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We present a new exact algorithm to solve a challenging vehicle routing problem with split pickups and deliv-

eries, named as the Single Commodity Split Pickup and Split Delivery Vehicle Routing Problem (SPDVRP).

In the SPDVRP, any amount of a product collected from a pickup customer can be supplied to any delivery

customers, and the demand of each customer can be collected or delivered multiple times by the same or

different vehicles. The vehicle fleet is homogeneous with limited capacity and maximum route duration. This

problem arises regularly in inventory and routing rebalancing applications, such as in bike-sharing systems,

where bikes must be rebalanced over time such that the appropriate number of bikes and open docks are

available to users. The solution of the SPDVRP requires determining the number of visits to each customer,

the relevant portions of the demands to be collected from or delivered to the customers, and the routing of

the vehicles. These three decisions are intertwined, contributing to the hardness of the problem.

Our new exact algorithm for the SPDVRP is a branch-price-and-cut algorithm based on a pattern-based

mathematical formulation. The algorithm relies on a novel label-setting algorithm used to solve the pricing

problem associated with the pattern-based formulation, where the label components embed reduced cost

functions, unlike those classical components that embed delivered or collected quantities, thus significantly

reducing the dimension of the corresponding state space. Extensive computational results on different classes

of benchmark instances illustrate that the newly proposed exact algorithm solves several open SPDVRP

instances and significantly improves the running times of state-of-the-art algorithms.

Key words : vehicle routing, single commodity, split pickups, split deliveries, branch-price-and-cut,

label-setting algorithm, exact algorithm.
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1. Introduction

In this paper, we investigate a challenging vehicle routing problem with split pickups and deliv-

eries, known as the Single Commodity Split Pickup and Split Delivery Vehicle Routing Problem

(SPDVRP). Following the literature (Casazza et al. 2021), the problem can be defined as follows:

Consider a given digraph G= (V,A), where V = {0,1, . . . , n,n+ 1} is a vertex set and A is an

arc set. Let N = V \{0, n+ 1} represent a set of n customers, and let vertex 0 represent a depot.

For the sake of description convenience, we introduce a dummy depot n′ = n+ 1 positioned at the

same location as depot 0, and we regard depots 0 and n′ as the start and end depots, respectively.

The set of arcs A is defined as A= {(i, j) : i, j ∈ V, i 6= j, i 6= n+1, j 6= 0}\{(0, n+1)}. Each vertex

i∈ V has a demand qi, which represents the amount of a product to be collected, if qi > 0, or to be

delivered, if qi < 0. We assume q0 = qn′ = 0 and that the problem is balanced, i.e.,
∑

i∈N qi = 0. As

shown by Hernández-Pérez and Salazar-González (2004a), the unbalanced case, where
∑

i∈N qi 6= 0,

might be taken into account by adding a dummy customer positioned at the same location as

depot 0 and having a demand equal to −
∑

i∈N qi. Let N+ = {i : i∈N,qi > 0} be the set of pickup

customers and N− = {i : i ∈N,qi < 0} be the set of delivery customers. With each arc (i, j) ∈A

is associated a routing or travel cost dij and a travel time tij, the latter including the service time

at vertex i. We assume that matrices [dij] and [tij] satisfy the triangle inequality.

A fleet of identical vehicles having capacity Q stationed at depot 0 and represented by the

index set K = {1, . . . , |K|} has to fulfill the customer demands. Each vehicle must start its route

from vertex 0 and end at vertex n′, and each route has a total duration not greater than a given

limit T . We assume that each vehicle route departs from depot 0 and arrives at depot n′ with

an empty load, and we therefore also assume that the set of arcs A does not contain the arcs in

{(0, i) : i∈N−}∪ {(i, n′) : i∈N+}.

In the SPDVRP, any amount of product collected from a pickup customer can be supplied to

any delivery customer, i.e., a single commodity is considered. The demand of each customer may

be collected or delivered multiple times by the same or different vehicles, i.e., split deliveries or

collections are allowed. In addition, it is assumed that temporary storage is not allowed (non-

preemptive case) meaning that the demands cannot be temporarily dropped off at any customer.

The SPDVRP consists of designing at most |K| routes of minimum total cost such that, subject

to the vehicle capacity and duration constraints, the demand of all the customers is satisfied.

* Corresponding author
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Based on the classification scheme proposed by Berbeglia et al. (2007), the SPDVRP is a

many-to-many, single-commodity, multi-vehicle pickup and delivery problem [M-M|P/D||K|]. The

SPDVRP is a generalization of the Split Delivery Vehicle Routing Problem (SDVRP) (Archetti and

Speranza 2008, 2012, Irnich et al. 2014) in which the depot is the pickup location, the customers

are delivery locations, and the demand of a customer is allowed to be served in more than one visit

by different vehicles. The SPDVRP further extends the SDVRP by considering both pickup and

delivery customers and maximum duration constraints in addition to vehicle capacity constraints.

Because the SDVRP is NP-hard, so is the SPDVRP.

The SPDVRP has practical applications in many routing problems especially in inventory repo-

sitioning, where the inventories of a product of a set of retailers must be rebalanced to fit the nature

of the demand. Practical applications of the SPDVRP arise in the context of milk transportation,

money transfer between branch offices of a bank (Hernández-Pérez and Salazar-González 2004a),

self-service bike-sharing systems (Laporte et al. 2015, Espegren et al. 2016, Laporte et al. 2018),

and transportation of crude oil (Izuno et al. 2012), to mention just a few. Important problems

related to the SPDVRP are multi-commodity pickup and delivery problems, and comprehensive

surveys of the different variants studied in the literature can be found in Berbeglia et al. (2007)

and Parragh et al. (2008a,b). We also refer to Battarra et al. (2014) for a survey about pickup and

delivery problems.

VRPs with split delivery are notoriously hard combinatorial optimization problems and the

design of exact algorithms is not straightforward because the amount to be delivered at each

customer visit is also a decision variable. State-of-the-art branch-price-and-cut (BPC) algorithms

for classical non-split VRPs (e.g., see Costa et al. 2019) cannot be easily adapted to solve split

delivery problems because handling the quantities to deliver either requires an exponential number

of constraints in the master problem, or must be handled at the subproblem level, thus complicating

the structure of the pricing algorithm.

In this paper, we present a new exact algorithm for the SPDVRP. The algorithm is developed

from a pattern-based formulation of the problem where the LP-relaxation of the formulation is

solved in a column generation fashion and embedded in an exact BPC solution approach. To solve

the pricing problem associated with the pattern-based formulation, we develop a novel label-setting

algorithm specifically designed for handling split deliveries. In this algorithm, label components

embed reduced cost functions, unlike those classical components that embed delivered or collected

quantities, thus significantly reducing the dimension of the corresponding state space. To further

reduce the number of labels generated for speed up of the algorithm, we also derive and apply new

dominance rules based on the reduced cost functions. We report extensive computational results
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on different sets of benchmark instances, and we compare our results with the results of state-of-

the-art algorithms for the SPDVRP. The results show that our new exact algorithm solves several

open SPDVRP instances and significantly outperforms current state-of-the-art algorithms.

The remainder of this paper is organized as follows. The next section reviews problems related to

the SPDVRP. §3 presents the pattern-based mathematical formulation of the SPDVRP. §4 describes

the details of the procedure adopted to solve the LP-relaxation of the formulation, with emphasis

on the definition of the reduced costs functions and the label-setting algorithm used to solve the

pricing problem. Details of the exact algorithm are given in §5, followed by its computational

evaluation in §6. Finally, we conclude the paper and indicate future research directions in §7.

2. Literature review

The SDVRP, a special case of the SPDVRP, has been addressed by many articles in the literature,

most of them dealing with heuristic techniques, and surveys on the SDVRP and related prob-

lems can be found in Archetti and Speranza (2008, 2012) and in Irnich et al. (2014). The most

recent exact algorithms for the SDVRP have been proposed by Archetti, Bianchessi and Speranza

(2011) and Archetti et al. (2014). In Archetti, Bianchessi and Speranza (2011), a BPC algorithm

is described for both the case where the fleet of vehicles is unlimited and the case where the fleet

is limited to the minimum possible number of vehicles. Instances with up to 48 customers were

consistently solved to optimality and an instance with 144 customers was also solved to optimality.

Archetti et al. (2014) described two exact branch-and-cut (BC) algorithms based on two relaxed

formulations and on procedures to obtain feasible solutions to the SDVRP from feasible solutions to

the relaxed formulations. The results show that one of the two BC algorithms was capable solving

most of the instances with up to 50 customers and two instances with 75 and 100 customers.

One of the most studied variant of the SDVRP is the SDVRP with Time Windows (SDVRPTW).

Desaulniers (2010) described a BPC algorithm to solve the SDVRPTW. Archetti, Bouchard and

Desaulniers (2011) enhanced the BPC algorithm of Desaulniers (2010) by introducing a tabu search

algorithm to heuristically solve the pricing problem, several classes of valid inequalities and a new

separation algorithm for the k-path inequalities. Instances with up to 100 customers were solved to

optimality within a one-hour time limit. Recently, Luo et al. (2017) investigated a BPC algorithm

for solving an extension of the SDVRPTW, called the SDVRPTW with linear weight-related cost

(SDVRPTWL), in which the travel cost per unit distance is charged based on a linear function of

the load weight. The algorithm was tested on both SDVRPTW and SDVRPTWL instances, and

instances with up to 100 customers for both of the two variants were solved to optimality within a

one-hour time limit. Bianchessi and Irnich (2019) presented a BC algorithm for the SDVRPTW.

The algorithm is based on a relaxed compact model, in which some integer solutions are infeasible
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for the SDVRPTW, and classes of valid inequalities are introduced to cut them. The computational

experiments reported proved the optimality for several previously unsolved instances from the

literature.

The SPDVRP is a generalization of the One-Commodity Pickup-and-Delivery Travelling Sales-

man Problem (1PDTSP) introduced in Hernández-Pérez and Salazar-González (2004a) and

Hernández-Pérez and Salazar-González (2004b), where one-commodity and one capacitated vehi-

cle is considered, and each customer must be visited exactly once. As for the SPDVRP, in the

1PDTSP any amount of product collected from a pickup customer can be supplied to any delivery

customer. The SPDVRP is more challenging than the 1PDTSP since multiple vehicles and multiple

visits to the customers are considered. Hernández-Pérez and Salazar-González (2004a) described

a BC algorithm based on different valid inequalities which was further improved by Hernández-

Pérez and Salazar-González (2007) with new valid inequalities, and which proved to be effective in

solving to optimality instances with up to 100 customers. Salazar-González and Santos-Hernández

(2015) further extended the 1PDTSP by introducing a more general problem, the Split-demand

One-commodity Pickup-and-delivery Travelling Salesman Problem (1-SPDTSP). The 1-SPDTSP

is a many-to-many, single-commodity, multi-vehicle problem, where the number of times that a

vehicle visits a customer is limited and preemption is also allowed. The depot is considered as a

standard customer having its own demand and capacity, and the vehicle is not forced to depart

from or arrive at the depot empty. The problem has been modeled using a single-commodity flow

formulation, and both a heuristic algorithm, based on the heuristic proposed by Hernández-Pérez

and Salazar-González (2004b), and a BC approach, were described for its solution. The authors

reported optimal solutions for 1-SPDTSP instances with up to 50 customers. Recently, Hernández-

Pérez et al. (2018) have described a matheuristic algorithm that iteratively applies a constructive

procedure and a refinement procedure with the aim of solving large-sized 1-SPDTSP instances

with up to 500 customers.

Problems that are closely related to the SPDVRP and corresponding applications arise in the

context of self-service bike-sharing systems. Due to the growth in popularity in recent years of self-

service bike-sharing and scooter-sharing systems, there is a rapidly growing amount of literature

on these problems. The survey paper of Laporte et al. (2015), and its updated version of Laporte

et al. (2018), classify the relevant literature by considering station location, fleet dimensioning,

station inventory, rebalancing incentives, and vehicle repositioning. Below, we briefly review the

most recent exact algorithms in this area, and the reader is referred to the surveys of Laporte et al.

(2015, 2018) for an in-depth analysis of the literature.

In the static variant of these problems it is assumed that bicycles are not moved by users and

that capacitated vehicles must be used to reallocate the bicycles between the different stations
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or locations. This corresponds to the practical scenario where every night the bicycle inventories

at the locations must be restored to fit the demand at minimum travel cost. The problems are

then classified according to (i) the number of maximum visits allowed to the stations (i.e., single

or multiple visits), (ii) the preemptive or non-preemptive cases, and (iii) the number of vehicles

available (single or multiple vehicles). In the multiple visits case, a station can be visited more

than once by different vehicles, and a station is also allowed to be visited multiple times by the

same vehicle. Two special cases of the multiple visits case arise: (i) a vehicle is allowed to visit

a customer at most once, hereafter referred as a multiple-visit, different-vehicle case, and (ii) a

customer can be visited (even more than once) by only one vehicle, hereafter referred as a multiple

visits, same vehicle case.

Static, single-visit, non-preemptive problems were investigated by Erdoğan et al. (2014) and

Dell’Amico et al. (2014). Erdoğan et al. (2014) addressed a single vehicle variant where stations

might be visited at most once and the resulting numbers of bikes at stations after the rebalancing

should lie within a given interval instead of exactly corresponding to a fixed target value. The

objective function includes a commodity handling cost. The authors developed an integer program-

ming formulation and described valid inequalities that have been used to develop a BC algorithm

as well as a Benders decomposition scheme. The BC algorithm was capable of solving instances

with up to 50 locations. Dell’Amico et al. (2014) considered a multiple vehicle problem, called the

Bike Rebalancing Problem (BRP) where initially balanced stations are to be visited as well, to

ensure a daily inspection. The authors described four mathematical formulations for the BRP and

proposed a BC algorithm for its solution capable of solving to optimality BRP instances involving

up to 50 locations or stations. Dell’Amico et al. (2016) solved the BRP by developing a destroy

and repair heuristic, improving the best-known solutions for several instances from the literature.

Chemla et al. (2013) , Erdoğan et al. (2015), Casazza et al. (2019), Bulhões et al. (2018), Bruck

et al. (2019) investigated static and multiple-visit variants. Chemla et al. (2013) studied a single-

vehicle, preemptive problem. The authors proposed a mathematical formulation from which two

relaxations are derived. A tabu search algorithm is also described to solve instances involving up to

100 stations. The same problem was also considered by Cruz et al. (2017), who obtained improved

results on the existing benchmark instances by means of an iterated local search algorithm. Erdoğan

et al. (2015) presented a BC algorithm for the preemptive single-vehicle variant, and reported

results of computational tests on benchmark instances from the literature showing that instances

with up to 60 stations can be solved to optimality in less than 2 hours of computing time. Casazza

et al. (2019) considered a multiple-vehicle non-preemptive problem, called the Multiple Vehicle

Balancing Problem (MVBP), with an additional constraint imposing a maximum number of visits

per station. Based on theoretical properties of the problem, the authors proposed an integer linear
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Table 1 Features of the main works related to the SPDVRP

Work Visits Vehicles Type of visits Preemptive Constraints

(s)ingle (s)ingle (sv) same veh. (y)es (c)apacity
(m)ultiple (m)ultiple (df) diff. veh. (n)o (m)ax. num. of visits
(o)ptional (sv,dv) (d)duration

SPDVRP m m sv, dv n c, d

Hernández-Pérez and Salazar-González (2004a) s s - n c
Chemla et al. (2013) m s sv y c
Erdoğan et al. (2014) o s sv n c
Dell’Amico et al. (2014) s m - n c
Erdoğan et al. (2015) m s sv y c
Salazar-González and Santos-Hernández (2015) m s sv y c, m
Bulhões et al. (2018) m m sv n c, m, d
Casazza et al. (2019) m m sv, dv n c, m
Bruck et al. (2019) m s sv n c
Casazza et al. (2021) m m sv, dv n c, d

programming formulation and introduced some valid inequalities that were used to compute valid

lower bounds in a column generation fashion. Upper bounds were also computed by means of a

rounding heuristic and a Memetic algorithm and the lower and upper bounds computed were used

to solve to proven optimality instances with up to 20 stations. Any instance of the MVBP can be

transformed into an equivalent SPDVRP instance simply by modeling the additional constraint on

the maximum number of visits (say α), by setting the travel time tij = 1, ∀(i, j) ∈A, and T = α.

Bulhões et al. (2018) investigated a multiple-visit, multiple-vehicle, non-preemptive problem with

an upper limit on the maximum number of visits to a station. In addition, a station could only

be served (even multiple times) by one of the fleet vehicles, and the vehicle workload constraint

was also considered. The authors designed a BC algorithm based on an extended network-based

mathematical formulation and an iterated local search-based heuristic. The BC was capable of

solving to optimality several instances with 20 stations and 1 instance with 30 stations and 3

vehicles within the time limit of one hour. Bruck et al. (2019) also investigated a single-vehicle, non-

preemptive problem. The authors investigated theoretical results concerning problem complexity

and worst-case analysis, and then proposed three exact algorithms based on different mathematical

formulations. Computational experiments were reported for instances involving up to 80 stations.

To the best of our knowledge, the only work considering the SPDVRP can be found in Casazza

et al. (2021). The authors proposed a formulation where routes are decomposed into sequences of

simpler substructures called clusters. Valid inequalities, a rounding heuristic, and a branch-and-

price (BP) algorithm are also described. The proposed algorithm is competitive with the algorithm

proposed in Casazza et al. (2019) for the MVBP, and instances with up to 20 stations were solved

to optimality. In the computational results in Section 6, we compare our results with the results

reported in Casazza et al. (2019) and Casazza et al. (2021).

Table 1 provides a summary of the main problem features of works closely related to the

SPDVRP. From the table, it is seen that the SPDVRP addresses the most general case in terms of
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types of visit to the customers, which is regarded as the main factor that influences the complexity

of split delivery problems.

3. A pattern-based formulation for the SPDVRP

The pattern-based (PB) formulation is based on the set partitioning formulation originally pro-

posed by Balinski and Quandt (1964) for the Capacitated VRP (CVRP), and it associates a decision

variable with each feasible route of the SPDVRP.

A route in graph G is defined as a (not necessarily elementary) path R= (0, i1, . . . , ib, n
′) starting

at depot 0, ending at depot n′, visiting a set of vertices {i1, . . . , ib} ⊆N (maybe more than once),

and being such that the total travel time of the route is less than or equal to T . Associated with a

route R are (i) the set of quantities {li1 , . . . , lib} delivered (negative values) and collected (positive

values) to the visited vertices, and (ii) a demand pattern, or simply pattern α∈R|N |, where αi for

i∈N+ with 0≤ αi ≤ qi represents the total amount of the product picked up from customer i, and

αi for i∈N− with qi ≤ αi ≤ 0 represents the total quantity delivered to customer i. Note that if the

route is elementary, for a customer i∈N we have αi = li if i∈ {i1, . . . , ib}, and αi = 0 otherwise.

A set of quantities and a demand pattern are feasible for route R = (0, i1, . . . , ib, n
′), and we

simply refer to it as a feasible pattern, if (i) the vehicle starts and ends the route R with an empty

load, (ii) along the route R the total demand collected from the pickup customers is delivered to the

delivery customers, i.e.,
∑

i∈N αi = 0, and (iii) the load of the vehicle after it visits the h-th vertex

of the route R is nonnegative and does not exceed the vehicle capacity Q, i.e., 0≤
∑h

s=1 lis ≤Q,

h= 1, . . . , b− 1.

Let R be the index set of all routes where the route of index r ∈R is denoted by Rr. For each

r ∈R, let Pr be the index set of all feasible patterns associated with route Rr. Given a route r ∈R
and a pattern index p∈Pr, let αipr be a continuous coefficient equal to the total demand collected

from or delivered to customer i by route Rr according to the pattern with index p. In addition,

we denote by cr the routing cost associated with route Rr, computed as cr =
∑

(i,j)∈A γijrdij where

γijr is the number of times that arc (i, j) is traversed by route Rr. Due to the constraint on the

maximum route duration, each route Rr satisfies that
∑

(i,j)∈A γijrtij ≤ T .

Let θpr be a nonnegative integer variable representing the number of vehicles assigned to pattern

p∈Pr of route Rr for r ∈R. Formulation PB is as follows:

(PB) min
∑
r∈R

∑
p∈Pr

crθpr (1a)

s.t.
∑
r∈R

∑
p∈Pr

αiprθpr ≤ qi, ∀ i∈N, (1b)∑
r∈R

∑
p∈Pr

θpr ≤ |K|, (1c)

θpr ≥ 0 and integer, ∀ p∈Pr, r ∈R. (1d)
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The objective function (1a) states to minimize the total routing cost. Constraints (1b) impose

that the demand of each customer is satisfied by the demand patterns associated with the routes

selected in the solution, and their correctness arise from the fact that
∑

i∈N qi = 0. Constraints (1c)

limits the number of vehicles used to the number of vehicles available.

Casazza et al. (2019) also described a pattern-based formulation to model the MVBP. However,

the authors assume that |qi| ≤ Q, ∀i ∈ N , and showed that under this assumption variables θpr

can be stated as binary variables. To remove the limit |qi| ≤Q, i ∈N , their algorithm requires to

introduce k = d|qi|/Qe vertices for vertex i, say {i1, . . . , ik}, such that |qih | = Q, h = 1, . . . , k − 1,

and |qik |= |qi| −Q(K − 1).

The LP-relaxation of formulation PB can be solved in a column generation fashion by iteratively

solving a restricted master problem (RMP) and the pricing problem, which determines whether

there exists a variable θpr to be added to the RMP to improve its current solution. For a thorough

description of the column generation technique and corresponding solution approaches, the reader

is referred to the book of Desaulniers et al. (2005) and the reviews of Barnhart et al. (1998) and

Lübbecke and Desrosiers (2005).

