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A B S T R A C T   

The internal quality of kiwifruit, in terms of soluble solid content (SSC), flesh firmness (FF), and dry matter (DM), 
is widely recognised as a key feature for fruit sorting and pre-harvest assessment. Furthermore, flesh hue (FH) is 
another important parameter to consider for yellow flesh kiwifruits. NIR and VIS/NIR spectroscopic techniques 
are valuable alternatives for rapid and non-destructively prediction of all these quality parameters in fruit. 
Accordingly, the aim of this work was to build a partial least square (PLS) regression models to estimate SSC, FF, 
FH, and DM of yellow fleshed Actinida chinensis (Jintao) starting from Vis/NIR hyperspectral imaging (400–1000 
nm) and FT-NIR (800–2500 nm) spectroscopy data. To take advantage of the complementary information of the 
two different spectral ranges, data fusion strategies were investigated to concatenate the data before PLS models. 
In particular, two different sequential fusion methods were used: low-level data fusion based on the concate-
nation of the pretreated spectra, and mid-level feature fusion characterised by the concatenation of features 
(scores) obtained by principal component analysis (PCA) or PLS models developed considering individually each 
data set. For all quality parameters, the best results were achieved by adopting the second approach of mid-level 
data fusion (PLS scores), reporting R2

P (test set validation) of 0.914 (RMSEP=0.97◦Brix), 0.843 (RMEP=1.82◦H), 
0.866 (RMSEP=9.41N), and 0.854 (RMSEP = 0.64%) for SSC, FH, FF, and DM, respectively. Furthermore, with 
respect to the PLS models from the individual data sets, the results reported a mean RMSEP reduction of 16.0 ±
4.8%, confirming the potential of the data fusion in improving the PLS prediction power for the quality 
parameter of kiwifruit.   

1. Introduction 

Actinidia chinensis is a yellow-gold flesh, smooth skinned, and hair-
less fruit characterised by a sweeter and more aromatic flavour 
compared to the green flesh and hair skin Actinidia deliciosa (Testolin & 
Ferguson, 2009). For A. chinensis, correct harvesting involves a longer 
post-harvest storage with proper development of ripening stages 
(McGlone et al., 2007), which is useful to reduce the variability in 
quality and improve the characteristics of the fruit (Feng et al., 2011). 
Considering harvest needs, A. chinensis is more productive but less 
vigorous than A. deliciosa, with different agricultural demands (Testolin 
& Ferguson, 2009). The ripening stages of both A. deliciosa and A. chi-
nensis have some similar aspects concerning changes in quality param-
eters in terms of dry matter and soluble solid content connected to starch 
versus sugar conversion also involving softening, but also modifications 
mainly related to the flesh fruit colour (Feng et al., 2011). 

Yellow-fleshed A. chinensis undergoes a typical colour related modifi-
cation during ripening, and the variety grows green and turns yellow 
during veraison. If harvested too early, A. chinensis remains green with 
the consequent loss of its peculiar characteristic strictly linked to con-
sumer acceptance and sensorial traits (Feng et al., 2011). In contrast, if 
harvested too late it is yellow but softens, resulting in a limited storage 
time. Therefore, the optimal harvesting time must be based on the 
compromise between colour change and consistency. This decision dif-
fers considerably in the case of A. deliciosa for which the flesh colour has 
no contribution (Testolin & Ferguson, 2009). Accordingly, the internal 
quality of kiwifruit during ripening is widely recognised as a very 
important feature for pre-harvest assessment and consequently 
post-harvest management (Benelli et al., 2022; Feng et al., 2011; 
McGlone et al., 2007). 

Non-destructive techniques can be a valuable alternative for a rapid 
evaluation of fruit quality and to define the harvesting time, particularly 

* Corresponding author. Department of Agricultural and Food Sciences, University of Bologna, P.zza Goidanich 60, 47521, Cesena, FC, Italy. 
E-mail address: chiara.cevoli3@unibo.it (C. Cevoli).  

