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Abstract

BACKGROUND: The evolution of the fungal communities associated with durum wheat was assessed using different diagnostic
approaches. Durumwheat grain samples were collected in three different Italian cultivationmacro-areas (north, center and south). Fun-
gal isolationwas realized by potato dextrose agar (PDA) and by deep-freezing blotter (DFB). Identification of Fusarium isolates obtained
fromPDAwas achievedbypartial tef1⊍ sequencing (PDA + tef1⊍), while thoseobtained fromDFBwere identified from theirmorpholog-
ical characteristics (DFB + mc). The fungal biomass of eight Fusarium species was quantified in grains by quantitative polymerase chain
reaction (qPCR). Fungal secondary metabolites were analyzed in grains by liquid chromatography–tandemmass spectrometry (LC–MS/
MS). Correlations between Fusarium detection techniques (PDA + tef1⊍; DFB + mc and qPCR) and mycotoxins in grains were assessed.

RESULTS: Alternaria and Fusarium showed the highest incidence among the fungal genera developed from grains. Within the
Fusarium community, PDA + tef1⊍ highlighted that F. avenaceum and F. graminearum were the most represented members,
while, DFB + mc detected a high presence of F. proliferatum. Alternaria and Fusarium mycotoxins, principally enniatins, were
particularly present in the grain harvested in central Italy. Deoxynivalenol was mainly detected in northern-central Italy.

CONCLUSIONS: The adoption of the different diagnostic techniques of Fusarium detection highlighted that, for some species, qPCR
was the best method of predicting their mycotoxin contamination in grains.
© 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of
Chemical Industry.

Supporting information may be found in the online version of this article.
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INTRODUCTION
Durum wheat is one of the most important cultivated cereals in
the EU1 and, among EU countries, Italy is one of the top pro-
ducers.2 Italy is also the main pasta producer and exporter in
the world, so a focus on the quality of the rawmaterial is impor-
tant in the Italian durum wheat supply chain.3 The majority of
Italian durum wheat production comes from southern regions,
an area traditionally suited for growing durum wheat.4 How-
ever, lately, durum wheat cultivation has expanded to the
central-northern regions,4 resulting in higher production but,
at the same time, increasing the risk of fungal diseases.5,6
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These macro-areas are characterized by higher humidity,
which promotes fungal development. This can reduce grain
quality.7-10

A wide range of fungal communities are associated with wheat
grains.11 Some members of these communities can biosynthesize
mycotoxins – secondary metabolites that highly dangerous to
human health. Among them, the genera Alternaria and Fusarium
are usually the main components of grain mycobiota in many cul-
tivation areas.7,12,13

Many Fusarium species are associated with Fusarium head
blight (FHB), a wheat disease resulting in yield losses and qual-
ity reduction due to grain mycotoxin contamination.14,15 The
distribution of Fusarium species is influenced by climatic conditions
(especially during anthesis), agricultural practices, fungicide appli-
cation, and cultivar susceptibility.5,6,16-25 These aspects give dyna-
mism to the Fusarium “consortium” associated with grain.7,26,27

The main FHB causal agent is the aggressive species Fusarium
graminearum sensu stricto (hereafter F. graminearum), a member
of the Graminearum clade of the Fusarium sambucinum species
complex (FSAMSC).21,28-31 The Fusarium culmorum species
(belonging to the Graminearum clade of FSAMSC) is considered
another aggressive FHB causal agent, even if its distribution is
not as extensive as that of F. graminearum.32 In recent decades,
an increased incidence of less aggressive species, such as Fusar-
ium poae (Sambucinum clade of FSAMC), members of the Fusar-
ium tricinctum species complex (FTSC), Fusarium proliferatum
(a member of the Fusarium fujikuroi species complex, FFSC), or
members of the Fusarium incarnatum-equiseti species complex
(FIESC), was detected in many cultivation areas, including
Italy.7,21,22,33-44 Finally, within FSAMC, other species such as Fusar-
ium sporotrichioides and Fusarium langsethiae (Sporotrichioides
clade) are considered important members of the community.45

Among the secondary metabolites biosynthesized by Fusarium
species, type A (for example, T-2 and HT-2 toxin) and B [for example
deoxynivalenol (DON) and nivalenol (NIV)] trichothecenes, are the
most monitored for their occurrence and toxicity. In particular,
DON (mainly produced by F. graminearum and F. culmorum) is con-
sidered the most common wheat mycotoxin and it is the cause of
cytotoxicity, immunotoxicity, reproductive toxicity, possible carcino-
genicity, teratogenicity, andmutagenicity in humans and animals.46

For this reason, legal limits for this compound on cereal grains (for
example 1750 μg kg−1 for unprocessed durum wheat) have been
established by the EU.47 For T-2 and HT-2 toxins (mainly produced
by F. sporotrichiodies and F. langsethiae), being characterized by very
high toxicity,48,49 the EU also settled a maximum recommendation
level on cereal grains (for example 100 μg kg−1 for unprocessed
wheat).50 Nivalenol (mainly produced by F. graminearum,
F. culmorum and F. poae), despite not regulated, is another common
contaminant of cereal grains with potential health implications.51

Recently, other secondary metabolites, such as depsipeptides –
enniatins (ENNs) and beauvericin (BEA) – and moniliformin (MON),
mainly produced bymembers of the FTSC, have attracted the atten-
tion of the scientific community both for their potential negative
impact on human health52-54 and for their interaction with the plant
and other Fusarium species.55,56

The constant change of the Fusarium ‘consortium’, and of the
other fungal microorganisms composing the wheat grain myco-
biota, determines the plethora of secondary metabolites that
can accumulate. For this reason, it is essential to monitor the evo-
lution of the fungal community in a certain cultivation area to
assess the risk of mycotoxin contamination.

So far, many surveys have been conducted on durum wheat
grains harvested in Italy.5,7,8,10,22,33,57-60 They have differed in the
extent of the area that was examined (single regions or
selected regions as representatives of cultivation areas), the
observed fungal genera (only Fusarium or also other fungal
microorganisms), the fungal isolation method adopted (artificial
growth media or deep-freezing blotter, DFB), the identification
method of the isolated Fusarium species [morphological, molec-
ular by polymerase chain reaction (PCR) with species-specific
primers or by PCR following the amplification of target gene
regions, the quantification of the Fusarium species in the grains
(by real-time quantitative PCR, qPCR), and in the quantification
of different types, and with different techniques, of secondary
metabolites.
Given this context, the present study aimed to combine and

compare all the different approaches adopted in the previous
studies. Durum wheat samples were collected in three main cul-
tivation macro-areas (north, center, and south). The fungal com-
munities, isolated from kernels with potato dextrose agar (PDA)
or DFB, were determined exclusively by the observation of mor-
phological characteristics. With a particular focus on the Fusar-
ium species, the isolates obtained using the PDA method were
identified by partial translation elongation factor 1⊍ (tef1⊍)
sequencing, whereas those obtained with the DFB method were
identified based on their morphological characteristics (micro-
scopic analysis). The choice of these two approaches was made
to deploy and compare the most commonly adopted method
of ‘fungal isolation + Fusarium identification’ described in the
previous surveys. The fungal biomass of eight Fusarium species
in the kernels was quantified by qPCR. A wide range of fungal
secondary metabolites was analyzed in grains by liquid
chromatography–tandem mass spectrometry (LC–MS/MS).
Finally, for the most important Fusarium species, correlations
between different isolation + Fusarium identification
approaches, qPCR and the accumulation of the most important
secondary metabolites in grains were determined.

