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A B S T R A C T   

Many industrial facilities consisting of multiple components are prone to failure interactions and degradation 
interactions. In such systems, these interactions are frequently characterized by failure dependences that may 
accelerate the degradation of components. Due to system layout and functional interactions, not all components 
have the same failure dependence. In the general context of complex failure dependences in dependent multi- 
component systems, heterogeneous failure dependences further complicate the maintenance activities during 
operation. The present study developed a comprehensive framework for evaluating heterogeneous failure de-
pendences and a maintenance optimization model by Markov processes for multi-component systems. The 
proposed method is applied to a practical case consisting in a parallel subsea transmission system to illustrate the 
effects of heterogeneous failure dependences. The results show that the heterogeneous failure dependences 
framework and the maintenance model guide the optimization of maintenance strategies to maximize the system 
availability and minimize the maintenance cost.   

1. Introduction 

Modern industrial systems usually consist of several components that 
need to operate simultaneously to accomplish the overall mission. As the 
systems become more complex with more interactions among the 
components, it is essential to pay close attention to the failure de-
pendences existing between them. Failure dependences exist in such 
systems, meaning that the failure of one component may have influence 
on the failures of the other components, usually increasing their failure 
probabilities. The malfunction or degradation of the first component is 
defined as the triggering event of a failure cascading process. The failed 
component is defined as the triggering component. In some cases, failure 
dependence may not manifest as an immediate termination of compo-
nent functions, but as a gradual degradation in the performance of those 
components. Thus, the failure dependences can be classified as [1,2]: 

• Type I failure dependence: A triggering event results in direct dam-
age. In such a context, a component could fail due to a combined 
effect of its normally inherent degradation, and the shock from the 
failures of other components.  

• Type II failure dependence: A triggering event redistributes the total 
working load on the overall system. In such a context, a component 
could fail due to a combined effect of its normally inherent degra-
dation, and the accelerated degradation caused by the failures or 
malfunctions of other components. 

These two types of failure dependences can take place within the 
same system [3]. Thus, it is necessary to consider both in reliability 
analysis and maintenance. 

In reliability analysis, degradation models are generally developed 
based on the performance data of a system or component over time to 
predict how it will degrade in the future. By considering failure 
dependence in degradation models, it is possible to have a better un-
derstanding on the underlying mechanisms of degradations and failures 
in complex systems. This can lead to more accurate models reflecting the 
reality. Therefore, numerous studies have been conducted so far inte-
grating failure dependence in degradation models for reliability analysis 
and maintenance optimization. These models are roughly divided into 
three categories: multivariate joint distribution-based models, copula- 
based models, and degradation rate interaction (DRI) models [4,5]. 
Multivariate joint distribution-based models use joint probability dis-
tribution to present the dependence of degradation paths [6,7]. 
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Copula-based method models the dependence between components in 
the combination of multivariate dependence with univariate marginals 
[8–10]. These two approaches have one common property that they use 
a multivariate distribution or copula to describe the joint aging process. 
Different from the above two methods, the DRI models manifest the 
degradation process of one component affected by the degradation of 
other components, which is more in accordance with the actual degra-
dation of a dependent multi-component system [4]. The DRI model was 
firstly proposed by Bian and Gebraeel [11] to analyze the stochastic 
degradation process and prognostics of a multi-component system. 
Hafsa et al. [12] defined a degradation effect coefficient and presented a 
stochastic methodology by modeling the DRI effects of multi-component 
interaction in the remaining useful life (RUL) calculation. Considering 
Based the influence of degradation interaction and uncertainty, Shao 
et al. [13] contributed a multi-stage model-based framework to better 
describe the degradation acceleration process and evaluate the system 
RUL. 

Given that the degradation status can be observed or measured, 
condition-based maintenance (CBM) is applied to many technical sys-
tems to keep system reliability while reducing maintenance cost. The 
Markov chain has been used for modeling the interactions between 
degradation processes and maintenance activities [14–18]. In these 
studies, a continuous-time Markovian chain (CTMC) is generally adop-
ted to describe the system degradation behavior and the transitions 
between states. There are plenty of studies applying CTMC to model the 
degradation process and maintenance policies of a multi-state system, 
providing approximate analytical solutions for availability and cost [15, 
19-21]. However, CBM for a multi-component system with failure de-
pendences is generally more complicated [22]. Several previous studies 
on CBM strategies for multi-component system with failure dependence 
using the CTMC model were carried out by Liang et al. [15,23,24], 

where the failure dependence is modeled as the accelerated deteriora-
tion, and CBMs is optimized in considering multiple dependent deteri-
oration path. Inspired by the above, we intend to build the CBM model 
by CTMC to present the normal degradation process and accelerated 
degradation process. 

To the best of our knowledge, most of the current modeling ap-
proaches consider a two-component system or an n components system 
with identical failure dependence. For example, the chemical cluster is a 
system with n components mainly subject to Type I failure dependence, 
and a road network is a system with n components only subject to Type II 
failure dependence. However, such approaches are no longer completely 
aligned with reality, since the failure dependences in a multi-component 
system are more complex and heterogeneous [4]. Heterogeneous failure 
dependences occur in the situation where at least two types of 
non-identical failure dependence exist in a multi-component system. 
Therefore, a flexible framework to model the heterogeneous failure 
dependences in the context of maintenance optimization is desired for 
designing more reasonable CBM policies. In this paper, we focus on 
modeling the heterogeneous failure dependence within a 
multi-component system. Compared to alternative modeling approaches 
applied only in a two-component system, or in a multi-component sys-
tem with identical components, the presenting work targets a 
multi-component system with non-identical components. In contrast to 
the current approaches, heterogeneous failure dependences modeling 
accounts better for the variety of interactions and dependences among 
non-identical components in a system. Such work is expected to predict 
the system behavior more precisely, which helps identify critical com-
ponents and failure modes that are often overlooked in simpler models. 
In detail, the degradation model for dependent multi-component system 
(DMDM) is proposed based on two basic principles: (1) the general 
degradation process of independent component is depicted by a discrete 

Notation 

n Total number of components in a system 
k The number of degradation states of components before 

failure 
xi The degradation state of component i 
xi(t) The degradation state of component i at time t 
χ The state space of the n components system, which is taken 

to be {X0, X1,… Xkn}

a The threshold for minor preventive maintenance activity 
b The threshold for major corrective maintenance activity 
NIMR The total number of inspections, maintenances and repairs 
s The number of inspections, maintenances and repairs 
Pxi (t) The probability that the component i is in state xi at time t 
PXi (t) The probability that the entire system is in state Xi at time t 
P(t) The sojourn probability of the Markov process at time t. 
λxi The degradation rate of component i from state xi to state xi 

