2D-AS and i2D-

AS is shown in Fig. 8. 

Table 2. 
Dependence of n and rr  on the parameter bh of 2D-AS and i2D-AS. 

bh/mm 6 8 10 12 14 16 

n 
2D-AS 0.2180 0.0766 -0.0717 -0.2226 -0.3690 -0.5008 

i2D-AS 0.1711 0.0439 -0.0942 -0.2462 -0.4095 -0.5738 

rr 
2D-AS 0.1437 0.1541 0.1657 0.1784 0.1919 0.2062 

i2D-AS 0.1496 0.1576 0.1650 0.1722 0.1794 0.1868 

 



  

Fig. 8. Dependence of 2D-AS and i2D-AS on parameter bh for: (a) Poisson’s ratio n, (b) relative density rr. 
 
A better insight into the dependence of Poisson's ratio n and relative density rr on the parameters ah and bh of 

i2D-AS can be obtained by observing the 3D graphs shown in Figure 9 (a) and (b), respectively. As the value 

of parameters ah and/or bh increases, so does the value of NPR. The situation is somewhat different with relative 

density rr. With the increase of the parameter bh, at any value ah, the relative density rr increases monotonically. 

On the other hand, at any value of bh, up to some value of ah, the value of relative density increases. After that, 

it decreases. The position of the extreme value of the curve, in which the relative density begins to decrease 

even though the parameter ah continues to increase, is different for each bh.  

 

  

Fig. 9. i2D-AS: (a) dependence of n  on the parameters ah and bh, (b) dependence of rr  on the parameters 
ah and bh. 
 
 
 

 

 



3.2 Finite element method 

Here will be performed displacement and stress analysis of the i2D-AS by using the FEM in the ANSYS software. 

All of the geometric parameters of the structure are the same as in the previous numerical example. It was assumed 

that the material of the structure is polyamide 12 with Young’s modulus E=1500 MPa and density ρ=0.92 g/cm3. 

The FE mesh contains mainly Hex20 - 20 node hexahedral elements and some 15 node tetrahedral - Wed 15 

elements with a maximal element size of 0.2 mm. 

Figure 10 shows the deformation plan, to indirectly determine the Poisson's ratio n of the observed RVE by using 

the expression (32).  It is assumed that the RVE is clamped to a stationary base at point A and that at point B the 

vertical displacement fy=3 mm is given. By following the change in the position of points C and D into the C' and 

D', the horizontal deformation fx of the entire structure was obtained, as shown in Fig. 10. 

 

Fig. 10. Deformation plan of the RVE of i2D-AS  

Figure 11 (a-d) shows the deformed i2D-AS for the various values of parameter ah, while Fig. 12 shows the 

deformed i2D-AS for various parameter bh. By analyzing these figures, it can be concluded that for the same 



value of the specified vertical displacement fy=3 mm, with an increase the value of the parameters ah and/or bh, 

the higher values of the horizontal displacement fx occur. 

  

(a) (b) 

  

(c) (d) 

Fig. 11.  Plane deformation of i2D-AS for various values of parameter ah and bh=12.5 mm: 

 (a) ah=8 mm, (b) ah=12 mm, (c) ah=16 mm, (d) ah=20mm. 

 

 



  

(a) (b) 

  

(c) (d) 

Fig. 12.  Plane deformation of i2D-AS for various values of parameter bh and ah=12.5 mm:  

(a) bh=8 mm, (b) bh=10 mm, (c) bh=12 mm, (d) bh=14mm. 

 

 

 

 

 



The comparison of the obtained values of Poisson’s ratio ν by FEM and the analytical results for the various values 

of parameters ah and bh are shown in Table 3.  A satisfactory match of the results can be observed. 

Table 3. 
The values of the Poisson’s ratio n  of i2D-AS obtained by the analytical model and FEM for various values of 
the parameters ah and bh. 

n 

Method 
ah/mm (bh=12.5mm)  bh/mm (ah=12.5mm) 

8 12 16 20  8 10 12 14 

Analytical -0.0941 -0.2635 -0.4451 -0.5898  0.0439 -0.0942 -0.2462 -0.4095 

FEM 
 

-0.0767 -0.2524 -0.4412 -0.5923  0.0584 -0.0808 -0.2353 -0.4021 

 

Finally, an analysis of equivalent (von-Mises) stress distribution on i2D-AS under vertical load was performed. 