MATERIALS AND METHODS
Durum wheat sampling and determination of durum
wheat fungal community
The present survey was carried out on 70 durum wheat sam-
ples collected from 13 Italian regions (Fig. 1). All the samples
were obtained from crops during the 2017–2018 season. Based
on their origin, the samples were grouped in three macro-areas
(north, center, and south Italy), typically characterized by dif-
ferent climatic conditions. Detailed information for each sam-
ple can be found in Table S1 in the supporting information.
After harvest, samples (about 500 g each) were divided into
three representative sub-samples (150 g each): one for myco-
biota determination, one for DNA quantification in the grain
by qPCR of eight Fusarium species associated with FHB, and
one for fungal secondary metabolite quantification in the grain
by LC–MS/MS analysis.
To determine the mycobiota of durum wheat grains, two meth-

odologies were used: (1) fungal isolation on PDA; (2) fungal isola-
tion on DFB.

Fungal isolation on PDA
The fungal community associated with durum wheat grains on
PDA was isolated as described previously.61 After 5 days of
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incubation (22 °C in the dark), the fungal colonies deriving
from kernels were observed both under a stereomicroscope
(SZX9, Olympus, Tokyo, Japan) and with an optical microscope
(Axiophot, Zeiss, Oberkochen, Germany) for genus
identification.

Fungal isolation on DFB
The fungal species associated with durum wheat grains were
isolated using the DFB method62 as described previously.10

After 7 days of incubation, the fungal colonies developed from
every single kernel were observed under a stereomicroscope

Figure 1. Map of Italy showing the 70 sampling locations (tags). Durum wheat samples were ascribed to three macro-areas: north (green tags), center
(red tags) and south (blue tags).
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(SZX9, Olympus) and an optical microscope (Bx41TF, Olympus)
for genus identification.

Identification of Fusarium species developed from durum
wheat grains
To identify the Fusarium species obtained with the PDA or DFB
isolation methods, the two approaches commonly adopted in
previous studies were used as follows: (1) the species obtained
with the PDA method were molecularly identified; (2) the species
obtained with the DFB method were morphologically identified.

Molecular identification of the Fusarium species isolated with the
PDA method
After the observations described above, all the isolates morpho-
logically identified as belonging to the genus Fusarium were
transferred into new plates containing PDA and placed at 22 °C
in the dark. After 15 days, the cultures were assigned to specific
morphotypes based on colony morphology (color and shape)
and on the morphology of reproductive structures observed
under the optical microscope (Axiophot, Zeiss). This selection
resulted in a subset of representative isolates of eachmorphotype
for each durum wheat sample. After obtaining single-spore cul-
tures, the representative isolates were placed into new PDA plates
at 22 °C in the dark for 15 days.
The preparation of isolates for DNA extraction was realized as

described previously,7 while DNA extraction was carried out using
the method already outlined.61 The DNA extracted from Fusarium
isolates was subject to partial tef1⊍ gene amplification with EF1
and EF2 primers63 followed by purification and sequencing car-
ried out by an external service (Genewiz Genomics Europe, Leip-
zig, Germany). The sequences obtained were verified and edited
using Chromatogram Explorer Lite v4.0.0 (Heracle Biosoft Srl
2011, Arges, Romania) and analyzed by comparison with those
deposited in the NCBI Basic Local Alignment Search Tool
(BLAST) database64 andwith those deposited in the FusariumMul-
tilocus Sequence Typing (MLST) database (http://www.
westerdijkinstitute.nl/fusarium/; https://fusarium.mycobank.
org/).65,66 The species identification was based on >99.4%
similarity between the query and reference sequences.67

The abundance of each Fusarium species involved in the Fusar-
ium complex in each of the three investigated macro-areas was
calculated as the total number of isolates belonging to the mor-
photype from which the identified representative isolate was
sub-sampled.

Morphological identification of the Fusarium species isolates
with the DFB method
All the isolates morphologically identified as belonging to the
genus Fusarium were identified based on the morphology of
reproductive structures: shape and size of macroconidia; pres-
ence, absence and shape of microconidia; branching type of con-
idiogenous cells (monophialides or polyphialides); and ability to
produce chlamydospores. The identification was carried out by
direct observation under the optical microscope (Bx41TF, Olym-
pus) or/and after growth on PDA and carnation leaf agar (CLA),
following the methods described previously.68-70 When the iden-
tification could not be realized only by the microscopic observa-
tion, single-spore cultures were also plated on Spezzieller
Nährstoffarmer agar (SNA), on which morphological characteris-
tics were observed as previously described after an incubation
time of 21 days at 24 °C (12 h light).

Fungal biomass quantification of eight Fusarium species in
durum wheat grains by qPCR
DNA was extracted from pure fungal cultures of eight selected
Fusarium spp., and from healthy durum wheat grain to determine
the standard curves for qPCR analyses. In detail, the fungal strains
used to obtain standard curves (Table S27,57,58,61,71) were grown
on PDA for 1 week at 22 °C in the dark and then DNA from their
mycelium was extracted as previously described.61 DNA from
healthy durum wheat grain was extracted following a method
outlined previously.16 The quality and concentration of the DNA
were determined by Nanodrop 2000 (Thermo Fisher Scientific,
Waltham, MA, USA) and Qubit 2.0 (Thermo Fisher Scientific). Dilu-
tion series from 0.05 pg to 5 ng of fungal strains DNA and from
5pg to 50 ng of wheat grain DNA, with a dilution factor of 10, were
used to plot standard curves in each qPCR set, using two technical
replications for each assay. Standard curves, line equations, R2

values, reaction efficiencies and limits of detection (LOD) were cal-
culated.16 qPCR analyses were carried out using species-specific
primers indicated in Supporting Information, Table S3.72,73 qPCR
assays were performed in a CFX96 real-time PCR detection system
(Bio-Rad, Hercules, CA, USA) with a previously described
protocol.7

About 100 g of each durum wheat sample were finely ground
with a blender and 4 g of ground grains were used for total
DNA (durum wheat DNA and potential fungal DNA) extraction
using a previously described method.16 The DNA quality and con-
centration were estimated as previously described and the con-
centration of each sample was adjusted to 25 ng μL−1 for qPCR
analysis. Quantitative PCR assays were performed as previously
described. A dissociation curve was obtained at the end of the
qPCR program to monitor the presence of primer-dimers and/or
non-specific amplification products. Two technical replicates per
sample were used in each assay. The fungal biomass of each
investigated Fusarium species was expressed as the ratio of the
detected DNA (pg) to the total durum wheat grain DNA (ng).