3.1. Pricing problem

Let µ = (µ0, µ1, µ2, . . . , µn), where µ1, µ2, . . . , µn ≤ 0, and µ0 ≤ 0 are the dual variables associ-

ated with constraints (1b) and (1c), respectively. Given a route r ∈ R represented by path Rr =

(0, i1, . . . , ib, n
′), the most negative reduced cost pattern α associated with the route can be com-

puted by solving the following LP problem:

cr−µ0 +min

− ∑
i∈V (Rr)

αiµi


s.t. 0≤

h∑
s=1

lis ≤Q, h= 1, . . . , b− 1, (2a)∑
i∈V (Rr)

αi = 0, (2b)

0≤ αi =
∑

s∈Rr(i)

lis ≤ qi, ∀ i∈ V (Rr)∩N+, (2c)

qi ≤ αi =
∑

s∈Rr(i)

lis ≤ 0, ∀ i∈ V (Rr)∩N−, (2d)

0≤ lis ≤ qi, ∀s∈Rr(i), i∈N+, (2e)

qi ≤ lis ≤ 0, ∀s∈Rr(i), i∈N−, (2f)

αi = 0, ∀i∈N \V (Rr), (2g)

where V (Rr) is the set of customers visited by route Rr and Rr(i)⊂ {1,2, . . . , b} for i ∈ V (Rr), is

the set of vertex indices of route Rr corresponding to customer i ∈N , i.e., ih = ik, ∀i, k ∈ Rr(i),
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h 6= k. In the formulation, constraints (2a) impose the vehicle capacity constraints, and constraints

(2e) and (2f) are redundant due to the definition of variables αi given by constraints (2c) and (2d).

It can be seen that the formulation admits a feasible solution where each customer i ∈ V (Rr) can

be associated with αi = 0.

Based on the above formulation, the pricing problem therefore calls for the joint definition

of route R and the associated pattern α, a variant of the shortest path problem with resource

constraints (SPPRC) (Irnich and Desaulniers 2005, Irnich and Villeneuve 2006) that allows for

the generation of paths with cycles (i.e., routes with multiple visits to the same customer). The

SPPRC is a relaxation of the elementary SPPRC (ESPPRC), a strongly NP-hard problem, where

elementarity requirements are also considered. The ESPPRC was studied in the context of vehicle

routing problems by several researchers (see Feillet et al. 2004, Chabrier 2006, Righini and Salani

2006, 2008), who developed effective dynamic programming algorithms for solving it. The SPPRC

is easier to solve than the ESPPRC, as it can be solved by a pseudo-polynomial algorithm, and a

number of SPPRC relaxations have been proposed in the VRP literature (see Costa et al. 2019).

As shown by the literature, the presence of the split deliveries and collections further complicates

the ESPPRC (Desaulniers 2010, Archetti, Bouchard and Desaulniers 2011, Casazza et al. 2021)

and the SPPRC (Casazza et al. 2019). Indeed, in these variants the quantity delivered or collected

at each visited customer is a decision variable.

The algorithm of Casazza et al. (2019) requires a state variable for each customer that accounts

for the total number of units picked up or delivered at the customer. The algorithm follows the

procedure proposed by Baldacci et al. (2008) for the Pickup and Delivery Problem with Time

Windows where forward paths are first generated and combined to form complete (not necessarily

elementary) routes.

The pricing algorithm of Desaulniers (2010) solves an ESPPRC and exploits certain properties

of the pricing problem related to the Knapsack Problem. The algorithm requires state variables

indicating (i) the total quantity delivered in the full deliveries, (ii) whether or not a split delivery

occurred, (iii) the maximum quantity that can be delivered in the split delivery and (iv) the unit

dual price for the split delivery. In this way, when extending a label from a vertex i to a vertex j,

their pricing algorithm creates up to three labels associated with a zero delivery, a split delivery

and a full delivery to j, respectively. The pricing algorithm relies on the use of reduced (linear)

cost functions. More precisely, a state variable is used to compute the maximal reduced cost that

is obtained by replacing the split delivery, if any, by a zero delivery. The reduced cost function of

a label (and associated path) is then defined as c− π(x−L), where: (i) c is the maximal reduced

cost, (ii) π is the unit dual price of the split delivery, (iii) L is the total quantity delivered in the

full deliveries, and (iv) x ∈ [L,L+ l] is the total quantity delivered, including the split delivery if
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any, where l is the maximum quantity that can be delivered in the split delivery. Given the reduced

cost function of a label, dominance rule designed for classical ESPPRC (Irnich and Desaulniers

2005) cannot be used directly. Desaulniers (2010) therefore described new dominance rules based

on the comparison of the reduced cost functions associated with two labels.

The algorithm of Casazza et al. (2021) is inspired to the one proposed by Desaulniers (2010).

Casazza et al. (2021) solves the pricing problem of an alternative SPDVRP formulation where

routes are decomposed into sequences of simpler substructures called clusters. Their pricing algo-

rithm exploits properties of the pricing problem related to the Fractional Knapsack Problem with

Penalties and, similarly to Desaulniers (2010), requires state variables representing the residual

capacity of a partial path and the existence (in the partial path) of a fractional vertex, that is, a

vertex having its demands fractionally serviced.

The label-setting algorithm we propose also relies on reduced cost functions, but they are

expressed as general piecewise-linear convex functions and embedded as components for the labels.

The main advantage is that a label can be defined without the use of components related to the

quantities delivered or collected, thus reducing the dimension of the state space. Furthermore, we

propose some set-dominance rules used to reduce the number of labels, and therefore increase the

performance of the label-setting algorithm.

The use of general functions as label attributes has also been adopted by Liberatore et al.

(2011) for the VRP with soft time windows, by Dabia et al. (2013) for solving the time-dependent

VRPTW, and by Luo et al. (2017) for the SDVRPTWL. The label-setting algorithms of Liberatore

et al. (2011) and Luo et al. (2017) use piecewise linear reduced cost functions of the start of

service time and of the quantity delivered, respectively, whereas in Dabia et al. (2013) the function

represents the ready time at the last node visited by the label as a function of the departure time

at the depot.

3.2. Relaxation PB

To overcome these drawbacks and in order to reduce the complexity of the pricing problem, we

consider a relaxation of formulation PB where the index set of patterns Pr of route Rr for r ∈R

is enlarged to set Pr containing also indices of patterns where the total demand collected from or

delivered to a customer can exceed the demand of the customer, i.e., coefficients αipr can exceed

the demand associated with customer i (either positively or negatively). More specifically, we relax

constraints (2c) and (2d) of the above formulation defining a feasible pattern. In the new pattern

definition, the amount of the product collected from or delivered to a customer each time the

customer is visited cannot exceed the customer demand, as imposed by constraints (2e) and (2f).

We denote by PB the formulation obtained by substituting the index set of patterns Pr, ∀r ∈R,
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with Pr. It is worth noting that formulation PB under the integrality requirements (1d) provides a

correct SPDVRP formulation. In the following, we denote by LPB the LP-relaxation of formulation

PB.

4. Solving the pricing problem of formulation LPB

This section describes the algorithm adopted to solve the pricing problem associated with formu-

lation LPB, which is a key component of our exact algorithm.

Below we give the details of the reduced cost functions used together with their properties,

followed by a description of the label-setting algorithm.

4.1. Forward, backward paths and reduced cost functions

We define a forward path P = (i0 = 0, i1, . . . , is−1, is) as a (not necessarily elementary) path starting

at depot 0, visiting vertices V (P ) = {0, i1, . . . , is−1, is} and ending at customer is with a total

duration t(P ) less than or equal to T . Similarly, a backward path P = (is, is−1, . . . , i1, i0 = n′) is a

(not necessarily elementary) path starting at vertex is, visiting vertices V (P ) = {is, is−1, . . . , i1,0}

and ending at the depot n′ with a total duration t(P ) less than or equal to T .

The algorithm is based on the following observations:

(i) Any route R represented by path R = (0, i1, . . . , ib, n
′) can be decomposed, for every i = is,

s ∈ {1, . . . , b − 1}, into a forward path P ending at is and a backward path P starting at

j = is+1 such that t(P ) + tij + t(P )≤ T .

(ii) The set of patterns α associated with route R satisfying constraints (2a), (2b), (2e), (2f) and

(2g), can be partitioned by the amount w of demand picked up from the pickup customers

of path P and left for the delivery customers of path P , that is to say that the vehicle load

along arc (i, j) joining paths P and P is equal to w.

(iii) Let cfP : R+ → R be a forward reduced cost function, where cfP (w) is equal to the cost of

the minimum reduced cost path P and associated demand pattern α(P ) if a quantity w is

delivered to the customers of path P . In addition, let cb
P

:R+→R be a backward reduced cost

function, where cb
P

(w) is equal to the cost of the minimum reduced cost path P and associated

demand pattern α(P ) if a quantity w is collected from the customers of path P . The reduced

cost c(R) of the route and corresponding demand pattern having minimum reduced cost can

be computed as:

c(R) = min
0≤w≤min{W (P ),W (P )}

{cfP (w) + dij + cb
P

(w)},

where W (P ) = min{Q,
∑

i∈V (P ):i∈N+ qi} is the maximum amount of product collected from

the pickup customers along path P and W (P ) = min{Q,
∑

i∈V (P ):i∈N−−qi} is the maximum

amount of the product required by the delivery customers along path P .



Author: A New Exact Algorithm for the SPDVRP
Article submitted to INFORMS Journal on Computing; manuscript no. 13

The following theorems state that functions cfP and cb
P

admit piecewise-linear convex repre-

sentations. For the sake of the exposition, we consider a generic piecewise-linear convex function

f : R+→R expressed as f(x) = maxh∈H{ahx+ bh}, where H = {1,2, . . . ,m} is the index set of its

breakpoints.

Theorem 1. Function cfP is a piecewise-linear convex nondecreasing function.

Proof. The proof is provided in the e-companion to this paper (see EC.1.1). �

Theorem 2. Function cb
P

is a piecewise-linear convex nonincreasing function.

Proof. The proof is provided in the e-companion to this paper (see EC.1.2). �

Based on the above observations, our pricing algorithm considers in each label a piecewise linear

reduced cost function of the quantity w. The functions are properly initialized and updated with

each extension. When performing an extension along an arc (i, j), the reduced cost function of

the new label is obtained by summing up the function from the previous label and the function

associated with the delivery or pickup service at j. The various components of the algorithm are

described in detail below.

4.2. A label-setting algorithm for the pricing problem

The algorithm is based on the bidirectional search algorithm proposed by Righini and Salani (2006),

where forward and backward paths are first generated and then combined to form complete routes

by a joining procedure.

Forward extension A forward path P = (i0 = 0, i1, . . . , is−1, is) is represented by a label Lf

associated with the last vertex is where Lf = (vf , sf , V f ,W f ,{(afh, b
f
h)}h∈Hf ) is composed of the

following information:

� vf ∈ V : the last vertex visited.

� sf : the total duration.

� V f ⊆ V : the set of vertices that could be reached from the last vertex vf .

� W f : the maximum amount of product that can be delivered to the delivery customers to be

appended to the path.

� {(afh, b
f
h)}h∈Hf : the representation of the piecewise-linear convex nondecreasing function.

In the label Lf , for a given w ∈ [0,W f ] representing the demand picked up by path P and left

for the vertices to be appended to vertex vf , the reduced cost associated with the path can be

computed as maxh∈Hf {afhw+ bfh}.
A forward label Lf

1 with i= vf1 can be extended to a vertex j ∈ V f
1 yielding a new label Lf

2 based

on the following extension functions. We have two cases:
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(i) j ∈N+ (pickup customer). The components of label Lf
2 are computed as follows:

� vf2 = j.

� sf2 = sf1 + tij.

� V f
2 = V f

1 \ {l : (j, l)∈A,sf2 + tjl + tln′ >T} \ {j}.

� W f
2 = min{Q,W f

1 + qj}.

�
{(afh, b

f
h)}

h∈Hf
2

=
{

(afh, bfh + dij)
}

h∈Hf−
1

⋃{
(afh, b

f
h− (afh +µj)qj + dij)

}
h∈Hf+

1⋃{
(−µj,max

{
z∗1 , max

h∈Hf−
1

{(afh +µj)W
f
1 + bfh}, max

h∈Hf+
1

{bfh}

}
+ dij)

}
,

where Hf−
1 = {h ∈ Hf

1 : afh + µj < 0}, Hf+
1 = {h ∈ Hf

1 : afh + µj ≥ 0} and z∗1 =

min{max
h∈Hf

1
{afhx+ bfh}}.

(ii) j ∈N− (delivery customer). Components vf2 , sf2 and V f
2 are computed as in the previous case,

whereas the remaining components are updated as follows:

� W f
2 =W f

1 .

�
{(afh, b

f
h)}

h∈Hf
2

=
{

(afh, b
f
h− (afh +µj)qj + dij)

}
h∈Hf−

1

⋃{
(afh, b

f
h + dij)

}
h∈Hf+

1⋃{
(−µj,max

{
z∗1 , max

h∈Hf−
1

{(afh +µj)W
f
1 + bfh}

}
+ dij)

}
,

where Hf−
1 , Hf+

1 and z∗1 are defined as in the previous case.

In the expansion, label W f is updated only for vertices in N+, and its upper limit Q represents

the maximum quantity that can be picked up and left for the vertices to be appended to the path.

Note that the update of the reduced cost functions follows the scheme of the proof of Theorem 1.

The effectiveness of a label-setting algorithm strongly relies on the use of dominance rules aimed

at removing dominated paths that cannot be part of any optimal solution. In the above definition,

with the label Lf , each path P is associated with a set of infinite loading patterns defined by

values w ∈ [0,W f ]. As illustrated by Irnich and Desaulniers (2005), given two labels Lf
1 and Lf

2 ,

respectively, label Lf
1 is dominated by label Lf

2 if:

(i) vf1 = vf2 .

(ii) Any feasible extension of label Lf
1 is also feasible for Lf

2 .

(iii) Extending label Lf
1 always results in a route having a reduced cost greater than or equal to

the reduced cost of the route obtained from label Lf
2 and the extension of Lf

1 .

However, verifying the above conditions is not straightforward. Given values w1 ∈ [0,W f
1 ] and

w2 ∈ [0,W f
2 ], a sufficient condition for Lf

2 to dominate Lf
1 is

(i) vf1 = vf2 .

(ii) sf2 ≤ s
f
1 .

(iii) V f
2 ⊆ V

f
1 .
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(iv) w2 =w1.

(v) max
h∈Hf

2
{afhw2 + bfh} ≤max

h∈Hf
1
{afhw1 + bfh}.

For our algorithm, such dominance rule is not applicable, because the quantities w1 and w2 are not

components of the labels. Nevertheless, given two labels Lf
1 and Lf

2 such that conditions (i)-(iii)

hold, Lf
1 is dominated by label Lf

2 if W f
2 ≥W

f
1 and max

h∈Hf
2
{afhw+ bfh} ≤max

h∈Hf
1
{afhw+ bfh}, for

all w ∈ [0,W f
1 ]. In practice, the latter dominance rule can be quite weak since it requires that the

reduced cost function of Lf
2 lies below the one of Lf

1 on the interval [0,W f
1 ]. We therefore extend

the dominance rule to compare Lf
1 with a set of labels for which we compute the lower envelope of

the set of piecewise-linear convex functions associated with the labels. The dominance rule, called

a set-dominance rule, is defined as follows.

Let Lf
1 = (vf1 , s

f
1 , V

f
1 ,W

f
1 ,{(a

f
h, b

f
h)}

h∈Hf
1
), and define L f

1 to be the set of labels Lf =

(vf , sf , V f ,W f ,{(afh, b
f
h)}h∈Hf ) such that (i) vf = vf1 , (ii) sf ≤ sf1 , and (iii) V f

1 ⊆ V f .

Given a value w with 0≤w≤Q, for a label Lf ∈L f
1 define

gLf (w) =

{
maxh∈Hf {afhw+ bfh}, w≤W f ,

+∞, W f <w≤Q,
(3)

and for the set of labels L f
1 define

g
L f

1
(w) = min

Lf∈L f
1

{gLf (w)}.

Function g
L f

1
(.) computes the lower envelope of the set of reduced cost functions associated with

the label set L f
1 . The following dominance can be used to reduce the number of labels.

Dominance 1 (Forward set-dominance) Label Lf
1 is dominated by the label set L f

1 if g
L
f
1
(w)≥

g
L f

1
(w), ∀w, 0≤w≤Q.

Proof. The proof is provided in the e-companion to this paper (see §EC.1.3). �

Figure 1 illustrates the use of Dominance 1. Figure (a) depicts functions g
L
f
x
(.), x = 1,2,3,

associated with three labels Lf
1 , Lf

2 , and Lf
3 , respectively, with L f

1 = {Lf
2 ,L

f
3}. The figure shows

that label Lf
1 is dominated by neither label Lf

2 nor by label Lf
3 in the interval [0,W f

1 ]. The plot of

function g
L f

1
(w) given by figure (b) clearly shows that the function is always inferior to function

g
L
f
1
(.) in the interval [0,W f

1 ], thus label Lf
1 is dominated by the combination of labels Lf

2 and Lf
3 ,

and can be safely discarded.

Forward labels are generated by starting from the initial label Lf = (0,{0},0,N,0,{(0,−ν0)}).

In addition, as described for bidirectional labeling by Righini and Salani (2006), time is considered

to be the critical resource, and labels with a capacity consumption larger than or equal to dT/2e

are not generated.
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Figure 1 Illustration of the forward set-dominance defined in Dominance 1

To check the dominance rule, we associate with a pair (i, s), i∈N , 1≤ s≤ T , a bucket Fi(s) con-

taining all non-dominated labels Lf = (vf , sf ,{(afh, b
f
h)}h∈Hf ), with vf = i and sf = s. Each bucket

Fi(s) has associated a function gFi(s)
(w) = minLf∈L (s){gLf (w)} (see also (3)), where L (s) = {Lf :

Lf ∈Fi(s
′), s′ ≤ s}. Whenever a new label Lf is generated, the label is checked for Dominance 1

on bucket Fvf (sf ), that is, if gLf (w)≥ gF
vf

(sf ), ∀w, 0≤w≤Q, label Lf is dominated. If the label

is non-dominated, it is inserted in bucket Fvf (sf ) and the functions of bucket Fvf (sf ) and of all

buckets Fvf (s), s > sf , are updated as follows:

gF
vf

(s)(w) = min
{
gF

vf
(s)(w), gLf (w)

}
, ∀w, 0≤w≤Q, s≥ sf .

Labels in the updated buckets which are now dominated due to the addition of the new label, are

removed from the corresponding buckets.

Below, we describe the backward extension following the scheme used for the forward one.

Backward extension A backward path P = (is, is−1, . . . , i1, i0 = n′) is represented by a label

Lb associated with the first vertex is, where Lb = (vb, sb, V b,W b,{(abh, bbh)}h∈Hb) is composed of the

following information:

� vb ∈ V : the first vertex visited.

� sb: the total duration.

� V b ⊆ V : the set of vertices that could be appended before the first vertex vb.

� W b: the maximum amount of product required by the delivery customers of the path.

� {(abh, bbh)}h∈Hb : the representation of the piecewise-linear convex nonincreasing function.

A backward label Lb
1 with j = vb1 can be extended to a vertex i ∈ V b

1 , yielding a new label Lb
2

based on the following extension functions. We have two cases (see also the proof of Theorem 2):

(i) i∈N− (pickup customer). The components of label Lb
2 are computed as follows:
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� vb2 = i.

� sb2 = sb1 + tij.

� V b
2 = V b

1 \ {l : (j, l)∈A,sb2 + tli + t0l >T} \ {i}.
� W b

2 = min{Q,W b
1 − qi}.

�
{(abh, bbh)}h∈Hb

2
=
{

(abh, bbh + dij)
}

h∈Hb−
1

⋃{
(abh, b

b
h + (abh−µi)qi + dij)

}
h∈Hb+

1⋃{
(µi,max

{
z∗1 , max

h∈Hb−
1

{(abh−µi)W
b
1 + bbh}, max

h∈Hb+
1

{bbh}

}
+ dij)

}
,

where Hb−
1 = {h∈Hb

1 : abh−µi < 0}, Hb+
1 = {h∈Hb

1 : abh−µi ≥ 0} and z∗1 = minmaxh∈Hb
1
{abhx−

bbh}.
(ii) i∈N+ (delivery customer). Components vb2, s

b
2 and V b

2 are computed as for the previous case,

whereas the remaining components are updated as follows:

� W b
2 =W b

1 .

�
{(abh, bbh)}h∈Hb

2
=
{

(abh, b
b
h + (abh−µi)qi + dij)

}
h∈Hb−

1

⋃{
(abh, b

b
h + dij)

}
h∈Hb+

1⋃{
(−µi,max

{
z∗1 , max

h∈Hb−
1

{(abh−µi)W
b
1 + bbh}

}
+ dij)

}
,

where Hb−
1 , Hb+

1 and z∗1 are defined as in the previous case.

Backward labels are generated by starting from the initial label Lb = (n′,{n′},0,N,0,{(0,0)}), and

labels with a capacity consumption larger than or equal to dT/2e are not generated.

Similar to the forward expansion, the following set-dominance rule is also used to speed up

the computation. Let Lb
1 = (vb1, s

b
1, V

b
1 ,W

b
1 ,{(abh, bbh)}h∈Hb

1
) and define L b

1 to be the set of labels

Lb = (vb, sb, V b,W b,{(abh, bbh)}h∈Hb) such that vb = vb1, s
b ≥ sb1 and V b

1 ⊆ V b.

Dominance 2 (Backward set-dominance) Label Lb
1 is dominated by the label set L b

1 if

gLb
1
(w)≥ gL b

1
(w), ∀w, 0≤w≤Q.

We omit the corresponding proof, it being similar to the proof of Dominance 1.

Joining forward and backward states The set of forward and backward labels generated

can be combined to form complete routes as follows.

