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S1.  ADDITIONAL COMPUTATIONAL AND EXPERIMENTAL RESULTS 

 

Figure S1. Representative molecular structures of homoligand NP2, NP4 nanoparticle and its heteroligand NP2/6, NP4/6 counterpart 

from molecular dynamics simulations in explicit solvent (water). For clarity, water and counterions are not shown. Color representation 

of atoms: C, grey; O, red; S, yellow; N, blue; F, green; H, white. 

 

 

Figure S2. Mesoscale equilibrium arrangement of sulfur (S) units in heteroligand nanoparticles from DPD simulations. Green spheres 

represent sulfur beads belonging to ligands 6 and white spheres to ligands 1, 2, 3, 4, 5, depending on the system under consideration.  
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Figure S3. Voronoi tessellation based on the center of mass of the ligands projected onto a bi-dimensional (φ, cos (θ)) plane for the 

shorter alkyl chain (C11/C12) nanoparticles. Each dot corresponds to a ligand center of mass. Each polygon is colored according to its 

value, where darker (lighter) regions represent smaller (larger) area with higher (lower) ligand density with respect to the average. a) 

NP1, b) NP1/6, c) NP3, d) NP3/6, e) NP5, f) NP5/6. 
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Figure S4. Voronoi tessellation based on the center of mass of the ligands projected onto a bi-dimensional (φ, cos (θ)) plane for the 

longer alkyl chain (C16) nanoparticles. Each dot corresponds to a ligand center of mass. Each polygon is colored according to its value, 

where darker (lighter) regions represent smaller (larger) area with higher (lower) ligand density with respect to the average. a) NP2, b) 

NP2/6, c) NP4, d) NP4/6. 
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Table S1. Nanoparticle structural properties including: radius of gyration (Rg), average number of ligand bundles (nb), asphericity (δ), 

fraction of trans dihedrals angles, area dispersion index (ADI) calculated from MD simulations. Uncertainties are reported in brackets. 

 

 
Rg 

(nm) 
nb

a 
δb 
(-) 

Fraction of 
trans dihedrals (%)c 

ADId 

NP1 3.16 (0.02) - 0.08 (0.03) 90.6 (3.0) 2.24 

NP1/6 2.99 (0.04) - 0.13 (0.04) 85.6 (3.3) 2.90 

NP2 3.15 (0.05) - 0.13 (0.04) 88.5 (6.1) 2.52 

NP2/6 3.03 (0.05) - 0.33 (0.07) 85.2 (5.6) 2.19 

NP3 3.03 (0.02) 7 0.21 (0.04) 95.8 (2.3) 2.96 

NP3/6 2.87 (0.03) 6 0.24 (0.05) 93.1 (3.0) 2.10 

NP4 3.23 (0.06) 5 0.53 (0.05) 95.5 (2.7) 3.12 

NP4/6 3.14 (0.03) 6 0.50 (0.06) 95.0 (2.4) 2.26 

NP5 3.21(0.03) - 0.14 (0.04) 87.7 (2.5) 2.85 

NP5/6 2.96 (0.04) - 0.29 (0.05) 86.7 (3.6) 2.28 

 
aLigands are assigned to the same bundle based on their relative orientation and end group distances; the (HBDSCAN)1 algorithm 
was used to identify sets of ligands that belong to the same bundle. We assigned a minimum number of 4 ligands to form a bundle, 
which corresponds to the minimum polygon size identified in the Voronoi tessellation.   

bThe asphericity δ gives an indication of shape and is defined as Iz-(Ix+Iy)/2, having assigned the principal moments of the gyration 
tensor as Iz ≥ Iy ≥ Ix. Values close to 0 indicate a spherical form, while values around 1 an oblong shape (e.g., ellipsoid). 

cThe percentage of trans dihedrals angles (-180° < φ < -120° and 120° < φ < 180°) relative to the total number of dihedral angles 
in the ligand chain is a measure of ligand ordering. The dihedral angles were calculated taking into account all the heavy atoms 
of the alkyl portion and ignoring all the hydrogen atoms.  

dThe area dispersion index (ADI) is calculated from the Voronoi tessellation of the ligands center of mass. See Section S3.3 for 
ADI definition. 

 

 

Table S2. Organic overlayer thickness (δ) for selected systems from MD calculations and comparison with the values obtained through 

XPS measurements. 

 δMD (nm) δa
XPS (nm) 

NP1/6 1.57 1.65 

NP2 1.90 1.91 

NP2/6 1.88 1.79 

NP5 1.58 1.37 

NP5/6 1.64 1.72 

aThe relative error on the thickness was estimated to be 10%, according to the outcomes described by Shard for NPs with this size.2 

 

The thickness of the organic overlayer obtained through XPS measurements are comparable with the 

value obtained via MD simulations. This supports the molecular models adopted. At the same time, since 

XPS measurements are carried out on dry samples under high vacuum, it suggests high gold passivation 

and overall monolayer compactness. 
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Figure S5. Normalized water distribution at increasing distance from the gold surface for NP1 and NP2 series. Color code same as in 

Figure 4. 

 

 

Figure S6. Normalized water distribution at increasing distance from the gold surface for NP3 and NP4 series. Color code same as in 

Figure 4. 
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Figure S7. Normalized water distribution at increasing distance from the gold surface for NP5 serie. Color code same as in Figure 4. 

 

 

Figure S8. Flowchart of the computational protocol proposed for the identification of local environments within SAMs. Details and 

parameters for each step are provided in Section S3 of the Supporting Information. 
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Figure S9. (a) First two principal components (PCA1 and PCA2) obtained from dimensionality reduction of medium-range SOAP 

feature space of the probe 7 in NP1, NP3, and NP5. Dots are colored according to the clusterization obtained by the GMM analysis. 

