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Motivated by rising concerns regarding global warming and traffic congestion effects, we study the time-

dependent green vehicle routing problem with time windows (TDGVRPTW), aiming to minimize carbon

emissions. The TDGVRPTW is a variant of the time-dependent vehicle routing problem (TDVRP) in which,

in addition to the time window constraints, the minimization of carbon emissions requires determination of

the optimal departure times for vehicles, from both the depot and customer location(s). Accordingly, the first

exact method based on a branch-cut-and-price (BCP) algorithm is proposed for solving the TDGVRPTW.

We introduce the notation of a time-dependent (TD) arc, and describe how to identify the non-dominated

TD arcs in terms of the arc departure times. In this way, we reduce infinitely many TD arcs to a finite set

of non-dominated TD arcs. We design a state-of-the-art BCP algorithm for the TDGVRPTW with labeling

and limited memory subset row cuts, together with effective dominance rules for eliminating dominated TD

arcs. The exact method is tested on a set of test instances derived from benchmark instances proposed in

the literature. The results show the effectiveness of the proposed exact method in solving TDGVRPTW

instances involving up to 100 customers.
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1. Introduction

The literature on the vehicle routing problem (VRP) and its variants is abundant (Laporte

2009, Baldacci et al. 2011, Vidal et al. 2014, Costa et al. 2019). In the era of global warm-

ing, there are opportunities to reduce carbon emissions by extending the traditional VRP

objectives to account for environmental costs. The importance of green logistics is moti-

vated by the fact that current logistics strategies are not sustainable in the long term

(Lin et al. 2014). The ever-growing concern over greenhouse gases (GHG) has led many

countries to take policy actions aiming at emissions reductions (Jabali et al. 2012). Despite

improvements in implementing “green technology” to decrease GHG emissions, statistics

show that the amount of pollutants (mainly the carbon dioxide equivalent) has increased

(Moghdani et al. 2021). Increases in GHG emissions, especially carbon dioxide (CO2), have

led to global warming, which is expected to lead to far-reaching negative effects on the

earth and human beings. An effective measure for mitigating these negative effects is to

reduce the CO2 emissions generated by the transportation sector. In the United States, the

transportation sector contributes 29% of national GHG emissions, GHG emissions totaled

6,558 million metric tons of carbon dioxide equivalents (USEPA 2021). A growing interest

toward “green transportation” and growing concerns about such hazardous effects of trans-

portation on the environment call for revised planning approaches to road transportation

by explicitly accounting for such negative impacts (Bektaş and Laporte 2011, Andelmin

and Bartolini 2017). Motivated by the practical importance of these problems, green VRPs

(GVRPs) and its variants have been investigated by several authors (Bektaş and Laporte

2011, Demir et al. 2014a,b, Bektaş et al. 2016, Yu et al. 2016, Wang et al. 2018, Yu et al.

2019a,b, Sun et al. 2019). In a GVRP, the environmental, ecological, and social effects

are considered when designing logistics policies, in addition to the conventional economic

costs (Lin et al. 2014). As an additional matter, in real contexts (such as in dense urban

areas), factors such as traffic jams can render vehicle travel times highly dependent on

time. Ignoring the time dependency of travel times can result in suboptimal solutions;

this has motivated studies on time-dependent GVRPs (TDGVRPs), where the travel time

and carbon emissions between two locations depend on the time of the day (Franceschetti

et al. 2013, Desaulniers et al. 2014, Franceschetti et al. 2017, Çimen and Soysal 2017,

Kazemian et al. 2018). Solving TDGVRPs to optimality is challenging. The vehicle speeds

in TDGVRPs are time-dependent, so that the carbon emissions along the routes depend
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on the departure times from the depot and customer locations. Time-dependent VRPs

(TDVRPs) typically minimize the total travel duration, i.e., a linear function, whereas

TDGVRPs minimize the total carbon emissions, i.e., a nonlinear function. Moreover, in

TDGVRPs, the departure times from the customers also matter, as waiting may cause

less carbon emissions. The additional dimensions of these decision variables enlarge the

solution space, and deserve a careful study of efficient solution approaches for TDGVRPs.

Motivated by the practical importance of the problem, in this paper we study the

TDGVRPTW to minimize carbon emissions, and we present an exact algorithm for its

solution.

1.1. Related work

As a member of the VRP family, the TDGVRP with time windows (TDGVRPTW) has

prominent features concerning time dependence in regards to the travel times, and non-

linearity in the carbon emission functions. This section reviews the related literature on

TDVRPs, GVRPs, and TDGVRPs.

There is vast literature on VRPs, and many (meta-)heuristics and exact methods have

been proposed for solving different VRP variants (see, for example, Kelly and Xu (1999),

Bräysy (2003), Baldacci et al. (2004, 2012), Costa et al. (2019)). Toth and Vigo (2014)

provides a comprehensive overview of the exact and heuristic methods for VRPs.

Time-dependent Vehicle Routing Problem Based on the First-In-First-Out (FIFO)

property in the TDVRP, Dabia et al. (2013) exploited the fact that optimal routes bear no

waiting at customer nodes, and proposed an effective functional dominance rule for deter-

mining the optimal departure times from the depot. The FIFO property guarantees that a

vehicle leaving a node i at any time t to go to the next node j cannot arrive earlier than

another vehicle leaving i before t to go directly to j (Ichoua et al. 2003, Desaulniers et al.

2014). Malandraki and Dial (1996) proposed a restricted dynamic programming heuristic

(a generalization of the nearest neighbor heuristic) for solving the time-dependent travel-

ing salesman problem (TDTSP). Vu et al. (2020) presented a new approach based on an

integer programming formulation of the TDTSP with time windows (TDTSPTW) over a

time-expanded network. In this network, all departure times from nodes were discretized,

such that the time-expanded network could have a finite set of nodes and a finite set of arcs.

For the TDVRP, most solution approaches are based on (meta-)heuristics. Malandraki and
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Daskin (1992) presented a mixed-integer linear formulation for the TDVRP, and proposed

a heuristic algorithm based on the nearest neighbor. Ichoua et al. (2003) stated that the

TDVRP has FIFO properties, and proposed a parallel tabu search heuristic algorithm.

Donati et al. (2008) proposed an ant colony optimization algorithm for solving the TDVRP

with time windows (TDVRPTW), whereas Hashimoto et al. (2008) presented an iterated

local search algorithm. Pan et al. (2021) designed a hybrid meta-heuristic algorithm for

solving a multi-trip TDVRPTW (MT-TDVRPTW). There are two exact algorithms for the

TDVRP in the literature. Soler et al. (2009) proposed auxiliary digraphs, and transformed

the TDVRPTW into an asymmetric capacitated VRP by discretizing the departure times

from the depot and customer locations. Dabia et al. (2013) presented a branch-and-price

(BP) algorithm for the TDVRPTW, aiming to minimize the total route duration. Owing

to the FIFO property, only the route departure times from the depot needed to be deter-

mined. Evidently, because traffic conditions are greatly affected by urban environments,

considering the time dependence makes the solutions of TDVRPs more realistic.

Green Vehicle Routing Problem Bektaş and Laporte (2011) presented a pollution-

routing problem (PRP) with an objective function accounting for not only the travel

distance, but also the amount of greenhouse emissions, fuel, and travel times, and their

costs. Demir et al. (2014a) investigated a bi-objective PRP, and used an adaptive large-

neighborhood search algorithm to solve it. Fukasawa et al. (2016) proposed a BCP algo-

rithm for an energy-minimizing VRP. Dabia et al. (2017) presented a BP algorithm for a

variant of the PRP, in which the speed and start time at the depot needs to be decided on

for each individual route. Yu et al. (2019a) presented a BP algorithm for a heterogeneous

fleet green VRP with time windows. Yu et al. (2019b) investigated a bi-objective green

ride-sharing problem, and used an exact method to solve it. However, they assumed that

the vehicle speed was fixed, which is not realistic for most practical applications. Because

vehicles’ carbon emissions are related to their speed, a GVRP considering time dependence

could be more realistic.
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Ç
im

en
an

d
S
oy

sa
l
(2
01

7)
T
D
G
V
R
P

w
it
h

st
o
ch
as
ti
c

v
eh

ic
le

sp
ee
d
s

A
p
p
ro
x
im

at
e

d
y
n
am

ic
p
ro
gr
am

-
m
in
g

M
in
.
ca
rb
on

em
is
-

si
on

s
S
et
s

of
in
st
an

ce
s

fr
om

th
e
P
R
P
L
IB

K
az
em

ia
n
et

al
.
(2
01

8)
V
R
P

w
it
h

lo
ad

in
g

co
st

(V
R
P
L
C
)

A
u
x
il
ia
ry

d
ig
ra
p
h
s

M
in
.
lo
ad

in
g
co
st

R
an

d
om

ly
ge
n
er
-

at
ed

p
ro
b
le
m
s



Liu et al.: BCP for the TDGVRPTW
6 Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2021-04-OA-080

Time-dependent GVRP Kuo (2010) used simulated annealing to minimize the fuel

consumption for the TDVRP. Franceschetti et al. (2013) provided an analytical charac-

terization of the optimal solution for the time-dependent PRP (TDPRP) that minimized

carbon emissions, travel times, and driver costs. Franceschetti et al. (2017) proposed an

adaptive large neighborhood search heuristic for solving the TDPRP. Çimen and Soysal

(2017) proposed an approximate dynamic programming method based on a heuristic as a

decision aid tool for solving the TDGVRP with stochastic vehicle speeds. Kazemian et al.