Detection and quantification of secondary metabolites by
LC–MS/MS
Sub-sampled durumwheat kernels were finely ground (<0.5 mm)
by a blender (IMETEC, Azzano San Paolo, Milan, Italy) and 5 g of
each milled sample was extracted for 90 min using 20 mL of ace-
tonitrile/water/acetic acid (79/20/1, v/v/v) followed by a 1 + 1
dilution using acetonitrile/water/acetic acid (20/79/1, v/v/v).
Finally, 5 μL of the diluted extracted were directly injected as pre-
viously described.74 Quantification was based on external calibra-
tion using a serial dilution of amulti-analyte stock solution. Results
were corrected for apparent recoveries (thus taking into consider-
ation both matrix effects as well as recoveries of the extraction)
that had been determined during method validation.74 As part
of ongoing assurance the trueness of the method is monitored
by analyzing samples deriving from a proficiency testing scheme
organized by BIPEA (Gennevilliers, France) with a rate of satis-
factory z-scores of −2 < z < 2 of >95% for the 1700 results sub-
mitted so far. Limits of detection and quantification were
determined following the EURACHEM guide.75

Statistical analysis
Data regarding the mycobiota composition and the presence of
Fusarium species were analyzed using a generalized linear model
(GLM) with a Poisson error and a log link. A scale parameter was
added to account for over/under-dispersion (quasi-Poisson
model); isolation method and macro-areas were used as the

www.soci.org MT Senatore et al.

wileyonlinelibrary.com/jsfa © 2023 The Authors.
Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

J Sci Food Agric 2023

4

 10970010, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jsfa.12526 by C

ochraneItalia, W
iley O

nline L
ibrary on [19/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.westerdijkinstitute.nl/fusarium/
http://www.westerdijkinstitute.nl/fusarium/
https://fusarium.mycobank.org/
https://fusarium.mycobank.org/
http://wileyonlinelibrary.com/jsfa


factors. Data were analyzed using a GLM, with the Poisson error
and log link. Back-transformed counts with delta standard errors
were derived and reported in figures and tables. Data about bio-
mass and secondary metabolites were analyzed using a hetero-
scedastic linear model, with a different variance per macro-area
(generalized least square, GLS, fitting).76 The macro-area was
included as a factor. Both for GLM and GLS fits, pairwise compar-
isons were performed using a general procedure outlined previ-
ously.77 Canonical variate analyses were used to discriminate
among macro-areas according to the content in metabolites;
results were presented biplots.78 The correlations were studied
by using the Pearson correlation coefficient. All analyses were per-
formed by using the R statistical environment,79 together with the
packages ‘nlme’,76 ‘emmeans’,80 and ‘vegan’.81

RESULTS
Composition of the fungal community of durum wheat
grains
The analysis of the fungal community in the grains by PDA and
DFB isolation methods showed the presence of ‘infected’ kernels
(from which fungal colonies developed) as well as of ‘healthy’
seeds (from which no fungal development was observed) (Table

S4 in the supporting information). The PDAmethod showed a sig-
nificantly (P < 1 × 10−4) higher presence of fungal colonies in
comparison with the DFB method. Both methods, highlighted
that the southern Italian samples were always those presenting
the lowest average number of fungal colonies developing from
grains (P < 0.009) (Supporting Information, Table S4).
The overall fungal community isolated was composed of fungal

colonies belonging to the following genera: Acremonium (isolated
only by DFB), Alternaria, Aspergillus, Cladosporium, Epicoccum,
Fusarium, Gliocladium (isolated only by DFB), Microdochium, Peni-
cillium, and Rhizopus. Colonies that could be not identified by
visual observation were classified as ‘other’ (Fig. 2, Supporting
Information, Table S5).
In both methods, Alternariawas the genus with the significantly

higher (P < 1 × 10−4) average number of colonies than all other
genera detected. Fusariumwas the genus with the second highest
average number of colonies developed from grains (P < 0.03)
analyzed by PDA and DFB. All other genera showed, in both
methods, an average number of colonies significantly lower than
those belonging to Alternaria and Fusarium ones.
The two methods had different effects to promote the develop-

ment of fungal colonies belonging to certain genera. In detail, the
PDA method allowed to isolate a significantly higher average

Figure 2. Average number of fungal colonies (n) per durumwheat sample belonging to different fungal genera as visually and microscopically assessed
after their development from durumwheat grains collected in Italy with two different isolationmethods (potato dextrose agar, PDA; deep freezing blotter,
DFB). Columns represent the fungal community composition expressed as the average number of isolates of different genera developed from 70 durum
wheat samples with each method.
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number of colonies belonging to Alternaria (P = 1 × 10−4), Epicoc-
cum (P = 0.01), Microdochium (P = 3 × 10−4) and Penicillium
(P = 0.01) genera, than DFB. Conversely, DFB promoted a signifi-
cantly higher development of Fusarium species (P = 1 × 10−4),
than PDA.
For some fungal genera, significant differences in the distribu-

tion across the three macro-areas were detected (Fig. 3(A), (B)).
For example, in the DFB method, Alternaria were significantly
higher (P < 0.01) in central and southern Italy than in northern
Italy. A similar pattern, although not significant (P > 0.08), was
also obtained with PDA. Durum wheat samples harvested in cen-
tral Italy were also those with the highest number of fungal colo-
nies belonging to the genus Fusarium. In detail, in DFB the
average number of Fusarium colonies followed the pattern center
≥ north > south (P < 1 × 10−4), whereas, in PDA it was center >
north ≥ south (P < 1 × 10−4). In both methods, southern Italy
was the macro-area with the lowest number of Fusarium colonies
developed from grains (Fig. 3(A), (B)).

Fusarium complex composition in durum wheat grains
The total number of Fusarium isolates developed from durum
wheat grains with PDA and DFB and successively identified by
partial tef1⊍ sequencing (isolates obtained by PDA) and by mor-
phological characteristics (isolates obtained by DFB), was signifi-
cantly higher in DFB (P = 1 × 10−4) than PDA (Table S6 in the
supporting information). Without distinguishing between isola-
tion methods, the total Fusarium isolates subject to identification
followed the pattern: center ≥ north > south (P < 1 × 10−4)
(Table S6 in the supporting information).
The Fusarium community isolated on PDA from the durum

wheat grains and identified by partial tef1⊍ sequencing (hereafter

PDA + tef1⊍) was composed of a total of 15 different species
(Table S7, Fig. 4). Fusarium avenaceum and F. gramineraum were
the overall most represented species followed by F. poae,
F. proliferatum, and FIESC members. In detail, no significant differ-
ences (P = 0.4) were detected between F. avenaceum and
F. graminearum, but a significant difference (P < 0.001) was found
between F. avenaceum and the other three species mentioned
above. Some species (F. antophilum, F. nelsonii, F. brachygibbosum,
F. pseudograminearum, and F. oxysporum) were detected only
with the PDA + tef1⊍ approach.
The Fusarium community isolated on DFB and identified by