For each cluster, the insert shows a zoomed view of the molecular environment centered on the probe, as extracted from the 

corresponding MD frames. Water is not shown for clarity. Color legend: probe, same color of the cluster; ligands colored in grey. (b) 

Free energy surface (FES)(kcal/mol) calculated from the states probability distribution for the same systems in (a). Dots superimposed 

on the surface identify the clusters and are colored based on the microstate they refer to (panel (a)). The arrow indicates the transition 

probability from the minimum. 
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Figure S10. (a) First two principal components (PCA1 and PCA2) obtained from dimensionality reduction of medium-range SOAP 

feature space of the probe 7 in NP2, NP2/6, NP4, and NP4/6 at 340 K. Dots are colored according to the clusterization obtained by 

the GMM analysis. For each cluster, the insert shows a zoomed view of the molecular environment centered on the probe, as extracted 

from the corresponding MD frames. Water is not shown for clarity. Color legend: probe, same color of the cluster; ligands 2 and 4 

colored in grey; ligand 6 colored in dark grey. (b) Free energy surface (FES)(kcal/mol) calculated from the states probability distribution 

for the same systems in (a). Dots superimposed on the surface identify the clusters and are colored based on the microstate they refer to 

(panel (a)). The arrow indicates the transition probability from the minimum. 
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Figure S11. Similarity matrix for all local most visited environments generated by calculating the pairwise SOAP kernels KSOAP between 

all the reduced short-range SOAP feature vectors. The matrix contains also the states found at high temperature (340 K). The latter 

ones are marked explicitly. Dark blue color indicates high similarity between the environments. 
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S2. SYNTHESIS AND CHARACTERIZATION OF MIXED-MONOLAYERS 

NANOPARTICLES 

S2.1. Synthesis of NP-C12N/F6 (NP1/6) 

To a solution of tetrachloroauric acid (100 mg, 0.296 mmol) in 11.6 mL of deoxygenated milliQ water, TOAB 

(869 mg, 1.59 mmol) in 8.8 mL of deoxygenated chloroform was added and the solution was let to stir for 30 

min at room temperature. The two phases were separated and sodium borohydride, in 7.8 mL milliQ water, 

was added (161.4 mg, 4.27 mmol) to the organic phase and stirred for 15 minutes under argon atmosphere. 

After this time, the mixture of the two thiols was added (1.8 mg HS-F6 and 8.6 mg HS-C12N) in 6 mL 

isopropanol and the nanoparticles precipitated. After 1.3 h the solid was separated and the nanoparticles were 

washed six times with chloroform (6 x 15 mL) (4500 rpm, 4 min, 25 °C). After decomposition of the NPs using 

a solution of I2 in methanol, a 2.1/1 ratio HS-C12N/F6 was found from the integrals of the 1H NMR spectrum. 

TEM: 4.5 ± 1.0 nm, TGA 15 %, Au3100C12N245F117.  

 

 

Figure S12. a) 1H-NMR (400 MHz, D2O) spectra; b) 19F NMR (376.16 MHz, D2O) spectra of NP-C12N/F6 and 1H NMR (400 MHz, 

CDCl3) of decomposed NP-C12N/F6 with integrals of the signals at: 2.92 – 2.82 ppm assigned to S-S-CH2-CH2-(CF2)5-CF3 and at 2.70 

– 2.75 ppm assigned to S-S-CH2-CH2-(CH2)10-N+(CH3)3. 

a) a) 

c) 

b) 
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Figure S13. a) Representative TEM image (scale bar: 200 nm); b) Size histogram; c) UV-VIS (H2O, 0,1 mg/mL); d) TGA analysis and 

e) hydrodynamic diameter size distribution 9.9 ± 2.6 nm, n = 3, determined by DLS of NP-C12N/F6. 

 

S2.2. Synthesis of NP-C16N/F6 (NP2/6) 

To a solution of tetrachloroauric acid (206.7 mg, 0.608 mmol) in 24.7 mL of deoxygenated milliQ water, TOAB 

(1.796 g, 3.28 mmol) in 18.6 mL of deoxygenated chloroform was added and the solution was let to stir at 

room temperature for 30 min. The two phases were separated and sodium borohydride (330 mg, 8.81 mmol in 

16.8 mL milliQ water) was added to the organic phase and stirred for 15 minutes under argon atmosphere. 

After this time, the mixture of the two thiols was added (20 mg HS-F6 and 5.3 mg HS-C16N) in 16.8 mL of 

isopropanol and the nanoparticles precipitated. After 2 h the solid was separated and the nanoparticles were 

a) b) 

c) d) 

e) 
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washed six times with chloroform (6 x 15 mL) (4500 rpm, 4 min, 25 C). After the decomposition of the 

monolayer, a 3.7/1 ratio HS-C16N/F6 was found. To a solution of these nanoparticles (60 mg dissolved in 30 

mL deoxygenated MeOH), 1 mg of HS-F6 was added and the mixture was let to stir at 40 °C for 3 days. After 

decomposition of the NPs using a solution of I2 in methanol, 2.3/1 ratio HS-C16N/F6 was found from the 

integrals of the 1H NMR spectrum. TEM: 4.1 ± 0.9 nm, TGA 18.4 %, Au2600C16N237F103.  

 

 

 
Figure S14. a) 1H-NMR (400 MHz, D2O); b) 19F NMR (376.16 MHz, D2O) spectra of NP-C16N/F6 and c) 1H NMR (400 MHz, CDCl3) 

of decomposed NP-C16N/F6 with integrals of the signals at: 2.87 – 2.82 ppm for S-S-CH2-CH2-(CF2)5-CF3 and at 2.68 – 2.75  ppm: S-S-

CH2-CH2-(CH2)14-N+(CH3)3. 

a) 

b) 

a) 

c) 
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Figure S15. a) Representative TEM image (scale bar: 200 nm); b) Size histogram; c) UV-VIS (H2O, 0,1 mg/mL); d) TGA analysis and 

e) hydrodynamic diameter size distribution 9.7 ± 2.8 nm, n = 2, determined by DLS of NP-C16N/F6. 