+1 without failure dependence 
λi

xi ,xj 
The degradation rate of component i from state xi to state xi 

+ 1 when there exists failure dependence between it and 
another component j whose state is xj 

γij Cascading intensity from component j to component i 
φj Degradation level of component j 
βj Correction coefficient 
ϕxj 

Influencing level from component j 
Di,xj The failure dependence from component j on component i 

when component j is in state xj 

A The transition matrix denoting the transition rates of the 
entire system 

B The probability matrix of different states after inspection, 

maintenance and repair actions 
D The matrix of failure dependences among components 
t− The time immediately before inspection 
t+ The time right after inspection, maintenance and repair 

actions 
Ts The time when the sth inspections, maintenances and 

repairs are conducted 
XF The failed state of the component or the entire system 
As The unavailability of the system 
AS The availability of the system 
cin The inspection cost of the system for each time 
cm1,i The cost of each minor preventive maintenance activity on 

component i 
cm2,i The cost of each major corrective maintenance activity on 

component i 
cp The planned downtime cost per inspection 
cu The unplanned downtime cost of the system 
CS The average life-time cost 

Abbreviation 
DMDM Degradation model for dependent multi-component system 
FD Failure dependence model 
CBM Condition-based maintenance 
CTMC Continuous-time Markovian chain 
IMRs Inspections, maintenances and repairs 
PM Minor preventive maintenance 
CM Major corrective maintenance 
MTTF Mean time to failure 
MTBI Mean time between inspections 
OREDA Offshore and Onshore Reliability Data  

Y. Zhao et al.                                                                                                                                                                                                                                    



Reliability Engineering and System Safety 239 (2023) 109483

3

state space; (2) the failure dependences among components are char-
acterized and quantified by proposing the failure dependence (FD) 
model. 

Then, we will specify the CBM policy for multi-component systems 
accordingly. The maintenance policies are depicted considering pre-
ventive maintenance (PM) and corrective maintenance (CM). The major 
contributions of this study are outlined below: 

(1) A new mechanism to model the heterogeneity of failure de-
pendences for the degradation process in a multi-component 
system.  

(2) A novel CBM strategy-making method for the multi-component 
system with heterogeneous failure dependences.  

(3) Managerial implications on optimizing maintenances with a case 
study on a parallel subsea transmission system after the 
separator. 

The rest of this paper is structured as follows. To start, we present a 
description of the motivating example about the subsea transmission 
system in Section 2. The degradation models for independent compo-
nents and the dependent multi-component system are described in 
Section 3. In Section 4, the maintenance policies are interpreted by the 
Markov chain. Section 5 applies the overall approach to the practical 
case study of a three-component system maintenance. Finally, suggested 
future work and conclusions occur in Section 6. 

2. Motivating example and problem description 

In our study, we consider that load redistribution and failure-induced 
damage mainly lead to failure and degradation dependences. In the load 
redistribution mode, redistributed load determines the strength of fail-
ure dependence. In the failure-induce damage mode, the distance be-
tween components and safety barrier measures influence failure 
dependence. 

In order to illustrate the problem, we introduce the transmission 
system of a subsea separation system that is developed to enhance oil 
recovery, using a horizontal gravity separator to separate bulk water 
from the hydrocarbon stream. A scheme of the system is reported in 
Fig. 1. Three pipes transporting gas, oil and water after the outlet of 
separator [25] are directed to the pump station and compression station, 
which are located near the separation station. The transmission part of 
the subsea system, which encompasses the compression station and 
pump station, can be regarded as a dependent system. In the following, 
we will refer to this system as the transmission system for the sake of 

brevity. One compressor and two pumps are installed in parallel in the 
simplified transmission system model. Wet gas is compressed by a 
compressor routed to the topside platform. Then, the separated oil and 
water are respectively pumped following the topside direction or rein-
jected into a reservoir via the water injection. 

The service life of the compressor and pump are generally designed 
for 5-10 years without any intervention [26] and they are expected to 
serve 30-50 years with inspections, maintenances and repairs (IMRs) 
[27]. During their long service lifetime, these devices deteriorate sto-
chastically, and the degradation process may be accelerated by the 
malfunction or degradation of the other components. The compressor 
and the two pumps normally transport different substances at the 
desired power under ideal conditions. In practice, however, devices 
degrade naturally, resulting in a variety of failure modes such as low 
output, leakage, vibration, overheating, spurious stop, etc. Some of the 
failures affect not only their own production efficiency, but also the 
degradation rates of other devices in the system. For example, the 
separator cannot separate the three substances completely, and the 
mutual doping of substances will aggravate the degradation of the 
compressor and pumps. Similarly, if a component such as compressor 
malfunctions, but somehow the system cannot be inspected and repaired 
timely, and it still needs to continue working, gas will enter the pipeline 
that transports oil or water, and the doping of the gas will compound the 
damage to the pumps, which is what we call failure dependence. This 
type of failure dependence can be considered as load redistribution. 
Another example is that the vibration and overheating of one pump may 
have a direct impact on the operation and aging process of another pump 
within a certain distance in the pump station. This kind of failure 
dependence is related to the safety distance, and the safety barrier 
measures. Hence, we can find that the compressor and pumps are subject 
to gradual degradation failure and two types of failure dependences. 

Condition of the transmission system is assessed through periodic 
inspections. Two types of maintenances can be implemented according 
to the inspection results. The first is minor preventive maintenance 
which could lower the accumulated damage to a certain level, such as 
anti-corrosion coating, de-rusting and cleaning. The second type is 
major corrective maintenance including overhaul and preventive 
replacement that components are perfectly overhauled or replaced, and 
their states are reset to “as-good-as-new” state. 

IMRs are considered very costly when the accessibility of the item to 
be maintained is low, such as this system operating in deep water[27]. It 
is beneficial to conduct a reasonable maintenance strategy for reducing 
IMRs costs while keeping the system performance acceptable. With the 
motivating example, a comprehensive approach is proposed to optimize 

Fig. 1. Scheme of the transmission system considered in the motivating case  
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the maintenance activities for dependent multi-component systems. The 
overall approach developed in this paper can be summarized as follows:  

Step 1 Describe the degradation process of the system without failure 
dependence.  

Step 2 Identify the system structure and factors influencing the failure 
dependence.  

Step 3 Evaluate the failure dependences between components based on 
system and environmental conditions.  

Step 4 Describe the degradation process of the system with failure 
dependence.  