(2018) transformed the TDGVRPTW into a VRP with loading costs (VRPLC); they then

used the existing algorithms for the VRPLC to solve it.

Table 1 lists the key features of the works proposed in the literature for TDVRPs and

TDGVRPs. To the best of our knowledge, no exact approach has been proposed in the

literature for the TDGVRPTW.

1.2. Our contributions

In this study, we present the first exact method based on a branch-cut-and-price (BCP)

algorithm for solving the TDGVRPTW. The main contributions of this study are summa-

rized as follows.

• We introduce the notion of a non-dominated time-dependent (TD) arc based on a

time-expended network. This has the benefit of considering only a finite subset of departure

times from customer nodes, thereby reducing the solution space. We then prove that an

optimal timed route comprises a sequence of non-dominated TD arcs, and formulate the

problem using a set-partitioning model.

• We describe methods for determining the non-dominated TD arcs, i.e., given an arc, we

determine the optimal departure time from the allowable time interval. In some situations,

we prove that the earliest allowable departure times are optimal, and in other cases, we

discretize the allowable departure times and determine the optimal departure times. In

this way, we reduce infinitely many TD arcs to a finite set of non-dominated TD arcs.

• We design a state-of-the-art BCP algorithm for the TDGVRPTW with labeling and

limited memory subset row cuts (lm-SRCs), together with effective dominance rules for

eliminating dominated TD arcs.

• We perform extensive computational experiments, and the results show the effective-

ness of the proposed solution method.
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1.3. Overview of the paper

The remainder of this paper proceeds as follows. Section 2 describes the TDGVRPTW.

According to the characteristics of the TDGVRPTW, the optimal timed route and the non-

dominated TD arc are defined based on a time-expanded network to reduce the solution

space. We then present the relationship between carbon emissions and departure times,

followed by the procedure used to identify the non-dominated TD arcs. Section 3 intro-

duces the mathematical formulation and valid inequalities used to solve the TDGVRPTW.

Section 4 develops a BCP algorithm strengthened with lm-SRCs, and a pricing algorithm

based on embedding new dominance rules to eliminate unpromising timed routes. Section 5

reports extensive computational experiments on benchmark instances from the literature.

The conclusions are presented in Section 6.

2. Time-dependent green vehicle routing problem with time windows
(TDGVRPTW) and non-dominated Time-dependent (TD) arcs

In this section, we first introduce the TDGVRPTW followed by the description of the time

expanded network used to model TDGVRPTW solutions and to identify non-dominated

TD arcs.

2.1. Problem description

We describe the TDGVRPTW by first describing the GVRPTW and then by considering

the time-dependent travel times.

The GVRPTW aims to find a set of delivery routes visiting each customer exactly

once, so as to minimize the total carbon emissions while satisfying the demand and time

window for each customer. Consider a network G = (V,A), where the set of nodes V =

{0,1, . . . , n+ 1} comprises starting depot 0, set N = {1,2, . . . , n} of customer nodes, and

ending depot n+ 1; the set of arcs is defined as A = {(0, j)|j ∈ N} ∪ {(i, j)|i, j ∈ N, i ̸=
j}∪{(i, n+1)|i∈N}. Let [ei, li] be the time window where ei and li represent the prescribed

earliest and latest times at which service can start at customer i, respectively; qi is the

demand; and si is the service time of node i ∈ V . Without loss of generality, we assume

that s0 = sn+1 = q0 = qn+1 = 0. The total carbon emissions cij across arc (i, j) ∈ A are

computed based on the definitions given by Bektaş and Laporte (2011) and Franceschetti

et al. (2013), as follows:

cij = γfPij = γf [αij(W +wij)dij +βv2ijdij], (1)
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where γ is the carbon emissions index parameter; f is the fuel consumption index param-

eter; Pij is the total amount of energy consumed on arc (i, j) ∈ A; αij = a + gsinθij +

gCrcosθij is an arc specific constant; β = 0.5CdAρ is a vehicle specific constant; W is the

empty vehicle weight; wij is the vehicle load on arc (i, j) ∈A; vij is the vehicle speed on

arc (i, j); dij is the distance of arc (i, j); a is the acceleration (m/s2); g is the gravitational

constant (m/s2); θij is the arc angle; Cr is the coefficients of rolling resistance; Cd is the

drag coefficient; A is the frontal surface area of the vehicle (m2); and ρ is the air density

(kg/m3).

For the TDGVRPTW, owing to the time dependence of the vehicle speed, the speed

of the vehicle on arc (i, j) ∈ A may change over time. Thus, the travel time and carbon

emissions between the two nodes depend on the departure time from node i. Figure 1

shows an example of a vehicle speed profile associated with a TD case.

Speed

Time0
3W2W1W

1v

2v

3v

0( )W

Figure 1 Example of vehicle speed changing over time

In Figure 1, [0(W0),W3] represents the planning horizon; W1, W2 and W3 are speed

breakpoints where speeds change; vehicle speeds are v1, v2, and v3 in [W0,W1), [W1,W2),

and [W2,W3] respectively. From the figure, the vehicle leaves node i ∈ V to node j ∈ V at

departure time ti in [W0,W1) and travels at speed v1 until it reaches the time point W1.

From then, the vehicle travels at a slower speed v2 until W2. Finally, it travels at speed v3

for the remaining time interval (Ichoua et al. 2003).

According to Figure 1, the travel time τij(ti) across arc (i, j) ∈A can be calculated as

follows:
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τij(ti) =
k=m+h∑
k=m

dk
vk

, (2)

In the above, vk is the vehicle speed traveling from i ∈ V to j ∈ V in the time

interval [Wk−1,Wk]; dk is the traveling distance that vehicle speed is vk; it holds that∑k=m+h
k=m dk = dij; m is the index of the time interval [Wm−1,Wm] that includes ti (i.e.,

m | ti ∈ [Wm−1,Wm]), and is known for a given ti; and h is the number of changes in the

vehicle speed in arc (i, j). The function for the travel time across arc (i, j) ∈ A was first

proposed by Ichoua et al. (2003), and was also used by Kuo (2010) and Franceschetti et al.

(2013).

As the vehicle speed on arc (i, j) ∈ A may change, the carbon emissions cannot be

computed using Eq. (1). Indeed, Bektaş and Laporte (2011) computed carbon emissions

as follows:

cij(ti) = γf [αij(W +wij)dij +β

k=m+h∑
k=m

v2kdk]. (3)

Based on Eq. (3), given a departure time ti, the carbon emissions across arc (i, j)∈A can

be calculated. Moreover, Eq. (3) indicates that different departure times may cause different

carbon emissions; therefore, the departure time from each node must be determined.

The TDGVRPTW studied herein differs from the TDVRPTW, which minimizes the

travel duration. The TDVRPTW needs to find a set of delivery routes and determine

the departure time from the depot, whereas the TDGVRPTW needs to determine the

departure times from customer nodes along each route. In the TDVRPTW, the FIFO

property ensures that, given a depot departure time, a route without waiting at customer

nodes has the shortest travel duration. However, in the TDGVRPTW, the departure times

from customer nodes matter - they affect the carbon emissions, and thus are essentially

decision variables. When the goal is to minimize the travel time (or the carbon emissions

in our study), it may be beneficial to wait at any location (Boland and Savelsbergh 2019).

This new feature dramatically enlarges the solution space, and requires a careful design of

solution algorithms.
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2.2. Modeling arcs and routes on a time-expanded network

Time-indexed (TI) formulations are effective formulations for solving TDVRPs and their

variants. TI formulations require a discretization of time fine enough to provide a cor-

rect model; providing a complete TI model for the TDTSPTW with an objective where

it may be beneficial to wait at any location (as in the TDGVRPTW) is not straightfor-

ward (Boland and Savelsbergh 2019). Nevertheless, in several cases, a fine discretization

yields optimal or near-optimal solution. For this reason, we model the problem on a time-

expanded network, and investigate ways to reduce its dimensions by investigating the

properties of the optimal timed routes.

