
18 May 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Optimizing Self-Organizing Maps for Bacterial Genome Identification on Parallel Ultra-Low-Power Platforms
/ Mirsalari, Seyed Ahmad; Yousefzadeh, Saba; Tagliavini, Giuseppe; Stathis, Dimitrios; Hemani, Ahmed. -
ELETTRONICO. - (2023), pp. 1-8. (Intervento presentato al convegno 2023 30th IEEE International
Conference on Electronics, Circuits and Systems (ICECS) tenutosi a Istanbul, Turkiye nel 04-07 Dicembre
2023) [10.1109/ICECS58634.2023.10382758].

Published Version:

Optimizing Self-Organizing Maps for Bacterial Genome Identification on Parallel Ultra-Low-Power Platforms

This version is available at: https://hdl.handle.net/11585/954827 since: 2024-01-31

Published:
DOI: http://doi.org/10.1109/ICECS58634.2023.10382758

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

https://hdl.handle.net/11585/954827
http://doi.org/10.1109/ICECS58634.2023.10382758

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

S. A. Mirsalari, S. Yousefzadeh, G. Tagliavini, D. Stathis and A. Hemani, "Optimizing Self-Organizing Maps
for Bacterial Genome Identification on Parallel Ultra-Low-Power Platforms," 2023 30th IEEE International
Conference on Electronics, Circuits and Systems (ICECS), Istanbul, Turkiye, 2023, pp. 1-8..

The final published version is available online at:
https://doi.org/10.1109/ICECS58634.2023.10382758

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's
website.

https://cris.unibo.it/
https://doi.org/10.1109/ICECS58634.2023.10382758

Optimizing Self-Organizing Maps for Bacterial
Genome Identification on Parallel Ultra-Low-Power

Platforms
Seyed Ahmad Mirsalari∗, Saba Yousefzadeh†, Giuseppe Tagliavini∗, Dimitrios Stathis†, Ahmed Hemani†

∗University of Bologna, Bologna, Italy, †KTH Royal Institute of Technology, Stockholm, Sweden

Abstract—Pathogenic bacteria significantly threaten human
health, highlighting the need for precise and efficient methods
for swiftly identifying bacterial species. This paper addresses the
challenges associated with performing genomics computations
for pathogen identification on embedded systems with limited
computational power. We propose an optimized implementation
of Self-Organizing Maps (SOMs) targeting a parallel ultra-low-
power platform based on the RISC-V instruction set architecture.
We propose two mapping methods for implementing the SOM
algorithm on a parallel cluster, coupled with software techniques
to improve the throughput. Orthogonally to parallelization, we
investigate the impact of smaller-than-32-bit floating-point for-
mats (smallFloats) on energy savings, precision, and performance.
Our experimental results show that all smallFloat formats exhibit
a 100% classification accuracy. The parallel variants achieve
a speed-up of 1.98×, 3.79×, and 6.83× on 2, 4, and 8 cores,
respectively. Comparing our design with a 16-bit fixed-point
implementation on a coarse grain reconfigurable architecture
(CGRA), the FP8 implementation achieves, on average, 1.42×
energy efficiency, 1.51× speedup, and a 50% reduction in
memory footprint compared to CGRA. Furthermore, FP8 vec-
torization increases the average speed-up by 2.5×.

Index Terms—Self-organizing maps, parallel ultra-low-power
platform, RISC-V, approximate computing, smallFloat data
types, genome identification

I. INTRODUCTION

Pathogenic bacteria pose a significant threat to human
health. Consequently, there is a growing demand for pre-
cise and efficient methods for swiftly identifying bacterial
species. Developing a portable, low-cost, and fast genomics
edge computational platform enables quick identification and
control of fast-spreading epidemics in remote areas, allows for
widespread genome testing and personalized treatment, facil-
itates frequent monitoring of genomic changes, and ensures
privacy by eliminating the need for data transfer to cloud-based
storage [1]. However, severe challenges are associated with
performing genomics computations on embedded systems.
Architectures for edge Artificial Intelligence (AI) computing
are a promising target, but they are typically limited in terms
of computational power and memory capacity. Traditional
genomics algorithms are designed for high-performance com-
puters and may exhibit slow and unscalable performance on
edge devices [1]. Pathogen identification requires processing a
large amount of data, depending on the identification method
and complexity of the pathogen.

Artificial Neural Network (ANN) algorithms hold the po-
tential to address the challenges above, offering the prospect

of improved speed, accuracy, and reduced bias compared to
traditional approaches. Self-Organizing Maps (SOMs) are a
class of unsupervised learning models that reduce data dimen-
sions and facilitate the clustering of similar data points [2]. In
our context, SOMs encapsulate a compressed representation of
genomic data, able to distinguish between different pathogens
without processing the entire sampled DNA data. For instance,
the algorithm proposed in [3] uses 40k random fragments of
the DNA sequence of two strains of E. Coli bacteria to train
two SOM networks to classify subsequent sequences of the
bacterial strains. One of the core benefits of this approach is
its ability to work with fragments of the DNA sequence instead
of requiring fully assembled DNA, as has been attempted by
[4] in the past.