Contents lists available at ScienceDirect 

Biosystems Engineering 

journal homepage: www.elsevier.com/locate/issn/15375110 

https://doi.org/10.1016/j.biosystemseng.2023.12.011 
Received 20 July 2023; Received in revised form 19 December 2023; Accepted 23 December 2023   

mailto:chiara.cevoli3@unibo.it
www.sciencedirect.com/science/journal/15375110
https://www.elsevier.com/locate/issn/15375110
https://doi.org/10.1016/j.biosystemseng.2023.12.011
https://doi.org/10.1016/j.biosystemseng.2023.12.011
https://doi.org/10.1016/j.biosystemseng.2023.12.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.biosystemseng.2023.12.011&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Biosystems Engineering 237 (2024) 157–169

158

if measurements can be carried out directly in the field. Several tech-
niques based on spectroscopic data collection using different in-
struments exploiting electromagnetism principles have been explored 
and implemented on Actinidia fruits (Berardinelli et al., 2021; O’Toole 
et al., 2015; Ragni et al., 2010, 2012; Valero et al., 2004). Among these 
technologies, vibrational spectroscopy in the near infrared (NIR) range 
is undoubtedly the most widely used technique for internal quality 
assessment of Actinidia (Afonso et al., 2022; Ciccoritti et al., 2019; Feng 
et al., 2011; Qiang et al., 2010; Schaare & Fraser, 2000; Yang et al., 
2019). 

Table 1 lists various studies over the last 15 years with Vis/NIR or 
NIR spectroscopy to evaluate the quality parameters of Actinidia deliciosa 
and Actinidia chinensis. Techniques, wavelength ranges, quality param-
eters, statistical approaches, and the main results allow for easy com-
parison between studies. From Table 1, it is evident that many authors 
have investigated yellow fleshed kiwifruits both post-harvest (McGlone 
et al., 2007; Schaare and Fraser, 2000b; Serranti et al., 2017) and 
pre-harvest (Afonso et al., 2022; Feng et al., 2011; McGlone et al., 2007; 
Shafie et al., 2015). 

The aforementioned literature demonstrates that both spectral 
ranges, Vis/NIR (~400–1000 nm) and NIR (~800–2500), can be used to 
evaluate quality parameters in kiwifruit. Currently, a typical spectros-
copy or hyperspectral imaging system rarely covers the visible and near- 
infrared regions from 400 to 2500 nm due to the challenge of making a 
sensor that is sensitive to this wide spectral range. However, since a wide 
spectral range would usually provide more comprehensive and useful 
information of tested samples, it makes sense to use two detectors that 
are sensitive to wavelength ranges of 400–1000 nm and 900–2500 nm, 
respectively. Furthermore, the penetration depth that characterises 

energy transmission into the fruit can significantly vary with wavelength 
(Almeida et al., 2006) and with the chemical-physical attributes of the 
fruit itself. Lammertyn, Peirs, De Baerdemaeker, and Nicolaï (2000) 
reported that, for apples, Vis/NIR has a stronger penetration depth than 
NIR. Considering the drawback related to the overlapping signal, Vis/-
NIR (up to 1000 nm) is characterised by the presence of weak and highly 
overlapping signals (3rd overtone) that are not conducive to subsequent 
feature wavelength selection and model building. Conversely, the NIR 
range (from 1000 nm) contains the signals corresponding to the 1st and 
the 2nd overtones, which appear as comparatively less-overlapped and 
stronger bands, making model optimisation easier (Mishra et al., 2021). 
In the light of this, the two spectral ranges have their own advantages 
and disadvantages. 

With the help of data fusion approaches, the acquired spectral data 
with different wavelength ranges can be fused to provide complemen-
tary information in order to develop a more accurate and robust pre-
dictive model (Li et al., 2023). 