We consider a time-expanded network D= (N ,B) with a node set N and arc set B (Vu

et al. 2020, Boland and Savelsbergh 2019). Let N contain timed node (i, ti) for i∈ V and

ti ∈ [edij, ldij], and [edij, ldij] is the feasible departure time interval when traversing arc

(i, j) ∈ A, where edij and ldij represent the earliest and latest feasible departure times,

respectively. Furthermore, let B contain arcs of the form ((i, ti), (j, t
a
j )) with i ̸= j, (i, j)∈A,

ti ∈ [edij, ldij], and arrival time taj = ti+ τij(ti). We call this form of the arc time-dependent

arc (TD arc). To identify the TD arcs, for each ((i, ti), (j, t
a
j )), we define Aij ⊂ B as the

set of all TD arcs corresponding to arc (i, j)∈A, i.e., Aij = {((i, ti), (j, taj )) | ti ∈ [edij, ldij]}.

The value cij(ti) represents the carbon emissions across the TD arc ((i, ti), (j, t
a
j ))∈Aij. In

contrast to the TDTSPTW, which only determines the departure time in the time window

of each node (Vu et al. 2020), in the TDGVRPTW, the vehicle can leave the location

of customer i later than the latest time li of the time window [ei, li]. As waiting at each

node (depot and customer) may lead to reduced carbon emissions, we define two types of

waiting time to distinguish the difference between them, and in Section 5.6, we present the

benefits of waiting after finishing service.

Definition 1 (Type 1 waiting time of customer j, Type1 wt(j)). Waiting time

before the earliest service time of customer j.

Let [ej, lj] be the time window of node j, and taj be the arrival time of j. The Type 1

waiting time of customer j can be calculated as follows:

Type1 wt(j) =

 ej − taj , if taj < ej,

0 otherwise.
(4)
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Definition 2 (Type 2 waiting time of customer j, Type2 wt(j)). Waiting time

after service of customer j.

Let tj be the departure time of j, and fsj be the service finishing time of j. The Type

2 waiting time of customer j can be calculated as follows:

Type2 wt(j) = tj − fsj. (5)

We define the node sequence of a timed route as S = (0, i1, ..., iz, n + 1) in G with

i1, . . . , iz ∈N . Associated with the node sequence S are the different departure times from

the depot and customer locations. Therefore, let ΩS be the set of all feasible timed routes

corresponding to node sequence S; and Sr ∈ ΩS is the rth feasible timed route corre-

sponding to the node sequence S. For the node sequence S = (0, i1, ..., iz, n+ 1), let Sr =

((0, t0), (i1, ti1), . . . , (iz, tiz), (n+1)) be the timed route, where tim is the departure time at

node im for all m= 1,2, . . . , z. Let cSr denote the carbon emissions of Sr.

The cardinality of set ΩS is large, but its cardinality can be reduced by means of the

following definition of the optimal timed route.

Definition 3 (Optimal timed route of S). Sr is the optimal timed route of node

sequence S = (0, i1, . . . , iz, n+1) if and only if cSr ≤ cS
r
′ , ∀Sr′ ∈ΩS.

Definition 3 indicates that the optimal timed route for S has the minimal carbon emis-

sions. However, there may be more than one timed route with minimal carbon emissions.

In this case, the timed route with the earliest departure time for each node is defined as

the timed optimal route, and thus the optimal timed route can be obtained using lexi-

cographical order. A simple example is given in Appendix A of the e-companion to this

paper.

2.3. Non-dominated TD arcs

To eliminate non-optimal timed routes in the TDGVRPTW, in this section, we define

a non-dominated TD arc, and prove that the optimal timed route is composed of non-

dominated TD arcs.

Definition 4 (Dominance relation of TD arc of Aij,≻TDarcij). Let

((i, ti), (j, t
a
j )), ((i, t

′
i), (j, t

a
′

j )) ∈ Aij with i, j ∈ V . Arc ((i, ti), (j, t
a
j )) dominates arc

((i, t
′
i), (j, t

a
′

j )) (i.e., ((i, ti), (j, t
a
j )) ≻TDarcij ((i, t

′
i), (j, t

a
′

j ))) if ti ≤ t
′
i and cij(ti) ≤ cij(t

′
i),

where at least one inequality is strict.
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Definition 5 (Non-dominated TD arc of Aij). Arc ((i, ti), (j, t
a
j )) ∈ Aij is a non-

dominated TD arc if ̸ ∃((i, t′i), (j, ta
′

j ))∈Aij such that ((i, t
′
i), (j, t

a
′

j ))≻TDarcij ((i, ti), (j, t
a
j )),

with i, j ∈ V .

Based on the above definition, the following theorem holds.

Theorem 1. An optimal timed route is composed of non-dominated TD arcs.

Proof. See Appendix B of the e-companion.

Theorem 1 indicates that all dominated TD arcs can be eliminated to obtain the optimal

timed routes for the TDGVRPTW. Because an arbitrary optimal timed route is composed

of non-dominated TD arcs, we develop an approach for identifying non-dominated TD

arcs.

2.4. Identifying non-dominated TD arcs

In this section, we present a method for identifying non-dominated TD arcs. We first

describe the relationship between carbon emissions and departure times, and then present

a method for identifying non-dominated TD arcs.

2.4.1. Relationship between the carbon emissions and departure time of arc (i, j).

As shown in Eq. (3), when the distance dij and vehicle load wij are given, the carbon

emissions of arc (i, j)∈A depend on the departure time of node i∈ V . For the speed profile

shown in Figure 1, the relationship between the carbon emissions and departure times of

arc (i, j) is shown in Figure 2.

Carbon emissions

Departure time0

R1 R2 R5R3 R4

2W1W 3W3

3

ijd
W

v
-

'

1W
'

2W

Figure 2 Carbon emissions function of arc (i, j)
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In Figure 2, dij is the distance of arc (i, j). W1, W2 and W3 are speed breakpoints in

Figure 1 where speeds change. Also, W1, W2 and W3 are carbon emissions breakpoints

where carbon emissions change. The other carbon emissions breakpoints (i.e., W
′
1 and W

′
2)

are departure times such that the arrival times are exactly the speed breakpoints (e.g.,

W
′
1 =W1− dij/v1 is the departure time at node i so as to arrive at time W1 at node j).

In addition, the slope of the function of [W
′
1,W1] is γfβ(v1v

2
2 − v31), and the slope of the

function of [W
′
2,W2] is γfβ(v2v

2
3 − v32).

Based on Figure 2, for a general speed profile (i.e., see Figure EC.2 in Appendix C

of the e-companion), the slope of the carbon emissions function (i.e., see Figure EC.3 in

Appendix C of the e-companion) that corresponds to the general speed profile can be

calculated as γfβ(vkv
2
k+1− v3k), where vk is the vehicle speed traveling from i∈ V to j ∈ V

in an arbitrary time interval [W
′

k,Wk], and where W
′

k and Wk are adjacent breakpoints.

The detailed derivations of the slopes are provided in Appendix C of the e-companion.

2.4.2. Planning horizon division and identification of non-dominated TD arcs. As

shown in Figure 2, the carbon emissions function is piecewise linear. In the case of the

TDGVRPTW, the situation is more complicated. Thus, we divide the planning horizon

[0,W3] into five regions: Region 1 (R1 ) =[0,W
′
1]; Region 2 (R2 ) =[W

′
1,W1]; Region 3 (R3 )

=[W1,W
′
2]; Region 4 (R4 ) =[W

′
2,W2]; and Region 5 (R5 ) =[W2,W3−dij/v3]. Subsequently,

by investigating the characteristic of each region, we observe that the carbon emissions

of arc (i, j) ∈A are independent of the departure times when the departure time horizon

(i.e.,[edij, ldij]) is in certain regions.

Region 1 . When [edij, ldij] is in R1 (i.e., [edij, ldij]⊆ [0,W
′
1]), the vehicle speed is always

v1 from i to j. Therefore, the carbon emissions cij(ti) are time-independent of the departure

time ti ∈ [edij, ldij]. According to the definition of the non-dominated TD arc (see Definition

5), the TD arc with the earliest departure time (i.e., ti = edij) is the only non-dominated

TD arc. Thus, only arc ((i, edij), (j, t
a
j )) is considered, and the other TD arcs are eliminated.

Region 2 . When [edij, ldij] is in R2 (i.e., [edij, ldij]⊆ [W
′
1,W1]), a TD arc with an earlier

departure time ti ∈ [edij, lij] has greater carbon emissions cij(ti). Thus, each TD arc is a

non-dominated TD arc.