Approximate computing techniques can significantly en-
hance energy efficiency for applications that can tolerate some
reduction in output quality [5], trading off a slight degradation
in the accuracy of computations for notable gains in over-
all system performance [6]. In power-constrained platforms,
leveraging fixed-point implementations is a common method
to enhance energy efficiency and speed for applications per-
forming computations on real numbers. This approach involves
manually adjusting the range and precision of operands based
on the processing chain’s requirements. However, implement-
ing fixed-point optimizations can be complex and demanding
since it requires a comprehensive understanding of the target
algorithms [7]. In scenarios where computational accuracy
and a wide dynamic range are critical requirements, adopting
Floating-Point (FP) arithmetic is highly beneficial. Tagliavini
et al. [8] conducted a study showing that utilizing smaller-
than-32-bit FP formats (smallFloats) can result in considerable
energy savings. This outcome is due to the simplification
of arithmetic circuitry and reduction in memory bandwidth
requirements for data transfer between memory and registers
through the enablement of vectorization techniques.

This paper presents an optimized implementation of SOMs
targeting a parallel ultra-low-power platform (PULP) based
on the RISC-V instruction set architecture (ISA). The main
contributions of our work are the following:

• Proposing two mapping methods for implementing
the SOM algorithm on a parallel computing cluster
(Sec. IV-A).

• Designing an algorithm to support various network sizes
by employing tiling and double buffering to transfer

data between different levels of the memory hierarchy
(Sec. IV-A).

• Introducing algorithmic variants to use smallFloat data
types for the SOM algorithm (Sec. IV-B).

• Enabling vectorization techniques to improve the perfor-
mance of smallFloat data types (Sec. IV-C).

• Assessing the impact of smallFloat data types, specifi-
cally the FP8 data type, on the accuracy, memory foot-
print, and performance metrics (Sec. V).

• Comparing the results with a CGRA fabric that uses a
16-bit fixed-point format (Sec. V).

• Providing an open-source repository1 that includes the
implementation of the SOM algorithm and the integration
of the FP8 data type in the PyTorch.

In our experimental findings, we have observed that our ap-
proach utilizing FP8 yields several benefits: Firstly, we achieve
accurate classification of DNA sequences, ensuring reliable
and precise identification. Secondly, we successfully reduced
the memory footprint by a factor of 2 compared to 16-bit repre-
sentations. Furthermore, our FP8 implementation demonstrates
an impressive speedup w.r.t. the FP32 implementation, up to
18.7× in large SOM networks. In contrast, the CGRA-based
implementation achieves a speedup of 11.05×. Additionally,
the FP8 implementation exhibits a lower energy consumption
than the 16-bit CGRA implementation [3], thanks to dedicated
algorithmic optimizations. We achieve a remarkable 6.72×
improvement in energy efficiency compared to FP32, while the
CGRA achieves a 3.15× improvement in large SOM networks.

The rest of the paper is structured as follows. In section II,
we review the related work in the field. Section III provides
a brief background on the SOM algorithm, the PULP archi-
tecture, and smallFloats. In section IV, we explain our im-
plementation approaches. Section V presents the experimental
results, and finally, the paper is concluded in section VI.

II. RELATED WORK

Leveraging hardware acceleration is an alternative approach
to enhance the efficiency of computationally intensive al-
gorithms. Previous research conducted by [3] has proposed
the utilization of SOM for accelerating genome identification
processes. The CGRA implementation [9] observed a less than
1% quality loss when training SOM networks using 16-bit
fixed-point number representations, compared to 32-bit FP im-
plementation. The authors of [9] also demonstrated that low-bit
fixed-point formats, such as 8-bit, are inadequate for genome
identification experiments, as they fail to meet the required
accuracy and dynamic range for successful identification. A
current trend in computing is to customize the precision of
floating-point arithmetic in applications to match their specific
requirements and constraints within their respective domains
[10]. With the increasing computational requirements and
dynamic nature of target algorithms, there is a growing need
for hardware support for arithmetic operations in smaller-than-

1https://github.com/ahmad-mirsalari/SOM-on-PULP

32-bit FP formats to enhance system energy efficiency while
maintaining the desired level of accuracy [7].

In the field of low-power near-sensor computing, the
GAP8 [11] system-on-chip (SoC) from the parallel ultra-low
power (PULP) family has been widely utilized for its pow-
erful and energy-efficient processing capabilities. Recently, a
new SoC called GAP92 has been introduced by GreenWaves
technologies. This GAP9 offers significant advancements com-
pared to its predecessor. Notably, GAP9 demonstrates a re-
markable increase in power efficiency, with a consumption of
only 0.33 milliwatts per giga operation (GOP) for each RISC-
V core. Additionally, it boasts improved memory capacity and
supports FP operations on 32 and 16-bit data types, making it
a highly desirable option for energy-efficient computing tasks.
This work leverages the features of the GAP9 SoC proposing
a portable and low-power solution for genome identification.

III. BACKGROUND

This section overviews the implemented SOM algorithm,
the PULP platform, and the smallFloats data types.

A. SOM algorithm

Algorithm 1: The computational kernel of the SOM
training; N: Number of neurons, I: Input-Vector, W:
Weight Matrix

6 for Ik ∈ IS do
7 distmin = minj=1...N (

∑M
i=1 |Ik,i −Wi,j |);

8 jmin = j where distj = distmin;
9 for j ∈ 1...N do

10 dist = ||j − jmin| − N
2 | ; // toroid distance

11 Wj = Wj − β
2dist

(Wj − Ik);
12 end
13 β = max(β ∗ decay factor, βmin); //decay β
14 end

This paper uses a circular SOM for bacterial genome
recognition described in [3]. Algorithm 1 summarizes the
main computational steps. The goal is to capture the genetic
signature of a particular bacteria as a specific SOM; this
implies that we train one specific SOM for every bacterial
strain we are interested in. By comparing the DNA sequences
of unknown bacteria with trained SOM networks, we aim
to identify the closest correlation between the SOM network
trained on the same bacteria and the unknown test bacteria.
This correlation allows us to determine the identity of the
unknown bacteria.