 

S2.3. Synthesis of NP-ZWPN/F6 (NP5/6) 

A solution of TOAB (1.3 g, 5.4 Eq) in chloroform (13.5 mL) was added under argon atmosphere to an aqueous 

solution of tetrachloroauric acid (0.15 g, 1 Eq in 17.9 mL) at 25 °C and the reaction was let to stir for 15 

minutes. The two phases were separated and a solution of sodium borohydride (0.241 g, 14.5 Eq) in water (12.2 

mL) was added to the organic phase. The red colored solution was stirred for 15 minutes and the mixture of 

the thiols was added (13.3 mg ZW-PN (36.1 mmol) and 13.7 mg F6 (36.1 mmol) in 12.2 mL isopropanol. The 

nanoparticles precipitated and the dispersion was stirred for 2 hours. The solid was separated and washed five 

times with chloroform (30 mL, 4500 rpm, 5 min). The as-formed nanoparticles have been decomposed with a 

solution of I2 in methanol in order to obtain the ratio between the two thiols present into the monolayer and 

a) b) 

c) 
d

) 

e) 

d) 
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the nanoparticles were analyzed on TEM to determine the dimension of the gold core. ZW-PN/F6 = 2.5/1. 

TEM: 4.2 ± 0.9 nm, TGA 19 % (Au2750ZW-PN244F98).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure S16. a) 1H-NMR (400 MHz, D2O); b) 19F NMR (376.16 MHz, D2O) spectra of NP-ZWPN/F6 and c) 1H NMR (400 MHz, 

CD3OD) of decomposed NP-ZWPN/F6 with integrals of the signals at 3.00 – 2.95 ppm assigned to S-S-CH2-CH2-(CF2)5-

CF3 and at 2.70 – 2.68 ppm assigned to S-S-CH2-CH2-ZWPN. 

 

a) 

b) 

c) 
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Figure S17. a) Representative TEM image (scale bar: 200 nm); b) Size histogram; c) UV-VIS (H2O, 0,1 mg/mL); d) TGA analysis and 

e) hydrodynamic diameter size distribution 15.7 ± 4.6 nm, n = 3, determined by DLS of NP-ZWPN/F6. 

 
 

S2.4. Synthesis NP-MDDS/F6 (NP3/6) 

HAuCl4·3H2O (50 mg, 0.147 mmol, 1 eq) was dissolved in 5.8 mL of deoxygenated water and stirred for 30 

min at 25°C with a solution of TOABr (434.5 mg, 0.795 mmol, 5.4 Eq) in 4.4 mL of deoxygenated chloroform 

pre-treated with potassium carbonate. After removal of the colorless aqueous layer, a cold solution of NaBH4 

(80.7 mg, 2.133 mmol, 14.5 Eq) in 3.9 mL deoxygenated water was quickly added to the orange organic phase 

containing gold and the mixture was stirred vigorously for 15 min at 25°C. Then the aqueous layer was 

removed and a dark red-violet solution of nanoparticles in chloroform was obtained. MDDS 4.2 mg (0.014 

mmol) was dissolved in 2 mL of 1:1 deoxygenated methanol: isopropanol mixture, while HS-F6 1.75 mg 

a) b) 

c) 

e) 

d) 
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(0.0046 mmol) was dissolved in 1 mL of deoxygenated methanol. The thiols solutions were joined to obtain a 

clear 3/1 MDDS/F6 solution that was added dropwise to the nanoparticle’s solution. After stirring for 1.2 h 

at 25°C, nanoparticles were precipitated by centrifugation (4200 rpm for 5 min) and washed with chloroform 

pretreated with K2CO3 (5x20 mL) and methanol (5x20 mL). Nanoparticles were further purified by G-75 

Sephadex chromatography in water. 

The obtained nanoparticles were characterized by 1H-NMR spectroscopy, TEM and UV-vis spectroscopy. 

After decomposition of the NPs using a solution of I2 in methanol, a 2.1/1 ratio HS-MDDS/F6 was found 

from the integrals of the 1H NMR spectrum. TEM: 4.5 ± 0.9 nm, TGA 15 %, Au2975MDDS239F132. 

 

 

 

 

Figure S18. a) 1H-NMR (400 MHz, D2O); b) 19F NMR (376.16 MHz, D2O) spectra of NP-MDDS/F6 and c) 1H NMR (400 MHz, 
CD3OD) of decomposed NP-MDDS/F6: integrals of the signals at: 3.00 – 2.95 ppm assigned to S-S-CH2-CH2-(CF2)5-CF3 and at 2.92 – 
2.85 ppm assigned to S-S-CH2-(CH2)10-CH2-SO3

-. 

 

a) 

b) 

c) 
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Figure S19. a) Representative TEM image (scale bar: 200 nm); b) Size histogram; c) UV-VIS (H2O, 0,1 mg/mL); d) TGA analysis and 

e) hydrodynamic diameter size distribution 8.9 ± 2.6 nm, n = 3, determined by DLS of NP-MDDS/F6. 