morphological characteristics (hereafter DFB + mc) comprised
a total of 16 different species (Table S7 in the supporting infor-
mation, Fig. 4). Fusarium proliferatum was the most represented
species, followed by F. globosum, F. avenaceum/F. acuminatum,
F. verticillioides, F. graminearum, and F. culmorum. In detail,
F. proliferatum showed a significantly (P < 1 × 10−4) higher aver-
age number of fungal colonies developed from grain than the
other species mentioned. The species F. lateritium, F. globosum,
F. langsethiae, F. subglutinans, F. verticillioides, F. semitectum,
and F. chlamydosporum were detected only with the DFB + mc
approach. For F. avenaceum and F. acuminatum, accurate dis-
crimination is possible only with the use of molecular identifica-
tion. For this reason, isolates obtained by DFB and belonging to
one of these two species were considered by DFB + mc as the
F. avenaceum/F. acuminatum group. Finally, where morphologi-
cal identification was not able to allow the isolates to be attrib-
uted to a certain Fusarium species they were considered as
Fusarium spp.
Significant differences in terms of the average number of fungal

colonies developed/identified were recorded for a total of three

Figure 3. Biplot from the canonical variate analysis for the fungal genera isolated on potato dextrose agar (PDA) (A) and using deep freezing blotter (DFB)
(B) in grain samples collected in the three Italian macro-areas. N: northern Italy, C: central Italy; S: southern Italy; ACR: Acremonium; ALT: Alternaria; ASP:
Aspergillus; CLA: Cladosporium; GLI: Gliocladium; EPI: Epicoccum; FUS: Fusarium; MIC: Microdochium; PEN: Penicillium; RHI: Rhizopus. Capital letters (N, C,
S) represent the centroids for each macro-area, while the symbols show the samples in each macro-area. In detail, green dots show the samples
from N, red dots show the samples from C, blue dots show the samples from S.
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species detected with both approaches. Fusarium trincictum
showed a significantly higher number of colonies (P = 0.02) using
the PDA + tef1⊍ approach, while the number of fungal colonies
belonging to F. proliferatum and F. culmorum was significantly
higher (P = 1 × 10−4 and 0.02 respectively) with the DFB + mc
approach.
The breakdown of the Fusarium complex into its single compo-

nents (species) allowed the detection of differences in their distri-
bution across the surveyed territories (Fig. 5(A), (B); Table S7 in the
supporting information). For example, samples from northern and
central Italy were characterized by the presence of
F. graminearum, F. poae, F. proliferatum, and F. tricinctum as com-
pared to southern Italian ones. Both isolation/identification
approaches showed this for F. proliferatum (P < 0.01) (Fig. 5(A),
(B)). Fusarium graminearum and F. poae showed a significant
north ≥ center > south pattern adopting PDA + tef1⊍
(P < 0.002) (Fig. 5(A)), while using DFB + mc the pattern was

slightly different (center ≥ north ≥ south) (P = 1 × 10−4 for the
center-south contrast and >0.05 for the center-north and north-
south contrast), confirming, however, the lowest presence of
these two species in southern Italy (Fig. 5(A), (B)). Central Italy
was the macro-area where PDA + tef1⊍ revealed the highest pres-
ence of F. avenaceum (Fig. 5(A)) and F. tricinctum in comparison to
that recorded, for the first species, in Northern and Southern Italy
(P < 0.001) or, for the second species, only in southern Italy
(P = 0.03). Finally, the DFB + mc approach showed that southern
Italian samples were characterized by a significantly
(P < 1 × 10−4) higher presence of F. culmorum (Fig. 5(B)).

Fungal DNA accumulation in durum wheat grains
The R2 values and efficiency of the qPCR reactions are summa-
rized in Table S8 in the supporting information. The fungal DNA
of eight Fusarium species present in the durum wheat grain

Figure 4. Average number of isolates (n) belonging to the different Fusarium species as identified by partial translation elongation factor 1 ⊍ (tef1⊍)
sequencing or morphological observation after their isolation from durum wheat grains collected in Italy with two isolation methods (potato dextrose
agar, PDA; deep freezing blotter, DFB). Fusarium isolated obtainedwith the PDA techniquewere identified by partial tef1⊍ sequencing (PDA + tef1⊍), while
those obtained with the DFB technique were identified by the observation of morphological characteristics (DFB + mc). Columns represent the Fusarium
community composition expressed as the average number of isolates of different species developed from 70 durum wheat samples with each isolation
method and following the identification approach.
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samples is shown in Fig. 6 and detailed in Table S9 in the support-
ing information.
Among the eight Fusarium species analyzed, F. graminearum

showed a significantly higher DNA level (P < 0.01) in the Italian
durum wheat grains (Fig. 6, Table S9 in the supporting informa-
tion). Fusarium avenaceumwas the second most detected species
and, even if this species showed a higher level than F. culmorum,
no significant differences between these two species were found
(P = 0.06). Fusarium langsethiae was similar to F. culmorum
(P = 0.13) but significantly higher than the remaining species
(P < 3 × 10−4). No significant differences (P > 0.50) were
detected among F. sporotrichioides, F. proliferatum, and F. poae.
Finally, all these species showed an accumulation level in grains
significantly higher (P < 0.04) than F. tricinctum (Fig. 6, Table S9
in the supporting information).
The difference in the distribution across the three Italian macro-

areas was detected for all species except for F. langsethiae
(P > 0.45) (Fig. 7, Table S9 in the supporting information). Northern
and central Italy were particularly characterized (P < 0.02) by the
presence of F. graminearum and F. poae (Fig. 7). Central Italy was
also marked by the accumulation of F. avenaceum, F. proliferatum,
and F. culmorumDNA (Fig. 7). However, significant differenceswere
detected only between the average DNA accumulation level of
these three species recorded in central and northern Italy
(P < 0.02). Fusarium tricinctumwas found, without significant differ-
ences (P = 0.80), only in central and southern Italy. Finally, the pres-
ence of F. sporotrichioides was higher (P < 0.04) in the southern
macro-area than in the central and northern macro-areas (Fig. 7).