A forward path P = (i0 = 0, i1, . . . , is−1, is) associated with label Lf =

(vf , sf , V f ,W f ,{(afh, b
f
h)}h∈Hf ) with i = is can be combined with a backward path P =

(jl, jl−1, . . . , j1, j0 = n′) associated with label Lb = (vb, sb, V b,W b,{(abh, bbh)}h∈Hb) with j = jl if the

total duration is less than or equal to T , i.e., sf + tij + sb ≤ T .

The reduced cost function of the resulting route R = (0, i1, . . . , is−1, i, j, jl−1, . . . , j1, n
′) can be

computed as

c(R,w) = max
h∈Hf

{afhw+ bfh}+ dij + max
h∈Hb
{abhw+ bbh},
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Figure 2 Computing the optimal value x∗.

where 0 ≤ w ≤min{W f ,W b} is the demand delivered by the partial forward path P associated

with label Lf to the backward path P associated with label Lb. The value w∗ minimizing function

c(R,w) can therefore be computed as

w∗ = arg min
0≤w≤min{Wf ,W b}

{c(R,w)}.

The set of quantities {li1 , . . . , lj1} associated with route R and value w∗ can be determined by a

backtracking procedure starting with the optimal value w∗ applied to paths P and P , as described

below.

For the forward path P = (i0 = 0, i1, . . . , is−1, is) and associated label Lf =

(vf , sf , V f ,W f ,{(afh, b
f
h)}h∈Hf ), let Lf

p = (vfp , s
f
p , V

f
p ,W

f
p ,{(a

f
h, b

f
h)}

h∈Hf
p
) be the label immediately

preceding label Lf , and let P ′ = (i0 = 0, i1, . . . , is−1) be the corresponding forward path. The

backtracking procedure considers the following two cases:

(i) is ∈N+ (pickup customer). We have

cfP (w∗) = min
max{0,w∗−qis}≤x≤min{Wf

p ,w∗}
{cfP ′(x)−µis(w

∗−x) + dis−1is},
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= min
max{0,w∗−qis}≤x≤min{Wf

p ,w∗}

{
max
h∈Hf

p

{(afh +µis)x+ bfh}−µisw
∗+ dis−1is

}
.

Define f(x) = max
h∈Hf

p
{(afh + µis)x+ bfh} − µisw

∗ + dis−1,is}, Hf+
p = {h ∈Hf

p : ah + µis ≥ 0}

and Hf−
p = {h ∈Hf

p : ah + µis < 0}. Let (xmin, zmin) be the intersection point of the last line

in Hf−
p and the first line in Hf+

p . We set xmin =−∞ and zmin =−∞ if Hf−
p = ∅ or Hf+

p = ∅.

To compute the demand lis =w∗− x∗ associated with is, we have the following three cases,

as shown by Figure 2:

(a) If xmin <max{0,w∗− qis}, then x∗ = max{0,w∗− qis}.

(b) If xmin >min{W f
p ,w

∗}, then x∗ = min{W f
p ,w

∗}.

(c) If max{0,w∗− qis} ≤ xmin ≤min{W f
p ,w

∗}, then x∗ = xmin.

(ii) is ∈N− (delivery customer). We have

cfP (w∗) = min
w∗≤x≤min{Wf

p ,w∗−qis}
{cfP ′(x)−µis(x−w∗) + dis−1is},

= min
w∗≤x≤min{Wf

p ,w∗−qis}

{
max
h∈Hf

p

{(afh−µis)x+ bfh}+µisw
∗+ dis−1is

}
.

Let Hf+
p = {h∈Hf

p : ah−µis ≥ 0} and Hf−
p = {h∈Hf

p : ah−µis < 0}. To compute the demand

lis = x∗−w∗, we have the following three cases:

(a) If xmin <w
∗, then x∗ =w∗.

(b) If xmin >min{W f
p ,w

∗− qis}, then x∗ = min{W f
p ,w

∗− qis}.

(c) If w∗ ≤ xmin ≤min{W f
p ,w

∗− qis}, then x∗ = xmin.

For the backward path P = (jl, jl−1, . . . , j1, j0 = n′) and associated label Lb =

(vb, sb, V b,W b,{(abh, bbh)}h∈Hb), let Lb
p = (vbp, s

b
p, V

b
p ,W

b
p ,{(abh, bbh)}h∈Hb

p
) be the label immediately

preceding label Lb, and let P
′
= (jl−1, . . . , j1, j0 = n′) be the corresponding backward path. The

backtracking procedure considers the following two cases:

(i) jl ∈N+ (pickup customer). We have

cb
P

(w∗) = min
w∗≤x≤min{W b

p ,w
∗+qjl

}
{cbP ′(x)−µjl(x−w

∗) + djljl−1
},

= min
w∗≤x≤min{W b

p ,w
∗+qjl

}

{
max
h∈Hb

p

{(abh−µjl)x+ bbh}+µjlw
∗+ djljl−1

}
.

Let Hb+
p = {h ∈Hb

p : ah − µjl ≥ 0} and Hb−
p = {h ∈Hb

p : ah − µjl < 0}. We have the following

three cases:

(a) If xmin <w
∗, then x∗ =w∗.

(b) If xmin >min{W b
p ,w

∗+ qjl}, then x∗ = min{W b
p ,w

∗+ qjl}.

(c) If w∗ ≤ xmin ≤min{W b
p ,w

∗+ qjl}, then x∗ = xmin.
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The demand lil is set equal to x∗−w∗.
(ii) jl ∈N− (delivery customer). We have

cb
P

(w∗) = min
max{0,w∗+qjl

}≤x≤min{W b
p ,w
∗}
{cbP ′(x)−µjl(w

∗−x) + djljl−1
},

= min
max{0,w∗+qjl

}≤x≤min{W b
p ,w
∗}

{
max
h∈Hb

p

{(abh +µjl)x+ bbh}−µjlw
∗+ djljl−1

}
.

Let Hb+
p = {h ∈Hb

p : ah + µjl ≥ 0} and Hb−
p = {h ∈Hb

p : ah + µjl < 0}. We have the following

three cases:

(a) If xmin <max{0,w∗+ qjl}, then x∗ = max{0,w∗+ qjl}.
(b) If xmin >min{W b

p ,w
∗}, then x∗ = min{W b

p ,w
∗}.

(c) if max{0,w∗+ qjl} ≤ xmin ≤min{W b
p ,w

∗}, then x∗ = xmin.

The demand lil is set equal to w∗−x∗.
The minimum reduced cost among all complete routes is the optimal solution value of the pricing

subproblem.

5. An exact algorithm for the SPDVRP

In this section, we describe an exact algorithm for the SPDVRP based on a BPC algorithm. The

reader is referred to Costa et al. (2019) and Pecin et al. (2017) for a recent review about the main

methodological and modeling contributions made over the years on BPC algorithms for routing

problems, and for an exact BPC algorithm that includes state-of-the-art features for the VRPTW,

respectively.

5.1. Column-and-row generation

At a given node of the branch-and-bound search tree, the LP-relaxation corresponds to formulation

LPB, augmented by the applicable branching decisions and the following valid inequalities.

Given a route r ∈R and a pattern index p∈Pr, coefficient βir is a nonnegative positive integer

representing the number of times that route Rr visits vertex i (we assume β0r = βn′ r = 1), and we

let set S be defined as S ⊆ {S : S ⊆N, |S| ≥ 2}.
Formulation LPB can be strengthened with the following valid inequalities called Capacity Cuts

(CCs) based on similar inequalities designed for the CVRP (see, for example, Baldacci et al. 2012),

where the set of customers comprises only delivery customers and split deliveries are not allowed.

The CCs for the CVRP assume that, given a subset S ∈S of customers, one can estimate a

lower bound k(S) on the number of vehicles required to serve all customers in S. In this case,

at least k(S) paths must enter S in a feasible solution. Let (xij)(i,j∈A) be arc flow variables. The

inequality for the CVRP is as follows: ∑
i∈V \S,j∈S

xij ≥ k(S),
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where the left-hand-side of the inequality is the total flow entering S. Given a solution θpr of

formulation LPB, the arc flow variables can be computed using the following expression:

xij =
∑
r∈R

∑
p∈Pr

γijrθpr,

and therefore by setting k(S) = max
{

1,
⌈
|
∑

i∈S qi|
Q

⌉}
we derive the following valid inequalities:

∑
r∈R

∑
p∈Pr

ρr(S)θpr ≥ k(S), ∀S ∈S , (4)

where ρr(S) =
∑

(i,j)∈A:i∈S,j∈V \S γijr. To separate CCs, we use partial enumeration and extended

shrinking separation heuristics from the literature (Desaulniers 2010, Archetti, Bouchard and

Desaulniers 2011, Luo et al. 2021).

The LP-relaxation is solved in a column-and-row generation fashion where, at each iteration, the

primal simplex algorithm is used to solve the RMP and to provide a primal and a dual solution.

Then the pricing subproblem (column generation) is solved using the label-setting algorithm in

order to find negative reduced cost columns or variables. If no negative reduced cost columns can

be found, the current primal solution is optimal for the master problem. Otherwise, one or several

negative reduced cost columns are added to the RMP before beginning a new iteration. If the

current primal solution is optimal, valid inequalities (4) are separated in a cutting plane fashion

(row generation). The cutting plane algorithm terminates when no additional valid inequalities

are identified by the separation algorithms, and a new iteration of the column-and-row generation

is executed. The lower bound computation stops when both the column and the row generation

algorithms terminate without having found new columns/rows to be added to the RMP.

In the computational experiments reported in Section 6, at each column generation iteration

we identify at most 50 columns with negative reduced cost. In the following, we describe how the

RMP is initialized at the root node of the enumeration tree, the branching scheme adopted in the

algorithm, how the CCs and the branching rules are handled in the pricing algorithm, and the

computation of primal bounds.

5.2. Initializing the RMP

The set of CCs S is initialized as the empty set, and the initial columns forming the RMP are

computed by means of a constructive algorithm of which details are given in Algorithm 1.

In the algorithm, SP and SD denote the sets of pickup and delivery vertices, respectively, qi

represents the residual demand of customer i ∈N , and ldi is the load collected from or delivered

to customer i∈N . In addition, δi represents the load that has been collected from i∈ SP and has

not been delivered yet. The final set of routes, with the corresponding demand patterns built by

the algorithm and used to initialize the RMP, is denoted by B.
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Algorithm 1 Initialization of the RMP.

1: Set B←∅, SP ←N+, SD←N−, qi← qi, ∀ i∈N , and L←∅ ;

2: while SP 6= ∅ do

3: Select i∈ SP with the largest qi and define the single-customer route R← (0, i, n′);

4: ldi←min{Q,qi}, δi← ldi, qi← qi− ldi;

5: if qi = 0 then

6: SP ← SP \ {i};

7: end if

8: while δi > 0 do

9: Select i∈ SD as the nearest customers to the last customer of route R;

10: ldj←max{−δi, qj}, δi← δi + ldj , qj← qj − ldj ;

11: if qj = 0 then

12: SD← SD \ {j};

13: end if

14: Append j after the last customer of route R;

15: end while

16: B←B∪{R};

17: end while

At each main iteration of the algorithm, the pickup customer having the maximum residual

demand qi is selected to initialize a new route with the corresponding demand-pattern. The route

is then expanded with delivery customers until the load that has been collected from i (and has

not been delivered yet) is fully distributed. The algorithm terminates whenever the total demand

of the pickup customers has been delivered and, since
∑

i∈V qi = 0, also the total demand of the

delivery customers has been satisfied.

The set of routes and corresponding demand patterns computed by Algorithm 1 do not nec-

essarily define a feasible solution of the RMP, since constraint (1c) on the maximum number of

vehicles available can be violated. To find an initial basic feasible solution of the RMP, we add a

single artificial variable with a large positive cost and with an associated column consisting of all

ones for entries in correspondence of constraints (1b) and (1c). This artificial variable ensure that

a feasible solution to the LP-relaxation exists.

5.3. Branching strategy

The branching strategy adopted is based on the strategy described by Desaulniers (2010) for the

SDVRPTW, and uses four types of branching decisions defined as follows.

Let θ be an optimal solution of the RMP. The following four types of branching decisions are

considered in sequence, and if a branching decision cannot be applied, the next decision in the
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sequence is considered in order to perform branching. For any type of decision made, two child

nodes are created by performing dichotomic branching.

(1) Number of vehicles used. Define k=
∑

r∈R
∑

p∈Pr θpr. If k is fractional, we branch on the value

of k, that is, on a first branch we impose
∑

r∈R
∑

p∈Pr θpr ≥
⌈
k
⌉
, whereas on a second branch

we impose
∑

r∈R
∑

p∈Pr θpr ≤
⌊
k
⌋
.

(2) Number of vehicles visiting each customer. Define σi =
∑

r∈R
∑

p∈Pr βirθpr, ∀i ∈ N . If there

exists at least one customer i ∈ N such that σi is fractional, then we select the customer

i∗ for which the fractional part of σi is the closest to 0.5. On a first branch, we impose∑
r∈R

∑
p∈Pr βi∗rθpr ≥ dσi∗e, whereas on a second branch, we impose

∑
r∈R

∑
p∈Pr βi∗rθpr ≤

bσi∗c.

(3) Branching on arcs. Let ωij =
∑

r∈R
∑

p∈Pr γijrθpr. We consider the following two cases, which

are considered in sequence.

(i) Let A+ = {(i, j) : (i, j) ∈ A, i, j ∈ N+} and A− = {(i, j) : (i, j) ∈ A, i, j ∈ N−}. It can be

shown that, based on a similar property arising for the SDVRP (Dror and Trudeau 1989),

in any optimal SPDVRP solution, any arc (i, j) ∈ A+ ∪A− can be used at most once.

Hence, if there exists at least one arc (i, j) ∈ A+ ∪A− such that ωij is fractional, then

we select the arc (i∗, j∗) for which the fractional part of (i, j) is the closest to 0.5. On

a first branch, we impose
∑

r∈R
∑

p∈Pr γi∗j∗rθpr = 0, and on a second branch we impose∑
r∈R

∑
p∈Pr γi∗j∗rθpr = 1.

(ii) If there exists at least one arc (i, j)∈A \ (A+ ∪A−) such that ωij is fractional, we select

the arc (i∗, j∗) as before, and we impose the two branches
∑

r∈R
∑

p∈Pr γi∗j∗rθpr ≥ dωi∗j∗e

and
∑

r∈R
∑

p∈Pr γi∗j∗rθpr ≤ bωi∗j∗c.

(4) Branching on two consecutive arcs. Let ωijl =
∑

r∈Rijl

∑
p∈Pr θpr, where Rijl denotes the index

set of routes containing arc (j, l) immediately after arc (i, j). If there exists two arcs (i, j)

and (j, l) such that ωijl is fractional, and either (i, j) or (j, l) belong to A+ ∪A−, we select

(i∗, j∗) and (j∗, l∗) such that ωi∗j∗l∗ is the closest to 0.5, and on a first branch we impose∑
r∈Ri∗j∗l∗

∑
p∈Pr θpr = 0, that is, the use of arc (j∗, l∗) immediately after arc (i∗, j∗) is forbid-

den, and on a second branch we impose
∑

r∈Ri∗j∗l

∑
p∈Pr θpr = 0, ∀(j∗, l), l 6= l∗, ∀(j∗, l) ∈ A,

i.e., if arc (i∗, j∗) is used, also arc (j∗, l∗) must also be used.

The above branching decisions are not sufficient to fulfill the integrality requirements of formu-

lation PB, as shown by the example reported in the e-compation to this paper (see §EC.2). If

none of the decisions (1)-(4) can be applied at a given node of the enumeration tree, we solve the

SPDVRP subproblem associated with the node by means of a BC algorithm based on a three-index

vehicle flow formulation (see §EC.3) strengthened by the branching constraints associated with the

node. In the computational experiments reported on in Section 6, the above four branching rules
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were sufficient to impose the integrality requirements, and the BC algorithm was therefore never

applied.

To choose a node-selection rule, we performed some preliminary experiments with different rules

and, based on these results, we adopted the best-first strategy.

5.4. Handling the CCs and the branching rules in the pricing algorithm

According to the classification of Poggi and Uchoa (2003), the CCs are called robust cuts because

they do not increase the complexity of the pricing problem. Indeed, let νS ≥ 0, ∀S ∈S , be the dual

variables associated with constraints (4). The dual variables of the CCs can be easily considered

in the label-setting algorithm by defining the modified arc costs dij as follows

dij = dij −
∑

S∈Sij

νS, ∀(i, j)∈A,

where Sij = {S ∈S : (i, j)∈A, i∈ S, j ∈ V \S}, and by substituting arc costs dij with the modified

costs dij in the label-setting algorithm described in Section 4.2.

Regarding the branching rules, branching rules (1)-(3) preserve the structure of the pricing

problem, that is, the corresponding decisions can be easily handled in the label-setting algorithm,

whereas branching rule (4) requires modifying the label-setting algorithm to impose suitable exten-

sions based on the corresponding branching constraints. Indeed, regarding rule (4), the procedure

used to check the dominance rules described in §4.2 must be modified to ensure that a label gen-

erated as a result of a branching constraint on arc (i, j) can only dominate labels generated via

label extensions along arc (i, j).

Let Πi be the set of vertices such that arcs (j, i) for j ∈Πi have been selected as arcs in branching

decisions (4). The labels ending at customer i are decomposed in buckets Fi(j, s) for ∀j ∈ Πi

and an additional bucket Fi(−, s), which are organized in a bucket tree structure. A label Lf =

(vf , sf ,{(afh, b
f
h)}h∈Hf ) with vf = i and predecessor vertex j, is checked for dominance (see §4.2)

in bucket Fi(j, s
f ) if j ∈Πi, otherwise bucket Fi(−, sf ) is selected. Figure 3 gives an example of

a bucket tree for labels ending at customer i = 3 with and Π3 = {2,4}, where s01 < s02 < s03 < s04,

s11 < s
1
2 < s

1
3 and s21 < s

2
2.

5.5. Primal heuristic

As shown by previous works (Joncour et al. 2010, Sadykov et al. 2019, Sadykov and Vanderbeck

2013, Wei et al. 2020), column generation based heuristics can help to improve the performance

significantly. More specifically, Joncour et al. (2010) described a generic solution framework based

on a depth-first heuristic search in the BP tree, named diving heuristic. In the framework proposed

by Joncour et al. (2010), the solution obtained through the initial depth-first exploration of the tree
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i= 3

F3(−, s01)

F3(−, s02)

F3(−, s01)

F3(−, s04)

F3(2, s
1
1)

F3(2, s
1
2)

F3(2, s
1
3)

F3(4, s
2
1)

F3(4, s
2
2)

Figure 3 Example of a bucket tree

is considered as a reference incumbent solution and it is further explored using limited backtracking

as a diversification mechanism and limited discrepancy search. For the SPDVRP, we designed a

diving heuristic based on a BP tree, where we adopted the branching and search strategies described

below.

At each BP node, the master is solved by column generation where the separation algorithm of

the valid inequalities (4) is disabled. The BP enumeration is driven by a binary branching by first

selecting a variable θpr whose fractional value θ∗pr is as close as possible to 0.5, and ties are broken

by selecting the variable having the minimum cost. Then two branches are generated by adding

constraints θpr ≥ dθ∗pre (left branch) or θpr ≤ bθ∗prc (right branch) to the RMP. In the two branches,

the demand pattern αipr associated with variable θpr is eventually modified to ensure that for each

vertex i of route R the demand |αipr|v is less than or equal to |qi|, where v is either equal to dθ∗pre

or bθ∗prc, thus ensuring the feasibility of the resulting RMP. The pricing algorithm is not modified

to include the branching constraints, and if a column composing the RMP is regenerated during

the solution of the pricing problem, the column is not added to the RMP.

The tree is explored using a modified depth-first strategy where we restrict the search to a

limited number of nodes. More specifically, suppose (n1, ..., ni) is a node sequence where n1 is the

root node and node nj−1 is the father of node nj, j = 2, . . . , i. Thus, if nj is the left child node of

nj−1, j = 2, . . . , i, then the next node explored by the algorithm, i.e., node ni+1, is the right child of

ni; otherwise, ni+1 can only be the left child node of ni and the right child is discarded. Therefore

the search is restricted by choosing at most one right child node in the path from the root node to

any visited node.

Based on preliminary experiments, we found it computationally convenient to use the primal

heuristic only at the root node of the BPC algorithm.
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6. Computational experiments

This section reports on the computational results of the exact algorithm described in Section 5,

hereafter called EXM.

Method EXM was coded in Java, and all experiments were conducted on a personal computer

equipped with an Intel(R) Core(TM) i7-6700 3.40 GHz CPU and 32 GB of RAM, running under

Windows 8.1 operating system. The CPLEX 12.6.4 callable library (IBM CPLEX 2019) was used

as the linear programming solver.

The next section reports on the description of the instances used in our numerical experiments

whereas Section 6.2 gives a summary of the results obtained. We conclude this section (see §6.3)

with an analysis of the performance of the pricing algorithm of EXM. Additional details are given

in the e-companion to this paper (see §EC.5).

6.1. Benchmark instances

We considered three classes of test instances, called SA, SB and SC , respectively. In classes SA and

SC the route duration constraints are used to impose an upper limit on the number of stops on

each route whereas class SC considers general route duration constraints.

Class SA has been obtained from the literature and contains the set of MVBP instances used by

Casazza et al. (2019) and Casazza et al. (2021), which were derived from the instances proposed

by Chemla et al. (2013). In these instances, the customers are randomly located in the square

[−500,500] and have integer demands randomly chosen in the interval [−10,10]; the depot is located

at point (0, 0). The travel costs are computed as the Euclidean distances, rounded to the closest

integer numbers. Casazza et al. (2019) and Casazza et al. (2021) considered instances with the

number of customers n in {10,20,30} and with T = 10 (a maximum number of stops on each route

is imposed). In our experiments, we also considered instances with n= 40 and T = 15. The vehicle

capacity Q and the number of vehicles |K| are chosen from sets {10,20} and {5,8}, respectively. To

model a maximum number of stops b in the SPDVRP we set T = b and tij = 1 for all (i, j)∈A. A

total of 200 instances have been used, with names of the form <nXY>, where X is the number of

stations or customers and Y a letter identifying the type of network used in deriving the instance.