Region 3 . Similar to R1, ((i, edij), (j, t
a
j )) is the only non-dominated TD arc.

Region 4 . When [edij, ldij] is in R4 (i.e., [edij, ldij] ⊆ [W
′
2,W2]), the TD arc with the

earliest departure time (i.e., ti = edij) has the lowest carbon emissions cij(ti). Thus, the
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TD arc with the earliest departure time edij is considered as the only non-dominated TD

arc.

Region 5 . Similar to R1, ((i, edij), (j, t
a
j )) is the only non-dominated TD arc.

Based on the above description, for a general speed profile, the arc carbon emissions

functions with time can be classified into three types. 1) arc carbon emissions functions

independent with time (e.g., Region 1 , Region 3 , Region 5 ); 2) arc carbon emissions func-

tions decreasing with time (e.g., Region 2 ); and 3) arc carbon emissions functions increas-

ing with time (e.g., Region 4 ).

Based on the above classification, we identify the situations in which the carbon emissions

of arc (i, j) are time-independent, as stated in the following theorem.

Theorem 2. The TD arc ((i, ti), (j, t
a
j )) with the earliest departure time (i.e.,

((i, edij), (j, t
a
j ))) is the only non-dominated TD arc if the carbon emissions functions of

((i, ti), (j, t
a
j )) are independent of the departure time or increasing with the departure time

(e.g., [edij, ldij]∩ [W
′
1,W1] = ∅).

Proof. See Appendix D of the e-companion.

Theorem 2 states that when the carbon emissions functions of ((i, ti), (j, t
a
j )) are inde-

pendent of the departure time or increasing with the departure time, the arc ((i, ti), (j, t
a
j ))

with the earliest departure time is the only non-dominated TD arc. Hence, the following

theorem holds.

Theorem 3. Each TD arc ((i, ti), (j, t
a
j )) is a non-dominated TD arc if the carbon emis-

sions functions of ((i, ti), (j, t
a
j )) are decreasing with the departure time (e.g., ti ∈ [edij, ldij]∩

[W
′
1,W1] ̸= ∅).

Proof. See Appendix E of the e-companion.

Theorem 3 indicates that if the departure time is continuous in the region in which

the carbon emissions functions decrease with the departure time (e.g., ti ∈ [edij, ldij] ∩

[W
′
1,W1] ̸= ∅, the number of non-dominated TD arcs is infinite. To address this issue, we

discretize the departure time in this region (e.g., ti ∈ [edij, ldij] ∩ [W
′
1,W1] ̸= ∅). The dis-

cretization scheme represents an approximation of real-world conditions and is commonly

used in related literature (Ichoua et al. 2003, Vu et al. 2020).
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2.4.3. Identifying non-dominated TD arcs under the carbon emissions decreasing

with departure time. When the carbon emissions functions decrease with the departure

time (e.g., [l, u] =[edij, ldij] ∩ [W
′
1,W1] ̸= ∅), each TD arc with departure time ti in the

region is non-dominated. To address the issue, we discretize the departure times in this

region to ⌊u′⌋ − ⌈l′⌉+ 1 units, where u
′
and l

′
represent the upper and lower bounds of

this region, respectively. The mth discrete departure time in this region is ⌈l′⌉+m− 1.

Because a 24-hour system is used to modify the time of benchmark instances, as described

in Dabia et al. (2017), l and u are first converted to the original values (i.e., l
′
= l

l
′
0

24
and

u
′
= u

l
′
0

24
). Then, all the discrete departure times are obtained and converted back to the

24-hour system.

An example of a discrete departure time ti in [edij, ldij] ∩ [W
′
1,W1] = [5.9,8.2] of arc

(i, j)∈A is shown in Figure 3.

i

j

5.95

7.04

8.13

(5.95) 18.00
ij
c =

(7.04) 17.00
ij
c =

(8.13) 16.00
ij
c =

Figure 3 Example of discrete departure times of arc (i, j)

In Figure 3, there are three discrete departure times in [5.9,8.2], and these departure

times are 5.95, 7.04 and 8.13. The first discrete departure time of node i ∈ V is 5.95 and

cij(5.95) = 18.00 is the carbon emissions with the departure time of 5.95 (cij(7.04) and

cij(8.13) are similar to cij(5.95)). According to the definition of the non-dominated TD

arc, all of three TD arcs are non-dominated TD arcs.

3. Mathematical formulation and valid inequalities

In this section, based on the definition of optimal timed routes, we describe a set parti-

tioning formulation for the TDGVRPTW. Also in this section, we show how to strengthen

the linear programming (LP)-relaxation of the set partitioning formulation by means of

valid inequalities, and we describe the pricing problem associated with the formulation.
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3.1. Set-partitioning formulation of the TDGVRPTW

Let Ω be the set of all the optimal timed routes. The binary parameter aiSr is equal to

one if customer i∈N is visited by timed route Sr ∈Ω, and zero otherwise. For each timed

route Sr ∈ Ω, we define a binary variable xSr , which is equal to 1 if Sr is selected in the

solution and 0 otherwise. The set-partitioning model for the TDGVRPTW is as follows:

min
∑
Sr∈Ω

cSrxSr (6)

s.t.
∑
Sr∈Ω

aiSrxSr = 1, ∀i∈N (7)

xSr ∈ {0,1},∀Sr ∈Ω. (8)

As shown above, Function (6) aims to minimize the carbon emissions, Constraint (7)

ensures that each customer is visited exactly once, and Constraint (8) defines the domain

of the variables.

The LP-relaxation of the above formulation can be solved for using column generation

techniques (Lübbecke and Desrosiers 2005), i.e., by iteratively solving a restricted master

problem (RMP) defined by the above formulation over a restricted set of timed routes

Ω
′ ⊂Ω.

3.2. Valid inequalities

The master problem (MP) is a set-partitioning problem, and it is common practice to

strengthen the MP with valid inequalities (Jepsen et al. 2008, Costa et al. 2019), such as

the SRCs proposed by Jepsen et al. (2008), as follows:

∑
Sr∈Ω

1

k

∑
i∈N ′

aiSr

xSr ≤
⌊
|N ′ |
k

⌋
(9)

where N
′ ⊆N and 0<k≤ |N ′ |.

We use lm-SRCs (Pecin et al. 2017b) instead of SRCs, which are defined as follows:

∑
Sr∈Ω

α(N
′
,M,k,Sr)xSr ≤

⌊
|N ′|
k

⌋
(10)
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where α is computed as a function of (N
′
,M,k,Sr) and satisfies α(N

′
,M,k,Sr) ≤⌊

1
k

∑
i∈N ′ aiSr

⌋
; M is a memory set and N

′ ⊆M ⊆N . The memory set M is constructed

according to the function used by Pecin et al. (2017b).

The lm-SRCs can reduce the impact on the pricing algorithm used in the pricing problem

relative to SRCs (Pecin et al. 2017b, Jepsen et al. 2008). We add (10) into the RMP when

we use the lm-SRCs (see Section 4.3 for the corresponding details).

3.3. Pricing problem

The aim of the pricing problem in the TDGVRPTW is to search for the optimal timed

routes with negative reduced costs, and to add these timed routes to the RMP. The reduced

cost of a timed route can be computed as follows:

c̄Sr = cSr −
∑
i∈N

aiSrπi, Sr ∈Ω, (11)

Here, πi is the dual variable associated with Constraint (7) for customer i ∈ N . The

objective of the pricing problem is as follows:

min c̄Sr =min{cSr −
∑
i∈N

aiSrπi, Sr ∈Ω}. (12)

To consider the dual contributions of a single lm-SRC, the reduced cost of a timed route

can be computed as follows:

ĉSr = c̄Sr − δSrσ,Sr ∈Ω, (13)

In the above, σ is the dual variable of a lm-SRC, and δSr = α(N
′
,M,k,Sr) is the variable

coefficient of the lm-SRC. The objective of the pricing problem is then computed as follows:

min ĉSr =min{cSr −
∑
i∈N

aiSrπi− δSrσ,Sr ∈Ω}. (14)

4. Branch-cut-and-price (BCP) algorithm for solving the
TDGVRPTW

This section presents a BCP algorithm for solving the TDGVRPTW with lm-SRCs, and

the pricing algorithm used to solve the pricing problem.
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4.1. Column-and-row generation

Column generation is an iterative algorithm that solves an RMP and pricing problem

at each iteration; it is widely used for VRPs and their variants (Desrochers et al. 1992,

Lübbecke and Desrosiers 2005, Costa et al. 2019).