Data fusion is an emerging branch of chemometrics that analyses the 
combination of information provided by different instruments, since 
various sources of data usually can provide more detailed and poten-
tially complementary information compared with a single technique (Li 
et al., 2021). Furthermore, data fusion can have many advantages over 
the processing of individual matrices. For example, the increase in in-
formation due to the additional blocks may help reduce the impact of 
spurious variability sources or potential interferences with a reduction 
in prediction errors (Biancolillo et al., 2019). Three different strategies 
can be used to fuse the data, commonly named low-level data fusion, 
mid-level feature fusion, and high-level decision fusion (Fig. 1). At the 
low level, data blocks collected from different sensors for the same 

Table 1 
Some application of Vis/NIR or NIR spectroscopy in assessing the quality parameters of kiwi fruits.  

Kiwi variety Quality 
parameters 

Harvest time Techniques Wavelength 
range (nm) 

Statistic 
approach 

Accuracy References 

R2 RMSE 

Actinidia Zhonghua DM Post-harvest Spectrometer 1000–2500 PLS 0.90 0.53% Qiang et al. 
(2010) 

Actinidia Xuxiang SSC Post-harvest Portable 
spectrometer 

350–1100 PLS 0.897 0.90% Yang et al. 
(2019) 

A. deliciosa, Hayward 
Bo-Erica® 

SSC Post-harvest Spectrometer 850–2500 PLS 0.99 0.4 ◦brix Ciccoritti et al. 
(2019) DM 0.98 0.33% 

TA 0.933 6.65% 
Hayward Actinidia SSC Post-harvest HSI 400–1000 PLS 0.85–0.94 1.10–0.73◦brix Benelli et al. 

(2022) FF PLS 0.82–0.92 14.51–9.87 N 
Xuxiang, Hongyang 

Cuixiang green 
Actinidia 

FF Post-harvest HSI 380-1023 874- 
1734 

PLS, MLR, 
SVM 

0.98 (MLR) 36.32 N cm− 2 Zhu et al. (2017) 
SSC 0.95 (MLR) 0.4◦brix 
pH 0.9 (SVM) 0.01 

Actinidia deliciosa 
Actinidia chinensis 

DM In orchard Portable 
spectrometer 

300–1150 PLS 0.88 1.22% Shafie et al. 
(2015) 

Actinidia, cultivar G3 Fruit ripening Post-harvest HSI 900–1700 PCA  Serranti et al. 
(2017) 

Actinidia chinensis 
‘Hort16A’ yellow 
fleshed 

DM Pre-harvest 
(PH) Harvest 
(H) 

Spectrometer 300–1140 PLS 0.91 (PH), 
0.97 (H) 

0.4% (PH), 0.24% 
(H) 

McGlone et al. 
(2007) 

SSC 0.92 (PH), 
0.93 (H) 

0.71% (PH), 
0.31% (H) 

FH 0.88 (PH), 
0.88 (H) 

1.05◦H (PH), 
0.98◦H (H) 

Actinidia chinensis SSC Post-harvest Spectrometer 300–1100 PLS 0.93 0.8 ◦brix Schaare and 
Fraser (2000) Density 0.74 3.6 kg m-3 

FH 0.82 1.6◦H 
Actinidia chinensis 

‘Hort16A’ 
DM In orchard Portable 

spectrometer 
588–1092 MLR 0.85 0.60% Feng et al. 

(2011) SSC 0.90 0.90% 
FH 0.86 1.4◦H 

Actinidia chinensis 
Planch Jintao 

DM In orchard Spectrometer 345–1037 PLS 0.65 1.19% Afonso et al. 
(2022) SSC 0.81 1.27 ◦brix 

FF 0.57 9.47 N 
TA 0.12 0.19% 
Flesh colour 
(a*) 

0.85 1.35 

pH 0.45 0.12  
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samples are directly concatenated into a single matrix (after proper 
pre-processing) to obtain a new, larger data set. In the mid-level, the 
data fusion is performed after compression or reduction of the data 
(feature selection) of each block to be fused. The feature selection in-
troduces an additional step in the modelling due to the choice of the 
feature extraction procedure that is able to limit loss of information. In 
high level fusion, models are separately developed for each data block 
and the respective results are integrated into a single final response. This 
last data fusion level is mainly used for classification problems (Brown, 
2020). 