Class SB of instances corresponds to the set of instances used by Casazza et al. (2021) and

is also derived from the instances of Chemla et al. (2013) by properly defining the travel time

matrices [tij]. More specifically, instances in the dataset of Chemla et al. (2013) were considered

in lexicographical order, and for each instance, the travelling times tij were set as the Euclidean

distance between vertices i and j in the subsequent instance according to the lexicographical order,

thus obtaining unrelated travel times and costs. The maximum duration T was set equal to either

3600 or 7200. Casazza et al. (2021) considered instances with up to n= 30 customers and we also
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considered instances involving n= 40 customers. A total of 100 instances were considered, and this

set of instances uses the same naming convention as set SA.

Class SC was derived from the set of real-world instances considered by Dell’Amico et al. (2014)

and based on different datasets. More specifically, the authors collected data from a 7-month

period concerning the bike-sharing system of the city of Reggio Emilia, in Northern Italy, this data

being drawn from Capital Bikeshare (see https://www.capitalbikeshare.com) and as well as

from Divvy, located in Chicago, USA (see https://www.divvybikes.com). All the instances are

available at http://www.or.unimore.it/site/home/online-resources.html. From this set, we

considered a total of 47 instances, with the number of customers ranging in [13,55] and the vehicle

capacity in [10,30]. For these instances, we imposed a maximum number of stops T equal to 10 or

15, and the number of available vehicles was set equal to |K|= 8 for all instances. A total of 94

instances were used, with names in the form of <iXQ>, where i is the instance index, X the name

of the corresponding city, and Q the vehicle capacity.

For the convenience of readers, we summarize the three classes of instances used and correspond-

ing results solved by EXM at https://github.com/huster-ljl/SPDVRP.

6.2. Results

This section summarizes the results obtained by EXM and compares its performances with the

results reported in Casazza et al. (2019) and Casazza et al. (2021) on classes SA and SB. The results

of Casazza et al. (2019) and Casazza et al. (2021) were obtained on a PC equipped with an Intel

Core i76700K CPU clocked at 4.00 GHz, thus having similar performance to the machine used for

our experiments, and a time limit of 3 hours of computation was imposed in their experiments. In

the following, we denote by C18 and C21 the algorithms of Casazza et al. (2019) and Casazza et al.

(2021), respectively. All the computing times reported in this section are expressed in seconds, and

a time limit of 3 hours was also imposed to each execution of EXM.

Table 2 summarizes the results obtained by the algorithms on the three classes of instances. For

each class of instances and for each subgroup of instances in the set, the table gives the range of the

number of customers (“n”), the number of instances in the group (“ni”), the values of parameters

Q and T , and for each algorithm the number of instances solved to optimality (“opt”), the size of

the largest instance solved to optimality in terms of number of customers (“n̂”) and the average

computing time in seconds (“t”) computed over all instances solved to optimality. In addition,

Figure 4 gives an overview of the percentages of the number of instances solved to optimality by

the different algorithms grouped by number of customers (horizontal axis) and by considering,

for each algorithm, the set of instances addressed in the corresponding experiments. As already

mentioned, algorithms C18 and C21 were tested on instances with up to 30 customers.

https://www.capitalbikeshare.com
https://www.divvybikes.com
http://www.or.unimore.it/site/home/online-resources.html
https://github.com/huster-ljl/SPDVRP
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Table 2 Summary of the results on the three classes of instances

C18 C21 EXM

Class n ni Q T opt n̂ t opt n̂ t opt n̂ t

SA 10-40 50 10 10 25 20 1000.9 24 20 265.7 35 30 664.3
50 10 15 - - - - - - 32 30 265.5
50 20 10 24 20 2483.9 27 20 1016.0 34 40 679.9
50 20 15 - - - - - - 33 40 368.5

SB 10-40 50 10 3600 - - - 21 20 319.3 33 30 531.9
50 10 7200 - - - 21 20 125.6 31 30 177.2

SC 13-55 47 10-30 10 - - - - - - 34 28 695.2
47 10-30 15 - - - - - - 32 41 1001.1

C18 C21 EXM
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Figure 4 Percentages of the instances solved to optimality by the different algorithms on classes SA and SB

The table shows that about 70% of the instances of each class were solved to optimality by

EXM within the imposed time limit. Overall, EXM solved to optimality instances with up to 41

customers. As to the set of instances considered by C18 and C21, EXM is capable of solving far

more instances to optimality. A comparison of the results given in Casazza et al. (2021) about

C18 and C21 with the detailed results reported on in the e-companion to this paper shows that

all instances solved to optimality by C18 and C21 are also solved by EXM. It is worth noting that

there are no dominance relations between C18 and C21, that is, there are instances solved by C18

within the imposed time limit that cannot be solved by C21, and viceversa.

Regarding classes SB and SC , Figure 4 clearly shows that EXM is capable of solving larger size

instances than both C18 and C21. In particular, the detailed results show that EXM solved all but

one instance involving n= 20 customers. Several instances with up to 40 customers were solved by

EXM, thus doubling the size of the instances that can be solved.
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Table 3 reports average results about the lower and upper bounds computed by EXM at the

root node of the enumeration tree. These data are not reported in Casazza et al. (2019) and

Casazza et al. (2021). The table shows the average percentage deviations of the upper bound

(“%UB”) computed by the primal heuristic and of the lower bound obtained at the root node

(“%LBr”) by the column-and-row generation procedure. The table also reports the corresponding

average computing times in seconds (“tUB” and “tr”). The averages are computed separately for

the instances solved to optimality (“Solved to optimality”), and for the instances not solved to

optimality (“Not solved to optimality”). For each instance, the percentage deviation is computed

as 100.0×x/z∗ where x is the target value and z∗ is the cost of the best solution found by EXM.

For the instances solved to optimality, EXM computes tight lower and upper bounds for the

real-world instances of class SC , whereas the bounds computed on classes SA and SB show that

these instances are more difficult for EXM. We observed that the computation of the upper bound

by the primal heuristic helps in improving the performance of EXM and, as shown by the table,

the upper bounds computed can be further improved by the BPC.

Based on the results obtained, the two main parameter data that affect the computational

complexity of EXM are clearly the number of customer n, as shown by Figure 4 and the detailed

results, and the maximum duration T . Indeed, Table 2 shows that for each class and for fixed values

of Q, the higher the value of T , the lesser is the number of instances solved to optimality. Both

values Q and T affect the computational complexity of the pricing problem, but as also shown by

Table 2 and by the analyses reported on the parameter Q in the next section, for fixed values of

T and varying values of Q, the pricing algorithm is particularly stable. In the e-companion to this

paper (see §EC.4.1), we give an overview of the use of the different branching rules adopted in

EXM for classes SA, SB and SC , respectively. Finally, we also analyze the structure of the solutions

obtained in the e-companion (see §EC.4.2), with the aim of learning what motivates the differences

in our results between the real-world instances of class SC and classes SA and SB.

Finally, the detailed results reported in the e-companion to this paper (see §EC.5)show that the

CCs are particularly effective in strengthening the lower bound obtained from the LP-relaxation

of formulation PB.

6.3. Effectiveness of the pricing algorithm

In this section, we report a comparison between the pricing algorithm of EXM and our imple-

mentation of the pricing algorithm described by Casazza et al. (2019). The pricing algorithm of

Casazza et al. (2019) solves the pricing problem associated with formulation PB and we tailored

it to solve the pricing problem associated with relaxation PB (see §3.2).

For the comparison, we considered set SA of instances with Q = 10, T = 10 and the following

two additional sets of instances, for a total of 150 instances (50× 3): (i) Set SA-3 with Q= 3Q,



Author: A New Exact Algorithm for the SPDVRP
30 Article submitted to INFORMS Journal on Computing; manuscript no.

Table 3 Summary of lower and upper bounds of EXM

Solved to optimality Not solved to optimality

Class n Q T %UB tUB %LBr tr %UB tUB %LBr tr

SA 10-40 10 10 112.0 2.7 95.9 1.1 100.0 13.6 77.1 3.5
10 15 120.7 3.0 98.5 1.3 104.1 43.5 78.5 13.6
20 10 116.9 2.6 92.5 0.9 101.6 11.2 73.8 2.6
20 15 125.9 2.8 97.1 1.0 113.4 23.6 82.2 6.0

SB 10-40 10 3600 112.4 3.7 96.0 1.2 101.4 49.6 79.2 8.6
10 7200 115.2 7.1 98.6 3.3 102.8 129.9 82.8 41.7

SC 13-55 10-30 10 105.4 2.7 97.7 1.0 100.5 398.2 91.2 88.7
10-30 15 104.3 4.8 98.8 1.6 101.8 208.8 92.5 41.7

Table 4 Summary of the performance of alternative pricing algorithms: percentage ratios of the results

obtained by the pricing algorithm of EXM with those based on the algorithm of Casazza et al. (2019).

tLP tPA fw fwd bw bwd

SA 29.66 29.45 6.27 2.65 11.82 4.81
SA-3 2.68 2.56 0.63 0.09 1.46 0.21
SA-6 0.21 0.20 0.09 0.01 0.18 0.01

qi = 3 q′i and T = 10, and (ii) Set SB-6 with Q= 6Q, qi = 6 q′i and T = 10, where customer demands

q′i are the original demands of set SA. The two additional instance sets were generated with the

aim of evaluating the impact on the pricing algorithm for increasing values of the vehicle capacity

and the customer demands.

Table 4 summarizes the results obtained on the three sets of instances. The corresponding

detailed results are reported in the e-companion to this paper (see §EC.6). For each algorithm,

we computed the following average results over the different sets of instances: the time in seconds

spent by the LP solver (“tLP”), the time in seconds spent by the pricing algorithm (“tPA”), the

number of forward labels generated (“fw”), the number of forward labels dominated, (“fwd”),

the number of backward labels generated (“bw”) and the number of backward labels dominated

(“bwd”). Table 4 shows the percentage ratios of the average values tLP , tPA, fw, fwd, bw and bwd

obtained by the pricing algorithm of EXM with those based on the algorithm of Casazza et al.

(2019).

The table shows that on set SA (see column tPA) our pricing algorithm is about three times

faster than the algorithm based on Casazza et al. (2019). For increasing values of Q associated with

sets SA-3 and SA-6, our pricing algorithm achieves much more significant speed factors. Indeed,

Table 4 and the detailed results show that over the three sets of instances the number of labels

generated by our pricing algorithm remains quite stable whereas the alternative pricing algorithm
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shows an exponential explosion of the labels generated, as also shown by the ratios over the values

fw and bw.

Under the assumption that our implementation of the algorithm of Casazza et al. (2019) achieves

similar performance to the implementation of Casazza et al. (2019), the results obtained clearly

show that the effectiveness of EXM in solving larger instances (see Table 2) of the SPDVRP can

be mainly attributed to the effectiveness of the pricing algorithm based on reduced cost functions.

In conclusion, due to the use of the reduced cost functions, our pricing algorithm requires a

reduced number of labels at the cost of more complex dominance rules. However, our results show

that the benefits brought about by the label reduction are greater than the loss caused by the

higher complexity of our dominance rules.

7. Conclusions and future research

We have presented an exact algorithm for the single commodity split pickup and split delivery vehi-

cle routing problem. The algorithm relies on a novel label-setting (pricing) algorithm, embedding

reduced cost functions in the label definition, and being enhanced by new set-dominance rules. The

pricing algorithm is used in a branch-price-and-cut algorithm together with additional components

such as valid inequalities and a primal heuristic.

Our new exact algorithm was tested on benchmark sets from the literature and on instances

derived from real-world bike-sharing problems, involving up to 55 customers. The computational

results show that about 70% of the instances, involving up to 41 customers, were effectively solved

to optimality by the exact algorithm, thus doubling the size of the instances that can be solved

and significantly outperforming the state-of-the-art exact algorithms.

Our algorithm can be easily adapted to deal with other routing constraints, such as time windows

constraints, and to solve rich variants involving, for example, a fleet of heterogeneous vehicles.

However, the class of split-demand one-commodity pickup and delivery routing problems also

features important variants, such as allowing preemption operations. Our future work goes in the

direction of extending the current solution approach to incorporate additional important features

of this class of problems.
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Proofs of statements, example, vehicle flow formulation and
additional computational results

EC.1. Proofs of statements

This section gives the proofs of the different results of the main paper.

The proofs of Theorems 1 and 2 are based on the following lemma about the problem of minimiz-

ing a generic piecewise-linear convex function f : R+→R expressed as f(x) = maxh∈H{ahx+ bh},
where H = {1,2, . . . ,m} is the index set of its breakpoints, over an interval [l, u], with l ≤ u,

l, u ∈R+. Let H− = {h ∈H | ah < 0}, and let H+ = {h ∈H | ah ≥ 0}. Based on sets H− and H+,

let functions f− : R+ → R and f+ : R+ → R defined as f−(x) = maxh∈H−{ahx+ bh}, if H− 6= ∅,
f−(x) =−∞ otherwise, and f+(x) = maxh∈H+{ahx+ bh}, if H+ 6= ∅, f+(x) =−∞ otherwise. The

following lemma holds.

Lemma EC.1. Let z∗ = minx{f(x)}. Then minl≤x≤u{f(x)}= max{f−(u), f+(l), z∗}.

Proof. Let x∗ = arg minf(x). We have the following three cases.

(i) u< x∗. We have f−(u)≥ z∗ ≥ f+(u)≥ f+(l). Since f(x) is a non-increasing function in [l, u],

we have minl≤x≤u f(x) = f(u) = max{f−(u), f+(u)}= f−(u) = max{f−(u), f+(l), z∗}.
(ii) l ≤ x∗ ≤ u. We have z∗ ≥ f−(u) and z∗ ≥ f+(l). Hence, minl≤x≤u f(x) = z∗ =

max{f−(u), f+(l), z∗}.
(iii) x∗ < l. We have f+(l)≥ z∗ ≥ f−(l)≥ f−(u). Since f(x) is a non-decreasing function in [l, u],

we have minl≤x≤u f(x) = f(l) = max{f−(l), f+(l)}= f+(l) = max{f−(u), f+(l), z∗}.

EC.1.1. Proof of Theorem 1

Given a forward path P = (i0 = 0, i1, . . . , is−1, is), the proof is by the induction principle on s.

Let W (P ) ≤ Q be the maximum amount of product collected from the pickup customers along

path P that can be delivered to the delivery customers to be appended to the path. If s= 0, i.e.,

P = (0), we have W (P ) = 0 and cfP (w) =−µ0, hence the hypothesis holds. Assume that for path

P = (i0 = 0, i1, . . . , is−1) the hypothesis holds, i.e., cfP (w) can be expressed in the form cfP (w) =

maxh∈H{ahw+ bh}, where H is the set of breakpoints and ah ≥ 0, ∀h∈H.

Consider a new vertex is /∈ V (P ) appended at the end of path P and the corresponding path

P ′ = (i0 = 0, i1, . . . , is−1, is). We have two cases:

(i) Vertex is is a pickup vertex, i.e., qis > 0. We have W (P ′) = min{Q,W (P ) + qis}, and

cfP ′(w) = min
max{0,w−qis}≤x≤min{W (P ),w}

{cfP (x)−µis(w−x) + dis−1is},

= min
max{0,w−qis}≤x≤min{W (P ),w}

{
max
h∈H
{ahx+ bh}−µis(w−x) + dis−1is

}
,

= min
max{0,w−qis}≤x≤min{W (P ),w}

{
max
h∈H
{(ah +µis)x+ bh}−µisw+ dis−1is

}
.
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Let H+ = {h : h ∈ H,ah + µis ≥ 0}, H− = {h : h ∈ H,ah + µis < 0}, and z∗ =

minx{maxh∈H{(ah +µis)x+ bh}}. From Lemma EC.1, we have:

cfP ′(w) = max


−µisw+ z∗+ dis−1is ,

max
h∈H−

{
(ah +µis)min{W (P ),w}+ bh−µisw+ dis−1is

}
,

max
h∈H+

{
(ah +µis)max{0,w− qis}+ bh−µisw+ dis−1is

}
 ,

= max


−µisw+ z∗+ dis−1is ,

max
h∈H−

{
max{(ah +µis)W (P ), (ah +µis)w}+ bh−µisw+ dis−1is

}
,

max
h∈H+

{
(ah +µis)max{0,w− qis}+ bh−µisw+ dis−1is

}
 ,

= max



−µisw+ z∗+ dis−1is ,

max
h∈H−

{(ah +µis)W (P ) + bh}−µisw+ dis−1is ,

max
h∈H−

{ahw+ bh}+ dis−1is ,

max
h∈H+

{bh}−µisw+ dis−1is ,

max
h∈H+

{ahw− (ah +µis)qis + bh + dis−1is}


,

= max


−µisw+ max

{
z∗, max

h∈H−
{(ah +µis)W (P ) + bh}, max

h∈H+
{bh}

}
+ dis−1is ,

max
h∈H−

{ahw+ bh}+ dis−1is ,

max
h∈H+

{ahw− (ah +µis)qis + bh}+ dis−1is ,

 .

Since µis ≤ 0, cfP ′(w) is the maximum of piecewise-linear nondecreasing functions, hence it is

a piecewise-linear convex nondecreasing function.

(ii) Vertex is is a delivery vertex, i.e., qis < 0. We have W (P ′) =W (P ), and

cfP ′(w) = min
w≤x≤min{W (P ),w−qis}

{cfP (x)−µis(w−x) + dis−1is}

= min
w≤x≤min{W (P ),w−qis}

{
max
h∈H
{ahx+ bh}−µis(w−x) + dis−1is

}
= min

w≤x≤min{W (P ),w−qis}

{
max
h∈H
{(ah +µis)x+ bh}−µisw+ dis−1is

}
.

Let H+, H− and z∗ be defined as for the previous case. We have:

cfP ′(w) = max


−µisw+ z∗+ dis−1is ,

max
h∈H−

{
(ah +µis)min{W (P ),w− qis}+ bh−µisw+ dis−1is

}
,

max
h∈H+

{
(ah +µis)w+ bh−µisw+ dis−1is

}
 ,

= max


−µisw+ z∗+ dis−1is ,

max
h∈H−

{
max{(ah +µis)W (P ), (ah +µis)(w− qis)}+ bh−µisw+ dis−1is

}
,

max
h∈H+

{
(ah +µis)w+ bh−µisw+ dis−1is

}
 ,
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= max



−µisw+ z∗+ dis−1is ,

−µisw+ max
h∈H−

{(ah +µis)W (P ) + bh}+ dis−1is ,

max
h∈H−

{ahw− (ah +µis)qis + bh + dis−1is},

max
h∈H+

{
(ah +µis)w+ bh−µisw+ dis−1is

}


,

= max


−µisw+ max{z∗, max

h∈H−
{(ah +µis)W (P ) + bh}}+ dis−1is ,

max
h∈H−

{ahw− (ah +µis)qis + bh}+ dis−1is ,

max
h∈H+

{ahw+ bh}+ dis−1is

 .

Since µis ≤ 0, cfP ′(w) is also a piecewise-linear convex nondecreasing function.

EC.1.2. Proof of Theorem 2

Given a backward path P = (is, is−1, . . . , i1, i0 = n′), the proof is by the induction principle on s.

Let W (P )≤Q be the maximum amount of the product required by the delivery customers along

path P that can potentially be collected from the (pickup) customers, which is to be appended at

the beginning of path P .

If s= 0, i.e., P = (n′), we have W (P ) = 0 and cb
P

(w) =−µ0, hence the hypothesis holds. Assume

that for path P = (is−1, . . . , i1, i0 = n′) the hypothesis holds, that is, cb
P

(w) can be expressed in the

form cb
P

(w) = maxh∈H{ahw+ bh}, where H is the set of breakpoints and ah ≤ 0, ∀h∈H.

Consider a new vertex is /∈ V (P ) appended at the beginning of path P and the corresponding

path P
′
= (is, is−1, . . . , i1, i0 = n′). We have two cases:

(i) Vertex is is a delivery vertex, that is, qis < 0. We have W (P ) = min{Q,W (P )− qis}, and

cb
P

(w) = min
max{0,w+qis}≤x≤min{W (P ),w}

{cb
P

(x)−µis(x−w) + disis−1
}

= min
max{0,w+qis}≤x≤min{W (P ),w}

{
max
h∈H
{ahx+ bh}−µis(x−w) + disis−1

}
= min

max{0,w+qis}≤x≤min{W (P ),w}

{
max
h∈H
{(ah−µis)x+ bh}+µisw+ disis−1

}
.

Let H+ = {h : h∈H,ah−µis ≥ 0}, H− = {h : h∈H,ah−µis < 0} and z∗ = minx maxh∈H{(ah−
µis)x+ bh}. From Lemma EC.1, we have:

cb
P

(w) = max


µisw+ z∗+ disis−1

,

max
h∈H−

{
(ah−µis)min{W (P ),w}+ bh +µisw+ disis−1

}
,

max
h∈H+

{
(ah−µis)max{0,w+ qis}+ bh +µisw+ disis−1

}
 ,

= max


µisw+ z∗+ disis−1

,

max
h∈H−

{
max{(ah−µis)W (P ), (ah−µis)w}+ bh +µisw+ disis−1

}
,

max
h∈H+

{
(ah−µis)max{0,w+ qis}+ bh +µisw+ disis−1

}
 ,
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= max



µisw+ z∗+ disis−1
,

µisw+ max
h∈H−

{(ah−µis)W (P ) + bh}+ disis−1
,

max
h∈H−

{ahw+ bh + disis−1
},

µisw+ max
h∈H+

{bh}+ disis−1
,

max
h∈H+

{ahw+ (ah−µis)qis + bh + disis−1
}


,

= max


µisw+ max

{
z∗, max

h∈H−
{(ah−µis)W (P ) + bh}, max

h∈H+
{bh}

}
+ disis−1

,

max
h∈H−

{ahw+ bh}+ disis−1
,

max
h∈H+

{ahw+ (ah−µis)qis + bh}+ disis−1

 .