A SOM is represented by a weight matrix, denoted as W,
with dimensions N × M, where N represents the number of
neurons, and M represents the number of weights for each
neuron. Each bacterial strain has its dedicated SOM, trained
using strain-specific sequences (IS) composed of M-element
vectors, with each element representing a nucleotide (C, G, T,

2https://greenwaves-technologies.com/

https://github.com/ahmad-mirsalari/SOM-on-PULP

or A). These vectors correspond to the short reads obtained
from sequencing machines. During training, a random frag-
ment is selected from the sequence fragments corresponding
to a bacterial genome. The distance of this fragment from
all neurons is computed using the equation stated in line
7. Subsequently, the weights of the winning neuron and its
neighbouring neurons are updated based on lines 9-12.

B. PULP

Edge AI nodes require high throughput and energy ef-
ficiency within a power limit of a few milliwatts. Parallel
Ultra-Low-Power (PULP) [12] is an open-source system-on-
chip (SoC) performing parallel computing in a near-threshold
operating point. PULP includes a microcontroller unit (MCU)
and a programmable multi-core cluster. The SoC also includes
an on-chip SRAM memory (L2) to store resident code and
application data. The multi-core cluster consists of a variable
number of identical RISC-V cores sharing a Tightly Coupled
Data Memory (TCDM) organized into multiple banks. This
design allows the cores to access data in a single clock cycle
through a low-latency logarithmic interconnect. The software
manages data transfers between the L2 and the TCDM using
a dedicated Direct Memory Access (DMA) controller. This
controller orchestrates data transfers in parallel with core
computations, thereby reducing the impact of memory access
latency and improving overall system performance. In addi-
tion, a third memory level is available in the system, namely
an off-chip L3 memory with virtually unlimited capacity.

The cluster cores share four floating-point units (FPUs)
that support FP32, FP16, bfloat16, and FP8 arithmetic, in-
cluding cast operations between different formats and cast-
and-pack instructions to improve the effectiveness of packed
Single-Instruction Multiple-Data (SIMD) vector operations
[13]. These FPUs are connected through a low-latency in-
terconnect, which handles access contention in hardware,
allowing multiple cores to share a single FPU seamlessly from
a software perspective.

C. SmallFloats

Adopting smaller-than-32-bit FP formats has become essen-
tial in modern computing systems that require both accuracy
and a wide dynamic range. The authors in [14] reveal that FP8
training yields similar outcomes to FP16 or bfloat16 training in
a wide range of tasks, neural network model architectures, and
sizes without requiring modifications to the model or optimizer
hyperparameters. Moreover, due to its nonlinear sampling of
real numbers, FP8 may offer advantages over int8 for inference
tasks.

Recently, there has been a growing interest in utilizing
FP8 formats for training neural networks within the deep
learning community [15]. Notably, Nvidia has introduced an
FP8 format in their Transformer Engine3 software designed
for the latest Hopper architecture GPUs [16]. Additionally,
an IEEE working group is actively exploring the possibility

3https://github.com/NVIDIA/TransformerEngine

of standardizing FP8 for training deep learning networks in
cloud-based environments [17]

In [18], a set of Instruction Set Architecture (ISA) exten-
sions are presented for RISC-V 32-bit processors, which sup-
port scalar and SIMD operations designed explicitly for small-
Float formats on embedded processors. This study demon-
strates that, on average, manual vectorization achieved a
speedup of 1.5× compared to scalar operations, with a peak
speedup of 1.91×. Furthermore, when utilizing FP8 types,
manual vectorization led to average and peak speedups of
2.35× and 3.58×, respectively. It is important to note that
employing smallFloats without vectorization results in the
same number of cycles required as using FP32.

The advantages of SmallFloats in edge devices stem from
two key aspects. Firstly, they reduce the memory footprint
for storing data and parameters. Secondly, they accelerate
execution by leveraging SIMD vectorization. These benefits
also positively impact energy consumption in algorithms. We
widely discuss the adoption of SmallFloat types and related
vectorization techniques in Sec. V.

D. Power and Energy Characterization of PULP

To explain the experimental results, we analyzed the effects
of architectural design choices on the energy and power
consumption of the GAP9 platform, considering cores, mem-
ory, and interconnects. Table I presents the outcomes of this
analysis executing a compute-intensive kernel (i.e., a matrix
multiplication) on different configurations.

Sharing an FPU between two cores results in a 1.03× and
1.02× increase in cycles and energy consumption compared to
the non-shared scenario. These values are roughly equivalent
when comparing the power consumption of the code using
FP instructions to the one using integer operations on a single
core. However, when utilizing 8 cores, FP32 exhibits increased
cycles, energy consumption, and average power by 1.09×,
1.25×, and 1.22×, respectively. This result is due to the higher
circuit complexity of the FPU.