Starting from these considerations, the main aim of this study was to 
explore the application of two sets of spectral range data (Vis/NIR and 
FT-NIR) in combination with data fusion strategies to predict the quality 
parameters (flesh firmness (FF), soluble solid content (SSC), flesh hue 
(FH) and dry matter (DM)) of yellow fleshed Actinida chinensis, Jintao. 

First, data from individual instrumental techniques (Vis/NIR 
hyperspectral camera and FT-NIR spectrometer) were separately 
considered; next, to take advantage of the complementary information 
connected to different spectral ranges, low and mid-level fusion strate-
gies were implemented to concatenate the data into a single regression 
model. 

From point of view of industrial applications, the combination of a 
Vis/NIR hyperspectral camera and FT-NIR spectrometer would allow to 
evaluate internal, dimensional, and surface quality indices (e.g. colour 
or any defects identifiable with RGB images) at the same time. Hyper-
spectral cameras in the Vis/NIR range also allow to acquire RBG images 
with acceptable resolution. The reason in using the HSI in the VIS/NIR 
and not in the full NIR range is mainly due to an economic issue, given 

that the cost of a NIR-HSI camera (1000–2500 nm) is around 5 times 
higher than that of a Vis/NIR-HSI camera. 

2. Materials and methods 

2.1. Samples 

230 Yellow-fleshed kiwifruits (Actinidia chinensis Planch ‘Jintao’) 
were collected from more than 8 orchards located in different Italian 
regions during the commercial harvest season (8 samplings from 
October to December 2022). Multiple orchards allowed us to simulta-
neously include several sources of variability (soil, weather conditions, 
cultural practices) in our study. The company did not provide any spe-
cific information about the geographical location of the orchards. 

All kiwi samples were analysed within two days after harvest. The 
fruits were weighed (96.37 ± 17.95 g) and dimensionally characterised 
measuring the longitudinal (71.1 ± 5.8 mm) and mean equatorial 
diameter (47.7 ± 3.2 mm). Subsequently, non-destructive acquisitions 
(FT-NIR spectroscopy and Vis/NIR HSI) and destructive quality mea-
surements (Magness-Taylor force, soluble solid content, flesh hue, and 
dry matter) were performed on the same side of each fruit (environ-
mental temperature of 20 ± 2 ◦C). 

2.2. Vis/NIR hyperspectral imaging 

A push-broom linear array hyperspectral camera (Nano-Hyperspec 
VNIR, Headwall Photonics, Inc., Fitchburg, MA, USA) was used to ac-
quire hyperspectral images. The camera operates in the wavelength 

Fig. 1. General scheme describing low, mid and high-level data fusion.  
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range of 400–1000 nm and is characterised by 272 bands and a spatial 
resolution of 640 points. A focal lens of 17 mm was mounted on the 
camera, which was installed at a height of 54 cm from the underlying 
conveyor belt, running at 8 mm s− 1. The light source consisted of two 
halogen lamps (120 W) that were installed at a distance of about 30 cm 
from the conveyor belt plane. Exposure time and frame period were set 
at 30 ms according to the light intensity. The reflectance of white (Rw) 
and dark (Rd) reference materials was used to calibrate the camera. The 
calibrated diffuse reflectance spectrum (RC), was calculated from the 
raw diffuse reflectance spectrum (RR) of each sample using the following 
equation: 

RC =
RR − RD

RW − RD
(1) 

For each image, the region of interest (ROI) was selected using k- 
means clustering, performed by adopting 3 clusters (classification 
method: Euclidean distance): i) background, ii) shaded edge of the kiwi, 
and iii) ROI. Finally, the mean spectra were calculated considering the 
ROI spectra and used for subsequent elaboration. 