Since µis ≤ 0, cb
P
′(w) is the maximum of piecewise-linear nonincreasing functions, it is a

piecewise-linear convex nonincreasing function.

(ii) Vertex is is a pickup vertex, i.e., qis > 0. We have W (P
′
) =W (P ), and

cb
P

(w) = min
w≤x≤min{W (P ),w+qis}

{cb
P

(x)−µis(x−w) + disis−1
}

= min
w≤x≤min{W (P ),w+qis}

{
max
h∈H
{ahx+ bh}−µis(x−w) + disis−1

}
= min

w≤x≤min{W (P ),w+qis}

{
max
h∈H
{(ah−µis)x+ bh}+µisw+ disis−1

}
.

Let H+, H− and z∗ be defined as for the previous case. We have:

cb
P

(w) = max


µisw+ z∗+ disis−1

,

max
h∈H−

{
(ah−µis)min{W (P ),w+ qis}+ bh +µisw+ disis−1

}
,

max
h∈H+

{
(ah−µis)w+ bh +µisw+ disis−1

}
 ,

= max


µisw+ z∗+ disis−1

,

max
h∈H−

{
max{(ah−µis)W (P ), (ah−µis)(w+ qis)}+ bh +µisw+ disis−1

}
,

max
h∈H+

{
(ah−µis)w+ bh +µisw+ disis−1

}
 ,

= max



µisw+ z∗+ disis−1
,

µisw+ max
h∈H−

{(ah−µis)W (P ) + bh}+ disis−1
,

max
h∈H−

{ahw+ (ah−µis)qis + bh + disis−1
},

max
h∈H+

{
ahx+ bh + disis−1

}


,

= max


µisw+ max{z∗, max

h∈H−
{(ah−µis)W (P ) + bh}}+ disis−1

,

max
h∈H−

{ahw+ (ah−µis)qis + bh}+ disis−1
,

max
h∈H+

{ahw+ bh}+ disis−1

 .
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Since µis ≤ 0, cb
P
′(w) is also a piecewise-linear convex nonincreasing function.

EC.1.3. Proof of Dominance 1

Let P be the forward path associated with label Lf
1 , and we denote by {Lf

i1
,Lf

i2
, . . . ,Lf

ik
} the set

of labels L f
1 , where a forward path Pis is associated with label Lf

is
, s= 1, . . . , k.

Consider the set P of all feasible extensions of path P , i.e., the set of backward paths starting

at vertices different from vertex vf1 such that for each P ∈ P route R = (P,P ) is feasible for the

maximum duration constraint. Let w(P ), w(P ) ∈ [0,min{W f
1 ,W (P )}], be the load of the vehicle

leaving the last vertex vf1 visited by route R where W (P ) ≤ Q is the maximum amount of the

product required by the delivery customers along path P , and let j be the first vertex visited by

path P . The reduced cost of route R and value w(P ) can be computed as follows:

c(R,w(P )) = cfP (w(P )) + d
v
f
1 j

+ cb
P

(w(P )).

Below, we show that for any path P ∈ P and associated value w(P ), there exists a forward path

P ′ ∈ {Pis}ks=1 such that route R′ = (P ′, P ) is feasible and its reduced cost c(R′,w(P )) is less than

or equal to the reduced cost c(R,w(P )) of route R, and thus path P can be safely discarded.

Given a path P ∈ P, since vf = vf1 , sf ≥ sf1 , and V f
1 ⊆ V f , for all Lf ∈ L f

1 , each route

R′ = (P ′, P ) with P ′ ∈ {Pis}ks=1 is feasible for the maximum duration constraint. Let i∗ =

arg mins=1,...,k{c
f
Pis

(w(P )} be the index of the labels in Lf
1 having minimum reduced cost computed

with respect to value w(P ).

Since w(P )≤W f
1 , we have g

L
f
1
(w(P )) = cfP (w(P ))<+∞, and given the definition of function

g
L f

1
(w) we have g

L f
1

(w(P )) = cfPi∗
(w(P )). Consider route R′ = (Pi∗ , P ). The reduced cost of route

R′ can be computed as

c(R′,w(P )) = cfPi∗
(w(P )) + d

v
f
1 j

+ cb
P

(w(P )) = g
L f

1
(w(P )) + d

v
f
1 j

+ cb
P

(w(P )). (EC.1)

From the hypothesis we have g
L
f
1
(w(P )) ≥ g

L f
1

(w(P )), and thus g
L f

1
(w(P )) < +∞ and w(P ) ∈

[0,W f
i∗ ], so from expression (EC.1) we obtain:

c(R′,w(P )) = g
L f

1
(w(P )) + d

v
f
1 j

+ cb
P

(w(P ))≤

g
L
f
1
(w(P )) + d

v
f
1 j

+ cb
P

(w(P )) =

cfP (w(P )) + d
v
f
1 j

+ cb
P

(w(P )) =

c(R,w(P )),

and thus c(R′,w(P ))≤ c(R,w(P )) and path P and the associated label Lf
1 can be safely discarded.
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Table EC.1 Example of a fractional θpr solution satisfying the four branching rules

Variables θpr Routes and demand patterns (in brackets)
0.5 0(0) 10(1) 3(-1) 8(3) 1(-3) 11(0)
1.0 0(0) 6(1) 9(-1) 4(6) 9(-4) 5(-2) 2(5) 5(-5) 1(0) 11(0)
0.5 0(0) 10(1) 3(-1) 8(6) 7(-6) 8(6.0) 7(-6.0) 8(3) 1(-3) 11(0)
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Figure EC.1 Support graph for the example of Table EC.1

EC.2. Example of a fractional RMP solution satisfying the four
branching rules

Figure EC.1 shows an example of a fractional RMP solution satisfying the four branching rules.

The example involves an n = 10 customers instance (numbered from 1 to 10) with initial and

final depots indexed with numbers 0 and 11, respectively. The customers demands are d1 = −3,

d2 = 5, d3 =−1, d4 = 6, d5 =−7, d6 = 1, d7 =−6, d8 = 9, d9 =−5, d10 = 1, and the vehicle capacity

is Q = 6. The routes and demand patterns of the solution are shown in Table EC.1, where the

numbers in parentheses show the demand patterns. The support graph of the solution associated

with values ωij is depicted in Figure EC.1, where the number on each arc indicates the value of

the corresponding variable ωij.

EC.3. A three-index (TI) vehicle flow formulation

The three-index (TI) vehicle flow formulation is based on three-index vehicle flow formulations

proposed for the basic Capacitated VRP (CVRP) (see, for example, Toth and Vigo 2014) and

on the single commodity flow formulation described in Salazar-González and Santos-Hernández

(2015). In this section, we describe the formulation for the multiple-visit, different-vehicle case,

and then we briefly observe how the formulation can be extended to deal with the multiple-visit

case.

For a given S ⊆N we denote by A(S) the set of arcs with both end-vertices in S, i.e., A(S) =

{(i, j) ∈A : i, j ∈ S}. Let xk
ij be a binary variable that is equal to 1 if vehicle k traverses arc (i, j),
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and 0 otherwise, and yki be a continuous variable representing the amount of products picked up

(if positive) or delivered (if negative) to vertex i by vehicle k. In addition, let zki be a nonnegative

variable representing the amount of product carried by vehicle k when it leaves vertex i. The

formulation is as follows.

(TI) min
∑
k∈K

∑
(i,j)∈A

dijx
k
ij (EC.2a)

s.t.
∑

(0,i)∈A

xk
0i =

∑
(i,n′)∈A

xk
in′ , ∀ k ∈K, (EC.2b)∑

(i,j)∈A

xk
ij =

∑
(j,i)∈A

xk
ji, ∀ i∈ V, k ∈K, (EC.2c)∑

k∈K

yki = qi, ∀ i∈ V, (EC.2d)

yki ≤min{qi,Q}
∑

(i,j)∈A

xk
ij, ∀ i∈N+, k ∈K, (EC.2e)

yki ≥max{qi,−Q}
∑

(i,j)∈A

xk
ij, ∀ i∈N−, k ∈K, (EC.2f)

zkj ≥ zki + ykj + (xk
ij − 1)(Q+ 1), ∀ j ∈N+, (i, j)∈A, k ∈K, (EC.2g)

zkj ≤ zki + ykj + (1−xk
ij)(Q+ 1), ∀ j ∈N−, (i, j)∈A, k ∈K, (EC.2h)

zki ≤Q, ∀ i∈ V, k ∈K, (EC.2i)∑
(i,j)∈A

tijx
k
ij ≤ T, ∀ k ∈K, (EC.2j)∑

(i,j)∈A(S)

xk
ij ≤ |S| − 1, ∀ S ⊆N, |S|> 1, k ∈K, (EC.2k)

yk0 = ykn′ = 0, ∀ k ∈K, (EC.2l)

xk
ij ∈ {0,1}, ∀ (i, j)∈A, k ∈K, (EC.2m)

yki ≥ 0, ∀ i∈N+, k ∈K, (EC.2n)

yki ≤ 0, ∀ i∈N−, k ∈K, (EC.2o)

zki ≥ 0, ∀ i∈ V,k ∈K. (EC.2p)

The objective function (EC.2a) aims at minimizing the total routing cost of the vehicles. Con-

straints (EC.2b) and (EC.2c) are the flow conservation constraints for each vehicle at the depot

and the customers, respectively. The satisfaction of the demand of each customer is guaranteed

by constraints (EC.2d). Constraints (EC.2e) and (EC.2f) state that a vehicle can pick up or

deliver the product at a customer only if the customer is visited by the vehicle, respectively.

Constraints (EC.2g) and (EC.2h) define the values of flow variables z for the pickup and deliv-

ery customers, respectively. Constraints (EC.2i) and (EC.2j) are the capacity and the maximum

duration constraints, respectively. Constraints (EC.2k) are the subtour elimination constraints.
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Equations (EC.2l) impose that each vehicle departs from and arrives at the depot empty. Finally,

constraints (EC.2m), (EC.2n), (EC.2o) and (EC.2p) state the domains of the decision variables.

Due to the presence of constraints (EC.2k), formulation TI imposes that a customer can be

visited by the same vehicle at most once. Nevertheless, the formulation can be extended to deal with

the case where a customer can also be visited more than once by the same vehicle, thus modeling

the multiple visits case. Indeed, as done for example by Salazar-González and Santos-Hernández

(2015) and Bulhões et al. (2018), multiple visits by the same vehicle can be modeled on an extended

network where each vertex is associated with a number of vertices (representing possible visits) and

each vertex can be visited at most once. A drawback of the resulting mathematical formulation is

the large number of variables required by the underlying extended formulation, and for this reason

the maximum number of visits to each vertex is generally fixed to a small value, such as less than

two or three (see, for example, Salazar-González and Santos-Hernández 2015, Bulhões et al. 2018).

The corresponding details are omitted for sake of brevity.

EC.4. Additional computational details
EC.4.1. Branching rules

Figures EC.2 and EC.3 give an overview of the use of the different branching rules adopted in EXM

(see §5.3) for SA, SB and SC classes, respectively. The figures show the percentages of the nodes in

which each rule is used over the total number of branching decisions. In Figure EC.2, the instances

are grouped by the vehicle capacity Q and the maximum duration T , and the corresponding pairs

are reported in the figures as [Q,T ]. The corresponding detailed values can be found in the tables

given in the e-companion.

The figures clearly show that branching on the number of vehicles visiting each customer (Rule

2) and branching on single arc (Rule 3) are among the most used rules. Rule 4, that is, branching

on two consecutive arcs, is rarely used. Indeed, it is applied 16 and 14 times for classes SA, SB

and SC , respectively (the corresponding percentages cannot be seen from the figures). As discussed

in Section 5.3, the four branching rules are not sufficient to fulfil the integrality requirements.

Nevertheless, in our experiments, it never once occurred that none of the rules could be applied.

EC.4.2. Analysis of the SPDVRP solutions

In this section, we report some insights into the solutions computed by EXM regarding the number

of routes and the type of routes generated.

Figures EC.4 and EC.5 reports the average number of routes in the optimal or best solutions

found of classes SA, SB and SC , respectively. The data are grouped by the values of Q and T and

the number of customers. The figures show that the average number of routes ranges between 1

and about 8. The numbers for different values of T show that the maximum duration constraints
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Figure EC.2 Usage of branching decisions on SA and SB classes (values [Q,T ] under each bar)
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Figure EC.3 Usage of branching decisions on SC class

(either as a cardinality or time constraint) are generally tight, as shown by the lower average

numbers for increasing values of T .

Finally, Figures EC.6 and EC.7 give an overview of the structure of the solutions computed by

EXM based on the way the customers are visited. More specifically, we denote by “sv” the total

number of customers visited more than once by the same vehicle, and we denote by “dv” the total

number of customers visited more than once by different vehicles. Parameters sv and dv can also

be used as a measure of the difficulty of the instances. Figure EC.6 shows relevant data about
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Figure EC.4 Number of routes for the instances of classes SA and SB grouped by values [Q,T ] and number of

customers
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Figure EC.5 Number of routes for the instances of class SC grouped by the values of T and number of customers
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Figure EC.6 Classes SA and SB: structure of the solutions grouped by values [Q,T ]

classes SA and SB, where the instances are grouped by values Q and T , whereas Figure EC.7 gives

the details about class SC , grouped by T = 10 and T = 15.

The figures clearly point out that the solutions computed (which include both optimal and

heuristic solutions) feature a higher number of customers visited by different vehicles (measure dv)

than the number of customers visited by the same vehicle (measure sv), and that instances with

tight Q and T values generally involve more split customers. The comparison between classes SA,



ec12 e-companion to Author: A New Exact Algorithm for the SPDVRP

T = 10 T = 15

0

50

100

150

11 15

81
68

n
.

o
f

cu
st

om
er

s

sv dv sv dv

Figure EC.7 Class SC : structure of the solutions grouped by values of T

SB and SC shows that class SC features a reduced number of split customers with respect to classes

SA and SB, that is to say that the routes forming the solutions of class SC are generally elementary

and disjoint. In this case, the literature shows that for classical (non-split) vehicle routing problems,

the LP-relaxation of the set-partitioning formulation provides very tight lower bounds (see Poggi

and Uchoa 2014). These differences could explain the fact that, according to Table 3, EXM shows

tighter bounds for class SC .

EC.5. Detailed computational results

This section reports detailed results about algorithm EXM on classes of instances SA, SB and SC .

Tables EC.2-EC.9 show the following details:

� Name of the instance (“Name”).

� Number of vehicles available (“|K|”).

� Number of customers (“n”).

� Vehicle capacity (“Q”).

� Cost of the best solution found (“z∗”) by EXM.

� Number of routes composing the solution (“rt”).

� Percentage deviation of the upper bound computed by the primal heuristic (“%UB”), com-

puted as 100.0×UB/z∗ where UB is the value of the upper bound.

� Time in seconds spent by the primal heuristic (“tUB”).

� Percentage deviation of lower bound derived from the LP-relaxation of formulation PB

(“%LB”), computed as 100.0×LB/z∗ where LB is the value of the lower bound.

� Percentage deviation of lower bound obtained from the column-and-row generation procedure

(“%LBr”), computed as 100.0×LBr/z
∗ where LBr is the value of the lower bound.

� Number of cuts generated at the root node (“cutr”).

� Time in seconds spent by the pricing algorithm at the root node (“tPA”).

� Time in seconds spent to compute the lower bound at the root node (“tr”).
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� Total number of cuts generated (“cut”).

� Number of tree nodes explored (“node”).

� Total computing time in seconds (“t”).

EC.6. Detailed computational results about the pricing algorithms

This section reports detailed results about the comparison between the pricing algorithm of EXM

and our implementation of the pricing algorithm proposed by Casazza et al. (2019).

Tables EC.10-EC.12 show the following details:

� Name of the instance (“Name”).

� Number of customers (“n”).

� Number of vehicles available (“|K|”).

� Lower bound value (“LB”).

� For each pricing algorithm:

— Time in seconds spent by the LP solver (“tLP”).

— Time in seconds spent by the pricing algorithm (“tPA”).

— Number of forward labels generated (“fw”).

— Number of forward labels dominated (“fwd”).

— Number of backward labels generated (“bw”).

— Number of backward labels dominated (“bwd”).
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Table EC.2 Detailed results on set SA with Q= 10 and T = 10

Name n |K| z∗ rt %UB tUB %LB %LBr cutr tPA tr cut node t

n10a 10 5 3719.0 2 105.2 0.8 86.3 95.2 63 0.2 0.4 67 27 1.5
n10A 10 5 3055.0 2 100.0 0.6 95.6 99.8 56 0.2 0.4 56 3 1.0
n10b 10 5 3192.0 2 100.0 0.8 84.2 99.8 24 0.3 0.4 24 3 1.3
n10B 10 5 3704.0 2 101.5 0.8 95.6 99.6 61 0.3 0.5 61 3 1.6
n10c 10 5 4239.0 2 100.0 0.4 98.7 100.0 8 0.2 0.3 8 1 0.9

n10C 10 5 3392.0 2 105.3 0.9 84.9 97.7 101 0.4 0.6 102 11 1.8
n10d 10 5 4497.0 2 102.4 0.7 86.7 96.5 28 0.3 0.4 34 35 2.0
n10D 10 5 3199.0 2 111.2 0.8 81.6 97.3 60 0.3 0.5 60 3 1.3
n10e 10 5 3823.0 2 100.0 0.5 89.0 100.0 87 0.4 0.6 87 1 1.2
n10E 10 5 4876.0 2 100.0 0.5 92.1 100.0 85 0.3 0.5 85 1 1.1
n10f 10 5 3468.0 2 126.4 1.0 76.6 86.0 65 0.4 0.6 109 1635 81.7

n10F 10 5 3796.0 2 100.0 0.6 96.5 99.8 53 0.2 0.4 53 3 1.3
n10g 10 5 4179.0 2 107.7 0.9 81.8 85.8 58 0.2 0.4 75 1953 102.8

n10G 10 5 3973.0 2 139.5 0.6 86.5 90.1 28 0.2 0.4 28 3 1.1
n10h 10 5 4168.0 2 100.0 0.6 88.4 96.3 66 0.2 0.4 67 13 1.3
n10H 10 5 3959.0 2 108.0 0.9 80.7 93.9 65 0.3 0.5 73 155 7.3
n10i 10 5 2645.0 2 145.0 0.7 91.7 95.6 56 0.2 0.4 58 9 1.3
n10I 10 5 3963.0 2 133.9 0.6 83.9 86.8 25 0.2 0.4 31 35 1.6
n10j 10 5 3453.0 2 115.0 0.6 94.0 94.6 19 0.2 0.4 21 17 1.2
n10J 10 5 3125.0 2 134.3 0.7 79.4 98.6 56 0.2 0.4 57 17 1.2

n20A 20 5 4826.0 2 115.7 2.5 94.0 99.3 172 0.6 1.0 176 13 4.2
n20B 20 5 5300.0 2 108.3 2.7 85.5 94.6 155 0.9 1.3 173 135 21.9
n20C 20 5 6508.0 3 115.3 4.9 92.0 96.2 486 1.3 1.9 604 8775 4591.5
n20D 20 5 6208.0 3 100.0 2.9 96.7 100.0 171 0.7 1.0 171 3 4.2
n20E 20 5 6491.0 3 114.2 4.1 88.6 98.2 367 1.1 1.7 401 261 85.7
n20F 20 5 5222.0 3 120.8 3.2 92.7 95.5 161 0.9 1.3 173 33 9.1
n20G 20 5 5795.0 3 122.6 3.3 86.0 94.3 190 1.0 1.3 277 1147 161.7
n20H 20 5 6207.0 2 127.8 4.1 85.8 93.1 340 1.0 1.5 358 547 77.8
n20I 20 5 5167.0 3 113.7 3.3 85.9 94.1 210 0.9 1.3 281 3521 789.5
n20J 20 5 4545.0 2 108.1 1.6 92.1 96.3 120 0.5 0.8 161 155 17.5

n30A 30 5 6865.0 4 105.0 15.0 92.5 97.3 1038 6.7 5.7 1252 5305 4637.3
n30B 30 5 6939.0 3 108.5 5.5 91.2 97.7 387 1.9 2.6 454 445 237.1
n30C 30 5 8613.0 5 100.0 16.6 73.0 79.3 594 8.5 3.2 1221 16991 10800.0
n30D 30 5 9314.0 5 100.0 8.2 66.6 71.4 534 2.3 2.8 923 16603 10800.0
n30E 30 5 6840.0 3 114.8 7.8 86.3 94.7 486 1.9 2.4 778 1039 1095.2
n30F 30 5 6715.0 4 106.2 7.5 88.4 95.4 319 2.2 2.9 502 2735 943.8
n30G 30 5 9462.0 4 105.3 12.8 90.7 97.0 778 3.3 4.5 1228 13401 10360.7
n30H 30 5 8182.0 5 100.0 7.3 75.1 79.8 452 2.4 3.0 943 17257 10800.0
n30I 30 5 6602.0 4 100.0 5.8 82.8 87.9 335 1.6 2.2 788 18217 10800.0
n30J 30 5 8753.0 5 100.0 9.0 70.7 73.2 365 3.2 2.1 1702 19701 10800.0

n40A 40 8 10430.0 6 100.0 18.7 71.5 74.4 789 3.4 4.2 1604 14157 10800.0
n40B 40 8 9805.0 7 100.0 18.9 69.1 72.4 736 3.1 3.7 1334 14171 10800.0
n40C 40 8 9097.0 5 100.0 12.4 81.4 85.9 818 3.3 4.4 1201 5011 10800.0
n40D 40 8 9837.0 5 100.0 19.7 80.9 86.2 964 3.9 5.0 1387 11993 10800.0
n40E 40 8 11882.0 7 100.0 13.9 55.8 61.2 792 2.4 3.0 1409 11447 10800.0
n40F 40 8 9275.0 5 100.0 15.8 79.5 85.2 711 3.4 4.2 1265 12583 10800.0
n40G 40 8 11017.0 7 100.0 16.5 73.7 76.7 878 3.6 4.5 1593 13383 10800.0
n40H 40 8 10129.0 7 100.0 15.3 72.9 75.0 869 3.0 3.6 1183 13475 10800.0
n40I 40 8 11222.0 6 100.0 14.4 66.1 70.2 798 3.1 3.9 1285 13119 10800.0
n40J 40 8 9265.0 6 100.0 11.8 73.8 77.4 574 2.5 3.1 1538 14155 10800.0
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Table EC.3 Detailed results on set SA with Q= 10 and T = 15