At a given node of a branch-and-bound (BB) search tree, the LP-relaxation corresponds

to the continuous relaxation of the set partitioning formulation, as augmented by the

applicable branching decisions and lm-SRC. The LP-relaxation is solved in a column-and-

row generation fashion where, at each iteration, a primal simplex algorithm is used to solve

the RMP and to provide a primal and dual solution. Then, the pricing subproblem (column

generation) is solved to find negative reduced cost columns or variables. If no negative

reduced cost columns can be found, the current primal solution is optimal for the RMP.

Otherwise, one or several negative reduced cost columns are added to the RMP before

beginning a new iteration. If the current primal solution is optimal, the valid lm-SRC is

separated in a cutting plane (row generation). The cutting plane algorithm terminates

when no additional valid inequalities are identified by the separation algorithms, and a

new iteration of the column-and-row generation is executed. The lower bound computation

stops when both the column and row generation algorithms terminate without having

found new columns/rows to be added to the RMP. In our implementation, the lm-SRC is

separated based on the separation algorithm described by Pecin et al. (2017b).

4.2. Label-Setting Algorithm for solving the pricing problem

The pricing problem associated with the TDGVRPTW is a complex elementary shortest

path problem with resource constraints (ESPPRC) and TD travel times (TDESPPRC),

and can be solved efficiently using label-setting algorithms (Feillet et al. 2004, Irnich and

Desaulniers 2005, Chabrier 2006, Righini and Salani 2006, 2008). Poggi and Uchoa (2014)

provided an in-depth review of these topics.

In this section, we define the labels in the TDGVRPTW, and present the calculation

of attributes for an arbitrary label. A new dominance rule is proposed for eliminating

dominated TD arcs.

4.2.1. Label definition. In contrast to VRPs (Kelly and Xu 1999, Bräysy 2003)

and GVRPs (Yu et al. 2016, Wang et al. 2018), where the vehicle speed is constant,

in the TDGVRPTW, the vehicle speed changes over time. Therefore, the departure
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time of each node in a label needs to be determined, as different departure times

may cause different carbon emissions. Here, T (Lf) is used to record the departure

time of each node in a label. Thus, in the forward labeling algorithm, the label Lf =

(i(Lf), q(Lf), t(Lf), S(Lf), T (Lf), c(Lf), c̄(Lf), ĉ(Lf)) represents a timed route that leaves

node i(Lf) with load q(Lf), where the earliest departure time at node i(Lf) is t(Lf), and

S(Lf) is the sequence of nodes visited. The other attributes are as follows:

• c(Lf): total carbon emissions along Lf ;

• c̄(Lf): reduced cost of Lf ; and

• ĉ(Lf): reduced cost of adding the lm-SRCs of Lf .

4.2.2. Extension rules based on non-dominated TD arcs. According to Theorem 1,

all labels included dominated TD arcs are unpromising. Therefore, during the extension

from Lf to node j ∈N , only non-dominated TD arcs are used.

Let L
′

f = (i(L
′

f), q(L
′

f), t(L
′

f), S(L
′

f), T (L
′

f), c(L
′

f), c̄(L
′

f), ĉ(L
′

f)) be the expanded label.

The attributes in L
′

f are computed as follows:

q(L
′

f) = q(Lf)+ qj (15)

S(L
′

f) = S(Lf)∪{j} (16)

T (L
′

f) = T (Lf)∪{ti(Lf )} (17)

c(L
′

f) = c(Lf)+ ci(Lf )j(ti(Lf )) (18)

c̄(L
′

f) = c̄(Lf)+ ci(Lf )j(ti(Lf ))−πj (19)

ĉ(L
′

f) = c̄(L
′

f)− δSrσ. (20)

Then, the earliest departure time t(L
′

f) of label L
′

f is calculated as follows:

t(L
′

f) =

 ej + sj t(Lf)+ τi(Lf )j(t(Lf))< ej

t(Lf)+ τi(Lf )j(t(Lf))+ sj ej ≤ t(Lf)+ τi(Lf )j(t(Lf))≤ lj.
(21)

According to Theorem 1, the optimal timed route is composed of non-dominated TD

arcs. Therefore, only non-dominated TD arcs must be used for label extension. Algorithm

1 describes the extension procedure from Lf to node j ∈N .

Algorithm 1 evaluates the feasible extension from Lf to customer j ∈ N . In step (2),

edi(Lf )j and ldi(Lf )j are calculated, where edi(Lf )j is the earliest departure time of the last
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Algorithm 1 Labeling algorithm: extension from label Lf to node j

Input: Lf

Output: Ωf (labels defined by non-dominated TD arcs)

1: Ωf ←∅;

2: step(1)

3: for j = 1→ n do

4: if j ∈ S(Lf)∨ q(Lf)+ qj >Q∨ t(Lf)+ τi(Lf )j(t(Lf))> lj ∨Ai(Lf )j = ∅ then

5: continue

6: else

7: step(2)

8: edi(Lf )j← t(Lf), ldi(Lf )j← lj − di(Lf )j/v
max
i(Lf )j

9: step(3)

10: Compute the non-dominated TD arcs from i(Lf) to j with ti(Lf ) ∈

[edi(Lf )j, ldi(Lf )j]

11: step(4)

12: for each non-dominated TD arc do

13: Compute the value of attributes in L
′

f , then add L
′

f to Ωf .

14: end for

15: end if

16: end for

17: return Ωf

node i(Lf) of Lf , and ldi(Lf )j is the latest departure time of i(Lf). The value vmax
i(Lf )j

is the

maximal speed in [ei(Lf ), lj]. The procedure used to generate the non-dominated TD arcs

in step (3) of the algorithm is described in Section 2.4. After computing the departure

time horizon [edi(Lf )j, ldi(Lf )j], the non-dominated TD arcs are obtained by dividing the

departure time horizon [edi(Lf )j, ldi(Lf )j] into several regions and identifying their departure

times in each region, and the departure times of the non-dominated TD arcs are recorded.

Notably, if [edi(Lf )j, ldi(Lf )j]∩ [W
′
1,W1] ̸= ∅ and edi(Lf )j <W

′
1, the TD arc with the earliest

departure time edi(Lf )j is also non-dominated. This TD arc cannot be missed. In step (4),

for every non-dominated TD arc, the values of the attributes are calculated.
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4.2.3. Dominance rules. According to the characteristics of the TDGVRPTW, there

are many labels associated with a same node sequence, with different departure times

for the depot and customers. Therefore, a new dominance rule is proposed for rapidly

eliminating unpromising labels with the same node sequence. The new dominance rule is

defined in Definition 6.

Definition 6. Label L1
f dominate label L2

f if

1. S(L1
f) = S(L2

f);

2. t(L1
f)≤ t(L2

f); and

3. c(L1
f)≤ c(L2

f).

Condition 1 ensures that the constraints of the customers and vehicle capacity for L1
f

and L2
f are the same. Condition 2 means that L1

f contains all of the extension possibilities

of L2
f . Condition 3 indicates that L1

f has lower carbon emissions than L2
f .

To further reduce the number of labels, we use the following dominance rule.

Definition 7. Label L1
f dominate label L2

f if

1. i(L1
f) = i(L2

f);

2. t(L1
f)≤ t(L2

f);

3. q(L1
f)≤ q(L2

f);

4. S̄(L1
f)⊆ S̄(L2

f); and

5. ĉ(L1
f)−

∑
p∈P σp ≤ ĉ(L2

f).

Condition 1 ensures that the last nodes of L1
f and L2

f are the same. Conditions 2, 3, and

4 guarantee that the feasible expansion of L1
f includes all of the situations of L2

f . Owing

to the addition of the lm-SRCs, Condition 5 is based on the dominance rule developed by

Jepsen et al. (2008), where P = {p : σp < 0 ∧ φp(L
1
f) > φp(L

2
f) and φp(Lf) = |N

′ ∩ S(Lf)|

mod k. Set S̄(Lf) is the set of nodes that cannot be served by the vehicle.

4.2.4. Time-dependent shortest path problem with resource constraints (TDSP-

PRC) as the pricing problem. Relaxing the pricing problem by allowing nonelementary

paths results in a time-dependent shortest path problem with resource constraints (TDSP-

PRC) as a pricing problem (Irnich and Desaulniers 2005, Dabia et al. 2013). The pricing

algorithm described above can be easily adapted to solve the TDSPPRC. Relaxation has

the advantage of reducing the complexity in solving the pricing problem, at the price of a

weaker lower bound.



Liu et al.: BCP for the TDGVRPTW
22 Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2021-04-OA-080

4.3. Separation of the limited memory subset row cuts (lm-SRCs)

For lm-SRCs, |N ′| and k may have different values. For example, 4-SRCs: |N ′ | = 4 and

k= 3/2; 5,2-SRCs: |N ′ |= 5 and k= 2 (Pecin et al. 2017a,b). In this study, we adopt 3-SRCs

(|N ′|= 3 and k = 2), which are the most popular lm-SRCs; these have been employed in

previous studies (Baldacci et al. 2011, Jepsen et al. 2008, Pecin et al. 2017a,b). In addition,

Constraints (22) correspond to a subset of the lm-SRCs.