2.3. FT-NIR spectroscopy 

Diffuse reflectance spectra in the range from 833 to 2500 nm (0.27 
nm resolution) were acquired as an average of 32 scans using a FT-NIR 
spectrophotometer (MA- TRIX ™ – F, Bruker Optics). Two scans were 
obtained by placing the optical fibre probe (IN 261, Bruker Optics, 
Mass., USA) in direct contact with the kiwi surface at two different 
points of the same fruit side. The background spectrum, corresponding 
to the spectralon material, was subtracted from each spectrum. The 
mean spectrum of the two acquisitions was calculated and used for the 
elaboration. 

2.4. Destructive measurements of reference parameters 

After Ft-NIR spectroscopy and Vis/NIR HSI acquisitions, kiwi quality 
parameters were measured by destructive methods. Specifically, FF, 
SSC, FH, and DM were considered. FF was measured using a compres-
sion test (on the same side as the spectroscopy and HSI) performed with 
a texture analyser (TA-HDi, Stable Micro System Ltd., Godalming, UK) 
equipped with a cylindrical steel probe (8 mm) with a hemispherical 
head (ASABE Standard, 2018). According to the procedure adopted by 
the company, the test was performed at a speed of 10 mm s− 1 and up to a 
deformation of 8.9 mm. Before the analysis, 1 mm of skin was removed 
in the test area. 

Subsequently, on the same kiwi and side, the SSC (◦Brix) of the juice 
was measured by a digital refractometer (PR-101 Digital Refractometer, 
ATAGO CO., LTD, Tokyo, Japan), while the FH was calculated from the 
x, y, z colour coordinates measured using a Minolta Chroma Meter (CR- 
400, D65 light source) after the removal of 2 mm of skin. 

Finally, DM was measured using a slice of about 1.5 mm in thickness 
radially cut along the fruit equator. The slice was weighed immediately 
after cutting and then after dried in oven at 65 ◦C to constant weight 
(generally 24 h). 

Correlations between quality indexes (FF, SSC, FH, and DM) were 
investigated using a Pearson correlation matrix. 

2.5. Chemometric models 

Considering the mean Vis/NIR spectra, the range from 400 to 450 nm 
was removed due to a low signal-to-noise ratio produced by the sensor. 
Subsequently, reflectance data were smoothed (Savitzky-Golay method; 
polynomial order: 2; smoothing points: 7) to reduce noise from the 

spectra (S), normalised by standard normal variate (SNV) method 
(reduction of the spectral variability between samples due to differences 
in optical path and scattering), and pre-processed by applying the 
Savitzky–Golay derivative (first=D1 or second=D2) to remove both 
additive and multiplicative effects. Finally, the spectral data were mean 
centred (MC). 

For the FT-NIR spectra, the last part of the spectra from 2200 to 2500 
nm was deleted as it was characterised by higher instrumental noise. 
Furthermore, the spectra were smoothed (S) and pre-processed by D1 or 
D2 and MC. Subsequently, PLS regression models were developed to 
estimate the quality indexes (FF, SSC, FH, and DM), starting from in-
dividual Vis/NIR or FT-NIR data matrices. 