Name n |K| z∗ rt %UB tUB %LB %LBr cutr tPA tr cut node t

n10a 10 5 3484.0 1 148.6 1.2 90.3 100.0 52 0.5 0.7 52 3 2.0
n10A 10 5 2994.0 1 100.0 0.2 96.4 100.0 28 0.1 0.1 28 1 0.5
n10b 10 5 3122.0 1 100.0 0.4 84.7 100.0 24 0.1 0.2 24 1 0.6
n10B 10 5 3671.0 1 100.0 0.4 96.1 100.0 60 0.1 0.2 60 1 0.6
n10c 10 5 4226.0 1 100.0 0.1 98.0 100.0 16 0.0 0.0 16 1 0.2

n10C 10 5 3324.0 1 135.4 1.0 84.4 99.2 136 0.3 0.4 138 9 1.5
n10d 10 5 4238.0 1 100.0 0.3 89.0 100.0 28 0.1 0.1 28 1 0.5
n10D 10 5 3071.0 1 100.0 0.5 80.0 100.0 96 0.3 0.4 96 1 0.5
n10e 10 5 3816.0 1 100.0 0.5 88.3 100.0 77 0.2 0.2 77 1 0.2
n10E 10 5 4828.0 1 100.0 0.5 90.6 100.0 84 0.2 0.3 84 1 0.2
n10f 10 5 2996.0 1 170.4 0.6 83.4 98.0 67 0.2 0.3 68 13 2.7

n10F 10 5 3758.0 1 100.0 0.3 94.2 100.0 68 0.1 0.2 68 1 0.5
n10g 10 5 3685.0 1 134.9 0.3 85.8 93.1 61 0.1 0.1 71 359 43.9

n10G 10 5 3325.0 1 100.0 0.2 92.8 100.0 16 0.1 0.1 16 1 0.4
n10h 10 5 3960.0 1 126.3 0.3 87.8 99.8 58 0.1 0.1 58 3 0.7
n10H 10 5 3813.0 1 183.5 1.0 79.9 95.3 69 0.3 0.4 92 695 111.7
n10i 10 5 2390.0 1 100.0 0.2 96.4 100.0 23 0.1 0.1 23 1 0.4
n10I 10 5 3287.0 1 174.7 0.3 92.4 98.2 35 0.1 0.2 35 5 1.5
n10j 10 5 3249.0 1 122.3 0.2 97.5 98.9 44 0.1 0.1 44 11 1.6
n10J 10 5 3060.0 1 100.0 0.2 70.8 100.0 40 0.1 0.1 40 1 0.4

n20A 20 5 4713.0 2 148.2 2.9 90.7 99.2 178 1.0 1.3 179 9 8.9
n20B 20 5 4992.0 2 102.6 3.9 83.9 96.8 191 1.6 1.9 203 91 45.1
n20C 20 5 6110.0 2 133.4 12.9 93.6 99.0 680 5.0 5.8 702 371 2193.8
n20D 20 5 6146.0 2 103.4 6.8 93.0 99.3 372 2.0 2.5 396 135 155.4
n20E 20 5 6339.0 2 115.3 12.9 88.3 99.0 562 5.4 6.4 589 101 171.2
n20F 20 5 4851.0 2 157.2 3.3 93.0 97.3 258 1.1 1.3 272 25 19.9
n20G 20 5 5334.0 2 101.8 3.9 87.1 97.3 201 1.4 1.7 203 9 14.1
n20H 20 5 5847.0 2 140.1 5.2 84.7 95.1 327 1.7 2.1 405 1967 863.9
n20I 20 5 4797.0 2 125.4 7.3 85.8 97.3 483 1.5 2.1 529 307 263.7
n20J 20 5 4402.0 2 117.0 1.6 90.2 95.2 184 0.3 0.4 193 39 8.7

n30A 30 5 8367.0 4 100.0 54.2 70.1 75.5 1631 17.3 20.8 1796 2907 10800.0
n30B 30 5 6460.0 2 109.3 15.0 92.6 99.4 826 5.7 7.2 831 65 436.8
n30C 30 5 7676.0 4 100.0 42.7 74.7 83.0 1099 9.1 10.7 1361 6651 10800.0
n30D 30 5 7403.0 4 100.0 48.9 73.7 82.6 1242 10.5 11.3 1757 6345 10800.0
n30E 30 5 6286.0 2 126.3 19.2 83.9 94.9 632 4.5 5.3 1141 4065 10800.0
n30F 30 5 6205.0 3 124.6 19.3 86.4 94.4 556 7.4 9.1 1012 8487 10800.0
n30G 30 5 9163.0 3 117.6 64.1 88.8 97.1 1270 15.8 18.8 1738 3347 10800.0
n30H 30 5 9191.0 5 100.0 16.0 60.7 65.0 617 4.5 5.4 1249 6897 10800.0
n30I 30 8 7510.0 5 100.0 12.4 65.2 71.6 713 3.5 4.9 868 4565 10800.0
n30J 30 8 6204.0 3 113.6 11.4 89.7 95.3 638 2.7 3.4 1000 3351 4142.6

n40A 40 8 12046.0 6 100.0 44.5 56.2 59.2 1204 10.5 12.7 1566 3811 10800.0
n40B 40 8 7989.0 4 100.0 37.9 73.2 78.9 780 6.3 7.1 1193 5771 10800.0
n40C 40 8 9431.0 5 100.0 71.8 72.1 78.1 1395 26.9 31.5 1525 1895 10800.0
n40D 40 8 8354.0 3 100.0 99.2 87.1 95.7 991 35.0 38.3 1187 1511 10800.0
n40E 40 8 11064.0 6 100.0 34.1 51.9 59.4 805 7.4 8.8 1166 4267 10800.0
n40F 40 8 9281.0 5 100.0 71.1 71.4 78.3 1395 17.5 19.7 1788 2557 10800.0
n40G 40 8 8150.0 4 104.4 31.1 88.8 93.9 800 9.5 11.1 1263 2953 10800.0
n40H 40 8 9224.0 5 100.0 34.5 70.3 73.2 945 9.4 11.5 1157 4329 10800.0
n40I 40 8 10135.0 4 100.0 45.5 64.8 71.2 879 10.7 11.9 1561 3809 10800.0
n40J 40 8 10608.0 5 100.0 35.7 56.1 61.5 1011 5.0 5.9 1313 5747 10800.0
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Table EC.4 Detailed results on set SA with Q= 20 and T = 10

Name n |K| z∗ rt %UB tUB %LB %LBr cutr tPA tr cut node t

n10a 10 5 3524.0 2 111.6 0.7 86.4 94.5 31 0.3 0.4 33 13 1.4
n10A 10 5 2936.0 2 117.6 0.6 84.7 87.3 24 0.3 0.4 24 5 1.1
n10b 10 5 3192.0 2 115.8 0.7 82.4 92.6 13 0.3 0.4 13 3 2.8
n10B 10 5 3587.0 2 100.8 0.8 86.4 88.5 36 0.3 0.4 36 3 1.2
n10c 10 5 3324.0 2 115.3 0.7 94.9 94.9 0 0.3 0.5 0 3 1.9

n10C 10 5 3013.0 2 118.2 1.0 82.0 91.1 32 0.3 0.5 32 3 2.4
n10d 10 5 4043.0 2 109.5 0.7 86.3 88.5 24 0.3 0.5 24 43 3.8
n10D 10 5 2988.0 2 104.0 0.7 84.6 97.9 23 0.3 0.4 23 3 1.3
n10e 10 5 3130.0 2 117.7 1.5 87.8 92.4 38 0.4 0.7 39 25 3.0
n10E 10 5 3617.0 2 100.0 0.8 95.1 99.6 57 0.3 0.5 57 3 1.4
n10f 10 5 3468.0 2 127.1 1.5 74.7 83.6 42 0.4 0.5 148 2613 160.1

n10F 10 5 3601.0 2 102.3 0.5 94.2 96.1 12 0.2 0.4 12 3 1.5
n10g 10 5 4179.0 2 108.1 0.9 77.2 83.1 32 0.3 0.4 90 2011 126.4

n10G 10 5 3763.0 2 129.8 0.6 84.3 88.6 12 0.3 0.4 12 3 0.8
n10h 10 5 3885.0 2 127.6 0.8 89.8 91.8 28 0.3 0.5 30 17 2.2
n10H 10 5 3600.0 2 114.3 1.0 78.9 85.5 34 0.3 0.5 37 89 4.9
n10i 10 5 2548.0 2 123.2 0.5 84.7 93.8 18 0.2 0.3 19 9 2.0
n10I 10 5 3963.0 2 133.9 0.9 82.8 86.3 24 0.3 0.5 25 49 4.4
n10j 10 5 3172.0 2 121.9 0.9 89.6 95.3 26 0.3 0.5 27 15 2.9
n10J 10 5 2992.0 1 100.0 0.5 80.6 100.0 20 0.2 0.4 20 1 0.9

n20A 20 5 4380.0 2 124.4 1.3 87.8 89.9 69 0.5 0.7 466 4431 1513.9
n20B 20 5 4980.0 3 110.1 2.8 86.0 92.8 76 1.0 1.2 177 1245 435.0
n20C 20 5 5453.0 3 122.1 3.4 89.6 91.1 165 0.8 1.1 1565 22505 9362.2
n20D 20 5 5021.0 3 108.6 2.3 91.9 96.4 118 0.9 1.1 127 433 73.8
n20E 20 5 4998.0 2 100.0 1.8 94.6 97.1 64 0.7 0.9 67 23 4.0
n20F 20 5 5031.0 3 124.5 4.6 88.5 93.5 111 1.1 1.4 114 87 16.4
n20G 20 5 5304.0 3 127.9 3.2 83.9 90.9 99 0.9 1.1 151 609 60.6
n20H 20 5 5312.0 2 113.9 2.2 91.5 92.0 41 0.6 0.7 105 143 148.3
n20I 20 5 4793.0 3 128.9 1.9 84.9 89.8 84 0.6 0.8 604 5179 1034.4
n20J 20 5 4139.0 2 103.6 1.2 91.3 98.6 52 0.4 0.6 55 21 5.1

n30A 30 5 6131.0 4 115.2 11.3 92.7 93.8 96 7.5 5.3 372 10261 5259.8
n30B 30 5 7278.0 5 100.0 4.3 74.3 76.5 88 1.4 1.6 959 10923 10800.0
n30C 30 5 6311.0 4 100.0 6.8 86.4 90.4 140 2.3 2.7 1127 12551 10800.0
n30D 30 5 6156.0 4 125.8 7.1 88.3 92.7 173 1.9 2.2 673 16181 10800.0
n30E 30 5 7884.0 4 100.0 5.7 65.9 70.3 149 1.6 1.9 678 4241 10800.0
n30F 30 5 7374.0 4 100.0 7.6 71.1 75.9 181 2.8 2.7 1394 16959 10800.0
n30G 30 5 7273.0 3 109.4 6.9 86.7 95.1 219 2.6 3.1 506 929 1865.2
n30H 30 5 6058.0 4 100.0 5.3 83.6 85.6 137 1.8 2.2 1284 15379 10800.0
n30I 30 5 8452.0 5 100.0 10.1 59.6 61.1 127 5.8 2.0 1223 16985 10800.0
n30J 30 5 7173.0 4 100.0 6.2 74.3 78.9 144 2.0 2.3 1247 14089 10800.0

n40A 40 8 8575.0 5 100.0 12.7 76.8 77.6 215 3.4 3.7 1155 10313 10800.0
n40B 40 8 9883.0 6 100.0 17.9 66.5 67.7 229 3.4 3.6 1221 10081 10800.0
n40C 40 8 6390.0 4 128.2 10.7 94.8 97.9 316 2.4 2.6 362 629 1570.4
n40D 40 8 10531.0 7 100.0 14.3 64.9 66.7 311 2.1 2.2 775 8337 10800.0
n40E 40 8 10573.0 8 100.0 12.6 59.1 62.3 286 2.2 2.5 643 10033 10800.0
n40F 40 8 10398.0 6 100.0 14.9 61.4 62.6 249 2.3 2.4 1077 8603 10800.0
n40G 40 8 10981.0 7 100.0 21.3 64.6 66.5 455 3.9 4.3 921 10263 10800.0
n40H 40 8 9871.0 7 100.0 17.8 66.7 67.6 330 2.9 3.1 1096 8609 10800.0
n40I 40 8 8394.0 5 100.0 15.3 75.9 78.2 319 2.3 2.5 663 6897 10800.0
n40J 40 8 6739.0 4 158.0 18.6 90.9 94.8 330 2.2 2.3 398 431 1441.6
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Table EC.5 Detailed results on set SA with Q= 20 and T = 15

Name n |K| z∗ rt %UB tUB %LB %LBr cutr tPA tr cut node t

n10a 10 5 3292.0 1 146.2 0.8 86.3 98.4 34 0.4 0.5 35 17 3.5
n10A 10 5 2471.0 1 146.3 0.3 94.8 99.3 35 0.1 0.2 35 3 3.3
n10b 10 5 2876.0 1 100.0 0.5 86.8 100.0 32 0.2 0.3 32 1 0.8
n10B 10 5 3066.0 1 100.0 0.6 93.1 100.0 44 0.2 0.3 44 1 0.9
n10c 10 5 2948.0 1 100.0 0.1 99.7 99.7 0 0.1 0.1 0 3 0.2
n10C 10 5 2674.0 1 142.9 0.7 85.5 99.5 60 0.3 0.4 60 3 1.8
n10d 10 5 3438.0 1 100.0 0.2 98.3 100.0 24 0.1 0.1 24 1 0.5
n10D 10 5 2885.0 1 134.0 0.6 79.4 98.8 34 0.2 0.2 34 9 2.8
n10e 10 5 2823.0 1 100.0 0.5 90.9 100.0 76 0.2 0.2 76 1 0.8
n10E 10 5 3569.0 1 100.0 0.3 94.4 100.0 56 0.1 0.2 56 1 0.5
n10f 10 5 2996.0 1 163.1 0.4 78.9 94.8 32 0.2 0.2 45 91 10.2

n10F 10 5 3315.0 1 100.0 0.2 94.8 100.0 18 0.1 0.1 18 1 0.4
n10g 10 5 3685.0 1 122.1 0.6 80.2 89.4 30 0.2 0.2 77 851 144.7

n10G 10 5 3115.0 1 100.0 0.3 86.9 100.0 25 0.1 0.1 25 1 0.5
n10h 10 5 3388.0 1 100.0 0.2 97.1 100.0 15 0.1 0.1 15 1 0.4
n10H 10 5 3104.0 1 255.3 0.4 82.6 92.3 34 0.1 0.2 38 119 12.1
n10i 10 5 2279.0 1 100.0 0.3 85.3 100.0 26 0.1 0.1 26 1 0.5
n10I 10 5 3287.0 1 174.7 0.4 89.9 98.0 27 0.2 0.2 29 21 3.7
n10j 10 5 2932.0 1 100.0 0.3 92.6 100.0 28 0.1 0.2 28 1 0.5
n10J 10 5 2992.0 1 100.0 0.2 69.0 100.0 25 0.1 0.1 25 1 0.4

n20A 20 5 4038.0 2 107.9 1.0 85.8 89.4 46 0.5 0.5 590 9653 3839.7
n20B 20 5 4662.0 2 138.5 3.9 80.1 90.8 92 1.1 1.2 1423 13979 10800.0
n20C 20 5 4845.0 2 147.3 5.0 90.8 94.9 156 1.8 2.1 189 1069 955.3
n20D 20 5 4801.0 2 108.1 3.1 88.4 98.5 182 1.2 1.4 185 67 93.5
n20E 20 5 4755.0 2 126.6 2.8 90.7 98.3 159 1.1 1.3 159 3 19.7
n20F 20 5 4620.0 2 153.3 3.5 88.0 93.8 81 1.3 1.4 100 241 134.3
n20G 20 5 4814.0 2 116.5 3.2 82.1 92.6 108 1.2 1.3 186 1973 1084.2
n20H 20 5 4869.0 2 179.4 3.3 87.9 89.7 123 0.5 0.6 201 521 244.4
n20I 20 5 4327.0 2 117.4 3.2 83.9 94.5 119 1.1 1.3 149 345 257.6
n20J 20 5 4098.0 2 112.0 2.2 82.3 92.8 61 1.0 1.3 70 127 25.8

n30A 30 5 5759.0 3 105.8 10.0 85.7 87.3 297 3.8 4.4 1118 10381 10800.0
n30B 30 5 5145.0 2 150.5 11.2 91.2 96.9 228 3.1 3.3 293 891 1515.4
n30C 30 5 6024.0 3 100.0 12.1 79.1 85.3 185 3.5 3.8 470 1061 10800.0
n30D 30 5 6953.0 4 100.0 12.3 66.4 73.2 265 3.0 3.4 523 1559 10800.0
n30E 30 5 5192.0 2 181.4 12.2 86.1 94.3 251 2.4 2.6 1014 6973 10800.0
n30F 30 5 8206.0 4 100.0 15.8 53.9 59.8 261 2.9 3.1 997 11295 10800.0
n30G 30 5 9029.0 4 100.0 12.9 63.9 72.1 384 4.2 4.8 798 3259 10800.0
n30H 30 5 4569.0 2 108.6 6.4 94.0 96.5 214 2.4 2.7 254 173 988.5
n30I 30 5 4847.0 2 126.1 5.3 89.1 92.2 163 1.8 2.0 970 3743 10800.0
n30J 30 5 5041.0 2 115.4 10.9 92.2 98.9 141 3.8 4.1 146 41 159.9

n40A 40 8 8620.0 5 100.0 26.9 65.5 66.8 311 6.9 7.6 1058 6943 10800.0
n40B 40 8 8349.0 5 130.1 33.7 65.8 68.9 248 7.4 7.7 976 5967 10800.0
n40C 40 8 5812.0 3 124.0 27.9 91.1 96.8 431 9.4 10.4 633 5581 10800.0
n40D 40 8 7757.0 5 122.5 36.7 75.1 81.8 325 7.8 8.4 600 5337 10800.0
n40E 40 8 8995.0 4 100.0 24.1 57.8 63.2 231 5.5 5.8 444 7159 10800.0
n40F 40 8 5914.0 3 127.5 28.1 92.2 97.0 273 6.2 6.5 448 1387 2652.4
n40G 40 8 9918.0 5 100.0 55.7 59.0 62.6 528 7.8 8.3 739 4379 10800.0
n40H 40 8 8879.0 5 100.0 40.0 61.4 63.3 309 8.7 9.3 753 5883 10800.0
n40I 40 8 11188.0 5 100.0 34.4 47.8 50.6 464 6.3 7.0 811 8427 10800.0
n40J 40 8 7330.0 4 100.0 37.8 30.7 74.3 194 12.1 13.1 237 1543 10800.0
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Table EC.6 Detailed results on set SB with Q= 10 and T = 3600