 

S2.5. Synthesis NP-MHDS/F6 (NP4/6) 

HAuCl4·3H2O (50 mg, 0.147 mmol, 1 eq) was dissolved in 5.8 mL of deoxygenated water and stirred for 30 

min at 25 °C with a solution of TOABr (434.5 mg, 0.795 mmol, 5.4 eq) in 4.4 mL of deoxygenated chloroform 

pretreated with potassium carbonate. After the colorless aqueous layer was discarded and a cold solution of 

NaBH4 (80.7 mg, 2.133 mmol, 14.5 eq) in 3.9 mL deoxygenated water was quickly added to the orange organic 

phase containing gold and the mixture was vigorously stirred for 15 min at 25°C. Finally, the aqueous layer 

was removed and a dark red-violet solution of nanoparticles in chloroform was obtained. A solution of MHDS 

and F6 in a 5/1 ratio was prepared. 5.4 mg (0.015 mmol) of MHDS were dissolved in a 2.3 mL of 1:1:0.3 

a) b) 

c) d) 

e) 
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deoxygenated methanol:isopropanol:DMF mixture, while F6 (1.14 mg, 0.003 mmol) was dissolved in 1 mL of 

deoxygenated methanol. Finally, the two thiols solutions were joined to give a clear MHDS/F6 solution that 

was added dropwise to the nanoparticle’s solution. After stirring for 1.20 h at 25°C, nanoparticles were 

precipitated by centrifugation (4200rpm for 5 min) and washed with chloroform pretreated with K2CO3 (5x20 

mL) and methanol (5x20 mL). Nanoparticles were further purified by G-75 Sephadex chromatography 

performed in water. The obtained nanoparticles were characterized by 1H-NMR spectroscopy, TEM and UV-

vis spectroscopy. After decomposition of the NPs using a solution of I2 in methanol, a 2.2/1 ratio HS-

MHDS/F6 was found from the integrals of the 1H NMR spectrum. TEM: 4.5 ± 0.8 nm, TGA 15 %, 

Au3100MHDS275F125.  

 

 

 

 

 

Figure S20. a) 1H-NMR (400 MHz, D2O), b) 19F NMR (376.16 MHz, D2O) spectra of NP-MHDS/F6 and c) 1H NMR (400 MHz, 

CD3OD) of decomposed NP-MHDS/F6: integrals of the signals at: 3.00 – 2.95 ppm assigned to S-S-CH2-CH2-(CF2)5-CF3 and at 2.92 – 

2.87 ppm assigned to S-S-CH2-(CH2)14-CH2-SO3
-. 

a) 

b) 

c) 
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Figure S21. a) Representative TEM image (scale bar: 200 nm); b) Size histogram; c) UV-VIS (H2O, 0,1 mg/mL); d) TGA analysis and 

e) hydrodynamic diameter size distribution 12.3 ± 3.6 nm, n = 3, determined by DLS of NP-MHDS/F6. 

 

  

a) b) 

c) 

e) 

d) 
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S3. COMPUTATIONAL METHODS 

S3.1. Dissipative particle dynamics (DPD) 

Theory. Dissipative particle dynamics (DPD)3 is a well-established mesoscale stochastic simulation method 

using coarse-grained particles. In DPD simulations, a small group of atoms or molecules are lumped (i.e. 

coarse-grained) into a single unit (DPD bead) and the dynamics of each bead is governed by Newton’s equation 

of motion. Thanks to this lumping, DPD gives rise to decreased degrees of freedom, which enables one to 

analyze complex systems at a bigger time and length scales, thus making it computationally efficient and 

cheaper. Accordingly, DPD resembles molecular dynamics, but with this technique, it is possible to analyze 

complex phenomena such as self-assembly of the amphiphilic molecules, phase separations, among others, 

which are not feasible with classical methods due to limited time and length scales.4-9  

In DPD each bead i is described by position 𝒓𝑖, velocity 𝒗𝑖, mass 𝑚𝑖 and interact with other beads by the 

force 𝑭𝑖 written as a sum of three pairwise forces and additional forces that reflect bonds, bending, etc. in 

complex molecules, active within an interaction range defined by the cutoff distance 𝑟𝑐:  

 

𝑭𝑖 = ∑ 𝒇𝑖𝑗
𝐶

𝑖≠𝑗

+ ∑ 𝒇𝑖𝑗
𝐷

𝑖≠𝑗

+ ∑ 𝒇𝑖𝑗
𝑅

𝑖≠𝑗

+ ∑ 𝒇𝑖𝑗
𝑏𝑜𝑛𝑑

𝑖≠𝑗

+ ∑ 𝒇𝑖𝑗𝑧
𝑎𝑛𝑔𝑙𝑒

𝑖≠𝑗≠𝑧

 

𝒇𝑖𝑗
𝐶 (𝐫𝑖𝑗 , 𝑎𝑖𝑗)       = 𝑎𝑖𝑗 (1 −

𝐫𝑖𝑗

𝑟𝑐

) 𝒓̂𝑖𝑗  

𝒇𝑖𝑗
𝐷 (𝐫𝑖𝑗 , 𝐯𝑖𝑗 , 𝛾𝑖𝑗) = −𝛾𝑖𝑗  𝜔𝐷(𝐫𝑖𝑗)(𝐫𝑖𝑗 ∙ 𝐯𝑖𝑗)𝒓̂𝑖𝑗  

𝒇𝑖𝑗
𝑅 (r𝑖𝑗 , 𝜎𝑖𝑗 , 𝜉𝑖𝑗) = 𝜎𝑖𝑗𝜔𝑅(𝐫𝑖𝑗)𝜁𝑖𝑗∆𝑡−1/2𝒓̂𝑖𝑗 

 

where 𝒇𝑖𝑗
𝐶 (𝐫𝑖𝑗 , 𝑎𝑖𝑗) is a conservative force, 𝒇𝑖𝑗

𝐷 (𝐫𝑖𝑗 , 𝐯𝑖𝑗 , 𝛾𝑖𝑗) a dissipative force and 𝒇𝑖𝑗
𝑅 (r𝑖𝑗 , 𝜎𝑖𝑗 , 𝜉𝑖𝑗) a random force, 

𝐫𝑖𝑗 = 𝐫𝑖 − 𝐫𝑗, 𝒓̂𝑖𝑗 is the unit vector, 𝑎𝑖𝑗 is the maximum repulsion between two beads, 𝐯𝑖𝑗 = 𝐯𝑖 − 𝐯𝑗, Δ𝑡 is the 

time step of the integration scheme, 𝛾𝑖𝑗 and 𝜎𝑖𝑗 are the amplitudes of the dissipative and random force, and 𝜁𝑖𝑗 

is a Gaussian random number with zero mean and unit variance, which is chosen independently for each pair 

of beads. The conservative force 𝒇𝑖𝑗
𝐶  represents the excluded volume interactions between two beads and 

reflects the chemistry behind the beads; the dissipative 𝒇𝑖𝑗
𝐷  and random force 𝒇𝑖𝑗