Step 5 Construct a CBM model.  
Step 6 Calculate the system availability and maintenance cost.  
Step 7 Find the optimal maintenance threshold for maintenance 

activities. 

The proposed approach is detailed and discussed in the following 
sections. 

3. Degradation models for a dependent multi-component system 

3.1. Independent general degradation model 

An independent general degradation model with a general degra-
dation path is developed firstly in Fig. 2 to reflect the inherent inde-
pendent degradation of components in a dependent system. This model 
serves as the foundation of DMDM when degradation dependences are 
taken into account in a dependent multi-component system. 

We start with a fully functioning state x = 0 at time t=0 and observe 
the component until failure. State x = k represents the failed state of 
component i as an absorbing state. Between x = 0 and x = k there are k 
− 1 intermediate states. Let Px(t) be the probability that the component 
is in state x at time t. We could obtain a time dependent probability 
vector P(t) = [P0(t),P1(t),…,Pk(t)], denoting the sojourn probability of 
the Markov process at time t. The initial state probability P(0) = [1,0,…,

0], and the sum of state probabilities is equal to 1 at any time. 
Let A be a k × k matrix where the element ax,y denotes the transition 

rates from state x to state y for all x ∕= y and x,y ∈ {0,1,2,…,k}. State 0 is 

the brand-new state. For this simple independent degradation model, we 
assume that the degradation process proceeds all states chronologically 
from 0 to k. The degradation rate could be represented by λx from state x 
to state x+1. Then the state equation may be written according to Kol-
mogorov forward equations[28] in matrix terms as 

P(t)⋅A = Ṗ(t) (1)  

from which it follows 

Ṗy(t) =
∑k

x=0
ax,yPx(t) (2)  

If Px(t) tends to a constant value when t→∞, then 

lim
t→∞

Ṗy(t) = 0 (3) 

The steady state probabilities P = [P0,P1,⋯,Pk] must therefore 
satisfy the matrix equation 

P⋅A = 0 (4) 

More basic illustrations and details about how to develop the Markov 
models are reported in the literature[28]. 

3.2. Failure dependence model 

If the degradation rate of a component is impacted by other 
degrading or failed components, the state transition can be shown in 
Fig. 3. The state of two-component system is expressed as X = (x1, x2)

T, 
and so is the state of the n components system X = (x1, x2,… xn)

T, 
where xi ∈ {0,1, 2,…, k} could characterize the degradation state of 
component i in this system. Each component has k + 1 states, and the 
state in which the component is depends on how degraded it is in 
comparison to the failed state. As a result, components in the same state 
may exhibit varying degrees of degradation. This means that although 
there may be some components in the same degradation state, they 
could have distinct levels of degradation. The degradation of the two- 
component system could be illustrated by {X0, X1,… X

(k+1)2} since 

there are states for each component and (k + 1)2 states for the whole 
system. Similarly, the degradation of the n components system is gov-
erned by the state space , which is taken to be {X0, X1,⋯ X(k+1)n} since 
there are k + 1 states for each component and (k + 1)n states for the n 
components system in total. State X0 = (0, 0,⋯, 0)T is the brand-new 

Fig. 2. State transition diagram of individual component  

Fig. 3. State transition diagram of a two-component system with failure dependence  
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state. State X(k+1)n = (k, k,⋯, k)T is an absorbing state. 
Now we start with X = (0,0)T at time t=0 in Fig. 3. State X = (k, k)T 

represents the failed state of the two-component system as an absorbing 
state. The transition rates in this state transition diagram are illustrated 
as follows. The (k + 1)2

× (k + 1)2 matrix now represents the transition 
rates from state (x1, x2) to next state. λ1

x1 ,x2 
is the degradation rate of 

component 1 from state x1 to state x1 + 1 when there exists failure 
dependence between it and another component 2 whose state is x2. 
Similarly, in an n components system, the (k + 1)n

× (k + 1)n matrix 
represents the transition rates from state (x1, x2,⋯, xi,⋯, xn) to next 
state. λi

x1 ,x2 ,⋯,xi ,⋯,xn 
is the degradation rate of component i from state xi to 

state xi + 1 when there exists failure dependence between it and other 
components whose states are (x1, x2, ⋯, xn). Observe that events of 
multiple transitions are not included in the state transition diagram, 
such as a transition between state (xi, xj) and (xi + 1,xj + 1), since it is 
assumed to be impossible for all the components in a system to degrade 
simultaneously during a short time interval from the point of practical. 

We initially examine the failure dependence between two compo-
nents i and j, and then expand the failure dependence model to conclude 
n components. For failure dependence between two components i and j, 
when component j degrades, the degradation rate of component i 
increased, and the calculation procedure of new degradation rate for 
component i could be demonstrated by the flowchart in Fig. 4. The new 
degradation rate for component i from state xi to state xi +1 and influ-
enced by degradation of component j is expressed by 

λi
xi ,xj =

(
1 + γijϕxj

)
λxi , ∀i ∕= j (5)  

where γij is the cascading intensity between components i and j, repre-
senting the possibility that failures or degradations are cascaded to 
components i from component j; ϕxj 

is the influencing level from 
component j, whose value is determined by the degradation degree of 
component j compared to its failed state. Detailed explanations about 
the parameters are provided in the following:  

(1) Cascading intensity γij 

The cascading intensity[29,30] between components is determined 
based on system layout, material backup, safety redundancy, and other 
practical constraints. According to industrial standards, expert experi-
ence, and practical scenarios, it is possible to obtain γij, which charac-
terizes the influence of component j on component i in a probabilistic 
manner, and the same goes for the influence of component i on 
component j. Furthermore, the value of cascading intensity is supposed 
to be between 0 and 1. When γij is closer to 0, the degradation of 
component j has little influence on the degradation of component i. 
When γij is closer to 1, the failure dependence between components is 
quite strong. 