∑
Sr∈Ω(N

′
)

α(N
′
,M,k,Sr)xSr ≤

⌊
|N ′|
k

⌋
,∀N ′ ∈ S (22)

Here, S ⊆ {N ′ ⊂ N : |N ′| = 3} is a subset of all customers’ triplets; Ω(N
′
) ⊆ Ω is the

subset of the index set of all patterns containing at least two customers in N
′
(i.e.,

Ω(N
′
) = {Sr ∈ Ω : |N ′ ∩ Sr| ≥ 2}). Let σ = (σ1, σ2, . . . , σ|S|) be the dual variables asso-

ciated with Constraints (22). The constraints in (22) are separated by asking whether∑
Sr∈Ω(N ′ )α(N

′
,M,k,Sr)xSr ≥

⌊
|N ′ |
k

⌋
. The inequalities are separated using the procedure

described by Pecin et al. (2017b). We refer the reader to the work of Pecin et al. (2017b)

for the corresponding details. If violated lm-SRCs are found, they are added to the RMP.

4.4. Branching strategy

A BB algorithm is used to obtain integer solutions (Desrosiers et al. 1984). The BB tree is

explored using a best-bound strategy, and the algorithm branches on the arc variables by

means of a classical branching arc strategy used for VRPs (see, for example, Costa et al.

(2019)).

5. Computational results

The algorithm described in this paper was coded in C# and ILOG CPLEX 12.6 was used

as the LP solver. All tests were executed on a computer with a 3.20-GHz Intel Core TM

i7-8700 processor under Microsoft windows 10 operating system and 16.0 GB of RAM.

5.1. Benchmark instances and parameter settings

We used the Solomon VRPTW benchmark instances (Solomon 1987) to solve the

TDGVRPTW. There are three classes of instances, divided based on the geographical

distribution of the customers: R (random), C (clustered), or RC (semi-clustered).

We used a 24-hour system to modify the Solomon benchmark instances, as described in

Dabia et al. (2017). The time window [e0, l0] of the depot was [0,24]. Therefore, the time
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window [e
′
i, l

′
i] of customer i in the Solomon instances was modified as [ei, li] = [e

′
i
24

l
′
0

, l
′
i
24

l
′
0

].

The demand of customer i was qi = 10q
′
i. The distance dij in the instances was computed

as dij = 2d
′
ij, and the service time si at customer i was set as equal to si = s

′
i
24

l
′
0

. For each

Solomon-based 25-customer instance, we considered only the 4th,8th, . . . ,100th customers of

the Solomon’s instance with 100 customers; for each 50-customer instance, we considered

only the 2th,4th, . . . ,100th customers of the Solomon’s instance with 100 customers.

The planning horizon in Figure 1 was discretized into three time periods, with different

speeds associated with each period (Ichoua et al. 2003). The breakpoints and vehicle speeds

were chosen as in the dataset used by Ichoua et al. (2003). The complete dataset used

in this study is shown in Table 2. We adopted the parameters and typical values for the

vehicles from Bektaş and Laporte (2011), Demir et al. (2012), Franceschetti et al. (2013),

as shown in Table 3.

Table 2 Parameters of breakpoints and vehicle speeds.

Notation Description Typical values
W1 Breakpoint 1 (h) 7
W2 Breakpoint 2 (h) 17
W3 Breakpoint 3 (h) 24
v1 Vehicle speed 1 (km/h) 42
v2 Vehicle speed 2 (km/h) 25
v3 Vehicle speed 3 (km/h) 45

Table 3 Parameters of vehicle.

Notation Description Typical values
Q Capacity (Kg) 1000
W Weight of empty vehicle (Kg) 920
ρ Air density (kg/m3) 1.2041
A Frontal surface of vehicle (m2) 3.912
g Gravitational constant (m/s2) 9.81
Cd Coefficient of aerodynamic drag 0.7
Cr Rolling resistance 0.01
f Fuel consumption index parameter (J/g) 1/44000
a Acceleration (m/s2) 0
γ CO2 emissions index parameter(g/g) 3.164

5.2. Computational results of the BCP for the TDGVRPTW

The computational results are given in Table 4 and Table 5 for the Solomon benchmark

VRPTW instances with 25 and 50 customers, respectively.

Table 4 and Table 5 show that the BCP algorithm can efficiently solve 16 instances

with 25 customers, and four instances with 50 customers. The instance (R101) with 100
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Table 4 Computational results of TDGVRPTW with 25 customers.

Instance lbnoCut lb troot(s) ub node t(s) NV col cut
R101 157.67 157.67 6.25 157.67 1 6.25 6 875 0
R102 131.34 131.34 275.02 131.34 1 275.02 5 3792 0
R105 137.64 138.48 126.99 138.48 1 126.99 6 2373 5
R106 116.05 116.07 3417.01 116.07 1 3417.02 5 7097 8
R109 87.97 89.24 2819.40 89.24 1 2819.40 7 6542 21
C101 200.02 200.02 5.54 200.02 1 5.54 9 1460 0
C102 192.05 192.05 293.32 192.05 1 293.32 8 6193 0
C105 184.16 184.16 44.42 184.16 1 44.42 9 3185 0
C106 180.80 180.80 122.49 180.80 1 122.49 9 4532 0
C107 175.53 178.09 252.91 178.09 1 252.91 9 4988 6
C108 166.03 166.03 302.17 166.03 1 302.17 8 6502 0
C109 147.35 147.74 1548.43 147.74 1 1548.43 8 12255 8
RC101 164.80 164.80 40.12 164.80 1 40.12 7 2021 0
RC102 153.58 153.58 2996.26 153.58 1 2996.26 7 5744 0
RC105 144.96 145.81 766.77 145.81 1 766.77 7 3875 3
RC106 130.18 131.38 1021.80 131.84 5 3522.39 7 5034 22

1 lbnoCut is the lower bound obtained in the root node without lm-SRCs;

2 lb is the lower bound obtained in the root node;

3 troot(s) is the computing time for obtaining the lb;

4 ub is the best upper bound (i.e., the optimal solution);

5 node is the total size of the branching trees;

6 t(s) is the total running time;

7 NV is the total number of used vehicles;

8 col is the number of columns added to the RMP; and

9 cut is the number of lm-SRCs added to the RMP.

Table 5 Computational results of TDGVRPTW with 50 customers.

Instance lbnoCut lb troot(s) ub node t(s) NV col cut
R101 272.24 273.18 320.32 273.18 1 320.32 13 3468 17
C101 289.13 294.17 547.84 294.17 1 547.84 11 5520 4
C105 263.81 268.66 3493.41 269.85 4 11941.58 11 11069 20
C106 263.32 267.68 5589.77 269.49 3 16466.25 11 13458 4
RC101 265.53 272.04 3357.23 - 6 30000.00 - - 39

customers can be solved in 28194.51s, and the optimal solution is 488.49. The BCP algo-

rithm cannot solve some instances with 25 customers, i.e., those characterized by wide

time windows.

5.3. Effectiveness of the dominance rule

To demonstrate the advantages of our new dominance rule, we solved the instances with

25, 50, and 100 customers using the BCP algorithm with the new dominance rule, and the

BCP without it. Table 6 presents the results of the comparison.

The results show great computational superiority when using the new dominance rule to

solve the TDGVRPTW. For the instances solvable by the BCP without the new dominance
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Table 6 Branch-cut-and-price (BCP) with new dominance rule vs. BCP without new dominance rule

num Instances
Total Time with

new dominance rule(s)
Total Time without

new dominance rule(s)
△T (s) △T (%)

25

R101 6.25 15.55 9.30 59.81
R102 275.02 536.51 261.49 48.74
R105 126.99 152.94 25.95 16.97
R106 3417.02 3526.94 109.92 3.12
R109 2819.40 3562.44 743.04 20.86
C101 5.54 109.09 103.55 94.92
C102 293.32 616.47 323.15 52.42
C105 44.42 242.58 198.16 81.69
C106 122.49 335.70 213.21 63.51
C107 252.91 539.04 286.13 53.08
C108 302.17 587.72 285.55 48.59
C109 1548.43 2242.39 693.96 30.95
RC101 40.12 108.64 68.52 63.07
RC102 2996.26 3296.50 300.24 9.11
RC105 766.77 901.83 135.06 14.98
RC106 3522.39 4256.33 733.94 17.24

50

R101 320.32 618.69 298.37 48.23
C101 547.84 5992.74 5444.90 90.86
C105 11941.58 56546.68 44605.10 78.88
C106 16466.25 - - -

100 R101 28194.51 - - -

1 num is the number of customers in the instance;

2 △T (s) = computing time of the BCP without the new dominance rule - computing time

of the BCP with the new dominance rule; and

3 △T (%) = △T (s)

(computing time of the BCP without the new dominance rule)
× 100%.

rule, the BCP with the new dominance rule improves the average computational time by

47.21%. In the best case (C101 with 25 customers), the improvement is 94.92%. In instances

with 50 customers (C101), the computational time is improved by up to 90.86%, and two

instances (C106.50 and R101.100) unsolvable by the BCP without the new dominance rule

can now be solved.