Moreover, we evaluated the impact of vectorization and par-
allelization. FP16 vectorization reduces the cycles and energy
consumption by 0.56× and 0.46×, respectively. Vectorization
achieves this by minimizing the load and store operations,
thereby reducing the energy expended during a load-execute-
store process for each set of input operands. However, adopting
vectorization in real applications incurs additional overheads
due to conversion from other formats or part of the algorithms
that are inherently scalar, preventing an ideal reduction of
cycles (by 0.5×). To examine the impact of parallelization
without interference from the FPU sharing, we compared the
use of 8 cores and 1 core using INT32 computations. The
results reveal that employing 8 cores decreases 0.13× and
0.19× cycles and energy consumption, respectively, compared
to using only 1 core.

Finally, to evaluate power-saving policies when the cores
are idle, we executed the benchmark on 8 cores assigning the
entire computation to a single core while the others are clock-

Resources (e.g., cores)

tv

SOM #1

SOM #2

SOM #M

…

t'v

(a) The vertical pattern

th

SOM #1

SOM #M-1

…

Resources (e.g., cores)

SOM #1

SOM #M

…

t’h

(b) The horizontal pattern

Computation
Computation

Computation

t

Fetch SOM Fetch Input

Fetch Input

Fetch Input
Save SOM

Load input[0:tile]
to buffer1 Load input[tile:2×tile]

to buffer2

Load input[2×tile:3×tile]
to buffer1

Use the data in buffer1 Use the data in
buffer2 Use the data in

buffer1

Load Weights
to buffer0

Save to L2

(c) Example of tiling and double buffering

Fig. 1: Mapping patterns

TABLE I: Average energy, cycles, and power consumption of
FP32, INT32, and vectorized FP16 on the PULP SoC.

Cores Baseline Cycles Energy Average
Power

Shared
FPU 2 Non

Shared FPU 1.03x 1.02x 0.99x

FP32 1 INT32 1.00x 1.00x 1.06x
FP32 8 INT32 1.09x 1.25x 1.22x

Vectorized
FP16 1 FP32 0.56x 0.46x 1x

INT32 8 INT32, 1 core 0.13x 0.19x 1.44x
FP32 8 (7 idle) FP32, 1 core 0.99x 0.99x 1x

gated. The results in the two cases are close, demonstrating
the effectiveness of the power-saving policies.

IV. METHODOLOGY

This section presents the details of our methodology.

A. Computation Mapping

Figure 1 depicts two mapping strategies, namely Vertical
and Horizontal, used to map SOM to GAP9 SOC. In the Ver-
tical pattern, the execution of SOM networks occurs sequen-
tially, where all available resources (i.e., cores and memory)
are dedicated to a single SOM under training. This approach
yields satisfactory performance when the total workload, de-
termined by factors such as the input size (line 6), Number
of Neurons (line 7), and the neighbourhood radius (line 9),
can be efficiently parallelized across all cores. However, if the
workload is insufficient, this method does not fully exploit
the potential of utilizing multiple cores. Consequently, in the
Horizontal pattern, the available resources are divided and
shared between the two SOMs being trained. We verified that
using more than two SOMs with 8 available cores increases
the overheads without real benefits on performance. This
approach allows for a more balanced utilization of resources
and can potentially improve the overall efficiency of the
training process. We will show the results of our experiments
in Section V.

To facilitate the execution of large networks that do not
fit within the TCDM, we support tiling and double buffering
for both SOM parameters and input data. The tiling strategy
divides the data into smaller fragments, enabling them to fit
within the available amount of TCDM memory. Additionally,
this strategy enables seamless data movement between mem-
ory levels by utilizing DMA-assisted double buffering. By

employing this technique, the data for the next tile can be
transferred in parallel with the computation on the current tile,
leading to a significant reduction in the overhead associated
with the memory hierarchy. Ideally, this technique allows
for the complete overlap of data transfers and computation
phases, as shown in Figure 1c. To simplify the explanation,
considering TCDM capacity is enough to hold the SOM
networks, we demonstrate the utilization of double buffering
to efficiently transfer input data to the TCDM memory.

B. FP8

The FP8 format is gaining traction among hardware devel-
opers, considering its availability in the new NVIDIA Hopper
architecture. However, there is no standardized definition for
FP8 in the IEEE 754 standard, and different definitions are
being reconciled within the industry [17]. The specific values
for exponent bias and the encodings for infinity and NaN
are not yet standardized. Two representations for FP8 are
commonly used: E4M3 (4-bit exponent and 3-bit mantissa)
and E5M2 (5-bit exponent and 2-bit mantissa) [14]. While the
Nvidia FP8 introduction paper [14] mentions that the FP8-
E5 format is primarily utilized for gradients in deep neural
networks, we opted for the E5M2 format due to its availability
on the PULP hardware platform. The E5M2 format adheres
to the IEEE 754 conventions for the exponent and special
values, making it similar to IEEE half-precision with a reduced
number of mantissa bits. As a result, conversion between
E5M2 and IEEE FP16 formats is straightforward and can be
easily achieved [17].

We extended the functionality of the PyTorch backend by
implementing support for FP8|e5m2 data type. The PULP
architecture currently supports this format at the hardware
design and compiler level. This modification enabled us to
leverage the benefits of reduced memory footprint and ac-
celerated computation offered by 8-bit FP precision. This
implementation is available as open-source 4.