The value of cascading intensity depends on the importance of 
influencing factors and the situation of each factor in the given cir-
cumstances. A simple example is given here to illustrate how to deter-
mine γij. Assume that there are three factors determining the cascading 
intensity between two pipelines: distance, load redistribution, and safety 
barrier. These three factors basically encompass the two types of failure 
dependences outlined previously, as well as the safety measures to 
mitigate them. More specifically, the distance between components is an 
essential factor influencing Type I failure dependence. Similarly, load 
redistribution is the dominant factor in Type II failure dependence. We 
assign weights for them based on historical data and expert experience: 
0.4, 0.2, and 0.4. The value of distance degree could be scored simply as 
1 − (d/D), where d is the real distance between two pipelines and D is the 
safe distance. Thus, the distance degree could be 2/5 if their horizontal 
clearance is 30mm but the required horizontal clearance is 50mm. For 
load redistribution, if two pipelines are both required to transfer fluid at 
70% capacity, and one pipeline would suffer 10% more when another 
pipeline fail, we can score the factor load redistribution between the two 
pipelines at 1/7. We can score the third factor based on whether a safety 
barrier is in place or not and what is its availability. If there is no safety 
barrier, the score is set as 1, and the score decreases as the availability 
and reliability of safety barrier improved. Here we assume there are 
thermal-protective coating surrounding the pipelines, but its reliability 
is on the decline, and we can provide a score of 0.7 after evaluation. The 
examination aforementioned can reach the conclusion that the overall 
cascade intensity between two pipelines is 0.4 × 2/5+ 0.2 × 1/7+

Fig. 4. Flowchart of new degradation rate identification considering failure dependence  
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0.4 × 0.7 = 0.4686. However, this study intends to develop a universal 
model to provide some guidance to quantify the failure dependence. 
Therefore, the methods to assign weighs and score influencing factors 
are not highly emphasized in our methodology.  

(1) Influencing level ϕxj 

The influencing level ϕxj 
denotes the loading increment or shock 

from degrading or failed inducing component j to the induced compo-
nent i. It is considered to be determined by the degradation degree of 
component j: 

ϕxj = φjβj (6)  

where φj is the degradation degree of inducing component j, which 
depends solely on its degradation level compared to the failed state. 
Since the components degrade overtime and may be repaired after 
maintenance actions, the value of φj varies over time. 

φj = xj
/
k (7) 

Technical errors or environmental factors can negatively impact the 
accuracy of engineering data, resulting in obtained data that may not be 
in accordance with real data. In order to minimize such errors, we 
introduce a correction coefficient βj considering that the effect of 
component degradation degree on other components is not strictly 
distributed due to unstable factors. Introducing correction coefficients 
enables adjustments of the influencing level model to better reflect the 
actual situation based on historical or experimental data. The range of 
correction coefficient should be [0, 1] empirically. Normally linear 
regression could be used to estimate the value of βj based on historical 
data or experimental data. We assume the correction coefficient is uni-
formly distributed in [0, 1] in our study. 

3.3. Dependent multi-component degradation model 

For the degradation process in a system composed of n components, 
the state transition influenced by degradation of all the other compo-
nents could be expressed by a Markov model step by step. Since there are 
n2 correlations denoting the cascading intensity in the n components 
system, the cascading intensity among components could be expressed 
by a matrix γ = {γij}n×n. In addition, ϕ = (φ1β1, φ2β2, ⋯, φkβk)

T is a 
vector of influencing level for all the components j ∕= i. We can use an n 
× n matrix D to denote the failure dependences among components 

D =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

D1

D2

⋮

Dn

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 D1,2

D2,1 0
⋯

D1,n− 1 D1,n

D2,n− 1 D2,n

⋮ ⋱ ⋮

Dn,1 Dn,2 ⋯ Dn,n− 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(8)  

where Di is the matrix of failure dependences from other components to 
component i following the selection of component i as the target 
component, which is component 1. As the identification numbers of the 
components do not carry any significance, any component in the system 
can be designated as component 1. For this reason, in the section of our 
study that follows, we presume that component 1 and the identification 
numbers of the other components have been determined to simplify the 
issue. 0 is the null matrix whose order is corresponding by the di-
mensions of blocks Di,j, indicating that the component suffers no failure 
dependence from itself. This also means that Di,xi = 0 for any component 
i. Di,j = (Di,xj=0, Di,xj=1, ⋯, Di,xj=k) denoting the failure dependence 
from component j on component i. Furthermore, the element in the 

submatrix Di,xj = γijϕxj 
is vector to represent the failure dependence 

from component j on component i when component j is in state xj. After 
the qualification of the correlations among components, the new tran-
sition rates of the component could be updated as below. 

λi
xi ,xj =

(
1 + Di,xj

)
λxi (9)  

λj
xi ,xj =

(
1 + Dj,xi

)
λxj (10)  

where λi
xi ,xj 

is the degradation rate of component i from state xi to state 
xi + 1 when there exists failure dependence between it and another 
component j whose state is xj, and λj

xi ,xj 
is the degradation rate of 

component j from state xj to state xj + 1 when there exists failure 
dependence between it and another component i whose state is xi. 

The states of the system (x1, x2, ⋯, xn), from (0,…,0) to (k,…,k), 
are divided into (k + 1)(n− 1) subsets, where only the component 1 
(any component could be chosen as component 1) degrades and other 
components remain the constant states in every subset 
{(0,x2,⋯, xn),(1,x2,⋯, xn),⋯, (k,x2,⋯, xn)}. Consequently, the matrix 
could be expressed as a (k + 1)(n− 1)

× (k + 1)(n− 1) matrix as follows. 

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A0
n A0

n

A1
n A1

n

A2
n

⋱
Ak− 1

n Ak− 1
n

Ak
n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(11) 

The blocks Axn
n are the sub matrixes of the whole matrix A, denoting 

the transition rates of the system where the state of component n keeps 
constant xn; The blocks Axn

n are also the sub matrixes of the whole matrix 
A, denoting the transition rates of the system where only the component 
n degrades from state xn to state xn + 1. The other blocks are null, and 
their orders are corresponding by the dimensions of blocks and Axn

n . The 
blocks Axn

n could also be further represented by smaller sub matrixes and 
Axn− 1

n− 1 using the same recursive way from A to and Axn
n . The same applies 

to the general sub matrixes Axi
i . With the recursive method, the general 

blocks Axi
i could also be further represented by smaller sub matrixes and 

Axj
j as below. The blocks Axi

i are the sub matrixes denoting the transition 
rates of the system where the state of component i keeps constant xi; The 
blocks Axj

j are the sub matrixes denoting the transition rates of the sys-
tem where only the component j degrades from state xj to state xj + 1. 
The other blocks are null, and their orders are corresponding by the 
dimensions of blocks and Axj

j . 

A
xi
i =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A0
i− 1 A0

i− 1

A1
i− 1 A1

i− 1

A2
i− 1

⋱
Ak− 1

i− 1 Ak− 1
i− 1

Ak
i− 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(12)  
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Axj
j =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Aj
x2 ,⋯,0,xj+1 ,⋯,xn

Aj
x2 ,⋯,1,xj+1 ,⋯,xn

⋱
Aj

x2 ,⋯,k,xj+1 ,⋯,xn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

for j = 2, 3,⋯, n.