5.4. Time-dependent elementary shortest path problem with resource constraints
(TDESPPRC) vs. TDSPPRC

We solved the instances with 25, 50, and 100 customers using the BCP algorithm with

the new dominance rule. Table 7 presents the comparison results for the TDESPPRC and

TDSPPRC.

For the instances with 25 customers, five instances (R106, R109, RC102, RC105, and

RC106) cannot be solved when the pricing problem is a TDSPPRC. This is because many

timed routes are generated, making even the lower bound difficult to obtain. Two instances

(R102.25 and C102.25), whose pricing problem are TDSPPRCs, generated more timed



Liu et al.: BCP for the TDGVRPTW
26 Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2021-04-OA-080

Table 7 Computational results of time-dependent elementary shortest path problem with resource constraints

(TDESPPRC) and time-dependent shortest path problem with resource constraints (TDSPPRC)

TDESPPRC TDSPPRC
num instance lb ub cut col t(s) node lb ub cut col t(s) node

25

R101 157.67 157.67 0 875 6.25 1 157.67 157.67 0 875 7.23 1
R102 131.34 131.34 0 3792 275.02 1 131.34 131.34 0 4299 805.81 1
R105 138.48 138.48 5 2373 126.99 1 138.48 138.48 5 2373 255.57 1
R106 116.07 116.07 8 7097 3417.02 1 - - - - 7200.00 -
R109 89.24 89.24 21 6542 2819.40 1 - - - - 7200.00 -
C101 200.02 200.02 0 1460 5.54 1 200.02 200.02 0 1460 6.51 1
C102 192.05 192.05 0 6193 293.32 1 192.05 192.05 0 6629 392.50 1
C105 184.16 184.16 0 3185 44.42 1 184.16 184.16 0 3185 52.47 1
C106 180.80 180.80 0 4532 122.49 1 180.80 180.80 0 4532 133.73 1
C107 178.09 178.09 6 4988 252.91 1 178.09 178.09 6 4988 263.94 1
C108 166.03 166.03 0 6502 302.17 1 166.03 166.03 0 6502 288.23 1
C109 147.74 147.74 8 12255 1548.43 1 147.74 147.74 8 12255 1805.31 1
RC101 164.80 164.80 0 2021 40.12 1 164.80 164.80 0 2021 45.22 1
RC102 153.58 153.58 0 5744 2996.26 1 - - - - 7200.00 -
RC105 145.81 145.81 3 3875 766.77 1 - - - - 7200.00 -
RC106 131.38 131.84 22 5034 3522.39 5 - - - - 7200.00 -

50

R101 273.18 273.18 17 3468 320.32 1 273.18 273.18 17 3468 300.18 1
C101 294.17 294.17 4 5520 547.84 1 294.17 294.17 4 5520 556.00 1
C105 268.66 269.85 20 11069 11941.58 4 268.66 269.85 20 11069 12407.13 4
C106 267.68 269.49 4 13458 16466.25 3 267.68 269.49 4 13458 17320.25 3

100 R101 488.49 488.49 6 13448 28194.51 1 488.49 488.49 6 13448 28176.93 1

routes than the instances whose pricing problems were TDESPPRCs. We observe that

the TDSPPRC results in good performance for three instances (C108.25, R101.50 and

R101.100). However, the effect is not significant.

5.5. Effectiveness of the lm-SRCs

As shown in Table 8, 12 instances were solved based on using BCP with lm-SRCs and BP

without lm-SRCs approaches, respectively.

Table 8 Branch-cut-and-price algorithm (BCP) vs. Branch-and-price (BP) algorithm

BCP BP
num instance lb ub cut col t(s) node lb ub troot col t(s) node

25

R105 138.48 138.48 5 2373 126.99 1 137.64 138.48 86.69 2211 337.77 4
R106 116.07 116.07 8 7097 3417.02 1 116.05 116.07 2287.53 7095 4932.16 4
R109 89.24 89.24 21 6542 2819.40 1 87.97 89.24 1602.76 6539 10438.97 10
C107 178.09 178.09 6 4988 252.91 1 175.53 178.09 179.14 4984 519.95 3
C109 147.74 147.74 8 12255 1548.43 1 147.35 147.74 944.84 12173 3697.40 5
RC105 145.81 145.81 3 3875 766.77 1 144.96 145.81 722.67 3875 3016.96 9
RC106 131.38 131.84 22 5034 3522.39 5 130.18 131.84 724.89 5034 4652.60 13

50

R101 273.18 273.18 17 3468 320.32 1 272.24 273.18 219.59 3457 2140.69 13
C101 294.17 294.17 4 5520 547.84 1 289.13 294.17 365.35 5487 1129.37 4
C105 268.66 269.85 20 11069 11941.58 4 263.81 269.85 1743.35 10949 12717.31 7
C106 267.68 269.49 4 13458 16466.25 3 263.32 269.49 2726.12 13138 31396.39 9

100 R101 488.49 488.49 6 13448 28194.51 1 488.34 488.49 20898.69 13443 42012.89 3



Liu et al.: BCP for the TDGVRPTW
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2021-04-OA-080 27

For these 12 instances, the BCP approach performs better. The computational times

are improved by up to 62.40%, 30.72%, 72.99%, 51.36%, 58.12%, 74.58%, 24.29%, 85.04%,

51.49%, 6.10%, 47.55%, and 32.89%, respectively. And the BCP algorithm improves the

average computational time by 49.80%.

5.6. Carbon emissions vs. waiting time

In the TDGVRPTW, we define two types of waiting times (see Section 2.2). As waiting

at each node (depot and customers) may lead to reduced carbon emissions, we compared

the effect of the Type 2 waiting time on carbon emissions.

According to the computational results from Subsection 5.2, we removed all of the Type

2 waiting times of each node (depot and customers) without changing the sequence of

nodes, and recalculated the carbon emissions for each timed route. For each computational

result, the two types of waiting times and the gap in the carbon emissions are shown in

Table 9. As shown, waiting can have a positive effect on the reduction of carbon emissions.

Table 9 Carbon emissions vs. Waiting time

Solution of TDGVRPTW Solution without type2 waiting
num instance ce w t ret w type1 wt type2 wt rat 1 w(%) rat 2(%) ce n t ret n type1 wt rat 1 n(%) rat ce(%)

25

R101 157.67 108.30 34.14 20.67 31.52 19.09 173.94 107.44 52.24 48.62 9.36
R102 131.34 99.18 24.98 23.47 25.19 23.66 147.26 99.18 47.96 48.36 10.81
R105 138.48 103.96 25.38 36.66 24.41 35.26 158.91 102.63 47.48 46.26 12.86
R106 116.07 90.79 12.15 36.47 13.38 40.17 135.46 88.81 35.33 39.78 14.31
R109 89.24 117.82 10.26 87.28 8.71 74.08 134.23 116.43 57.47 49.36 33.52
C101 200.02 157.13 35.60 34.03 22.66 21.66 230.92 157.13 70.79 45.05 13.38
C102 192.05 138.99 28.61 25.60 20.58 18.42 216.89 138.99 54.06 38.89 11.45
C105 184.16 155.40 29.63 41.94 19.07 26.99 221.88 154.56 67.79 43.86 17.00
C106 180.80 152.33 28.65 47.08 18.81 30.91 217.67 150.11 65.03 43.32 16.94
C107 178.09 151.41 22.97 48.95 15.17 32.33 221.88 149.77 63.08 42.12 19.74
C108 166.03 135.06 11.94 54.83 8.84 40.60 208.62 129.98 46.29 35.61 20.40
C109 147.74 135.99 2.61 98.75 1.92 72.62 201.97 124.31 39.92 32.11 26.85
RC101 164.80 125.23 22.72 56.36 18.14 45.01 206.22 123.16 59.92 48.65 20.08
RC102 153.58 125.65 20.55 72.09 16.35 57.37 197.41 123.60 61.36 49.64 22.20
RC105 145.81 122.55 21.09 54.23 17.21 44.25 191.27 121.98 56.86 46.61 23.77
RC106 131.84 119.50 5.55 96.44 4.64 80.70 196.85 109.47 45.42 41.49 33.02