The results for various parameters ah and bh are shown in Figs. 13 and 14, respectively. Due to the modified shape 

of the i-2D-AS compared to the original 2D-AS, there are fewer corners on the structure, so the possibility for the 

appearance of stress concentration regions is minimized. 

The maximum values of the equivalent stress increase with the increase of parameters ah and bh, except when the 

value of parameter ah goes from 8mm to 12mm, where there is a slight drop in maximum values of equivalent 

stress. 

 

 

 

 

 

 

 



 

 

 

  
(a) (b) 

  
(c) (d) 

Fig. 13. Equivalent (von-Mises) stress distribution under the vertical load of i2D-AS for various values of 
parameter ah and bh=12.5 mm: (a) ah=8 mm, (b) ah=12 mm, (c) ah=16 mm, (d) ah=20mm. 

 

 

 



 

 

 

 

 

 
(a) (b) 

  
(c) (d) 

Fig. 14. Equivalent (von Mises) stress distribution under the vertical load of i2D-AS for various values of 
parameter bh and ah=12.5 mm: (a) bh=8 mm, (b) bh=10 mm, (c) bh=12 mm, (d) bh=14 mm. 

 

 

 



3.3 Experimental verification 

The specimens used for analysis in this study were produced using an EOS Formiga P100 machine (EOS 

GmbH, Krailling, Germany). The material used for specimen production was PA 2200, which is a 

polyamide 12. The laser-sintered specimens were produced from recycled powder mixed with 50% of 

new powder. The samples were manufactured using a 30 W power RF-excited CO2 laser with 10.6 μm 

wavelength and 254 μm diameter of laser beam. The powder was preheated to 172°C, the laser beam 

power was 21 W, the laser scan speed was 2500 mm/s and the thickness of individual PA2200 layers 

was 100 μm. 

For experimental measurements, seven groups of the i2D-AS specimens with five replicas of each were 

produced. In the first four groups, the value of the parameter bh is fixed to 12.5 mm, while the parameter 

ah takes the values from 8mm to 20 mm with steps equal to 4 mm. In the last three groups the value of 

the parameter ah is fixed to 12.5 mm, while the parameter bh takes the values of 8 mm, 12 mm, and 16 

mm. The other geometric parameters of the produced specimens are the same as in the previous 

numerical examples. 

The experimental measurements were carried out by using the optical measurement technique on the ATOS 

COMPACT SCAN 5M scanner, as shown in Fig. 15. The camera was placed in the 300 mm position, while the 

measurement was performed by using a measuring volume of 300x230x230 mm. Previously, the scanner was 

calibrated according to the CP40/MV320 standard. Here, each of the structures was scanned twice, in the 

undeformed and deformed state.  



 

Fig. 15. The scanning process of i2D-AS 

It’s an idea to deform each of the specimens in the direction of the y-axis by using the clamp-on vise, as shown in 

Fig. 16.  First of all, it is necessary to determine the exact dimensions Lx and Ly of the undeformed structure by 

scanning.  After introducing an arbitrarily small displacement fy in the vertical direction, by repeating the scanning 

process, we measure the quantities Lx’ and Ly’. 

Now, the values of the deformation of the specimen in the horizontal and vertical directions can be determined as: 

 (33) 

Finally, the value of the Poisson’s ratio should be obtained by using the expression (32). 
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(a) (b) 

Fig. 16. The deformation process of i2D-AS: (a) undeformed, (b) deformed. 

The example of the experimental results obtained by the measurements is shown in Fig. 17. First, Fig. 17(a) shows 

the scanned undeformed replica #1 of the specimen with parameters ah=8 mm and bh=12.5 mm, where the values 

of the parameters Lx and Ly can be read. Then, Fig. 17(b) shows the scanned deformed replica #1 of the same 

specimen from which the values of Lx' and Ly' are read. Applying expressions (32) and (33), Poisson’s ratio of 

replica #1 of the considered specimen can be determined. 