(13)  

where the elements Aj
x2 ,⋯,xj , ⋯xn 

in Axj
j are also sub matrixes, as shown in 

equation (14), denoting the transition rates of the system where only the 
component j degrades from state xj to state xj + 1 when other compo-
nents are at state (x1,⋯, xn) for j ∕= 1. For example, Aj

x2 ,⋯,0,xj+1 ,⋯,xn 
refers 

to the transition rates of the system where only the component j de-
grades from state 0 to state 1 when other components are at state (x1,⋯ 
, xn) for j ∕= 1. 

Aj
x2 ,⋯,xj , ⋯xn =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

λj
0, x2 ,⋯,xj , ⋯xn

λj
1, x2 ,⋯,xj , ⋯xn

⋱
λj
k, x2 ,⋯,xj , ⋯xn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(14) 

As mentioned before, the whole matrix A is recursed to the blocks 
Axn

n , and further recursed to the blocks for i = 3,⋯, n − 1. The recursive 
process stops when i equals 3, and at this point we have 

A
x3
3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A0, x3 ,⋯, xn A2
0, x3 ,⋯, xn

A1, x3 ,⋯, xn A2
1, x3 ,⋯, xn

A2, x3 ,⋯, xn

⋱
Ak− 1, x3 ,⋯, xn A2

k− 1, x3 ,⋯, xn

Ak, x3 ,⋯, xn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(15) 

The block Aj
x2 ,⋯,xj , ⋯xn 

could be obtained by equation (14). The block 
A x2 ,⋯, xn is the submatrix denoting the transition rates of components 1 
when other components are at state (x2, ⋯, xn). 

A x2 ,⋯, xn =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−
∑n

j=1
λj

0,x2 ,⋯,xn λ1
0,x2 ,⋯,xn

−
∑n

j=1
λj

1,x2 ,⋯,xn

⋱

−
∑n

j=1
λj
k− 1,x2 ,⋯,xn λ1

k− 1,x2 ,⋯,xn

−
∑n

j=2
λj
k,x2 ,⋯,xn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(16)  

where λ1
x1 ,x2 ,⋯,xn 

is transition rate of the component 1 from state from 
state x1 to state x1 + 1 when there exist failure dependences between it 
and other components whose state are (x2,⋯,xn)

λ1
x1 ,x2 ,⋯,xn = λx1 ⋅

∏n

j=1

(
1 + D1,xj

)
(17)  

and λj
x1 ,⋯,xn 

is transition rate of the component j from state from state xj 

to state xj + 1 when there exist failure dependences between it and other 
components whose state are (x1,⋯, xn) for j ∕= 1. 

λj
x1 ,⋯,xn = λxj ⋅

∏n

i=1

(
1 + Dj,xi

)
(18) 

In this situation we let Pxi (t) be the probability that the component i 
is in state xi at time t and PXi (t) be the probability that the entire system 
is in state Xi at time t. The vector P(t) = [PX0 (t), PX1 (t),⋯,P Xkn − 1 (t)] de-
notes the time dependent state probability, and the initial state proba-
bility P(0) = [1,0,…,0]. 

4. Modeling and formulation of condition-based maintenances 

In this section we describe the general maintenance policies for 
multi-component systems with heterogeneous failure dependences. We 
consider a system with n components. The system state transition pro-
cess is modeled with a Markov model. In the model, the following as-
sumptions are introduced:  

• The states of components are revealed upon periodic inspections.  
• The maintenance policies are based on the detected state of system.  
• At inspection, a maintenance action can begin without any delay.  
• The inspection and repair time could be ignored compared to its long 

service lifetime. 

4.1. Inspections and maintenances 

Regular inspections are conducted for many passive items such as 
valves, pipelines, vessels, and pumps in the process industry. As assumed 
above, the inspection interval is (s − 1)τ ≤ t ≤ sτ for s = 1, 2,⋯,NIMR, 
where τ is a constant value independent of the component state and the 
time. Suppose every inspection for the system could reveal the states of 
all components. The inspections durations are assumed to be neglected 
and the state of components are revealed immediately. The inspection 
intervals are recounted after each inspection, maintenance, or repair in 
the overall lifecycle of the system, and could be modeled as [0,T1],

[T1,T2],⋯, [TNIMR − 1,TNIMR ] If the states of components are found to reach 
the thresholds of maintenance measures, then a corresponding mainte-
nance task will be carried out timely. The time immediately before in-
spection is denoted by t− and the time right after IMRs is denoted by t+
When the state of the system when t = T−

s is given, the maintenance 
activities for the system could be then decided. Note that CBM is a 
maintenance strategy that involves monitoring the actual condition of 
systems in order to determine the maintenance activities. Based upon 
the maintenance policy, the possible maintenance actions and the state 
of the system just after IMRs are assumed to depend on the state of the 
system when t = T−

s , but independent of all transitions of the system 
before Ts The effect of IMRs at time t = Ts could be illustrated by 

Pr
(
X
(
T+
s

)
= Xj

⃒
⃒X
(
T −
s

)
= Xi

)
= bXi ,Xj ,

for all Xi,Xj ∈ χ
(19)  

where bXi ,Xj is the probability that the system is in state Xj after IMRs, 
given that it was in state Xi before inspection. 

Considering the aforementioned inspection strategies, several 
maintenance strategies are proposed. PM and CM are implemented ac-
cording to the inspection results. The maintenance strategies are illus-
trated in the Fig. 5. 

Y. Zhao et al.                                                                                                                                                                                                                                    



Reliability Engineering and System Safety 239 (2023) 109483

8

For an independent component, the maintenance policy is classified 
into three phases. 

In phase I (x ≤ a), the component is in an acceptable state, and no 
maintenance activities (NM) are required. 

In phase II (a+ 1 ≤ x ≤ b), the component is operating in a 
degrading state, and PM will be performed to improve the component 
condition by one state. 

In phase III (b+ 1 ≤ x ≤ k), CM is needed to restore the component 
to an as good as new state. 

After applying the maintenance actions, the state transitions could be 
denoted by degradation transitions, repair transitions, and combinations 
of those, as seen in Fig. 6. Assume that the components have constant 
transition rate between two states. 