C. Vectorization

Despite the inherent limitations in vectorizing the SOM al-
gorithm, we support SIMD vectorization for both the proposed
computational patterns. In lines 7 and 8, SIMD vectorization
is employed for calculating the distance between the input
and weight values. In line 10, the toroid distance is computed

4https://github.com/ahmad-mirsalari/SOM-on-PULP

https://github.com/ahmad-mirsalari/SOM-on-PULP

for each neuron relative to the winning neuron. This distance
serves as the basis for subsequent operations, including the di-
vision operation β

2dist
. In the following step, we utilize a built-

in function to generate a vector containing the division results.
For each smallFloat format, the compiler provides a specific
built-in function to create the corresponding vector with a
minimum set of assembly instructions (1 for FP16/bfloat16,
2 for FP8). As a result, vectorization can be leveraged for all
operations in line 11.

D. Algorithm and Architectural Optimizations

Given that the denominator in the division operation is a
power of two, we optimized the computation by converting it
into a multiplication operation; β

2dist
is equal to β×2−dist. We

implemented an optimized version of the function computing
the power of two with a bit-level manipulation of the exponent.
To determine the exponent value for 2−dist in the target
format, we subtract the input value (x) from the bias. Then,
we move this value to the exponent field position through a
left-shift operation. These steps require only two cycles on
the PULP architecture; since there is a single register file for
integer and FP data, bit manipulation does not incur register
copy overheads. Using a similar approach, the fabs function
has been optimized to efficiently compute the absolute value
of a floating point variable x through a bitwise AND oper-
ation with a bitmask designed to clear the sign bit. Both
optimizations can be generalized to the vectorial case.

We skip the inner loop as an additional optimisation when
the distance exceeds a predefined threshold value. This op-
timization is possible because the value of 2dist becomes
unrepresentable in certain cases. The range limitations of
the selected FP data type determine this threshold value. In
practical terms, this optimization guarantees that only the
winning neuron and its neighbouring neurons are updated,
preceding and following it in a circular SOM within a radius
of 2 times the threshold.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

1) GAP9: GAP9 is the commercial embodiment of the
Vega SoC [19]. It comprises 10 cores implementing the RISC-
V RV32IMFC ISA, with the addition of an ISA extension
for DSP processing. The compute cluster consists of 9 cores,
with one core dedicated to orchestration and 8 serving as
workers and sharing 4 FPUs. GAP9 is equipped with 128 kB
of TCDM. The fabric controller (FC) has access to various
peripherals and is equipped with 1.5 MB of L2 memory.
The architecture incorporates adjustable dynamic frequency
and voltage domains, enabling precise control over energy
consumption based on specific requirements at any given
moment. Under peak performance conditions, both the cluster
and the fabric controller cores operate at a frequency of
400 MHz.

GAP9 does not natively support the FP8 data type: this
feature will be evaluated for the next generation of the SoC.

To assess the impact of FP8 operations, we get the perfor-
mance counters from cycle-accurate simulations and the power
numbers from a post-synthesis simulation.

2) Golden Model: We developed a Python reference based
on PyTorch to establish a reliable golden model. This model
supports various floating-point types, including FP32, FP16,
bfloat16, and FP8. We introduced a set of dedicated flags into
the golden model to simulate the behaviour of the instructions
commonly found in ISA extensions for edge AI nodes. The
MAC flag emulates the fused-multiply-add (FMA) operator
that is typically available in DSP instruction sets for embedded
devices. The vector flag simulates using SIMD vector instruc-
tions. Introducing these flags aims to account for the precision
changes that occur in intermediate results due to rounding
effects caused by using the respective instructions (MACs and
vector operations) instead of the original ones (mul+add and
scalar operations). As a result, the golden model considers the
impact of these processor-level operations to ensure accurate
and reliable results.

We implemented the SOM algorithm in plain C code, in-
cluding a set of preprocessor directives to enable vectorization,
multi-core processing, and performance monitoring. The full
project codebase is available in an open-source repository5.

3) CGRA fabric: We compare the SOM implementation
on GAP9 with a CGRA that targets dense linear algebra
applications, including SOM [3]. The authors employed two
CGRA fabrics, namely Dynamically Reconfigurable Resource
Array (DRRA) [20] for dense linear algebra and Distributed
Memory Architecture (DiMArch) [21] for streaming scratch-
pad memory, connected through a configuration network-on-
chip (NoC), as described in [3]. Each DRRA cell includes
a 16-bit fixed-point arithmetic Data Processing Unit (DPU), a
register file, and a sequencer responsible for cell configuration.
The arrangement consists of multiple columns, with each
column comprising two DRRA cells and two DiMarch cells.
The study observed that increasing the number of columns led
to a corresponding increase in speedup. The details of SOM
mapping, timing, and cell configuration can be found in [3].
As part of their extended work, the authors investigated the
impact of different fixed-point bit-widths on the performance
of the SOM algorithm [9].

The SOM algorithm was implemented with four different
dimensions: 128, 256, 512, and 1024 neurons, and each
neuron has 8 weights. This setup allowed for a fair compar-
ison between the PULP implementation and the CGRA. The
CGRA fabrics lack architectural features like vectorization,
double buffering, and near-threshold computation. Further,
the CGRA-based SOM implementation lacks the algorithmic
optimization described in Sec. IV-D.