𝑅  act as heat sink and source, 

respectively, and the combined effect of the two forces performs as a thermostat, where the friction coefficient 

𝛾𝑖𝑗 is related to the thermal noise amplitude 𝜎𝑖𝑗 via the fluctuation−dissipation theorem such as 
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𝜔𝐷(𝐫𝑖𝑗) = [𝜔𝑅(𝐫𝑖𝑗)]
2
 

𝜎𝑖𝑗
2 = 2𝛾𝑖𝑗𝐾𝐵𝑇 

 

 

In addition, our DPD simulations contain also bonds described by a harmonic spring force 𝒇𝑖𝑗
𝑏𝑜𝑛𝑑, where 𝑘𝑏 is 

the stiffness of the spring and 𝑟0 is the equilibrium distance between the bonded particles ij, and a harmonic 

bond angle force 𝒇𝑖𝑗𝑧
𝑎𝑛𝑔𝑙𝑒

= 1

2
𝐾𝜃 sin(𝜃 − 𝜃0), where 𝐾𝜃 is the spring constant and 𝜃0 the equilibrium angle 

between adiacent bead triples ijz in a row. 

All the variables are rescaled in DPD simulations by the particle mass mi, the cutoff distance 𝑟𝑐, and energy 

unit 𝑘𝐵𝑇, where are kB is the Boltzmann factor and T is the absolute temperature. 

Models and simulation details. The CG model of the gold (Au) core is an icosahedron of ⁓ 4 nm size (in 

rescaled units) made of Au DPD beads arranged on an fcc lattice. Each ligand is represented by a flexible chain 

of DPD beads connected by harmonic springs (Figure S22). Water (W) and counterions (CI) (Na+, Cl-) are 

described as single-bead molecules.  

 

 

Figure S22. DPD bead-spring model of the ligands installed on mixed SAMs investigated in this study. Each model shows the kind of 

DPD bead and, on top, the topology of the CG chain, where the subscript indicates the number of each bead type. 

The number of ligands was assigned to each nanoparticle to match the experimental number of chain for nm2. 

Each ligand was placed close to the gold surface and oriented outward with the head-tail vector along the 

radial direction. The nanoparticle was then solvated by Packmol,10 assuming a standard bead density ρ of 3, 

and placed in the middle of a 3D periodic simulation box of 32rc x 32rc x 32rc length. All Au beads were forced 

to move as a rigid body during the simulation time. Each configuration was first relaxed for 1x104 steps with 
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a time step of t = 0.01τ. After, at least additional 6x106 time steps (t = 0.02τ) were performed for productive 

runs. Electrostatic interactions were treated by means of the smooth particle mesh Ewald method. System 

equilibration was assessed by monitoring temperature, pressure, density, and potential energy profile as well 

as composition of nearest neighbours of the sulphur beads. Each system was tested on three independently 

generated starting configurations.  

The optimized adimensional values for the bond force 𝒇𝑖𝑗
𝑏𝑜𝑛𝑑 are the following: kb(C-C) = 10, r0(C-C) = 0.60, 

kb(C-N) = 10, r0 (C-N) = 0.60, kb(N-L) = 10, r0 (N-L) = 0.60, kb(C-Q) = 10, r0 (C-Q) = 0.65, kb(C-P) = 10, r0 (C-

P) = 0.74, kb(C-F) = 10, r0 (C-F) = 0.65, kb(F-F) = 10, r0 (F-F) = 0.69.  

Bond angle adimensional parameters in 𝒇𝑖𝑗𝑧
𝑎𝑛𝑔𝑙𝑒

are: kθ(C-C-C) = 10, θ0(C-C-C) = 120, kθ(C-C-N) = 10, θ0(C-

C-N) = 110,kθ(C-N-L) = 10, θ0(C-N-L) = 109, kθ(C-C-Q) = 100, θ0(C-C-Q) = 110, kθ(C-P-C) = 10, θ0(C-P-C) 

= 110, kθ(P-C-N) = 10, θ0(P-C-N) = 110, kθ(C-N-L) = 40, θ0(C-N-L) = 109, kθ(L-N-L) = 40, θ0(L-N-L) = 109, 

kθ(C-F-F) = 10, θ0 (C-F-F) = 110, kθ(F-F-F) = 10, θ0 (F-F-F) = 110. Lastly, the DPD nonbonded parameters 

aij, are listed in Table S3.  

 

Table S3. DPD nonbonded parameters aij for NP1-5/6. 

a
ij
 Au S C P N L F Q W/CI 

Au 49.6         

S 1.90 48.3        

C 55.4 52.5 50.1       

P 70.2 77.2 63.7 62.6      

N 75.7 79.8 58.4 55.6 76.6     

L 58.1 66.4 52.1 47.1 56.9 51.4    

F 58.3 77.6 66.3 63.7 68.9 60.2 56.8   

Q 78.3 80.1 68.9 - - - 55.1 72.6  

W/CI 80.5 78.3 82.8 52.8 42.3 61.1 62.8 36.0 51.6 

 

DPD calculations were performed using the Culgi simulation package (v.12.0, Culgi B.V., Leiden, The 

Netherlands). The force cutoff radius rc, the particle mass mi, and kBT were taken as units of length, mass and 

energy.  

 

S3.2. Molecular dynamics (MD) 

At atomistic level ligand 1-6 were prepared using antechamber and assigning gaff211 atom types; force field 

parameters for the radical probe 7 were taken from the works of Barone et al.12-13 Partial charges were 

calculated applying the RESP method provided by RED server. Au-Au interactions were described with the 
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parameters of INTERFACE14 force field for metals. A harmonic bond was created between each sulfur atom 

and a gold atom within 3.3 Å with a spring constant 50.000 kJ/mol*nm2.15 Ligands positions on the Au surface 

were mapped back from DPD calculations for NP1-5/6 (Section S3.1). 