Fungal secondary metabolites accumulation in durum
wheat grains
The fungal secondary metabolites (μg kg−1) as quantified by
LC/MS–MS in the durum wheat grains collected across Italy are
summarized in Tables S10–S14 and the secondary metabolites
biosynthesized by Fusarium and by Alternariawere the most com-
monly present in the analyzed samples.
Considering all Fusarium secondary metabolites, central Italy

was the macro-area with the significantly higher accumulation
levels (P < 0.03) followed by northern and southern Italy (Fig. 8).
Despite the conspicuous mycotoxin differences between north
and south Italy, no significant differences (P > 0.17) were
detected. Summarizing, Fusarium secondary metabolites fol-
lowed the pattern: center > north ≥ south. Central Italy was also
the macro-area with the highest levels of Alternaria secondary
metabolites followed by southern (P = 0.15) and northern
(P = 0.03) Italy (Fig. 8). The accumulation pattern of accumulation
was therefore: center ≥ south ≥ north.
By focusing on the different groups of Fusarium secondary

metabolites (Fig. 9(A); Table S9 in the supporting information)
they were all present in the three macro-areas surveyed, except
for zearalenone, which was not detected in southern Italy (Fig. 9
(A), Table S9). The accumulation levels of trichothecenes were sig-
nificantly higher in the central and northern macro-areas than in
southern Italy (P < 0.02). Fumonisins, of which only the form B1
(FUMB1) was detected, were particularly present in central Italy,
with an accumulation level significantly higher than southern
Italy (P < 0.04) (Table S10). Depsipeptides showed no significant

Figure 5. Biplot from the canonical variate analyses for the different Fusarium species as identified by partial translation elongation factor 1 ⊍ (tef1⊍)
sequencing (A) or observation of morphological characteristics (B) after their isolation from durumwheat grains collected in the three Italian macro-areas
with two isolationmethods (potato dextrose agar, PDA; deep freezing blotter, DFB). In detail, the Fusarium isolates obtainedwith the PDA technique were
identified by partial tef1⊍ sequencing (PDA + tef1⊍), while those obtained with the DFB technique were identified by the observation of morphological
characteristics (DFB + mc). N: northern Italy, C: central Italy; S: southern Italy; ACU: F. acuminatum AVE: F. avenaceum; ACU + AVE: F. avenaceum + F. acu-
minatum; CULM: F. culmorum; FIESC: Fusarium incarnatum equiseti species complex; GLOB: F. globosum; GRAM: F. graminearum; LANG: F. langsethiae; LATE:
F. lateritium; POAE: F. poae; PROL: F. proliferatum; SUBG: F. subglutinas; SAMB: F. sambucinum; SEMI: F. semitectum; SPORO: F. sporotrichioides; TRIC:
F. tricinctum; VERT: F. verticillioides; OTHER: Fusarium spp. Capital letters (N, C, S) represent the centroids for each macro-area, while the symbols show
the samples in each macro-area, in detail green dots show the samples from N, red dots show the samples from C, blue dots show the samples from S.
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differences in the accumulation levels in grain from the three
macro-areas (P > 0.07). Finally, other Fusarium secondary metab-
olites were present in significantly higher amounts in the grains
from central Italy (P < 0.03) (Fig. 9(A)).
Among trichothecenes (Table S11 in the supporting informa-

tion), DON was the compound with the highest detected levels.
Considering the total average values and the percentage of posi-
tive samples, DON was particularly present in central Italy
(721 μg kg−1, 100%) and northern Italy (556 μg kg−1, 100%) fol-
lowed by southern Italy (81.9 μg kg−1, 79%) (Fig. 9(B)). However,
due to the high variation in contamination levels recorded within
each macro-area, no significant differences (P > 0.53) in its distri-
bution were found. In addition, DON exceeded the maximum
admitted level for unprocessed durum wheat (1750 μg kg−1; EU
Commission Regulation),47 in samples collected in central (three
samples) and northern (one sample) macro-areas. Nivalenol also
followed a similar, but not significant (P > 0.46), trend with the
highest accumulation levels in central Italy (161 μg kg−1, 90%) fol-
lowed by northern (25.9 μg kg−1, 94%) and southern Italy
(14.4 μg kg−1, 33%) (Fig. 9(B)). T-2 and HT-2 toxins were generally
detected in low amounts and without significant distribution dif-
ferences between macro-areas (P > 0.72). However, central Italy
was the macro-area with the highest percentage of positive
samples and two samples from this area exceeded the maximum
level for the sum of T-2 + HT-2 toxins recommended for unpro-
cessed wheat by the EU (100 μg kg−1; EU Commission
Recommendation).50

Focusing on depsipeptides (Table S12 in the supporting
information), the ENNs analogs generally accumulated in
the three macro-areas with the following gradient:
ENB1 > ENB > ENA1 > ENB2 > ENA > ENB3. Considering the
total ENNs (the sum of all the analogs), central Italy was the
macro-area with the highest accumulation level (684 μg kg−1)
followed by northern Italy (461 μg kg−1) and southern Italy
(316 μg kg−1) (Fig. 9(C)). However, no significant differences
among the three macro-areas were detected (P > 0.72). Small
amounts of BEA were also found, with the highest percentage
of positive samples detected in northern and central Italy
(100 and 93%, respectively) in comparison with southern
Italy (21%).
The analysis also revealed the presence of 17 compounds clas-

sified as ‘other Fusarium secondary metabolites’ (Table S13 in
the supporting information). Due to the high level of variation
within each macro-area, no significant differences in their distri-
bution across the surveyed territory were detected. However, cen-
tral Italy was the macro-area where the vast majority of ‘other
Fusarium secondary metabolites’ showed the highest presence
both in terms of positive samples and total average levels. For
some compounds (aminodimethyloctadecanol, antibiotic Y, bute-
nolid, chlamidospordiol, and chlamidosporol) southern Italy,
together with central Italy, was the macro-area showing the high-
est presence (Fig. 9(D)). Conversely, for some other compounds
(aurofusarin, culmorin, MON and 15-hydroxyculmorin), northern
Italy, in conjunction with the center, revealed the highest

Figure 6. DNA amount of eight Fusarium species as detected by quantitative real-time polymerase chain reaction (qPCR) assays in durum wheat grains
collected across Italy. Columns represent the Fusarium community composition expressed as the average of pg of each analyzed fungal species DNA/ng
of durum wheat grains DNA in 70 durum wheat samples.
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accumulation in the grains (Fig. 9(D); Table S13 in the supporting
information).
Finally, a focus on Alternaria secondary metabolites showed the

presence of nine compounds in all three macro-areas (Table S14
in the supporting information) but no significant differences in
their distribution across the surveyed territory were detected.
However, a higher presence of each single compound in central
Italy was recorded in particular for alternariol (AOH), altertoxin-I
(ATXI), macrosporin, and tentoxin (TEN) (Fig. 10).

Correlations between the different approaches
Correlations (r) between the levels of the eight Fusarium species
detected with the three approaches adopted in this study (PDA
+ tef1⊍; DFB + mc; qPCR) were calculated (Table 1).
There was a significant (P < 2.02 × 10−5) positive association

between the average number of F. avenaceum, F. graminearum
and F. poae colonies detected with PDA + tef1⊍ and DFB + mc,
and the fungal DNA found in the grains by qPCR (Table 1). For
these three species, a significant (P < 1.26 × 10−10) positive asso-
ciation also existed between the colonies detected with PDA
+ tef1⊍ and DFB + mc approaches (0.669; 0.724; 0.677) (Table 1).
For F. proliferatum, the positive correlation with qPCR was signifi-
cant (P= 0.009) only for DFB + mc (0.303). For this last species, the
correlation level (0.146) between PDA + tef1⊍ and DFB + mc was
not significant (P = 0.14). The absence of significant correlation