B. Accuracy

We trained 10 different SOMs, each with a distinct DNA
sequence corresponding to a different bacteria. For each SOM,
we used a set of 20,000 training vectors. After the training

5https://github.com/ahmad-mirsalari/SOM-on-PULP

https://github.com/ahmad-mirsalari/SOM-on-PULP

phase, we utilized the trained networks to identify 1000
unknown DNA sequences. To evaluate the performance of the
networks, we use the classification error metric [9]. This metric
is calculated by dividing the number of times the network
misclassified the bacterial strain (Cfalse) by the total number
of tests performed (Ctotal):

classification error =
Cfalse

Ctotal
× 100%

Our experimental results demonstrate that the FP16 and
bfloat16 formats successfully passed the experiment across
different neuron counts, maintaining the same accuracy as the
FP32 baseline. However, when utilizing the FP8 format, we
observed a classification error of less than 9% when employing
128 neurons. Notably, this error goes to zero by increasing the
number of neurons to 256 or higher.

Considering fixed-point data formats, the 8-bit one proved
ineffective for all different networks, yielding unsatisfactory
results in the classification task. The 12-bit format exhibits
a classification error of 39%. Finally, the 16-bit and 32-bit
formats successfully pass the experiment with 0% error.

C. Hardware Results

In the hardware experiments, we trained two SOM networks
using four dimensions: 128, 256, 512, and 1024 neurons.
These networks were trained with a dataset of 40,000 training
vectors representing two strains of E. coli bacteria.

1) Memory footprint and silicon area: Table II reports the
memory footprint required for storing the weights of two SOM
networks and the corresponding silicon area requirements. Em-
ploying FP8 can substantially reduce memory requirements, up
to 2× compared to 16-bit formats, for networks with 256, 512,
and 1024 neurons while maintaining accuracy. Additionally,
opting for FP8 with 128 neurons allows for further reduction,
although at the cost of a 9% decrease in SOM accuracy.

To ensure a fair assessment, comparing the cluster domain
of GAP9 (including the TCDM) with the CGRA fabric (ex-
cluding the DRAM) is more appropriate. This means we do
not consider the L2 memory in GAP9 and the DRAM in the
CGRA fabric, as they are responsible for storing the input
data when measuring the area. In our study, we provided the
area measurements for the CGRA fabric with the 8 columns.
We can consider the CGRA fabric with a 16-bit fixed-point
format and 8 columns to guarantee a fair comparison in terms
of accuracy and maximum speedup. Since CGRA fabric is
implemented using 28 nm, we scaled the area number by 0.6.
As a result, GAP9 achieves a 1.13× reduction in the area
compared to the CGRA fabric. This increase in area in the
CGRA fabric is because each cell has its own sequencer with
dedicated memory.

2) Parallelization and vectorization performance: Fig. 2
illustrates the speed-ups achieved executing on 1, 2, 4, and
8 cores, combining the benefits deriving from parallelism and
vectorization w.r.t the FP32 baseline. The suffixes Vec, V, and
H indicate the execution using vectorization, Vertical mapping,
and Horizontal mapping variants, respectively. In the same

TABLE II: Memory required for storing the weights of two
SOM neurons in byte and Area in mm2

Weight Memory (Byte) Area (mm2)

Bit
Neuron 128 256 512 1024 CGRA

8 columns
28nm

GAP9

8-bit 2048 4096 8192 16384

1.4816-bit 4096 8192 16384 32768 2.79

32-bit 8192 16384 32768 65536

chart, we provide the speed-up values for the CGRA fabric
with 1, 2, 4, and 8 columns. The baseline cycle counts for
the FP32 data type are as follows: 425,180,568 cycles for 128
neurons, 738,577,694 cycles for 256 neurons, 1,364,078,880
cycles for 512 neurons, and 2,613,552,914 cycles for 1024
neurons. On average, we achieved 1.99×, 3.879×, and 7.01×
speed-ups on 2, 4, and 8 cores with no vectorization using
Horizontal mapping.

Notably, the Horizontal mapping approach cannot be uti-
lized with only one core, as we divide the number of cores
between two SOMs in this configuration. As depicted in Fig-
ure 2, the Horizontal method consistently achieves a superior
speedup compared to the Vertical method, especially when
scaling up to 8 cores. As outlined in Section IV-D, the deter-
mination of a threshold value plays a crucial role in ensuring
an accurate representation of 2dist, considering the data range
limitations of the chosen FP data type. This threshold value is
calculated using the expression log2(max number), resulting
in a maximum threshold value of 19 for FP32 or bfloat16.
Notably, despite the different data ranges of FP16/FP8 and
FP32/bfloat16, the same threshold value can be employed
for these data types without compromising accuracy. Conse-
quently, the maximum number of neurons to be updated is
39, encompassing the winning neuron and its neighbouring
sides in the toroid topology (19 + 1 + 19). In the case
of Vertical mapping, these neurons are distributed among 8
cores, leading to an inadequate workload w.r.t. the overhead
associated with parallelization. Conversely, with Horizontal
mapping, two SOMs are updated using this number of cores,
resulting in a higher speedup.

As depicted in Figure 1, the Horizontal mode exhibits
a longer runtime for each individual SOM (utilizing half
of the available resources) compared to the Vertical mode
(t́h > t́v). However, since we simultaneously execute two
SOMs in the Horizontal mode, the overall time required is
actually shorter than that of the Vertical mode (th < tv).
On average, vectorization yields a speed-up improvement of
1.45× for FP16/bfloat16 and 2.49× for FP8 compared to
FP32. As discussed in Section IV-C, the SOM algorithm poses
challenges in exploiting vectorization.