Using tleap16 program in combination with Packmol, each system was then solvated with TIP3P water, 

extending at least 20 Å from each solute atom, and counterions were added to neutralize the system. A 

combination of steepest descent (10000 cycles) and conjugate gradient (10000 cycles), followed by a heating 

phase of 100 ps in NVT ensemble (integration step = 1 fs), was carried out to reach the production temperature 

of 300 K (or 340K). Then, density was equilibrated for at least 50 ns in NPT conditions (integration step = 2 

fs, pressure 1 atm), while pressure was maintained by Berendsen barostat. Finally, we switched to Monte Carlo 

barostat implemented in AMBER 1816 suite of programs for production run, of which the first part is discarded 

until equilibration of ligands root-mean-square-deviation was reached. Data collection (400 ns) is stored from 

this point on. Temperature was controlled by Langevin method (damping coefficient of 5 ps–1) throughout all 

simulations. Electrostatic interactions were computed by means of Particle Mesh Ewald algorithm, and 

calculations were carried out using AMBER 18. For systems containing the probe, the radical was placed close 

to the equilibrated monolayer (not in contact) changing initial position and orientation of the probe with 

respect to the NP and assigning different starting velocities to enhance the sampling of the binding for a total 

of 1.2 μs time of simulation.  

Analysis was mainly performed on production runs via AMBER analysis tools, and by in-house developed 

Python scripts. Gold size, ligand number and composition were chosen to match those found in the 

experiments (see Section S2 and ref.[17]) and are summarized in Table S4 for convenience of the reader.  

 

 
Table S4. Summary of gold core size and monolayer composition used to build each molecular model. 
 

 Core size (nm) Number of ligands 

NP1 4.4 385 

NP1/6 4.5 245/117 

NP2 4.2 326 

NP2/6 4.1 237/103 

NP3 4.1 330 

NP3/6 4.5 239/132 

NP4 4.4 384 

NP4/6 4.5 275/125 

NP5 4.4 360 

NP5/6 4.2 244/98 
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S3.3. Voronoi tessellation and area dispersion index (ADI) 

The analysis of distribution of self-assembled ligands was carried out by performing a Voronoi tessellation18 

by using the Python package scipy19 on 400 frames taken from production runs. The Euclidean coordinates (x, 

y, z) of each ligand center of mass were first projected onto a bi-dimensional (φ, cos (θ)) plane; in this projected 

plane, a Voronoi tessellation was calculated and the boundary cells of the system were then excluded to avoid 

irregularities. To quantify the regularity of the computed Voronoi tessellations, a measure of dispersion 

denominated area dispersion index (ADI) was calculated according to the relation: 

 

𝐴𝐷𝐼 =
𝜎2

𝜇
 

where  𝜇 is the mean and 𝜎2 is the variance for the selected system computed on the borderless Voronoi 

polygons areas. This measure was calculated on each system, and to ensure commensurability a step of 

normalization was carried out, in which each Voronoi polygon area is normalized on the total Voronoi 

tessellation area of the system. Although the index is rather simple and an indication of uniformity in 

distributions, it should not be used for systems that show a Poisson distribution of the areas, distribution that 

wasn’t present in any of our systems. 

 

S3.4. Smooth Overlap of Atomic Position (SOAP) 

The Smooth Overlap of Atomic Position (SOAP)20-21 is a state-of-art, general-purpose, atom-centered, density-

based 3D fingerprint that encodes an atomic region or environment coming from an atomistic simulation. So 

far, the SOAP formalism has been used with considerable success in material informatics for properties 

prediction and structural classification, among others.22-24 The key concept is the representation of the atomic 

density around an atom j as a sum of smeared Gaussians centered on each surrounding atom of species α  

 

𝜌𝑎(𝒓) = ∑ 𝑓𝑐(𝒓𝑖𝑗) 𝑔(𝒓 − 𝒓𝑖𝑗)

𝑖 ∈ 𝑎

 

where 𝑓𝑐  is a cutoff function going to zero within a cutoff distance 𝑟𝑐, which determines the amplitude of 

the local environment. The atom density is expanded in terms of a basis of orthogonal radial basis 

functions 𝑔𝑛(𝑟) and spherical harmonics 𝑌𝑙𝑚(𝜃, 𝜙)25 

 

𝜌𝑎(𝒓) ≅ ∑ ∑ 𝑐𝑛𝑙𝑚
𝛼

𝑛𝑙𝑚𝑎 ∈ 𝑟𝑐
 𝑔𝑛(𝑟) 𝑌𝑙𝑚(𝜃, 𝜙) 
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where 𝑐𝑛𝑙𝑚
𝛼  are the spherical harmonics and radial functions expansion coefficients, n is an index related to 

the radial expansion, and l, m to the spherical harmonics. The coefficients 𝑐𝑛𝑙𝑚
𝑎  are obtained by the inner 

product  

 

𝑐𝑛𝑙𝑚
𝑎 =  ∑ ∑ 𝜌𝑎(𝑟)𝑛𝑙𝑚𝑎 ∈ 𝑟𝑐

 𝑔𝑛(𝑟) 𝑌𝑙𝑚(𝜃, 𝜙) = ∭ 𝑑𝑉 𝑔𝑛(𝑟) 𝜌𝑎(𝑟)
 

𝑅3 𝑌𝑙𝑚(𝜃, 𝜙) 

By integration over all relative rotations, we obtain a representation of the atomic environment that is not only 

invariant from translations and permutations but also spherical invariant. 