Name n |K| z∗ rt %UB tUB %LB %LBr cutr tPA tr cut node t

n10a 10 5 3670.0 1 102.3 0.5 88.7 97.0 46 0.2 0.4 46 3 1.1
n10A 10 5 3055.0 2 100.0 0.6 97.1 100.0 36 0.2 0.4 36 1 1.1
n10b 10 5 3538.0 2 111.0 0.9 91.1 97.4 26 0.3 0.5 27 29 3.5
n10B 10 5 4256.0 2 110.9 0.4 89.2 91.4 56 0.1 0.3 110 2161 92.7
n10c 10 5 4408.0 2 100.0 0.3 98.7 100.0 8 0.1 0.3 8 1 0.7

n10C 10 5 3492.0 2 100.0 0.5 91.0 99.1 30 0.2 0.4 39 3 0.8
n10d 10 5 4593.0 2 100.0 0.6 88.5 97.8 27 0.2 0.4 28 35 3.1
n10D 10 5 3273.0 2 147.3 0.8 82.0 97.3 68 0.2 0.4 76 13 1.3
n10e 10 5 4055.0 2 101.5 0.4 93.8 97.7 41 0.1 0.3 46 29 1.3
n10E 10 5 4876.0 2 100.0 0.4 96.3 100.0 81 0.2 0.5 81 1 0.9
n10f 10 5 3468.0 2 106.9 0.6 85.9 90.7 38 0.2 0.4 40 239 10.7

n10F 10 5 4320.0 2 114.7 0.7 89.7 96.0 60 0.2 0.4 67 83 3.2
n10g 10 5 4431.0 2 106.7 0.5 87.1 89.1 14 0.1 0.3 35 423 14.1

n10G 10 5 4790.0 2 104.3 0.4 89.5 92.0 27 0.2 0.3 38 185 5.2
n10h 10 5 4194.0 2 100.0 0.5 97.1 98.7 40 0.1 0.3 41 3 2.9
n10H 10 5 4037.0 2 120.5 0.9 81.4 93.7 63 0.3 0.5 73 167 15.1
n10i 10 5 2677.0 2 100.0 0.4 99.9 100.0 15 0.1 0.3 15 1 0.7
n10I 10 5 3783.0 1 163.5 0.7 90.1 93.1 24 0.3 0.5 24 3 1.3
n10j 10 5 3580.0 2 100.0 0.5 97.3 99.2 54 0.2 0.4 54 3 1.5
n10J 10 5 3604.0 3 100.0 0.7 82.8 93.8 51 0.2 0.4 62 113 4.3

n20A 20 5 5200.0 3 100.0 2.0 96.9 99.5 97 0.8 1.1 97 5 7.1
n20B 20 5 5552.0 3 117.5 3.5 88.0 94.8 100 1.2 1.6 233 1723 325.4
n20C 20 5 6740.0 3 122.7 5.5 93.4 97.2 352 1.7 2.1 476 1339 332.8
n20D 20 5 6745.0 3 100.8 2.3 95.8 97.2 186 0.7 1.2 296 465 82.1
n20E 20 5 6691.0 3 108.1 3.7 90.9 98.4 299 1.4 2.0 366 627 151.6
n20F 20 5 5930.0 4 103.1 3.9 92.9 94.4 102 1.7 1.7 158 373 71.6
n20G 20 5 6070.0 3 108.5 3.5 90.2 96.7 117 1.3 1.6 188 729 130.6
n20H 20 5 6886.0 3 134.6 7.7 89.3 91.3 240 2.2 1.4 522 3671 919.9
n20I 20 5 5724.0 3 113.6 3.9 88.9 94.0 202 1.2 1.3 413 3545 1512.3
n20J 20 5 5290.0 3 151.6 3.3 87.8 91.2 340 0.7 0.9 471 3223 467.0

n30A 30 5 7491.0 4 119.1 40.5 95.7 97.9 344 27.1 8.5 514 2437 1951.7
n30B 30 5 7446.0 4 136.8 18.1 89.4 96.3 575 8.0 4.6 821 1289 704.0
n30C 30 5 9096.0 5 100.0 33.9 77.2 81.3 431 18.0 6.9 1492 13481 10800.0
n30D 30 5 9114.0 5 100.0 29.1 74.3 77.3 654 15.5 6.9 1160 15117 10800.0
n30E 30 5 7454.0 4 101.6 12.7 88.2 94.1 240 6.4 4.7 531 14787 10730.9
n30F 30 5 8541.0 5 100.0 73.6 80.5 84.5 366 53.7 6.8 1308 11799 10800.0
n30G 30 5 10209.0 5 100.0 29.2 88.8 93.4 961 13.8 6.0 2029 11503 10800.0
n30H 30 5 8277.0 4 100.0 26.1 82.1 84.9 408 12.8 7.0 718 12059 10800.0
n30I 30 6 8587.0 6 100.0 10.3 75.5 76.9 197 4.6 3.8 665 17733 10800.0
n30J 30 5 9116.0 5 100.0 52.7 71.7 74.4 507 24.8 5.2 1339 15049 10800.0

n40A 40 8 11640.0 8 100.0 59.7 70.2 74.1 764 24.6 10.3 1402 11369 10800.0
n40B 40 8 10456.0 6 100.0 66.1 70.1 73.1 587 20.3 12.3 1452 7783 10800.0
n40C 40 8 8588.0 5 123.6 32.6 94.6 98.2 520 12.1 8.1 825 11301 10800.0
n40D 40 8 10174.0 5 100.0 43.7 83.1 87.9 581 12.8 12.0 984 5615 10800.0
n40E 40 8 12328.0 8 100.0 41.0 59.4 63.6 783 8.7 7.5 1585 8969 10800.0
n40F 40 8 10972.0 7 100.0 47.9 76.9 80.9 623 19.0 11.3 1529 7269 10800.0
n40G 40 8 12933.0 7 100.0 87.1 67.3 69.3 705 26.0 14.3 1203 6721 10800.0
n40H 40 8 11816.0 7 100.0 110.4 69.1 70.6 708 48.8 12.7 1282 9221 10800.0
n40I 40 8 11072.0 7 100.0 75.0 78.3 83.1 569 30.7 7.8 1413 11667 10800.0
n40J 40 8 10418.0 6 100.0 24.7 70.6 73.9 424 8.0 6.9 1053 9539 10800.0
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Table EC.7 Detailed results on set SB with Q= 10 and T = 7200

Name n |K| z∗ rt %UB tUB %LB %LBr cutr tPA tr cut node t

n10a 10 5 3484.0 1 110.2 0.3 90.0 100.0 58 0.7 1.0 58 3 1.4
n10A 10 5 2994.0 1 100.0 0.4 96.2 100.0 28 0.3 0.6 28 1 1.4
n10b 10 5 3122.0 1 100.0 0.4 86.4 100.0 24 0.7 1.0 24 1 1.4
n10B 10 5 3671.0 1 100.0 1.1 96.2 100.0 63 0.5 0.8 63 1 2.1
n10c 10 5 4226.0 1 100.0 0.6 98.0 100.0 16 0.2 0.5 16 1 1.2
n10C 10 5 3380.0 1 122.5 1.6 83.9 97.8 122 0.8 1.2 133 29 16.8
n10d 10 5 4238.0 1 100.0 0.9 89.0 100.0 24 0.4 0.7 24 1 1.8
n10D 10 5 3071.0 1 100.0 1.0 79.3 100.0 80 0.9 1.3 80 1 2.5
n10e 10 5 3816.0 1 100.0 0.1 88.8 100.0 60 0.4 0.7 60 1 0.8
n10E 10 5 4828.0 1 100.0 0.7 90.7 99.9 88 0.6 1.0 88 3 1.6
n10f 10 5 2996.0 1 166.3 2.1 83.9 98.0 65 0.9 1.2 66 13 20.7

n10F 10 5 3758.0 1 100.0 0.9 95.1 100.0 44 0.4 0.7 44 1 1.7
n10g 10 5 3685.0 1 113.4 1.3 87.1 94.2 54 0.5 0.8 58 61 5.0

n10G 10 5 3325.0 1 100.0 0.7 96.0 100.0 12 0.3 0.5 12 1 1.3
n10h 10 5 3960.0 1 117.8 0.5 91.7 99.9 48 0.4 0.7 48 3 1.5
n10H 10 5 3813.0 1 100.8 2.0 79.8 95.1 48 1.5 2.0 69 235 27.2
n10i 10 5 2390.0 1 100.0 0.9 96.5 100.0 25 0.4 0.7 25 1 1.9
n10I 10 5 3287.0 1 250.7 1.6 90.7 97.4 30 0.8 1.1 31 5 3.0
n10j 10 5 3249.0 1 119.9 1.0 98.0 99.1 20 0.5 0.7 20 9 1.9
n10J 10 5 3060.0 1 100.0 0.6 71.6 100.0 31 0.2 0.5 31 1 1.4

n20A 20 5 4815.0 2 111.4 7.6 90.1 97.6 240 2.0 2.9 278 339 113.0
n20B 20 5 4992.0 2 111.2 9.8 83.1 96.5 188 4.7 5.7 194 85 41.1
n20C 20 5 6089.0 2 100.4 5.3 93.8 99.5 699 12.0 14.3 702 5 21.5
n20D 20 5 6149.0 2 105.2 10.0 94.1 99.2 316 3.9 5.1 321 23 31.2
n20E 20 5 6343.0 2 104.1 37.9 88.8 99.1 683 11.1 13.2 692 75 196.6
n20F 20 5 4973.0 2 126.7 9.4 93.7 97.1 407 2.5 3.6 421 141 78.0
n20G 20 5 5364.0 2 139.9 18.6 87.1 97.6 303 5.4 6.4 311 17 110.7
n20H 20 5 5847.0 2 117.2 19.4 87.1 95.5 426 4.9 6.1 533 933 924.3
n20I 20 5 4818.0 2 116.1 15.4 86.6 97.2 386 4.4 5.6 442 283 375.7
n20J 20 5 4402.0 2 134.6 3.7 91.5 96.6 140 1.3 2.0 203 49 121.0

n30A 30 5 8069.0 4 100.0 91.1 73.7 79.0 1559 29.7 33.1 1751 2157 10800.0
n30B 30 5 7645.0 4 100.0 83.8 78.0 84.1 1384 28.6 33.7 1419 519 10800.0
n30C 30 5 8326.0 4 100.0 122.8 70.2 77.1 867 21.3 24.3 1122 1127 10800.0
n30D 30 5 7654.0 3 100.0 108.0 71.5 79.9 973 22.3 25.4 1346 841 10800.0
n30E 30 5 7216.0 3 100.0 53.5 73.3 82.5 534 19.2 21.8 726 1353 10800.0
n30F 30 5 6310.0 3 117.1 29.6 88.4 95.5 398 11.6 13.1 692 4099 10800.0
n30G 30 5 9037.0 2 116.4 111.6 90.4 98.5 1318 41.4 47.1 1764 357 10800.0
n30H 30 5 6194.0 2 119.5 76.4 91.3 96.6 531 28.5 30.3 669 359 10800.0
n30I 30 5 5975.0 3 100.0 43.6 82.4 90.0 551 10.6 12.7 1022 3143 10800.0
n30J 30 5 5984.0 2 103.1 63.4 92.5 98.6 502 17.7 19.9 549 133 3383.8

n40A 40 8 9413.0 5 100.0 134.0 72.4 76.6 1192 29.7 34.2 1375 441 10800.0
n40B 40 8 7295.0 3 100.0 147.7 79.3 85.5 664 43.7 47.3 940 1629 10800.0
n40C 40 8 7901.0 4 100.0 138.5 87.0 93.5 1149 59.8 65.2 1559 1265 10800.0
n40D 40 9 10391.0 4 100.0 358.0 70.2 77.2 1093 117.1 125.7 1159 551 10800.0
n40E 40 8 9677.0 5 100.0 193.7 59.5 68.0 990 42.5 46.4 1361 1591 10800.0
n40F 40 8 9218.0 4 100.0 148.7 73.3 80.0 1101 47.7 51.4 1356 707 10800.0
n40G 40 8 8415.0 4 100.0 198.8 86.2 90.3 876 55.4 57.6 1031 817 10800.0
n40H 40 8 9239.0 5 100.0 124.6 71.0 73.9 1249 26.5 29.8 1436 1539 10800.0
n40I 40 8 9089.0 4 100.0 100.9 74.2 81.3 699 32.5 34.8 1212 761 10800.0
n40J 40 8 10075.0 5 100.0 202.2 57.8 64.3 866 55.8 58.6 1254 1963 10800.0
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Table EC.8 Detailed results on set SC with |K|= 8 and T = 10

Name n Q z∗ rt %UB tUB %LB %LBr cutr tPA tr cut node t

1Bari30 13 30 13000.0 2 100.0 1.4 92.5 95.8 22 0.6 0.8 27 55 16.3
2Bari20 13 20 13000.0 2 100.0 1.6 92.5 98.4 28 0.8 1.0 28 9 4.3
3Bari10 13 10 14200.0 2 100.0 1.0 95.4 100.0 52 0.3 0.6 52 1 2.2

4ReggioEmilia30 14 30 15800.0 2 107.0 1.2 91.7 92.2 21 0.6 0.8 24 93 13.0
5ReggioEmilia20 14 20 15800.0 2 100.0 1.3 95.3 99.9 61 0.5 0.8 61 1 2.2
6ReggioEmilia10 14 10 20600.0 2 104.9 1.5 93.8 99.0 185 0.4 0.8 190 27 2.6

7Bergamo30 15 30 11300.0 3 100.0 1.5 95.4 100.0 32 0.6 0.8 32 1 2.6
8Bergamo20 15 20 11300.0 3 100.0 0.8 97.8 100.0 44 0.3 0.4 44 1 1.6
9Bergamo12 15 12 11600.0 3 100.0 0.7 98.6 100.0 15 0.1 0.3 15 1 1.1
10Parma30 15 30 24100.0 2 100.0 1.3 98.6 100.0 6 0.6 0.9 6 1 2.3
11Parma20 15 20 24100.0 2 100.0 1.1 98.7 100.0 4 0.6 0.8 4 1 2.2
12Parma10 15 10 24100.0 2 100.0 0.9 100.0 100.0 0 0.3 0.6 0 1 1.5

13Treviso30 18 30 24138.0 3 107.9 1.7 91.5 96.9 22 0.7 0.8 33 99 13.8
14Treviso20 18 20 24138.0 3 107.9 2.4 91.5 96.9 21 0.9 1.2 32 93 16.8
15Treviso10 18 10 24138.0 3 117.8 1.6 92.4 96.9 19 0.6 0.8 37 105 9.5

16LaSpezia30 20 30 19298.0 3 107.5 2.8 92.1 93.5 40 1.0 1.1 205 5441 2148.3
17LaSpezia20 20 20 19298.0 3 107.5 2.5 92.1 93.5 40 0.8 1.0 201 5371 1970.6
18LaSpezia10 20 10 19409.0 3 114.3 2.5 93.1 94.5 55 0.8 1.1 191 3487 539.7

19BuenosAires30 21 30 57020.0 3 103.5 3.9 95.9 98.3 302 0.8 1.2 517 1001 227.6
20BuenosAires20 21 20 64641.0 3 103.0 3.2 97.5 99.1 996 0.5 1.0 2570 585 332.2

21Ottawa30 21 30 17475.0 3 106.5 2.7 97.5 97.5 22 1.2 1.3 22 13 5.7
22Ottawa20 21 20 17475.0 3 106.5 2.4 97.5 97.5 22 0.9 1.1 22 13 5.4
23Ottawa10 21 10 17475.0 3 102.8 1.8 97.5 97.6 29 0.6 0.8 29 13 3.1

24SanAntonio30 23 30 19821.0 3 100.0 3.0 93.3 95.8 82 1.0 1.1 103 369 231.7
25SanAntonio20 23 20 19877.0 3 105.8 1.9 95.5 97.4 98 0.6 0.6 123 97 30.1
26SanAntonio10 23 10 24743.0 4 100.7 2.3 94.5 97.5 371 0.4 0.5 462 1299 449.7

27Brescia30 27 30 24300.0 4 105.3 3.3 93.0 96.9 84 0.8 0.8 551 7989 3210.2
28Brescia20 27 20 24600.0 4 106.1 3.1 92.7 96.1 82 0.6 0.7 931 15875 10800.0
29Brescia11 27 11 25700.0 4 102.3 2.5 94.5 98.1 214 0.4 0.5 510 9283 5546.7

30Roma30 28 30 52400.0 4 144.8 3.4 83.2 99.2 279 0.7 0.8 314 297 366.5
31Roma20 28 20 54200.0 4 100.0 5.0 86.3 100.0 477 1.2 1.7 477 1 7.1
32Roma18 28 18 55100.0 4 101.5 3.1 88.6 99.1 487 0.5 0.7 1335 2201 1574.0

33Madison30 28 30 36204.0 4 105.1 9.6 94.0 96.4 44 2.7 2.7 259 3749 3750.6
34Madison20 28 20 36204.0 4 105.1 13.1 94.0 96.4 44 4.3 4.7 171 2289 2202.6
35Madison10 28 10 38358.0 4 115.8 4.1 92.8 96.9 84 0.9 1.0 298 2189 942.6

36Guadalajara30 41 30 52083.0 8 100.0 59.3 82.3 86.9 53 48.0 20.1 472 2669 10800.0
37Guadalajara20 41 20 49196.0 7 100.0 16.0 87.2 92.0 80 6.0 3.9 191 615 10800.0
38Guadalajara11 41 11 50075.0 6 100.0 19.7 87.8 92.1 352 8.3 7.5 477 573 10800.0

39Dublin30 45 30 37357.0 6 100.0 45.1 84.2 85.9 210 21.4 12.4 1032 7789 10800.0
40Dublin20 45 20 36806.0 6 100.0 38.0 86.9 88.4 233 7.7 8.4 747 5989 10800.0
41Dublin11 45 11 41989.0 7 100.0 34.3 86.4 88.0 1890 6.3 8.4 2408 2367 10800.4

42Denver30 51 30 55212.0 7 100.0 320.7 84.9 89.5 412 160.2 42.2 536 1729 10800.0
43Denver20 51 20 52669.0 7 100.0 167.2 89.9 94.1 321 20.5 21.2 396 319 10800.0
44Denver10 51 10 57707.0 8 100.0 323.3 89.9 96.2 881 225.1 78.4 985 1323 10800.0

45RioDeJaneiro30 55 30 136797.0 7 100.0 1864.2 91.3 92.1 331 1641.7 508.8 718 3171 10800.0
46RioDeJaneiro20 55 20 145392.0 8 100.0 1594.6 87.2 88.0 1493 1312.4 290.2 1831 4349 10800.0
47RioDeJaneiro10 55 10 162198.0 8 100.0 690.4 94.3 97.0 9328 414.3 150.5 9546 227 10800.0
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Table EC.9 Detailed results on set SC with |K|= 8 and T = 15

Name n Q z∗ rt %UB tUB %LB %LBr cutr tPA tr cut node t

1Bari30 13 30 12000.0 1 100.0 2.2 94.7 100.0 12 1.3 1.4 12 1 3.7
2Bari20 13 20 12700.0 1 100.0 0.9 90.8 100.0 24 0.5 0.5 24 1 1.5
3Bari10 13 10 14200.0 2 100.0 0.6 95.1 100.0 57 0.1 0.1 57 1 1.1

4ReggioEmilia30 14 30 13100.0 1 100.0 0.9 100.0 100.0 5 0.4 0.4 5 1 1.4
5ReggioEmilia20 14 20 15800.0 2 131.6 0.6 91.6 99.6 81 0.2 0.2 81 9 2.5
6ReggioEmilia10 14 10 20300.0 2 100.0 0.8 94.9 100.0 135 0.3 0.4 135 1 1.3

7Bergamo30 15 30 11300.0 2 100.0 1.1 94.5 100.0 42 0.2 0.2 42 1 1.6
8Bergamo20 15 20 11300.0 3 100.0 0.4 97.3 100.0 38 0.1 0.1 38 1 0.9
9Bergamo12 15 12 11600.0 3 100.0 0.3 98.6 100.0 21 0.0 0.1 21 1 0.7
10Parma30 15 30 24100.0 2 100.0 1.0 97.2 100.0 16 0.3 0.3 16 1 1.4
11Parma20 15 20 24100.0 2 100.0 0.7 97.7 100.0 16 0.2 0.2 16 1 0.9
12Parma10 15 10 24100.0 2 100.0 0.2 100.0 100.0 1 0.0 0.1 1 1 0.3

13Treviso30 18 30 22837.0 2 100.0 4.5 91.2 100.0 31 1.4 1.5 31 1 1.5
14Treviso20 18 20 22837.0 2 100.0 2.6 91.2 100.0 27 1.1 1.2 27 1 3.8
15Treviso10 18 10 22837.0 2 100.0 0.8 93.1 100.0 24 0.3 0.4 24 1 1.3

16LaSpezia30 20 30 17882.0 2 107.1 7.8 91.1 93.7 38 3.9 4.1 622 10583 10800.0
17LaSpezia20 20 20 17874.0 2 107.1 4.3 91.2 93.7 42 1.7 1.8 644 11873 10800.0
18LaSpezia10 20 10 17863.0 2 116.9 2.2 94.3 96.6 58 0.9 1.0 100 809 443.3

19BuenosAires30 21 30 56898.0 3 105.4 2.9 95.2 98.0 309 0.6 0.7 937 3737 2720.6
20BuenosAires20 21 20 64087.0 3 100.0 1.9 98.2 99.9 577 0.5 0.8 598 5 4.1

21Ottawa30 21 30 16198.0 2 107.9 6.7 93.8 94.3 32 2.2 2.3 116 617 702.2
22Ottawa20 21 20 16198.0 2 109.3 5.0 93.8 94.3 32 1.7 1.7 105 487 491.2
23Ottawa10 21 10 16196.0 2 100.0 2.6 94.2 95.9 67 1.0 1.1 88 187 148.2

24SanAntonio30 23 30 17279.0 2 100.0 10.0 92.9 99.2 139 4.1 4.3 140 9 29.7
25SanAntonio20 23 20 17581.0 2 100.0 3.9 97.1 100.0 151 1.5 1.6 151 1 5.8
26SanAntonio10 23 10 23893.0 3 100.0 3.5 97.0 99.9 370 0.9 1.0 370 1 4.7

27Brescia30 27 30 22900.0 3 112.7 11.2 93.3 98.4 78 3.0 3.1 199 491 3061.8
28Brescia20 27 20 23300.0 3 105.2 9.0 93.2 97.6 104 3.3 3.8 343 6221 6753.2
29Brescia11 27 11 25100.0 3 102.0 5.1 93.8 99.0 293 0.9 1.1 471 2813 2535.5

30Roma30 28 30 51800.0 3 106.4 8.5 77.6 99.6 278 2.3 2.7 305 125 464.8
31Roma20 28 20 54200.0 4 100.0 5.3 84.4 100.0 371 1.1 1.4 371 1 7.1
32Roma18 28 18 54800.0 3 103.5 6.3 87.2 99.4 532 0.7 0.9 1627 4741 10800.0

33Madison30 28 30 32407.0 3 107.8 27.4 92.3 95.3 92 8.8 8.9 347 1967 10800.0
34Madison20 28 20 32407.0 3 107.6 15.8 92.3 95.4 91 5.2 5.3 339 2053 7695.5
35Madison10 28 10 34815.0 2 122.7 8.6 90.6 95.6 103 2.5 2.7 525 2197 3579.2

36Guadalajara30 41 30 43867.0 4 101.1 39.9 90.5 96.9 59 14.2 14.2 199 1563 10800.0
37Guadalajara20 41 20 43963.0 4 100.9 30.0 90.8 96.7 70 9.4 9.5 408 2987 10800.0
38Guadalajara11 41 11 44411.0 4 108.5 34.7 93.2 98.6 738 7.3 8.8 856 451 3364.2