When comparing the performance of FP16/bfloat16 on
GAP9 with the 16-bit fixed-point on CGRA fabric, we ob-
served that in smaller networks, specifically with 128 and
256 neurons, CGRA consistently demonstrated a superior

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Sp
ee
du

p

1 2 4 8

N=128 N=256 N=512 N=1024

Fig. 2: Speed-up of parallel (2, 4, 8 cores), vectorized (FP16/bfloat16, FP8), and CGRA fabric (1, 2, 4, and 8 columns) w.r.t.
the FP32 baseline. V and H represent vertical and horizontal mapping, respectively.

0

1

2

3

4

5

6

7

En
er

gy
 Im

pr
ov

em
en

t

1 2 4 8

N=128 N=256 N=512 N=1024

Fig. 3: Energy improvement of parallel (2, 4, 8 cores), vectorized (FP16/bfloat16, FP8), and CGRA fabric (1, 2, 4, and 8
columns) w.r.t. the FP32 baseline. V and H represent vertical and horizontal mapping, respectively.

speedup across various column configurations. For example,
when using 8 columns, CGRA achieved a speedup of 12.3×,
while GAP9 achieved a speedup of 9.78× with 8 cores.

However, as the network size increased, the competitive
advantage of GAP9 became evident. For instance, using 1024
neurons, CGRA fabric achieved a speedup of 10.89× with 8
columns, while GAP9 achieved a close speedup of 10.50×
with 8 cores. These differences in GAP9 and CGRA stem
from the fact that for smaller SOMs, the architectural and
algorithmic optimizations do not show up; for larger networks,
these advantages play a significant role.

In the case of the FP8 data type, our analysis in Figure 2
revealed that CGRA outperformed FP8 in terms of speedup
only for 128 neurons and 8 columns, where it achieved a
speedup of 13.97× compared to 12× for FP8. However, FP8
consistently exhibited a higher speedup for other network

sizes in all core configurations. For example, when using 256,
512, and 1024 neurons, CGRA achieved 12.3×, 11.47×, and
10.89× with 8 columns, while GAP9 achieved speedups of
14.77×, 17.19×, and 18.60× with 8 cores.

3) Energy: The energy estimation for the CGRA was based
on post-layout synthesis simulations in 28 nm technology with
180 MHz frequency. The values are then scaled down to 22 nm
for fair comparison using a factor of 0.7 based on [22]. The
energy includes the DRAM accesses based on the [23].

The baseline energy consumption values for the FP32 data
type are as follows: 32.17 mJ for 128 neurons, 56.33 mJ for
256 neurons, 104.05 mJ for 512 neurons, and 200.75 mJ for
1024 neurons.

As depicted in Figure 3, in the case of a small network,
we find that FP16 on GAP9 exhibits a comparable energy
improvement when utilizing 8 cores, compared to the 16-bit

fixed-point on CGRA fabric. Specifically, FP16 achieves a
notable energy improvement of 3.67× using 8 cores, which is
very close to the energy improvement achieved by the 16-bit
fixed-point at 3.47× in a network with 256 neurons.

However, as the network size increases, FP16 showcases
its advantage by achieving a higher energy improvement with
fewer cores. For instance, in the case of 1024 neurons, FP16
achieves a significant energy improvement of 3× with only 4
cores on the GAP9 platform, surpassing the performance of
the 16-bit fixed-point which achieves a 2× improvement on
the CGRA fabric.

In the case of FP8, we observe consistently higher energy
improvements across all configurations compared to the use
of the 16-bit fixed-point implementation on the CGRA fabric.
This holds true for networks with 256, 512, and 1024 neurons,
and FP8 even surpasses the 16-bit fixed-point approach in the
case of 128 neurons when employing only 4 cores.

For instance, with a single core, FP8 achieves energy
improvements of 2.47×, 2.58×, and 2.65× in networks with
256, 512, and 1024 neurons, respectively. In contrast, the
CGRA fabric yields energy improvements of 2.25×, 2.08×,
and 1.57× when using 1 column in the aforementioned
neurons. Considering 8 cores, FP8 demonstrates substantial
energy improvements of 6×, 6.56×, and 6.72× in networks
with 256, 512, and 1024 neurons, respectively. Conversely, the
CGRA fabric provides energy improvements of 3.47×, 3.26×,
and 3.15× when utilizing 8 columns in the same networks.

VI. CONCLUSION AND FUTURE WORK

This paper proposes an optimized implementation of SOMs
for genomics computations on resource-constrained embedded
systems. We explore the use of smallFloat formats to improve
energy efficiency and performance. Our approach includes par-
allelization, data transfer optimization, and comparison with
a CGRA, achieving state-of-the-art performance for bacterial
identification. Our work contributes to efficient genomics com-
putations on embedded systems, considering computational
limitations and energy constraints. As a significant outcome,
we demonstrated that a general-purpose parallel platform can
achieve state-of-the-art results for genome identification. Other
architectures, such as a CGRA, have the potential to achieve
better results considering the same setup. However, the PULP
architecture allows algorithm designers to obtain competitive
results in many application contexts by performing a software
exploration and using commercially available solutions.

Utilizing a scaling factor is a widely adopted approach
to bring higher precision values within a range that aligns
well with the representable range [14]. As the FP8 format
did not achieve a 0% classification error with 128 neurons,
we will explore the dynamic scaling techniques to enhance
the accuracy of FP8 as future work. Furthermore, we will
investigate the implementation of alternative encodings of FP8,
such as FP|E4M3, to assess their impact on accuracy.