For multicomponent environments (i.e., containing more than one atomic species), the SOAP partial power 

spectrum vector takes the form of 

 

𝑝
𝑛𝑛′𝑙
𝑎,𝑏 = 𝜋√

8

2𝑙 + 1
 ∑ 𝑐𝑛𝑙𝑚

𝑎 ∗ 𝑐𝑛′𝑙𝑚
𝑏

𝑚

 

where n and n’ are indices for the different radial basis function, l is the angular degree of spherical harmonics 

and a and b are the atomic species. The SOAP power spectrum vector (or SOAP vector) is as an explicit, 

general, and complete representation of chemical environments. 

The SOAP vector of the reporter molecule 7 was computed by considering the nitrogen atom as the center 

of each atomic environment. The no-peripherical position of the nitrogen atom is expected to minimize the 

noise associated with the intrinsic molecular conformational mobility and to facilitate environments 

discrimination. The SOAP calculation was carried out by using the Dscribe26 Python package with the 

following parameters (and by leaving the other parameters to default): 

• SOAP medium-range: l = n = 8; cutoff r1= 9.0 Å 

• SOAP short-range: l = n = 8; cutoff r2= 4.5 Å. 

The cutoff radius restricts the contributions to the density to the atoms within rji < rc. Higher rc, higher is the 

information encoded in the SOAP vectors, but also higher is the computational cost associated with their 

evaluation or transformation. A reasonable choice for describing local environments in soft matter27 is to set 

the cutoff radius just after the first peak of the Radial Distribution Function (RDF) from the SOAP center of 

the reporter. For our systems, this led to a cutoff r1= 9.0 Å, and r2= 4.5 Å, (Figure S23).  

Due to the large number of chemical species in our systems, the computed SOAP features space included 

14354 (considering all atoms) and 4752 (considering only solvent molecules) features for the medium-range 

and short-range SOAP, respectively. The SOAP analysis was carried out extracting 400 configurations taken 

from the equilibrated full molecular dynamics trajectory.  
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Figure S23. Examples of radial distribution function (RDF) calculated from the nitrogen atom of the probe including all atoms (a) and 

only oxygens of water molecules (b) in NP2 (●) and NP4 (●). The line shows the cutoff chosen for (a) SOAP-medium range, namely r1, 

and (b) SOAP-short range, namely r2. 

To increase the computational efficiency of the SOAP analysis and to obtain a low-dimensional representation 

to simplify the interpretation of the results, a linear Principal Component Analysis (PCA) was carried out with 

the scikit-learn28 Python package. This algorithm linearly transforms a set of correlated data into a new set of 

values linearly uncorrelated denominated principal components. We thus reduced each high dimensional 

SOAP features to the first 10 principal components for the medium-range SOAP vectors, and to the first 10 

principal components merging all the short-range SOAP vectors, maintaining a variance of at least 94% in 

both cases (Figure S24). 

 

Figure S24. Cumulative variance as a function of the number of principal components for medium-range (a) and short-range (b) SOAP 

vectors. Color legend: ● NP1,  ○ NP1/6,  ● NP2,  ○ NP2/6,  ● NP3,  ○ NP3/6,  ● NP4,  ○ NP4/6,  ● NP5,  ○ NP5/6. 

 

S3.5. Gaussian mixtures clustering algorithm 

The clustering of the local environments was performed by the Gaussian mixtures model (GMM), 

implemented in the scikit-learn28 Python package. GMM is a distribution-based clustering algorithm, which 
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parametrically fits the probability distribution of a set of points x to a sum of N multidimensional 

Gaussians  

𝑝(𝒙) =  ∑ 𝜙𝑖

𝑁

𝑖=1

𝒩(𝑥|𝜇𝑖 , Σ𝑖) 

where 𝜙𝑖 is the fraction of the probability belonging to the Gaussian 𝒩 (i. e., the relative weight of the 

cluster i-th), 𝜇𝑖 is its mean and Σ𝑖 its covariance 

𝒩(𝑥|𝜇𝑖 , Σ𝑖) =
1

√(2𝜋)𝑁|Σ𝑖|
 𝑒𝑥𝑝(−

(𝑥−𝜇𝑖)𝑇Σ𝑖
𝑇(𝑥−𝜇𝑖)

2
 )  

The parameters  𝜙𝑖, 𝜇𝑖 , and Σ𝑖 of the model are assigned by the expectation-maximization algorithm 

(EM),29 an iterative method for finding maximum likelihood (ℒ) estimates of parameters in statistical 

models, which for identically independently distributed data takes the form of 

ℒ = ln 𝑝(𝑥 | 𝜙, 𝜇, Σ) =  ∑ ln (∑ 𝜙𝑖

𝑁

𝑖=1

𝒩(𝑥𝑘|𝜇𝑖, Σ𝑖))

𝐾

𝑘=1

 

The automatic identification of the number N of clusters (i.e. local environments) for each system is carried out 

by minimization of the Bayesian Information Criteria (BIC),30 which is a complex penalty added to the log-

likelihood in the form 

𝐵𝐼𝐶 = 𝑘 ln(𝑛) − 2ℒ 

where k is the number of parameters, including N, estimated by the model and n is the number of data. 

Every Gaussian mixture uses a full covariance and the BIC minimization is performed on each system 

separately. Consistency (or quality) of the clusterization is then assessed by calculating silhouettes scores (SC), 

using the implementation available in scikit-learn package. Overall, no negative SC values have been found, 

thus indicating proper cluster assignment: NP2 0.23, NP4 0.42, NP5 0.27, NP1/6 0.27, NP2/6 0.33, NP3/6 

0.41, NP4/6 0.44, NP5/6 0.60. In line with MD calculations and ESR measurements, higher SC coefficients 

are associated to local environments with well distinct features (e.g., in terms of hydration, local 

hydrophobicity, aN) that allow stronger cluster attribution, while lower SC values to systems where differences 

between the environments are smoother, thus hindering the separation of well-defined clusters and making 

the attribution of the microstate to the exact cluster less certain.  