Let B describes the corresponding maintenance transition matrix of 
the system, then 

P
(
T+
s

)
= P

(
T −
s

)
⋅B (20) 

The corresponding maintenance matrix B is expressed by the sub 
matrixes 

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

BI
n 0 0 0

0 Ba
n 0 0

0 Ba+1
n 0 0

0 0 BII
n 0

BIII
n 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(21) 

The blocks BI
n and Ba

n are the sub matrixes, separately denote the 
maintenance transition of the system where the component n is in phase 
I or in state a. The explanation for other sub matrixes in equation (21) 
can be obtained similarly. These sub matrixes could be generalized and 
recursively defined using equation (22) 

B
xi
i =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

BI
i− 1 0
0 Ba

i− 1

0 0
0 0

0 Ba+1
i− 1

0 0
BIII

i− 1 0

0 0
BII

i− 1 0
0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(22) 

The blocks 0 are null, and their orders are corresponding by the di-
mensions of sub matrixes. 

Recurse the matrix until reaching the matrix of component 2. 

B
x2
2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
⋱

1
1
1 0

⋱
0
1 0

1
⋮
1

0
⋱

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(23) 

Since the process has no steady state and could be divided into 
several time units on a given finite time horizon, the time-dependent 
state probability vector P(t) at time t could be then given by 

P(t) = P(0)⋅
(

∏s=NIMR

s=1
exp(A(Ts − Ts− 1)

)

⋅B)⋅

exp(A(t − TNIMR ))

(24)  

Fig. 6. Markov model of an individual component  

Fig. 5. Illustration of maintenance policies  
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4.2. System availability analysis 

In this subsection, the developed state probabilities formulas are 
applied to quantify the system availability, which refers to the per-
centage of time that the system remains operational under normal cir-
cumstances in order to perform its intended function. Suppose that the 
system is not available only when it fails, the mean value of the system 
failure probability over a period of time could then be used to represent 
the unavailability of the system 

As =
1
T

∫T

0

P XF (t)dt (25)  

where XF denotes that the component or the entire system is in the failed 
states immediately at time t. P XF (t) represents the probability that the 
entire system is in the failed states at time t. Based on the identification 
of all the failed states and the probabilities that the system is in various 
states at time t included in vector P(t), P XF (t) could be calculated by 
summing up all the probabilities that the entire system is in the failed 
state at time t. 

The availability of the system is the probability of being operational 
given by 

AS = 1 − As (26) 

The model in this subsection is proposed to seek for the optimal value 
of the maintenance threshold to increase the system availability to an 
acceptable level. 

4.3. Maintenance cost 

Here we consider that the maintenance cost consists of the inspection 
cost, the downtime cost, and the repair cost. 

Suppose that the inspection cost is cin for each time. The downtime 
cost contains the planned downtime cost cp caused by the scheduled 
maintenance activities and the unplanned downtime cost cu induced by 
unexpected failures. 

The cumulative maintenance cost between two inspections in the 
time interval (Ts− 1,Ts] accounts for the maintenance cost at time t = Ts. 
The repair cost is supposed to includes cm1,i and cm2,i respectively for 
maintenance activities PM and CM to component i. Therefore, the cu-
mulative maintenance cost for the system in (Ts− 1,Ts] is 

C((Ts− 1,Ts]) =
∑n

i=1

[
cm1,iPr(a+1≤ xi(Ts)≤ b)+ cm2,iPr(b+1≤ xi(Ts)≤ k)

]

=
∑n

i=1

[
cm1,iPa+1≤xi≤b(Ts)+ cm2,iPb+1≤xi≤k(Ts)

]

(27)  

where xi(t) is the degradation state of component i at time t. 
The average life-time cost during the period T could be given by 

CS =

[

cinNIMR + cpNIMR +
∑NIMR

s=1
C((Ts− 1,Ts])

]/

T + cuAs (28) 

The model in this subsection is proposed to seek for the optimal value 
of the maintenance threshold to minimize the maintenance cost. 

5. Case-Study: assessment of the motivating example 

The motivating example of a subsea transmission system is explored 
to illustrate the advantages of the proposed maintenance policies. To 
reveal the hidden failures, inspections are performed regularly to 
examine the system to confirm compliance with the performance re-
quirements. The parameter setting of the degradation, inspection and 
maintenance are provided Table 1. The failure rates values are obtained 
from the existing literature[25,31] and from the application of the Cox 
model [32], using the data derived from OREDA database[33]. The 
service life and repair cost were obtained from the article[34] and thesis 
[27]. 

We assume that there are only four states for each component: nor-
mally operating, moderately degraded, severely degraded, and failed. 
The initial state probability . The states of the system X = (x1, x2, x3)

from (0, 0, 0) to (3, 3, 3), are divided into 42 subsets: (0,0,0), (1,0,0), 
(2,0,0), (3,0,0); (0,1,0), (1,1,0), (2,1,0) (3,1,0); …; (0,3,0), (1,3,0), 
(2,3,0), (3,3,0); ……; (0,0,3), (1,0,3), (2,0,3), (3,0,3); (0,1,3), (1,1,3), 
(2,1,3), (3,1,3); …; (0,3,3), (1,3,3), (2,3,3), (3,3,3). 

As illustrated before, three key factors are generally considered to 
impact on the failure dependences between components: load redistri-
bution, distance, and safety barrier. In this system, weights of the factors 
are assigned according to experts’ experience: distance (2), load redis-
tribution (5), and safety barrier (3). Here load redistribution denotes the 
material transfer and doping. After expert experience, the parameters of 
the failure dependences could be evaluated as Table 2 based on the 
method proposed in Subsection 3.2. Since the states of all the compo-
nents are expressed as xi ∈ {0, 1, 2, 3}, the degradation level of the 
components could be estimated as φj ∈ {0, 1 /3, 2 /3, 1}. It is plausible 
to conclude that ϕ = (ϕ0, ϕ1, ϕ1, ϕ3)

T
= (0, 1/3, 2/3, 1)T is the vec-

tor of influencing level for all the components when correction coeffi-
cient βj is assumed to be 1. To address the necessity of considering failure 
dependence, we also set all the parameters in Table 2 as 0 or other values 
to imitate the scenario when failure dependence is neglected or varied in 
this example. With modifying the values in the table after assessing the 
failure dependences of differing levels, the proposed model could be 
applied to computing the system under various conditions. 

Based on the data from Table 2, we could obtain a 3 × 3 matrix D to 
denote the failure dependences among components 

D =

⎛

⎝
E D1,2 D1,3

D2,1 E D2,3
D3,1 D3,2 E

⎞

⎠ (29) 

Taking the failure dependence from component 2 on component 1 as 
a simple example to illustrate the calculation of failure dependences, we 
have D1,2 = (D1,x2=0, D1,x2=1, ⋯, D1,x2=3) = (0, 0.103, 0.207, 0.31) if 

Table 1 
Parameter setting of the subsea system considered in the case-study.  