 
 

(a) (b) 

Fig. 17. The example of the scanned replica #1 of i2D-AS specimen for ah=8 mm and bh=12.5 mm: (a) 

undeformed, (b) deformed. 

Table 5 contains the values of the Poisson’s ratio n  obtained by the procedure explained above. The values are 

obtained for all of the five measured replicas of each group of specimens. At the bottom of the table, the average 

values and standard deviation of the Poisson’s ratio have been obtained. These average values of the Poisson’s 

ratio will be used in the further analysis. 

 

 

 

 

 

 



Table 5 
The values of the Poisson’s ratio n of i2D-AS obtained by the experimental measurement for various values of 
the parameters ah and bh. 

Replica 
ah/mm (bh=12.5mm)  bh/mm (ah=12.5mm) 

8 12 16 20  8 12 16 

#1 -0.0844 -0.2553 -0.4826 -0.6254  0.0614 -0.2391 -0.5982 

#2 -0.0722 -0.2762 -0.4881 -0.6468  0.0670 -0.2359 -0.5978 

#3 -0.0852 -0.2824 -0.4617 -0.6387  0.0582 -0.2567 -0.5872 

#4 -0.0830 -0.2754 -0.4723 -0.6184  0.0659 -0.2437 -0.5709 

#5 -0.0849 -0.2747 -0.4937 -0.6411  0.0449 -0.2549 -0.5772 

The average 
value of ν -0.0820 -0.2728 -0.4797 -0.6341  0.0595 -0.2461 -0.5863 

Standard 
deviation 0.0055 0.0103 0.0128 0.0118  0.0089 0.0093 0.0122 

 

 

 

Table 6 shows the comparison of the values of the Poisson’s ratio n  obtained by using the analytical model, FEM 

as well as the experimental measurement for the various values of parameters ah and bh. A good match of the 

results from the above three sources can be observed. In the parentheses are given the relative errors of  FEM and 

experimental results relative to analytical ones which are considered here as benchmark results. This error is within 

satisfactory limits when it comes to larger values of parameters ah or bh. Somewhat higher relative error values 

occur at ah=8mm and bh=8 mm. The assumption is that the reason for this is the very low values of Poisson's 

ratio, almost close to zero. Furthermore, a graphical representation of this comparison is given in Fig. 18 (a) and 

(b). 

 

 

 



 

 

 

Table 6 
The values of the Poisson’s ratio n of i2D-AS obtained by the analytical model, FEM, and experimental 
measurement for various values of the parameters ah and bh. 

 

Method 
ah/mm (bh=12.5mm)  bh/mm (ah=12.5mm) 

 8 12 16 20  8 12 16 

n 

Analytical -0.0941 -0.2635 -0.4451 -0.5898  0.0439 -0.2462 -0.5738 

FEM 
-0.0767 

(18.49%) 

-0.2524 

(4.21%) 

-0.4412 

(0.88%) 

-0.5923 

(0.42%) 
 

0.0584 

(33.03%) 

-0.2353 

(4.43%) 

-0.5710 

(0.49%) 

Experiment -0.0820 

(12.86%) 

-0.2728 

(3.53%) 

-0.4797 

(7.77%) 

-0.6341 

(7.51%) 
 

0.0595 

(35.54%) 

-0.2461 

(0.04%) 

-0.5863 

(2.18%) 

 

 

 

  

Fig. 18. Comparison of the Poisson’s ratio n of i2D-AS obtained by the analytical model, FEM, and 
experimental measurement: (a) bh=12.5 mm, (b) ah=12.5 mm. 

 

 



4. Conclusions 

In this paper, a detailed analytical model of the improved 2D arc-star structure was developed. It has been observed 

that for the same geometric parameters, a higher value of the NPR is obtained compared to the initial 2D arc-star 

structure [37] with the most often lower value of relative density, which directly leads to a lower consumption of 

the material. Also, the proposed analytical model was verified through checking with FEM as well as through 

measuring deformations on a real printed model using a 3D scanner. There is a good match of results from these 

three sources, which is what the analytical model is verified. This opens the door for further research regarding 

the optimization of geometric values or parameters of the structure material to maximize the value of the NPR of 

the structure which will be the subject of further research by the author in the future.  
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