(P > 0.25) between PDA + tef1⊍ or DFB + mc and qPCR was
detected for F. sporotrichioides (−0.102; −0.007), F. tricinctum
(0.137; −0.044) and F. langsethiae (not detected with PDA + tef1⊍;
0.122).
For the eight Fusarium species a correlation (r) between the

levels detected by each single approach (qPCR; PDA + tef1⊍;
DFB + mc) and the presence in the grains of two selected sec-
ondary metabolites typically biosynthesized by them was also
calculated (Table 1). Starting with F. avenaceum, a significant
(P < 1.6 × 10−6) positive association was detected between
MON or ENNs in the grains and detection by qPCR
(0.673; 0.479), PDA + tef1⊍ (0.741; 0.544) or DFB + mc (0.537;
0.505). Similarly, the positive association was significant
(P < 2.39 × 10−9) between DON and F. graminearum detected
with qPCR, PDA + tef1⊍ or DFB + mc (0.762; 0.727; 0.641). Con-
cerning NIV, the presence of a significant positive correlation
(P < 2.17 × 10−5) was detected for the three different
approaches adopted for F. graminearum detection (0.484;
0.578; 0.730). The same mycotoxin was significantly associated
(P < 0.01) with F. poae identified with qPCR, PDA + tef1⊍ or
DFB + mc (0.328; 0.292; 0.335). F. tricinctum levels were signifi-
cantly correlated (P = 9 × 10−7) to MON only when quantified
by qPCR (0.548) and to ENNs (P < 0.001) when detected by
qPCR (0.371) and PDA + tef1⊍ (0.364). Fumonisin form B1 and
fusaric acid showed a significant correlation (P < 0.01) with

Figure 7. Biplot from the canonical variate analyses for the eight Fusar-
ium species detected using real-time quantitative polymerase chain reac-
tion (qPCR) directly in grain samples collected from the three Italian
macro-areas. N: northern Italy, C: central Italy; S: southern Italy; AVE:
F. avenaceum; CULM: F. culmorum; GRAM: F. graminearum; LANG:
F. langsethiae; POAE: F. poae; PROL: F. proliferatum; SPORO:
F. sporotrichioides; TRIC: F. tricinctum. Capital letters (N, C, S) represent
the centroids for each macro-area, while the symbols show the samples
in each macro-area; green dots show the samples from N, red dots show
the samples from C, blue dots show the samples from S.

Figure 8. Biplot from the canonical variate analyses for the four groups of
fungal secondary metabolites detected using liquid chromatography–
tandem mass spectrometry (LC–MS/MS) directly in grain samples collected
from the three Italianmacro-areas. N: northern Italy, C: central Italy; S: south-
ern Italy; ALTsm: Alternaria secondary metabolites; ASPsm: Aspergillus sec-
ondary metabolites; FUSsm: Fusarium secondary metabolites; PENsm:
Penicillium secondary metabolites. Capital letters (N, C, S) represent the cen-
troids for each macro-area, while the symbols show the samples in each
macro-area, in detail green dots show the samples from N, red dots show
the samples from C, blue dots show the samples from S.
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F. proliferatum levels detected by all three different
approaches. The highest levels of correlation were recorded
between qPCR and FUMB1 (0.599). The levels of T-2 and HT-2
toxins were significantly correlated (P < 3 × 10−4) only with
F. langsethiae DNA detected by qPCR (0.418 and 0.784) and

not with the colony number recorded with the other two
methods. Finally, there was an absence of significant correla-
tion (P > 0.274) for F. culmorum and F. sporotrochioides with
all three approaches and the levels of DON and NIV or T2 and
HT-2 toxins, respectively (Table 1).

Figure 9. Biplot from the canonical variate analyses for the five groups of Fusarium secondary metabolites (A), for trichothecenes (B), depsipeptides (C),
and other Fusarium secondary metabolites (D), detected using liquid chromatography–tandemmass spectrometry (LC–MS/MS) directly in grain samples
collected from the three Italian macro-areas. N: northern Italy, C: central Italy; S: southern Italy; AMD: aminodimethyloctadecanol; API: apicidin; APID2: api-
cidin D2; AUR: aurofusarin; AY: antibiotic Y; BEA: beauvericin; BUT: butenolide; CHLAIOL: chlamidospordiol; CHLAOL: chlamidosporol; CHRY: chrysogin;
CULM: culmorin; DAN: deacetylneosolaniol; DAS: deacetoxyscirpenol; DEP: Depsipetides; DON: deoxynivalenol; DON3G: deoxynivalenol-3-glucoside;
ENA: enniatin A; ENA1: enniatin A1; ENB: enniatin B; ENB1: enniatin B1; ENB2: enniatin B2; ENB3: enniatin B3; TOTENNs: total enniatins (EA + EA1
+ ENB + ENB1 + ENB2 + ENB3); EQUI: equisetin; FUM: Fumonisin B1; FUNG: fungerin; FUSA: fusaric acid; HT2: HT2 toxin; HT2G: HT-2- glucoside; MAS:
monoacetoxyscirpenol; MON: moniliformin. NEO: neosolaniol; NIV: nivalenol; NIV3G: nivalenol-3-glucoside; OF: other Fusarium secondary metabolites;
T2: T2 toxin; T2T: T2-tetraol; SIC: siccanol; TRI: trichothecenes; W493: w493; ZEA: zearalenone; 15CULM: 15-hydroxyculmorin. Capital letters (N, C, S) repre-
sent the centroids for each macro-area, while the symbols show the samples in each macro-area, in detail green dots show the samples from N, red dots
show the samples from C, blue dots show the samples from S.
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DISCUSSION
Several mycotoxigenic fungi can seriously compromise grain
quality. In Italy, this threat to food safety82 is strictly related to cli-
matic conditions.5,7 To assess the evolution of the fungal commu-
nity associated with Italian durum wheat grain, with reference to
Fusarium species, the present investigation, conducted on sam-
ples harvested in three different durum wheat cultivation
macro-areas (north, center, south of Italy), was realized using dif-
ferent diagnostic methods. Two different approaches to ‘fungal
isolation + Fusarium identification’ (PDA + tef1⊍ or DFB + mc)
were adopted. The DNA of eight Fusarium species was also quan-
tified directly in the kernels by qPCR and a wide range of fungal
secondary metabolites was analyzed in grains by LC–MS/MS.
The fungal composition of fungal communities, assessed at the

genus level by visual observation, was investigated with two of
the most common methods used for the isolation of seed-borne
fungal pathogens (PDA and DFB).83 The results obtained show
that southern Italy had the lowest levels of fungal colonies con-
firming that the expansion of durum wheat into central-northern
Italy increased the occurrence of fungal microorganisms as a con-
sequence of more favorable climatic conditions for their
development.6

Concerning the overall presence of some fungal genera, differ-
ences between the two isolation methods were found. In this sur-
vey, PDA seemed to favour the development of Alternaria,

Epicoccum,Microdochium, and Penicillium, whereas DFB appeared
to promote Fusarium. Some genera (Acremonium andGliocladium)
were isolated only with DFB. A previous survey, conducted on
durum wheat grains, did not reveal any effect of the two different
isolation techniques on Fusarium spp. development.7 Conversely,
other researchers described the higher efficiency of DFB in pro-
moting Fusarium spp. development compared to PDA.83,84 Alter-
naria spp. has previously been described as enhanced by DFB.7