Parameter Value (/year) Parameter Value (€) Parameter Value (€) 
Compressor Pumps Compressor Pumps 

λ0 0.046 0.104 cm1 1.93 × 106 2.41 × 106 cin 1.21 × 106 

λ1 0.021 0.105 cm2 2.89 × 106 3.86 × 106 cp 7.23 × 105 

λ2 0.041 0.056    cu 6.51 × 107  

Table 2 
Parameter setting of the failure dependences.  

Parameter Value Parameter Value 

γ12 0.34 ϕ0 0 
γ13 0.24 ϕ1 1/3 
γ23 0.66 ϕ2 2/3 
γ21 0.44 ϕ3 1 
γ31 0.34   
γ32 0.56    
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the correction coefficient β2 is supposed to be 1. The same calculation 
method can be applied to other submatrices of failure dependences. 
With the confirmation of failure dependences among components, the 
DMDM could be denoted by the transition matrix A. The transition 
matrix A could be expressed as a 42 × 42 matrix 

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A0
3 A0

3

A1
3 A1

3

A2
3 A2

3

A3
3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(30)  

A
x3
3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A0,x3

A2
0,x3

A1,x3
A2

1,x3

A2,x3 A2
2,x3

A3,x3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

for x3 = 0, 1, 2, 3.

(31)  

Ax3
3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A3
x2 ,x3

A3
x2 ,x3

A3
x2 ,x3

A3
x2 ,x3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

for x3 = 0, 1, 2.

(32)  

Ax2
2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A2
x2 ,x3

A2
x2 ,x3

A2
x2 ,x3

A2
x2 ,x3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

for x2 = 0, 1, 2.

(33)  

where the blocks A x2 , x3 and Aj
x2 , x3 

are as follows 

A x2 , x3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−
∑3

i=1
λi

0, x2 , x3
λ1

0, x2 , x3

−
∑3

i=1
λi

1, x2 , x3
λ1

1, x2 , x3

−
∑3

i=1
λi

2, x2 , x3
λ1

2, x2 , x3

−
∑3

i=2
λi

3, x2 , x3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(34)  

Aj
x2 , x3

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

λj
0, x2 , x3

λj
1, x2 , x3

λj
2, x2 , x3

λj
3, x2 , x3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

for j = 2, 3.

(35) 

The matrix B could be expressed as a 42 × 42 matrix. 

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

B0
3 0

0 B1
3

0 0
0 0

0 B2
3

B3
3 0

0 0
0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(36)  

B
x3
3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

B0
2 0

0 B1
2

0 0
0 0

0 B2
2

B3
2 0

0 0
0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, B
x2
2 =

⎛

⎜
⎜
⎜
⎝

1 0
0 1

0 0
0 0

0 1
1 0

0 0
0 0

⎞

⎟
⎟
⎟
⎠

(37) 

B
x3
3 and represents the maintenance matrix when components 3 or 2 

are respectively in the state x3 or x2. 
The whole degradation transition matrix A and the whole mainte-

nance transition matrix could be obtained after splicing the matrices. 
The state probability vector P(t) could then be calculated by equation 
(24). The time dependent failure probabilities P XF (t) are obtained by 
summing the probabilities of different failure states of the system. 

The maintenance cost for an independent component in (Ts− 1,Ts] is 

C((Ts− 1,Ts]) = cm1,compPx1=2(Ts) + cm2,compPx1=3(Ts)

+
∑3

i=2

[
cm1,pumpPxi=2(Ts) + cm2,pumpPxi=3(Ts)

] (38)  

where the cm1,comp and cm2,comp are respectively the PM and CM for a 
compressor, cm1,pump and cm2,comp are respectively the PM and CM for a 
pump. 

For this kind of system, the availability of the system and its average 
life-time cost could be obtained by equations (28) and (38). 

5.1. Failure probabilities 

The time dependent failure probabilities could be found by CTMC 
simulation. To evaluate the effect of mean time between inspections 
(MTBI) on the system conditions, observe the difference of P XF (t) curves 
in the log-run horizon by testing various MTBI (MTBI =

1 year;2 years;5 years.). The results are shown in Fig. 7. 
It can be found that the failure probability increases with time and 

decreases suddenly at the IMRs timepoints under varying MTBI. This is 
because the system and its components degrade over time. When 

Fig. 7. Failure probabilities for different MTBI  
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approaching the IMRs timepoints, the failure probability peaks in this 
interval of time. However, after the IMRs timepoints, the status of the 
system and its components could be noticeably improved, and the sys-
tem failure probability is close to zero, indicating a peak value at the 
IMRs timepoints. Another finding can be obtained by comparing the 
failure probability curves under different MTBI. It is obvious that with 
smaller MTBI, the maximum values of failure probabilities are expected 
to be lower. On the contrary, the maximum values of failure probabili-
ties tend to be higher when the MTBI increases, which means that the 
system tends to be less reliable. In this regard, the reliability and 
availability of the system can be improved by reducing the value of 
MTBI, that is, shortening the IMRs interval. However, a lower MTBI is 
not always preferable. The following subsections will go through how to 
achieve the optimum MTBI value in practical applications. 

5.2. Maintenance strategies with various failure dependences 

Fig. 8 shows the availability and average life-time cost of the tran-
sition system under the condition of with various failure dependence 
respectively. The actual failure dependence in Table 2 is denoted as 
normal dependence. The failure dependences of the system under other 
circumstances are also accounted for: The strong dependence is set when 
all the γ take the maximum value (0.66) in Table 2; the case that all the γ 
take the minimum value (0.24) in Table 2 is weak dependence; there is 
no dependence when all the γ take the value of 0. 