39Dublin30 45 30 36032.0 5 100.0 74.2 75.6 77.5 259 10.7 10.9 687 3721 10800.0
40Dublin20 45 20 36841.0 5 100.0 46.0 77.2 79.4 661 7.9 8.7 994 4509 10800.0
41Dublin11 45 11 39408.0 5 100.0 63.5 87.8 90.6 2055 8.8 13.6 2960 1871 10800.0

42Denver30 51 30 50270.0 5 100.0 193.2 84.6 91.6 340 37.8 39.0 426 499 10800.0
43Denver20 51 20 48122.0 5 100.0 127.4 90.5 96.7 486 24.0 25.0 687 1553 10800.0
44Denver10 51 10 53320.0 7 100.0 61.4 90.9 99.8 2276 13.1 17.3 2714 541 10800.0

45RioDeJaneiro30 55 30 119839.0 5 100.0 608.8 85.6 87.6 618 88.7 90.6 751 1013 10800.0
46RioDeJaneiro20 55 20 124209.0 5 100.0 345.4 86.7 89.0 2256 61.3 66.8 2632 1483 10800.0
47RioDeJaneiro10 55 10 156826.0 6 100.0 1495.8 96.1 99.6 15515 191.8 313.7 15528 79 10800.0
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Table EC.10 Detailed results of the pricing algorithms on set SA

EXM pricing algorithm Pricing algorithm based on Casazza et al. (2019)
Name n |K| LB tLP tPA fw fwd bw bwd tLP tPA fw fwd bw bwd

n10a 10 5 3210.46 0.22 0.12 1295 7699 1153 7182 0.25 0.12 10116 179826 3841 68628
n10A 10 5 2920.76 0.07 0.06 1289 7886 800 4615 0.09 0.08 13319 248455 5481 106743
n10b 10 5 2687.58 0.06 0.05 1611 10768 708 4274 0.06 0.05 7421 95630 4787 60123
n10B 10 5 3540.84 0.04 0.03 1096 6971 862 5552 0.08 0.07 13907 295130 6385 130118
n10c 10 5 4183.67 0.04 0.04 1153 7460 716 4586 0.06 0.05 9525 181410 3767 67273
n10C 10 5 2878.65 0.04 0.04 1242 7641 895 5536 0.07 0.06 13383 276098 5247 103073
n10d 10 5 3897.11 0.04 0.03 994 5904 837 5400 0.05 0.04 9599 165563 4193 67251
n10D 10 5 2609.49 0.03 0.03 862 5677 533 3309 0.07 0.06 13227 252539 5442 99873
n10e 10 5 3403.77 0.04 0.03 1300 7867 847 4962 0.07 0.06 13018 279380 5027 114377
n10E 10 5 4489.26 0.03 0.02 1253 7763 829 5005 0.09 0.08 13725 266647 5237 108301
n10f 10 5 2656.90 0.04 0.04 1380 8916 1154 7203 0.04 0.04 10434 147948 4935 63680
n10F 10 5 3662.62 0.05 0.04 1055 6473 1046 6358 0.08 0.07 21457 418085 8588 157857
n10g 10 5 3417.47 0.04 0.04 1336 8495 1026 6297 0.03 0.03 10652 148853 4986 66678
n10G 10 5 3435.92 0.05 0.04 1588 10325 1082 6433 0.06 0.05 14029 255705 8463 145785
n10h 10 5 3683.04 0.02 0.02 728 4769 571 3674 0.06 0.04 11629 256757 5990 129142
n10H 10 5 3196.66 0.04 0.04 1797 12068 922 5400 0.06 0.05 12486 210277 6164 93828
n10i 10 5 2424.54 0.03 0.03 1128 7155 843 5213 0.05 0.04 11756 248329 5727 114724
n10I 10 5 3325.31 0.04 0.04 1423 8685 936 5687 0.06 0.05 15879 270575 8381 120506
n10j 10 5 3247.21 0.05 0.03 1422 8486 1350 8644 0.04 0.03 11742 197631 5351 79767
n10J 10 5 2481.71 0.02 0.02 1032 5650 715 3775 0.06 0.06 14687 276466 7171 132925

n20A 20 5 4536.44 0.08 0.08 2517 30782 1929 22382 0.19 0.17 44854 1484500 13808 454721
n20B 20 5 4531.57 0.13 0.10 3702 48873 2588 31230 0.19 0.17 35617 1029506 20913 595797
n20C 20 5 5984.86 0.14 0.13 3813 56161 2887 41968 0.29 0.26 56568 2245901 17478 671402
n20D 20 5 6003.32 0.10 0.09 2623 36310 2003 27690 0.23 0.21 54882 2262819 16502 637700
n20E 20 5 5753.30 0.08 0.07 2668 33141 1886 23269 0.31 0.29 70617 2881158 17137 702416
n20F 20 5 4839.56 0.18 0.17 4108 59754 3143 45840 0.27 0.25 47092 1588739 16122 531393
n20G 20 5 4982.84 0.11 0.10 3753 51035 2844 37447 0.31 0.30 53745 1866876 20101 679978
n20H 20 5 5325.79 0.12 0.11 3973 52095 2260 27363 0.23 0.21 43700 1563580 19655 666687
n20I 20 5 4440.42 0.11 0.10 3398 45527 2909 37963 0.28 0.26 57772 2295937 22516 810477
n20J 20 5 4184.48 0.05 0.05 2273 26140 1698 18294 0.16 0.15 39773 1245442 14243 418189

n30A 30 5 6349.58 1.71 1.62 56385 1426499 6406 134728 3.53 3.13 674153 30257204 67189 3300935
n30B 30 5 6330.89 0.27 0.22 7745 146530 4611 82087 0.89 0.80 130008 5974514 38371 1680991
n30C 30 5 6286.25 0.37 0.35 10154 218637 6581 132497 1.56 1.49 240993 12669772 62448 3285250
n30D 30 5 6205.94 0.36 0.33 10744 239889 5613 116114 1.29 1.23 173304 9847364 60720 2959403
n30E 30 5 5904.85 0.26 0.24 8251 160423 6124 112176 1.10 1.06 163593 8165108 55175 2530636
n30F 30 5 5934.98 0.48 0.45 14419 337181 6904 143155 1.33 1.26 194338 9641139 63077 2903879
n30G 30 5 8583.22 0.29 0.27 9805 209045 5063 99174 1.57 1.47 229395 12397868 52668 2784856
n30H 30 5 6144.99 0.30 0.28 10497 224716 6127 117241 1.14 1.09 169089 8154504 54269 2490230
n30I 30 5 5463.43 0.30 0.27 10430 219272 6274 117921 1.11 1.06 176453 9357450 58018 2964312
n30J 30 5 6188.78 0.31 0.29 10456 223443 6168 119002 0.82 0.77 148975 6980344 50911 2440887

n40A 40 8 7461.64 0.68 0.65 17652 527935 12711 358630 3.80 3.49 366716 27379934 116736 7955340
n40B 40 8 6776.35 0.74 0.71 20899 598727 14351 386624 2.76 2.63 279112 17943842 107500 6347114
n40C 40 8 7406.27 0.51 0.48 14760 399686 9593 248351 2.35 2.23 264213 18144923 70780 4709741
n40D 40 8 7957.55 0.54 0.51 14140 395622 10712 281881 2.11 1.97 237273 16154355 81492 5157916
n40E 40 8 6633.23 0.25 0.24 8010 208214 5212 125564 1.62 1.54 207328 13982110 81558 4851519
n40F 40 8 7375.05 0.65 0.62 16476 477856 12356 329648 2.30 2.19 272667 18757723 85861 5394279
n40G 40 8 8118.96 0.66 0.64 17376 531241 12127 345382 2.23 2.13 257001 16443458 86367 5484495
n40H 40 8 7386.82 0.69 0.66 18667 570597 11026 306135 2.35 2.23 268078 17299706 101216 6273152
n40I 40 8 7417.07 0.50 0.47 12483 360401 8509 223161 2.17 2.08 281657 19028251 77194 4929908
n40J 40 8 6842.06 0.45 0.43 13259 374194 8015 212394 1.94 1.85 261514 16575702 80910 5112481
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Table EC.11 Detailed results of the pricing algorithms on set SA-3

EXM pricing algorithm Pricing algorithm based on Casazza et al. (2019)
Name n |K| LB tLP tPA fw fwd bw bwd tLP tPA fw fwd bw bwd

n10a 10 5 3210.46 0.02 0.02 1199 7386 990 6133 0.66 0.51 75532 4059582 24419 1256555
n10A 10 5 2920.76 0.02 0.01 1060 6708 648 3856 0.43 0.41 81000 4058653 30545 1897964
n10b 10 5 2687.58 0.02 0.02 1448 9340 733 4431 0.24 0.22 44033 1678240 26549 984305
n10B 10 5 3540.84 0.02 0.01 970 6308 702 4417 0.48 0.47 95236 5825666 41190 2586838
n10c 10 5 4183.67 0.02 0.01 967 6532 639 4027 0.47 0.45 93910 5146221 20951 1356481
n10C 10 5 2878.65 0.01 0.01 905 5602 623 4032 0.53 0.51 90407 5247109 34566 1975468
n10d 10 5 3897.11 0.02 0.01 1061 6439 920 6052 0.38 0.37 77417 3945299 13157 710748
n10D 10 5 2609.49 0.02 0.01 1082 6863 745 4552 0.47 0.46 102084 5496797 31631 1716018
n10e 10 5 3403.77 0.02 0.02 1211 7523 815 4822 0.45 0.44 79163 4648446 27979 1912797
n10E 10 5 4489.26 0.02 0.01 1149 6955 736 4398 0.38 0.37 82734 4526282 25140 1465485
n10f 10 5 2656.90 0.03 0.02 1632 10352 1429 8673 0.35 0.34 88298 3493301 28483 1038123
n10F 10 5 3662.62 0.02 0.02 1151 7080 1185 7314 0.72 0.71 138380 8332747 46622 2396069
n10g 10 5 3417.47 0.02 0.02 1301 8050 831 5246 0.26 0.23 72538 2929255 31682 1252324
n10G 10 5 3435.92 0.02 0.02 1400 9066 981 5769 0.45 0.44 95400 4584860 48731 2340879
n10h 10 5 3683.04 0.01 0.01 818 5200 626 4048 0.55 0.54 94824 6436342 43833 2825061
n10H 10 5 3196.66 0.02 0.02 1881 12641 936 5511 0.33 0.32 87921 3880680 45893 2026163
n10i 10 5 2424.54 0.02 0.01 1183 7595 864 5261 0.45 0.44 87300 5057647 39376 2090985
n10I 10 5 3325.31 0.02 0.02 1603 10212 979 6196 0.52 0.51 123629 6148698 49886 1994902
n10j 10 5 3247.21 0.02 0.02 1321 8176 1345 8720 0.26 0.25 73333 3599945 23962 1053735
n10J 10 5 2481.71 0.01 0.01 796 4306 562 3021 0.44 0.43 107725 5591096 44922 2548576

n20A 20 5 4536.44 0.06 0.05 2737 32882 2145 25037 3.32 3.28 443912 43121024 124897 11695197
n20B 20 5 4531.57 0.09 0.08 3922 51239 2709 32940 2.64 2.58 307507 25273854 168025 13241426
n20C 20 5 5984.86 0.13 0.12 3989 58026 3020 43086 4.95 4.87 565810 63771825 114221 13001572
n20D 20 5 6003.32 0.07 0.06 2689 37956 2163 29695 5.92 5.84 578622 69047130 135188 14708974
n20E 20 5 5753.30 0.07 0.06 2923 36847 1903 23505 5.21 5.15 686398 83361354 125350 14754613
n20F 20 5 4839.56 0.10 0.09 4155 59390 3658 52231 3.81 3.76 443544 44722604 152581 14203382
n20G 20 5 4982.84 0.08 0.07 4047 54324 3217 42035 4.17 4.13 536860 52707442 177177 17278303
n20H 20 5 5325.79 0.07 0.06 3532 45894 2072 25121 3.24 3.19 374961 38549588 156528 14992064
n20I 20 5 4440.42 0.07 0.07 3328 44704 2607 34185 5.14 5.10 572084 68727871 201839 20558300
n20J 20 5 4184.48 0.04 0.04 2143 24359 1489 16151 2.07 2.04 361871 32684808 97298 7832545

n30A 30 5 6349.58 1.19 1.13 46855 1179426 6052 132026 42.08 41.11 7518902 964230906 439074 62481993
n30B 30 5 6330.89 0.21 0.18 7002 132197 4389 78259 8.41 8.26 1469045 182658863 319257 38852489
n30C 30 5 6286.25 0.32 0.29 9675 212354 5699 114102 15.29 15.15 2355257 355641230 498665 75243238
n30D 30 5 6205.94 0.32 0.30 10316 229184 5475 114658 11.86 11.74 1607706 269818564 515406 71030674
n30E 30 5 5904.85 0.25 0.23 7987 156519 5355 97746 10.13 10.05 1596974 235981030 431013 57006355
n30F 30 5 5934.98 0.46 0.43 13708 320136 6365 133788 11.68 11.56 1701316 258495307 511701 67573123
n30G 30 5 8583.22 0.29 0.27 9517 202617 5031 98396 12.72 12.59 1932139 300326473 371877 56362814
n30H 30 5 6144.99 0.32 0.30 10801 230428 5794 113199 9.71 9.62 1547122 217369106 459550 59098578
n30I 30 5 5463.43 0.30 0.27 10299 217349 6051 113593 11.37 11.26 1685890 254942114 486980 71570948
n30J 30 5 6188.78 0.29 0.27 9814 207544 6262 120676 8.62 8.53 1421050 188666310 404595 52421910

n40A 40 8 7461.64 0.73 0.70 17656 533450 12360 348809 32.09 31.90 3514200 782776318 1063877 206802523
n40B 40 8 6776.35 0.73 0.70 19495 563717 13126 351033 22.18 21.98 2601061 489332814 908405 146955703
n40C 40 8 7406.27 0.59 0.56 16273 434869 11233 292509 21.63 21.43 2585768 499430889 597004 113821299
n40D 40 8 7957.55 0.60 0.57 15459 428859 11699 316665 20.91 20.72 2387709 485151456 659014 117801454
n40E 40 8 6633.23 0.32 0.30 9851 252473 6772 163729 17.82 17.70 2119375 413324121 746104 125654665
n40F 40 8 7375.05 0.68 0.65 16628 482509 12205 329692 25.17 24.96 2940877 596251755 835060 149749272
n40G 40 8 8118.96 0.72 0.69 18442 554633 13638 386288 22.20 21.99 2557231 483219065 691324 128098557
n40H 40 8 7386.82 0.66 0.64 18278 555759 11512 324029 20.42 20.23 2255555 430892215 803073 141456285
n40I 40 8 7417.07 0.56 0.53 13459 385454 8880 235315 23.79 23.61 2809435 568052227 795548 142507998
n40J 40 8 6842.06 0.54 0.51 14167 397045 9328 245420 20.76 20.60 2683575 490000582 718190 128810720
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Table EC.12 Detailed results of the pricing algorithms on set SA-6

EXM pricing algorithm Pricing algorithm based on Casazza et al. (2019)
Name n |K| LB tLP tPA fw fwd bw bwd tLP tPA fw fwd bw bwd

n10a 10 5 3210.46 0.02 0.02 1199 7386 990 6133 2.09 1.98 371406 40542274 124737 11888301
n10A 10 5 2920.76 0.02 0.01 1066 6756 673 4020 2.11 2.08 467643 44498879 145279 17153340
n10b 10 5 2687.58 0.02 0.02 1448 9340 733 4431 0.67 0.66 180840 12666001 95102 7162670
n10B 10 5 3540.84 0.01 0.01 996 6294 763 4750 2.21 2.19 517395 61256157 156652 19937020
n10c 10 5 4183.67 0.01 0.01 866 5862 524 3300 1.20 1.19 341024 34911924 51133 6851819
n10C 10 5 2878.65 0.01 0.01 905 5602 623 4032 1.88 1.87 414631 47390098 169011 18211082
n10d 10 5 3897.11 0.02 0.01 1061 6439 920 6052 1.32 1.31 413892 43614881 58129 6156092
n10D 10 5 2609.49 0.02 0.01 1082 6863 745 4552 2.11 2.08 508548 57077431 156086 17024103
n10e 10 5 3403.77 0.02 0.02 1348 8292 911 5344 1.74 1.73 383098 43824152 114381 16366554
n10E 10 5 4489.26 0.02 0.02 1149 6955 736 4398 1.14 1.13 253239 28461209 96761 11047408
n10f 10 5 2656.90 0.03 0.02 1632 10352 1429 8673 1.17 1.16 362258 26730911 97217 6648712
n10F 10 5 3662.62 0.02 0.02 1157 7118 1179 7320 2.93 2.92 676891 81624506 186770 19161461
n10g 10 5 3417.47 0.02 0.02 1301 8050 831 5246 1.09 1.08 292394 23491734 137540 10819490
n10G 10 5 3435.92 0.02 0.02 1400 9066 981 5769 1.61 1.60 332010 32062394 190918 17742455
n10h 10 5 3683.04 0.01 0.01 802 5235 647 4135 2.47 2.46 475882 63798680 213089 26542433
n10H 10 5 3196.66 0.03 0.02 2080 13673 1022 5932 1.26 1.25 306020 26624320 156276 14065420
n10i 10 5 2424.54 0.02 0.01 1183 7595 864 5261 1.61 1.60 317851 37815773 180212 18832782
n10I 10 5 3325.31 0.02 0.02 1586 10256 991 6256 2.50 2.49 653950 61982250 250065 19032795
n10j 10 5 3247.21 0.03 0.02 1614 9846 1813 11632 1.26 1.25 358598 34861534 83481 7079544
n10J 10 5 2481.71 0.01 0.01 892 4840 622 3318 1.77 1.76 457866 43501282 162791 17378181

n20A 20 5 4536.44 0.06 0.05 2511 30413 1954 23317 13.63 13.58 1954281 374413216 736444 129093002
n20B 20 5 4531.57 0.07 0.06 3241 42671 2067 25137 9.07 9.03 1206584 194409604 754394 111768439
n20C 20 5 5984.86 0.10 0.09 3907 56255 3000 42553 17.79 17.75 2054466 512758945 666782 139793697
n20D 20 5 6003.32 0.09 0.08 2943 41268 2299 31961 17.30 17.25 2218089 536815704 689631 137620298
n20E 20 5 5753.30 0.07 0.06 2923 36847 1903 23505 19.81 19.76 2525020 632405300 624334 134528299
n20F 20 5 4839.56 0.11 0.10 4008 56673 3417 48990 14.56 14.49 1628667 335509028 1011548 179806680
n20G 20 5 4982.84 0.10 0.09 4375 58953 3524 46335 16.65 16.61 2307276 442336320 818004 155477742
n20H 20 5 5325.79 0.07 0.07 3532 46100 2114 25506 16.59 16.52 2057291 426082551 1007072 182476983
n20I 20 5 4440.42 0.08 0.07 3585 48107 2852 37032 22.34 22.29 2713854 645890027 925080 181013535
n20J 20 5 4184.48 0.05 0.04 2278 25827 1691 18112 9.93 9.90 1547675 282368250 530279 77564151

n30A 30 5 6349.58 1.17 1.11 45430 1139947 7095 151918 98.73 98.44 8775286 2272313750 4664670 1029955309
n30B 30 5 6330.89 0.24 0.22 8440 160136 5035 89859 45.85 45.71 4021344 1050025366 2563835 564196813
n30C 30 5 6286.25 0.33 0.31 9768 212194 5981 119887 84.03 83.83 6736015 2022433178 3545134 1003158766
n30D 30 5 6205.94 0.34 0.32 10535 232631 5964 124916 72.10 71.95 5563536 1840029345 3041073 751638437
n30E 30 5 5904.85 0.22 0.21 7715 152440 4992 91180 76.64 76.48 6395636 1921725290 3352924 847497844
n30F 30 5 5934.98 0.44 0.42 13761 326110 6094 124540 82.43 82.27 7104422 2196317697 2606171 648366230
n30G 30 5 8583.22 0.33 0.31 10614 226142 5563 108166 75.35 75.10 5600324 1741729741 3765603 1000866719
n30H 30 5 6144.99 0.34 0.32 11630 247634 6935 134016 72.54 72.39 6572720 1874637674 3085570 751862301
n30I 30 5 5463.43 0.29 0.27 9882 208117 6048 114880 68.41 68.25 4922154 1556487024 3509424 940729474
n30J 30 5 6188.78 0.34 0.32 11339 241498 6345 126379 50.12 49.89 4064188 947823047 3428706 751084777

n40A 40 8 7461.64 0.70 0.67 17626 534110 12170 343819 2259.45 2256.01 151783977 65652120033 28085178 8335412613
n40B 40 8 6776.35 0.70 0.67 19468 562248 12771 343776 201.45 200.96 9906798 3762100065 9402233 2661028329
n40C 40 8 7406.27 0.56 0.53 15648 417915 11141 280670 152.75 152.39 9667727 3680229149 3863903 1161050742
n40D 40 8 7957.55 0.56 0.54 14915 412596 11448 306827 694.42 692.56 53004521 19535187422 5647654 1577969886
n40E 40 8 6633.23 0.30 0.28 9542 239527 7119 172308 153.90 153.57 9395190 3254992231 5962875 1709081626
n40F 40 8 7375.05 0.64 0.62 15792 454018 12107 330120 200.36 200.03 10418687 4282175711 6837823 2350569860
n40G 40 8 8118.96 0.83 0.79 20546 624980 14244 404436 132.15 131.78 9233043 3342745139 2592672 716269179
n40H 40 8 7386.82 0.77 0.74 20219 614727 12984 362466 133.51 133.22 6664657 2480670388 5642952 1791161737
n40I 40 8 7417.07 0.60 0.57 14503 413247 10510 278373 410.15 409.56 31211706 11855352728 4214124 1268010326
n40J 40 8 6842.06 0.48 0.46 14211 396870 9215 241618 137.52 137.22 7368882 2836579014 5506670 1807842865
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