The differences recorded in this survey, where this genus was
more present in PDA, could be attributed to the different localiza-
tion of the Alternaria species ‘on the seed’ as a contaminant
agent85 (in this case it could be enhanced by DFB without surface
disinfection) or ‘in the seed’ as an infectious agent86-89 (in this case
it could be enhanced by PDA following surface disinfection).
In this survey, Alternaria was detected as the main component

of the durum wheat grain fungal communities as previously
reported in many cultivation areas12,86,90-94 including Italy.7,57,95

In detail, previous research conducted in three different Italian
regions suggested a certain geographical effect on its distribu-
tion, underlining that central Italy showed the highest level of
Alternaria incidence.7 Similarly, the present survey showed that
Alternaria was particularly present in the central macro-area
followed by the southern one.
Alternaria spp. is a well-knownmycotoxigenic genus.94,96,97 Dur-

ing the present survey, the presence of Alternaria secondary
metabolites such as AOH, alternariol monomethyl ether (AME),
altersetin, altersolanol, ATXI, infectopyron, macrosporin, TEN,
and tenuazonic acid (TeA) was also detected. Resembling the dis-
tribution of the producing fungal genus, central Italy was the
macro-area with the highest accumulation of these compounds
in durum wheat grains as previously reported in other surveys
conducted in a region (Umbria) that belonged to this macro-
area.7,59 Based on these results, Central Italy appears to be partic-
ularly affected by the presence of Alternaria as well as its second-
ary metabolites. Monitoring these compounds is extremely
important because, for some of them, such as AOH, AME, and
TeA, some evidence of toxic effects in humans was reported.98,99

For this reason, a preliminary draft of the EU Commission Recom-
mendation, 2019 on the monitoring of three Alternaria myco-
toxins (AOH, AME, TeA) in various food categories, including
cereal-based foods for infants and young children, is available.100

Fusarium was the second most abundant fungal genus of the
durum wheat mycobiome evidenced by the isolation analyses. It
is also commonly associated with wheat grain across many culti-
vation areas,27,34,35,38,42,90,101-105 including Italy.7,8,10,22,57,58,60,73

Some of the previous Italian surveys7,8,10 showed that Fusarium
incidence of Fusarium increased from southern durum wheat cul-
tivation areas to central and northern ones. The present survey
emphasizes the high Fusarium presence recorded in central
Italy. A previous survey conducted in samples harvested in a sin-
gle region representative of each macro-area showed the pattern
of Fusarium incidence as north > center > south,7 this investiga-
tion, conducted in samples harvested in several regions of each
macro-area, showed that, for the considered season, the central
macro-area could be considered to have the highest Fusarium
abundance. This finding was also confirmed by the total Fusarium
DNA detected by qPCR in grains as well as by Fusarium secondary
metabolites analyzed by LC–MS/MS. In particular, the presence of
some groups of these compounds, such as trichothecenes, zeara-
lenone, fumonisins and other Fusarium secondary metabolites,
was significantly higher in the central and northern macro-areas
than in the southern one.

Figure 10. Biplot from the canonical variate analyses for Alternaria sec-
ondary metabolites detected using liquid chromatography–tandem mass
spectrometry (LC–MS/MS) directly in the grain samples collected from the
three Italianmacro-areas. N: northern Italy, C: central Italy; S: southern Italy;
AOH: alternariol; AME: alternariol monomethyl ether; ALS: altersetin; ALT-
SOL: altersolanol; ATXI: altertoxin-I; INFECTO: infectopyrone; MACRO: mas-
crosporin; TEN: tentoxin; TEA: tenuazonic acid. Capital letters (N, C, S)
represent the centroids for each macro-area, while the symbols show
the samples in each macro-area, in detail green dots show the samples
from N, red dots show the samples from C, blue dots show the samples
from S.
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In addition to Alternaria and Fusarium, other fungal genera were
isolated from durum wheat grains. For example, Epicoccum and
Gliocladium (also known as Clonostachys) are endophytes of
wheat, for which antagonistic effects against Fusarium species
were reported.106,107 Cladosporium is another endophyte genus
reported to be negatively correlated with Fusarium species.108

Thewheat endophytic Acremonium species showedmutual exclu-
sion relationship in wheat with the pathogenic genus Puccinia.109

Conversely, Microdochium, a well-known head-blight agent in
wheat,110 even if a non-toxigenic genus, can affect grain gluten
quality.111 Finally, Aspergillus and Penicillium, other mycotoxigenic
genera, were also found. This highlights that the fungal communi-
ties associated with durum wheat grains are a reservoir of patho-
genic (toxigenic and non-toxigenic) as well as endophytic
non-pathogenic fungal genera, which could compete with or pre-
vent FHB and other diseases, representing a source of potential
biocontrol agents in wheat.108

In this investigation, the different Fusarium spp. isolated with
the PDA method were identified by partial tef1⊍ region sequenc-
ing (PDA + tef1⊍), while those isolated with the DFB method were
identified by morphological characteristics (DFB + mc). Consider-
ing the species detected with both approaches, the most note-
worthy difference was the highest presence of fungal colonies
belonging to F. proliferatum species identified by the DFB + mc
approach. The highest development of this species obtained with
DFB + mc might have been caused by the absence of seed disin-
fection for the DFB isolation technique and by the absence of
other fast-growing Fusarium or non-Fusarium species, which usu-
ally occur in PDA.7 The DFB + mc approach also led to the identi-
fication of several species that were not detected by PDA + tef1⊍
such as F. langsethiae and other species (F. globosum,
F. verticillioides, and F. subglutinans) that belong to the FFSC, like
F. proliferatum. This could be related to the same reason explained
for F. proliferatum, leading to hypothesize that the isolation of
FFSC members and of F. langsethiaewas favored by the DFB tech-
nique. However, in this study DFB was coupled with morphologi-
cal characterization. For this reason, it was not possible to
attribute the presence of these species only to the isolation tech-
nique because the identification method might have also played
a role in their highest/exclusive presence with respect to the
PDA + tef1⊍ method.
Both the approaches adopted confirmed that the Fusarium

complex comprised a plethora of species and that more than
20 different Fusarium species can be associated with durum
wheat grains. Like inter-genera diversity, intra-genus diversity
could represent an interesting aspect to be further analyzed in
terms of potential mutual exclusion between Fusarium species
in a wheat spike.45,112