The figures show that the availability of the system decreases with 
the increase of MTBI. One interesting observation is that these curves are 
not smooth, but rather contain distinct breaking lines. It is found by 
examining these fold points that they are always located at certain MTBI 
values that enable the IMRs number to be an integer. For the As-MTBI 

curves, the smaller the MTBI is, the larger number of inspections and 
maintenance activities are needed, the higher the availability reached, 
and vice versa. This trend is consistent with the conclusion of the pre-
vious subsection. At each fold point, the IMRs frequency drops by one, 
which leads to a sudden increase in system failure probability and steady 
state probability of failure, resulting in a sudden decrease in system 
availability. Besides, the curves Cs-MTBI show a similar trend that the 
average life-time cost falls initially and subsequently climbs as MTBI 
grows, indicating that there is a point to minimize the cost. A reasonable 
explanation is that when the MTBI is relatively small, more inspections 
and maintenance are undertaken, which may lower the failure proba-
bility of system and the unexpected downtime cost, also may impose 
considerable IMRs costs. However, when the MTBI is greatly increased, 
the IMRs costs can be accordingly decreased; but the system unavail-
ability rises, inevitably leading to more production loss due to un-
planned downtime. Similarly, before the cost reaches the lowest value, 
the variation of IMRs cost dominates the trend of Cs-MTBI curves. As 
MTBI increases, the amount of IMRs may drop by one, causing the im-
mediate drop of total IMRs cost and the average life-time cost. After the 
lowest value, the variation of unexpected downtime cost dominates the 
trend of Cs-MTBI curves. Hence the effect of drop amount of IMRs on the 
unexpected downtime cost is stronger than the effect on the IMRs cost. 
As the amount of IMRs drops, the failure probability increases suddenly, 
as well as the downtime cost, which is strongly proportional to it. 

In practical engineering applications, an acceptable availability 
threshold is generally determined since it is too costly to pursue exten-
sive system availability. In this case the average life-time cost should be 
minimized while ensuring system availability over 0.99. The optimum of 
the maintenance policy could be achieved by adjusting the parameter 
MTBI. From the figures of Fig. 8, the minimal cost appears in the range of 

Fig. 8. Availability and average life-time cost of the transition system under different MTBI  
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system availability greater than 0.99, thus the point of this minimal 
value could be considered as the ideal option of the maintenance 
strategy. 

Notable distinctions between the findings with various failure 
dependence could also be observed. Table 3 displays the comparison of 
the results. In terms of the impact of MTBI on system availability, the 
availability of the system with stronger failure dependence is generally 
lower than that of the system with weaker failure dependence and that 
of the system without failure dependence. The thresholds of MTBI for 
system availability under 0.99 increases as system failure dependence 
weakens: 8.35 (strong), 8.65 (normal), 9.15 (weak), 9.65 (without). This 
means that when there is stronger failure dependence, the system should 
be inspected and maintained more regularly to keep its availability. 
From a financial standpoint, the minimal average life-time cost 
considering strong, normal, and weak failure dependence are respec-
tively 454525€, 448474€, and 438202€, higher than the minimal 
average life-time cost without failure dependence (428870€). This also 
supports a similar result that a higher investment is required when 
stronger failure dependence is considered. The comparison of these 
graphs reveals the necessity of highlighting the failure dependence of 
complex systems while implementing CBM. 

5.3. Maintenance strategies for various initial costs input 

In the following, the variation of some cost parameters setting on the 
average life-time cost is investigated and the other parameters remain 
unchanged. By resetting the inspection cost cin = [1.21 × 105,1.21 ×

106,1.21 × 107], the planned downtime cost cp = [7.23 × 104,7.23 ×

105, 7.23 × 106], the unplanned downtime cost cu = [6.51 × 106,

6.51 × 107, 6.51 × 108], the influence of costs input on the average 
life-time cost is explored in Fig. 9. The As-MTBI curves are not depicted 
in this figure because the costs input hardly imposes effect on avail-
ability of the system. 

Fig. 9 shows that the average life-time cost basically increases as the 
three kinds of cost increase. However, the impact of inspection cost and 
the planned downtime cost are most prominent when the MTBI value is 
small, whereas the impact of unplanned downtime cost is most pro-
nounced when the MTBI value is high. This finding can serve as a 
guideline for adjusting the cost in accordance with the existing main-
tenance strategy. For example, when the MTBI is small and the amount 

of IMRs is high, the inspection cost can be appropriately decreased to 
control the average life-time cost. When the value of MTBI is high and 
the amount of IMRs is low, the unplanned downtime cost is preferred to 
be lowered by implementing some safety measures to minimize the 
average life-time cost. 

6. Conclusions 

Focusing on the heterogeneous failure dependences of component 
degradation process in a multi-component system, this paper proposed a 
framework to quantify the failure dependences between components 
and optimized the policy of condition-based maintenance. By taking the 
reasonable system availability and minimal average life-time cost in the 
long-run as the objectives, the Markov process is implemented to with 
varying MTBI. The impact of the heterogeneous failure dependences on 
the system maintenance strategies were discussed examining a practical 
subsea transmission system. The practical implementation of the pro-
posed model in a case study demonstrates its effectiveness and potential 
for widespread adoption in managing complex multi-component sys-
tems, particularly those with heterogeneous failure dependences. The 
combination of theoretical modeling and its application in a practical 
case study validates the usefulness of the proposed model. The results of 
the practical case indicate that the system tends to be more reliable with 
smaller MTBI. Furthermore, the availability of the system would be 
overestimated and the annual IMRs costs would be underestimated if we 
neglect the influence of heterogeneous failure dependences. For various 
values of MTBI, the inspection cost and planned downtime cost have 
significant effect on the average life-time cost for low MTBI values, while 
the impact of unplanned downtime cost is prominent for high MTBI 
values. 

The paper presents managerial actions as references for the decision 
makers on when to implement the maintenance strategies for complex 
multi-component system with heterogeneous failure dependences. 
Based on the finding that a certain system with higher failure depen-
dence is more likely to experience unavailability, one implication could 
be to address the dependence or to increase the frequency of inspections 
and maintenance checks. In addition, the system can be assessed to 
identify the different MTBI ranges and determine the optimal type of 
cost that maintenance crews could manage to improve the system 
availability. By optimizing condition-based maintenance strategies, 

Table 3 
Results for the transition system with various failure dependence.   

Availability Average life-time cost 
When As is 0.99 When MTBI=15 When Cs is minimized When MTBI=15 

With strong dependence (8.35, 0.99) (15, 0.9408) (4.55, 454525) (15, 4047150) 
With normal dependence (8.65, 0.99) (15, 0.9452) (5.05, 448474) (15, 3755460) 
With weak dependence (9.15, 0.99) (15, 0.9516) (5.6, 438202) (15, 3333170) 
Without dependence (9.65, 0.99) (15, 0.9574) (5.6, 428870) (15, 2948640)  

Fig. 9. Maintenance cost for different initial costs input.  
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organizations can minimize their maintenance costs while ensuring the 
system remains highly available. 

Some other perspectives may be worth to investigating in future 
work. Firstly, the applicability of the given method may be further 
verified by applying the proposed model to the maintenance strategies 
of systems in other configurations. In addition, comparisons with other 
maintenance models, such as Age-based Maintenance or Opportunistic 
Maintenance, could be investigated to seek for the optimal maintenance 
policies for such complex systems. 
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