The GMM probabilistic framework was selected against other types of performing clustering algorithms 

(e.g., HDBSCAN, hierarchical k-means, Probabilistic Analysis of Molecular Motifs (PAMM)) because of the 

high dimensionality of the data set to treat. Due to the large dimension of the features space, the Euclidean 

distance between each SOAP vectors could penalize the density based clustering techniques and bias the result 
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towards microclusters or classify possible data as noise. While this could be avoided by carefully selecting the 

clustering parameters (HDBSCAN, hierarchical k-means) or by choosing a dendrogram cutoff (PAMM), the 

GMM paired with the EM algorithm and BIC minimization is able to identify macroclusters with the 

minimum human intervention. Constraint to the adoption of GMM in the clusterization step is the convexity 

of the clusters to be identified.  

 

S3.6. Similarity measure 

To compare two different atomic local environments (i, j) defined by their respective SOAP vectors, a similarity 

measure defined from the inner product between the two atom densities was adopted. Integrated over all 

possible three-dimensional rotations 𝑅̃ it leads to a SOAP similarity linear kernel20  

 

𝐾̃(𝑖, 𝑗) =  ∫ 𝑑𝑅̃ |∫ 𝜌(𝑟)𝑖𝜌(𝑅̂𝑟)
𝑗
𝑑𝑟|

𝑛

 

and from setting n = 2 to retain the angular information of the original environments and with some algebraic 

reformulation the kernel can be expressed as 

 

𝐾̃(𝑖, 𝑗) = 𝒑̃𝑖 ∙ 𝒑̃𝑗  

where 𝒑̃𝑖 is the non-normalized SOAP power spectra of the environment 𝑖.  

The kernel is then normalized to enable the direct comparison between the different SOAP vectors in the 

form of a normalized SOAP linear kernel product: 

 

𝐾(𝑖, 𝑗)𝑆𝑂𝐴𝑃 =
𝐾̃(𝑖, 𝑗)

√𝐾̃(𝑖, 𝑖)𝐾̃(𝑗, 𝑗)
=

𝒑̃𝑖 ∙ 𝒑̃𝑗

√(𝒑̃𝑖 ∙  𝒑̃𝑖)(𝒑̃𝑗 ∙  𝒑̃𝑗)
= 𝒑𝑖 ∙ 𝒑𝑗  

in which 𝒑𝑖 is the normalized SOAP power spectra of the environment 𝑖. 

The similarity obtained from the normalized SOAP linear kernel ranges between 0 and 1 and explains how 

similar a system is to another: 0 is completely different (systems are not superimposed) and 1 if the systems 

are equals (systems are superimposed). After the computation of the similarity score, the distance between two 

points (i.e. environments) in a Euclidean n-space can be calculated as21 

 

𝑑𝑆𝑂𝐴𝑃(𝑖, 𝑗) =  √𝐾(𝑖, 𝑖) + 𝐾(𝑗, 𝑗) − 2𝐾(𝑖, 𝑗) = √2 − 2 𝐾(𝑖, 𝑗) = √2 − 2 𝒑𝑖  ∙ 𝒑𝑗 
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The distances between environments were then displayed in a distance matrix, where they were sorted by 

accounting of every other environment distance, thus finally leading to the similarity matrix reported in 

Figure 7 and S11. 
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S4.  ELECTRON SPIN RESONANCE (ESR) 

Monolayer features can be investigated by molecular probes, which are able both to enter inside the monolayer 

and to possess spectral features that depends on the molecular environment of the surroundings. 

Functionalized benzyl tert-bytulnitroxides (BTBN), possess such characteristics and have been largely 

employed to characterized different type of water-soluble protected gold nanoparticles.31-34 In the presence of 

water-soluble protected gold nanoparticles, when a nitroxide probe is located in the organic compartment of 

the monolayer, isotropic nitrogen hyperfine splitting constant, aN, is significantly smaller than that measured 

in water and it is possible to distinguish different EPR signals for the two different environments and thus to 

measure the partition equilibrium constant of the organic probe which is strictly related to the monolayer 

composition. The responsiveness of aN to the nature of the environment surrounding the nitroxide probe is a 

consequence of the resonance hybrid formulation of nitroxidic functionality in which three π electrons are 

distributed over the nitrogen and oxygen atomic centers. In particular, the greater the polarity of the medium 

surrounding the radical center, the more important is the dipolar structure (Structure B, Scheme S1) having 

both a larger spin density on the nitrogen and thus a larger value of the nitrogen hyperfine coupling. 

 

 

 
Scheme S1. Resonance structures of nitroxides. 
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S5. SYNCHROTRON-BASED X-RAY PHOTOELECTRON 

SPECTROSCOPY (XPS) 

In Figure S25, we report a typical series of Au 4f, C 1s and S 2p spectra, acquired on the NP2 sample, which 

is representative of each of the samples we have measured. The Au 4f and C 1s core level were acquired with a 

photon energy of hv = 410 eV, while the S 2p was acquired with a photon energy of 360 eV. The BE scale was 

aligned with the main component of the C 1s, which is the tabled C=C bond of the thiols (BE = 284.9). It was 

possible to identify the Au 4f spin-orbit doublet (spin-orbit splitting E = 3.7 eV), with the Au 4f7/2 component 

found at BE = 83.9 eV, a value which is compatible with the presence of Au(0).33 Similarly, the S 2p shows a 

spin-orbit doublet located at BE=162.2 eV for S 2p3/2 (spin-orbit splitting E = 1.2 eV), consistent with earlier 

reports.33 The determination of the organic layer thickness was carried out by extrapolating the intensity of 

the photoemission signal of C 1s and Au 4f spectra and applying the procedure described by Shard for 

nanoscopic particles, whose mean core radius is known.2  

 

 

Figure S25. Background-subtracted Au4f, S 2p and C 1s core level spectra acquired for the NP2 sample. The black dots are the 

experimental data, the black continuous line is the best fit to the spectrum obtained using the spectral components (indicated in color).  
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