ACKNOWLEDGEMENT

This work is conducted within the project APROPOS,
funded by the European Union’s Horizon 2020 (H2020) Marie

Sklodowska-Curie Innovative Training Networks H2020-
MSCA-ITN-2020 call, under the Grant Agreement no 956090.

REFERENCES

[1] V. Gnanasambandapillai et al., “MESGA: An MPSoC based embedded
system solution for short read genome alignment,” in 2018 23rd Asia
and South Pacific Design Automation Conf. (ASP-DAC), pp. 52–57.

[2] T. Kohonen, “The self-organizing map,” Proc. of the IEEE, vol. 78,
no. 9, pp. 1464–1480, 1990.

[3] Y. Yang et al., “RiBoSOM: rapid bacterial genome identification using
self-organizing map implemented on the synchoros SiLago platform,”
Proc. of the 18th Int. Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation, 2018.

[4] P. Liu et al., “3D-stacked many-core architecture for biological sequence
analysis problems,” International journal of parallel programming,
vol. 45, pp. 1420–1460, 2017.

[5] Q. Xu et al., “Approximate Computing: A Survey,” IEEE Design &
Test, vol. 33, pp. 8–22, 2016.

[6] A. Yazdanbakhsh et al., “AxBench: A Multiplatform Benchmark Suite
for Approximate Computing,” IEEE Design & Test, vol. 34, pp. 60–68,
2017.

[7] S. Mach et al., “A Transprecision Floating-Point Architecture for
Energy-Efficient Embedded Computing,” in 2018 IEEE Int. Symposium
on Circuits and Systems (ISCAS), 2018, pp. 1–5.

[8] G. Tagliavini et al., “A Transprecision Floating-Point Platform for Ultra-
Low Power Computing,” IEEE, pp. 1051–1056, 2018.

[9] D. Stathis et al., “Approximate Computing Applied to Bacterial Genome
Identification using Self-Organizing Maps,” in 2019 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), 2019, pp. 560–567.

[10] P. Micikevicius et al., “Mixed Precision Training,” 2018.
[11] GreenWaves Technologies Corp., GAP8 Hardware Reference Manual,

Grenoble, FR, Jan. 2019, [Online]. [Online]. Available: https:
//gwt-website-files.s3.amazonaws.com/gap8 datasheet.pdf

[12] M. Gautschi et al., “Near-Threshold RISC-V Core With DSP Extensions
for Scalable IoT Endpoint Devices, year=2017,” IEEE Trans. on Very
Large Scale Integration (VLSI) Systems, vol. 25, no. 10, pp. 2700–2713.

[13] S. Mach et al., “FPnew: An Open-Source Multiformat Floating-Point
Unit Architecture for Energy-Proportional Transprecision Computing,”
IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 29,
no. 4, pp. 774–787, 2021.

[14] P. Micikevicius et al., “FP8 Formats for Deep Learning,” 2022.
[15] B. Noune et al., “8-bit Numerical Formats for Deep Neural Networks,”

2022.
[16] M. Andersch et al. (2022) Nvidia Hopper Architecture In-

Depth. 2, 4, 6. [Online]. Available: https://developer.nvidia.com/
blog/nvidia-hopper-architecture-in-depth/

[17] M. van Baalen et al., “FP8 versus INT8 for efficient deep learning
inference,” 2023.

[18] G. Tagliavini et al., “Design and Evaluation of SmallFloat SIMD
extensions to the RISC-V ISA,” in 2019 Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2019, pp. 654–657.

[19] D. Rossi et al., “Vega: A Ten-Core SoC for IoT Endnodes With
DNN Acceleration and Cognitive Wake-Up From MRAM-Based State-
Retentive Sleep Mode,” IEEE Journal of Solid-State Circuits, vol. 57,
no. 1, pp. 127–139, 2022.

[20] M. A. Shami et al., “Partially reconfigurable interconnection network
for dynamically reprogrammable resource array,” in 2009 IEEE 8th Int.
Conference on ASIC, 2009, pp. 122–125.

[21] M. A. Tajammul et al., “NoC Based Distributed Partitionable Memory
System for a Coarse Grain Reconfigurable Architecture,” in 2011 24th
Int. Conference on VLSI Design, 2011, pp. 232–237.

[22] H. Esmaeilzadeh et al., “Dark silicon and the end of multicore scaling,”
in Proc. of the 38th Annual Int. Symposium on Computer architecture,
2011, pp. 365–376.

[23] M. O’Connor et al., “Fine-grained DRAM: Energy-efficient DRAM for
extreme bandwidth systems,” in Proc. of the 50th Annual IEEE/ACM
Int. Symposium on Microarchitecture, 2017, pp. 41–54.

https://gwt-website-files.s3.amazonaws.com/gap8_datasheet.pdf
https://gwt-website-files.s3.amazonaws.com/gap8_datasheet.pdf
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

	Copertina_postprint_IRIS_UNIBO
	ICECS_2023__Bacterial_Genome_Identification_Using_Self_Organizing_Map_implemented_on_the_GAP9_POSTPRINT
	Introduction
	Related Work
	Background
	SOM algorithm
	PULP
	SmallFloats
	Power and Energy Characterization of PULP

	Methodology
	Computation Mapping
	FP8
	Vectorization
	Algorithm and Architectural Optimizations

	Experimental Results
	Experimental Setup
	GAP9
	Golden Model
	CGRA fabric

	Accuracy
	Hardware Results
	Memory footprint and silicon area
	Parallelization and vectorization performance
	Energy

	Conclusion and Future Work
	References