The PDA + tef1⊍ approach indicated that the major Fusarium
complex components of the Italian durumwheat, for the analyzed
season, were F. avenaceum and F. graminearum, while the DFB
+ mc approach showed that the major component was
F. proliferatum.
In the present survey, the presence of F. avenaceum was partic-

ularly high in the central macro-area. This result was also con-
firmed by qPCR carried out directly in the grains. Previous
research conducted in a single region of central Italy (Umbria)
showed that, for several years, F. avenaceum was the dominant
member of the FHB community of wheat and barley.57,58,113 This
macro-area could be considered particularly favorable for the
development of this species. The high presence of F. avenaceum
(FTSC member) in central Italy detected in this study could be

the explanation for the high accumulation of ENNs and MON, sec-
ondary metabolites typically produced by FTSC members, found
in the grains harvested in central Italy. It should be mentioned
that the accumulation of ENNs, MON and of other secondary
metabolites (such as aminodimethyloctadecanol, antibiotic Y,
butenolid) in Central Italy may also have been caused by
F. tricinctum, another FTSC member detected only in this macro-
area and in southern Italy.
Typically, F. avenaceum was reported to be the main FHB causal

agent in northern America andnorthern Europe.42,102-104,114-118 How-
ever, in recent decades, F. avenaceum, together with other FTSC
members, also increased in temperate areas,34,35,38,39,90,113,119 sug-
gesting that this species is highly adaptable to a wide range of cli-
matic conditions.120 This flexibility of F. avenaceum, and its
widespread presence across the world, makes it necessary to moni-
tor contamination with its secondary metabolites in cereal grains as
well as to increase knowledge regarding the toxic properties of these
compounds against humans and animals. The secondary metabo-
lites produced by FTSC members, particularly the most widespread
and studied ENNs and MON,39,121-125 have recently attracted the sci-
entific community's attention, resulting in two EFSA scientific opin-
ions on the risks to human and animal health related to their
presence in feed and food.53,54 In both cases, given the overall lack
of toxicity data, no conclusions have been drawn about toxic expo-
sure and for this reason, no legal maximum levels have been estab-
lished yet.53,54 However, considering the increasing evidence of the
worldwide occurrence of grains contaminated with ENNs and
MON, together with the potential risk of health hazards associated
with chronic exposure52,126 as well as the co-occurrence and possible
synergisms with other secondary metabolites,127 the risk connected
with ENNs and MON should not be underestimated.
The present study has also confirmed the relevance of F. grami-

nearum, particularly in the northern and central Italian macro-
areas. This survey, corroborated by qPCR results, highlighted that
this species has returned to play a dominant role, in particular in
northern and central Italy, after several years in which it was not
reported as the main member of the FHB complex.7,8,57,61,113,119

Both the isolation techniques, as well as qPCR, confirmed that
southern Italy was the Italian cultivationmacro-areawith the lowest
F. gramineraum level, as already detected in previous investiga-
tions.7,10,33 As a confirmation of this, the type B trichothecenes, first
of all DON, typically biosynthesized by F. graminearum, were
detected at very low levels in the grains harvested in the southern
macro-area. Conversely, in the north and central areas, DON was
commonly found, with 7.5% of samples exceeding the maximum
admitted EU levels for unprocessed durum wheat.
Fusarium proliferatum, was the main component of Fusarium

communities detected with the DFB + mc approach. This species
was already detected as one of the most important members of
the Fusarium group in Italy using the DFB isolation technique.7

The PDA + tef1⊍ approach used in this study also confirmed a
remarkable incidence of F. proliferatum in the analyzed material.
Surprisingly, qPCR analysis reported a very low presence of
F. proliferatum DNA probably because the biomass of this species
in the grains was very low and in many cases below the LOD of
qPCR analysis. This could be attributable to the fact that this spe-
cies is not particularly able to infect and colonize wheat grains.
Conversely, the conditions that the fungus encountered during
isolation, in particular in DFB, strongly promoted its development
from the kernels in which it was present in very small amounts.
Fusarium proliferatum, is traditionally considered to be one of
the most important causal agents of Fusarium ear rot in maize, a
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disease that can result in mycotoxin contamination of grain due
to the ability of this fungal species to biosynthesize fumonisins.128

Themaximum admitted levels of these compounds have been set
by the EU for maize and derived products.47 However,
F. proliferatum has been detected in a wide range of crops includ-
ing other cereals such as wheat.129-131 Up to now, fumonisin accu-
mulation has never been a particular problem inwheat, due to the
low levels detected in this food matrix.7,59,90,128,132-136

The low levels of these compounds in wheat grains could be
explained by hypothesizing that wheat grains are not as condu-
cive to fumonisin biosynthesis as in maize.132,137 However, in
the presence of favorable climatic conditions, even wheat could
be subject to a remarkable fumonisin accumulation as already
observed in Brazil and Argentina.138,139 As a confirmation of this,
fumonisin accumulation recorded in the present study, even if
not very high, showed an increase in comparison to what was pre-
viously detected in durum wheat in Italy.7,59 This suggests the
importance of monitoring F. proliferatum as well as fumonisins
in durum wheat grains, as this could represent an additional
source of fumonisin ingestion and a possible risk for consumers.
In this study, the simultaneous adoption of three different tech-

niques (PDA + tef1⊍; DFB + mc and qPCR) for the detection of
eight Fusarium species, allowed the accuracy of the two ‘isolation
+ Fusarium identification’ approaches to be defined when esti-
mating the amount of fungal biomass accumulating in the grains.
Correlations showed that, for certain species, such as
F. avenaceum, F. graminearum, and F. poae, both ‘isolation + Fusar-
ium identification’ approaches could be considered good predic-
tors of fungal biomass accumulation in grains.
The adoption of the three different techniques (PDA + tef1⊍;

DFB + mc, and qPCR) for the detection of eight Fusarium species
as well as the quantification of mycotoxins by LC–MS/MS also
allowed us to define the accuracy of the three techniques when
predicting grain mycotoxin contamination. Correlations revealed
that for the dominant members of the FHB communities, such
as F. avenaceum and F. graminearum, all three identification
approaches (PDA + tef1⊍; DFB + mc and qPCR) were good predic-
tors of ENNs and MON (for F. avenaceum) as well as of DON and
NIV (for F. graminearum) contamination. This was not the same
for F. proliferatum, for which the qPCR method showed the high-
est levels of correlation with FUMB1. Similarly, qPCR was revealed
to be the best predictor in the case of T2 and HT-2 toxin contam-
ination by F. langsethiae, which probably encountered the great-
est difficulty developing in isolation conditions, being a fungus
characterized by a very slow growth rate and which might have
been overgrown during isolation processes by other rapidly grow-
ing species.140

To summarize, examining the composition of the fungal com-
munities, the Fusarium complex and the fungal secondary metab-
olites associated with durum wheat harvested in Italy revealed
that Alternaria and Fusarium species, with their mycotoxins, were
particularly present in the central and central-northern cultivation
macro-areas, respectively. Within the Fusarium communities,
F. avenaceum (with ENNs and MON contamination) and the re-
emerging species F. graminearum (with DON contamination)
were mainly localized in the central and central-northern cultiva-
tionmacro-areas, respectively. Fusarium proliferatumwas also par-
ticularly abundant and fumonisin levels in durum wheat, even if
low, were higher than in previous investigations. The adoption
of different techniques for Fusarium detection (PDA + tef1⊍;
DFB + mc and qPCR) also highlighted that, for certain species,

qPCR was the best method for predicting their mycotoxin con-
tamination in grains.
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