50

R101 273.18 235.71 77.93 47.49 33.06 20.15 305.87 235.71 124.76 52.93 10.69
C101 294.17 196.54 34.37 24.15 17.49 12.29 321.43 196.54 58.04 29.53 8.48
C105 269.85 191.22 22.03 40.51 11.52 21.19 301.76 190.20 51.84 27.26 10.57
C106 269.49 192.23 22.36 48.02 11.63 24.98 302.84 186.87 48.64 26.03 11.01

100 R101 488.49 345.14 92.17 55.54 26.71 16.09 525.54 345.14 141.04 40.86 7.05

1 ce w is the total carbon emissions with the type 2 waiting time in each node in the instance;

2 t ret w is the total return time to depot n+1 with the type 2 waiting time in each node;

3 rat 1 w(%) = type1 wt/t ret w× 100%;

4 rat 2(%)= type2 wt/t ret w× 100%;

5 ce n is the total carbon emissions without the type 2 waiting time in each node;

6 t ret n is the total return time to depot n+1 without the type 2 waiting time in each node;

7 rat 1 n(%) = type1 wt/t ret n× 100%; and

8 rat ce(%) = ce n− ce w/ce n× 100%.
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For instance, in C101.25, the Type 1 waiting time is reduced by 35.19 and the Type 2

waiting time increases to 34.03, but the carbon emissions are reduced 30.90 (13.38%). Some

of the Type 1 waiting times (35.19) are converted into Type 2 waiting times (34.03). This

means that the total waiting time when considering carbon emissions is slightly decreased

(69.63 vs. 70.79), and that the carbon emissions can be reduced by rebalancing the waiting

times of the TDGVRPTW.

5.7. Sensitivity analyses on speed profiles

In this subsection, we consider two speed profiles to analyze how the carbon emissions

change based on different speed profiles. In addition to the profile considered in Section

2.1 (see Figure 1), we added a similar profile, but with a congestion speed (i.e., v2) equal

to 30 km/h, similar to (Jabali et al. 2012), instead of 25 km/h. These two speed profiles

were randomly assigned to various arcs in the instances. Table 10 presents the computation

results using the two speed profiles.

Table 10 One speed profile vs. Two speed profiles

One speed profile Two speed profiles
num instance ce 1 type1 wt type2 wt ce 2 type1 wt type2 wt rat ce(%)

25

R101 157.67 34.14 20.67 161.41 37.37 21.00 2.37
R102 131.34 24.98 23.47 135.80 19.85 23.67 3.40
R105 138.48 25.38 36.66 143.16 26.45 33.91 3.38
R106 116.07 12.15 36.47 120.17 15.23 34.45 3.53
R109 89.24 10.26 87.28 98.72 6.32 80.95 10.62
C101 200.02 35.60 34.03 212.86 39.21 33.47 6.42
C102 192.05 28.61 25.60 197.46 29.17 26.59 2.82
C105 184.16 29.63 41.94 200.38 27.93 42.94 8.81
C106 180.80 28.65 47.08 188.34 29.29 46.72 4.17
C107 178.09 22.97 48.95 186.87 21.03 33.42 4.93
C108 166.03 11.94 54.83 172.52 10.84 32.59 3.91
C109 147.74 2.61 98.75 158.50 3.96 65.28 7.28
RC101 164.80 22.72 56.36 171.73 18.29 67.76 4.21
RC102 153.58 20.55 72.09 157.45 21.06 72.05 2.52
RC105 145.81 21.09 54.23 156.20 19.48 61.93 7.13
RC106 131.84 5.55 96.44 137.29 2.22 92.81 4.13

50
R101 273.18 77.93 47.49 283.76 72.79 40.31 3.87
C101 294.17 34.37 24.15 304.35 35.61 24.83 3.46
C105 269.85 22.03 40.51 284.48 22.64 42.20 5.42
C106 269.49 22.36 48.02 280.47 25.68 44.87 4.07

1 ce 1 is the total carbon emissions with one speed profile in an instance;

2 ce 2 is the total carbon emissions with two speed profiles; and

3 rat ce(%) = ce 2− ce 1/ce 1× 100%.

From the computational results, it can be seen that for the two speed profile cases, the

carbon emissions increase by an average of 4.82%.
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5.8. Solving the TDVRPTW to minimize the total travel time

In addition to solving the TDGVRPTW, our BCP algorithm can also be used to solve a

wide class of TDVRPTWs, with an objective function related to the departure times from

the depot and customer locations (e.g., the total travel time). In this subsection, we solve

the instance C101.25 of the TDVRPTW to minimize the total travel time, and we compute

the corresponding carbon emissions from the resulting optimal solutions. Subsequently, we

solve the instance C101.25 of the TDGVRPTW to minimize the total carbon emissions,

and we compute the corresponding travel time for the resulting optimal solutions.

Table 11 Solution of C101.25

Objective Route ID Route with departure time (timed route) tt ce ttt tce

TDVRPTW to
minimize the
travel time

1 0[0.00]-4[10.97]-3[17.01]-n+1 4.01 37.32

34.14 317.75

2 0[0.00]-8[3.25]-9[17.01]-n+1 3.41 34.35
3 0[0.00]-14[9.22]-15[17.01]-n+1 4.56 42.88
4 0[0.00]-19[5.69]-20[17.01]-n+1 5.31 52.88
5 0[0.00]-21[10.64]-22[17.01]-n+1 3.11 27.74
6 0[0.00]-5[2.22]-6[4.21]-7[17.01]-n+1 1.76 17.65
7 0[0.00]-18[10.49]-16[14.02]-17[17.01]-n+1 2.69 21.84
8 0[0.00]-24[3.59]-23[8.89]-25[17.01]-n+1 4.78 40.30
9 0[0.00]-10[6.87]-11[8.78]-12[17.01]-13[19.46]-n+1 2.66 24.23
10 0[0.00]-2[6.70]-1[17.01]-n+1 1.86 18.55

TDGVRPTW to
minimize the

carbon emissions

1 0[5.73]-14[10.21]-15[12.66]-n+1 6.76 22.91

46.36 200.02

2 0[0.00]-19[7.01]-20[16.68]-n+1 5.81 48.53
3 0[7.01]-21[11.24]-22[14.27]-n+1 5.07 10.42
4 0[0.00]-10[7.01]-11[9.00]-12[14.02]-n+1 3.41 13.89
5 0[0.00]-24[7.01]-23[9.45]-25[14.31]-n+1 6.25 26.82
6 0[0.00]-2[7.01]-4[10.97]-3[14.41]-n+1 6.09 21.17
7 0[0.00]-5[2.22]-6[7.01]-7[12.35]-1[15.94]-n+1 4.26 15.85
8 0[0.00]-8[7.01]-9[14.66]-13[19.46]-n+1 4.80 29.15
9 0[7.01]-18[10.67]-16[14.02]-17[16.01]-n+1 3.91 11.28

1 tt is the travel time;

2 ce is the carbon emissions;

3 ttt is the total travel time;

4 tce is the total carbon emissions;

5 For a route with departure times (timed route), the numbers in brackets indicate the departure times of the nodes.

For example of timed route 1 (0[0.00]− 4[10.97]− 3[17.01]− n+ 1), the node sequence is 0− 4− 3− n+ 1, the

departure times are 0.00, 10.97, and 17.01 of node 0, node 4, and node 3 respectively. Depot n+1 does not have

departure time.

We observe that the optimal solution of TDVRPTW is not the optimal solution of

TDGVRPTW and that the difference in term of carbon emissions is significant. Indeed,

the percentage gaps between the two solutions in term of carbon emissions is 37.05%.

The percentage gaps between the two solutions in term of travel time is 26.36%. All the
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benchmark instances used in this paper and the results are available for download at

https://github.com/liuyimingNEU95/Supplement BCP TDGVRPTW.git

6. Conclusions

In this paper, we described a BCP algorithm for solving the TDGVRPTW, aiming to

reduce the total carbon emissions. Because a later departure time from a node may lead to

less carbon emissions, the departure time of each node must be determined. We introduced

the concepts of optimal timed routes and non-dominated TD arcs in the TDGVRPTW to

reduce the solution space, so that timed routes with dominated TD arcs are eliminated.

Our extensive computational studies show that our BCP algorithm can solve Solomon-

based instances with up to 100 customers. In addition, the results show that the new

dominance rule used in the BCP can reduce the average computation time by approxi-

mately 47.21%.

Apart from solving the TDGVRPTW, future works will address other variants of the

TDGVRPTW that have been proposed to consider different objectives arising from prac-

tical applications, such as the TD green pick-up and delivery VRP, TD green multi-trip

VRP, and TD green multi-depot VRP.
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