Furthermore, considering that two blocks of data (Vis/NIR and FT- 
NIR) were collected on the same sample set, the possibility of inte-
grating the information present in the different matrices (data fusion) 
into a single model may improve the prediction power. Two different 
data fusion approaches were implemented. In the first (low-level data 
fusion), the Vis/NIR and FT-NIR data sets, after proper pre-treatment, 
were combined to build a unique matrix that was then scaled (weight-
ing and mean centring) and finally subjected to PLS regression. The main 
drawback of low-level fusion is the high variable number of the final 
matrix that may not compensate for irrelevant or spurious variance 
brought by the addition of the same blocks. A careful variable selection 
might remove redundant or unnecessary data and improve estimation 
accuracy by effectively identifying the subset of important predictors 
and enhancing the model’s interpretability with parsimonious repre-
sentation. Variable importance on projection (VIP) scores estimates the 
importance of each variable in the projection used in a PLS model, and 
variables with VIP scores greater than 1 are commonly considered 
important in the prediction. This criterion is often used for variable se-
lection. Accordingly, variables characterised by VIP scores higher than 1 
were selected and new PLS models were developed. 

In the second data fusion method (mid-level feature fusion), 
concatenation of the two data sets was performed after compression of 
the data contained in each block. Data compression (feature selection) 
was performed by two approaches:  

1) Principal component analysis (PCA) was performed after proper pre- 
treatment. Scores corresponding to the PCs covering the 99% of the 
variance were extracted as features through 10-fold cross-validation 
for individual Vis/NIR and FT-NIR data and then concatenated to 
build a unique matrix that was scaled (weighting and mean centring) 
and subjected to PLS regression;  

2) For each quality index, PLS regressions for individual Vis/NIR and 
FT-NIR data were performed after proper pre-treatment. Scores 
corresponding to the selected number of latent variables (LVs) were 
extracted as features through 10-fold cross-validation and then 
concatenated to build a unique matrix which was scaled (weighted 
and mean centred) and finally subjected to PLS regression, obtaining 
global matrices characterised by 21 (SSC), 16 (FH), 19 (FF), and 22 
(DM) x-variables. 

The flowchart of the stages adopted to develop all the PLS models 
starting from individual data sets or concatenated blocks after fusion 
procedures is shown in Fig. 2. For all the PLS models, the original data 
set (n=230) was split into a calibration/cross validation (venetian blind 
cross-validation method, segments: 10) set (75% of the sample, n=172) 
and a test set validation (25% of the samples, n=58), using the Kennard- 
Stone method (selects samples that best span the same range as the 
original data, but with an even distribution of samples across the same 
range) (Daszykowski et al., 2002).  
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The optimal number of LV was identified according to the minimum 
of the RMSECV curves. Furthermore, the significance of the PLS models, 
as a function of the number of LV, was evaluated by permutation test 
(Pairwise signed rank test), thus providing the probability that the 
original model (unpermuted) is significantly different from the one built 
under the same conditions but using random data (permuted model). 
This procedure allows to identify overfitting. 

PLS results were analysed in terms of determination coefficient (R2), 
root mean square error (RMSE), and residual prediction deviation 
(RPD): 

R2 =

∑N
i=1(ŷi − y)2

∑N
i=1(yi − y)2 (2)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(ŷi − y)2

N

√

(3)  

RPD=
SD

RMSE
(4)  

where yi is the actual quality parameter, ŷi is the predicted quality 
parameter, y is the mean of the actual values, N is the number of sam-
ples, and SD is the standard deviation of actual quality parameter values. 

All the models were developed by using PLS Toolbox for 
Matlab2018a. 

3. Results 

Mean, standard deviation (SD), and minimum and maximum values 
of destructive quality parameters are shown in Table 2. The possible 
linear correlations between quality parameters were evaluated using 

Pearson correlation coefficients (Table 3). All correlations were signifi-
cant at p < 0.01, and a higher correlation was achieved between SSC and 
FH (r=− 0.855) and SSC and FF (r=− 0.825). Furthermore, less strong 
correlation was observed between FH and FF (r=0.665). 

Concerning the Vis/NIR HSI, the mean reflectance spectra of all 
samples are shown in Fig. 3 where raw and pre-processed spectra (SNV, 
D1 and D2) are reported. The visible portion of the spectra (from 400 to 
700 nm) is characterised by absorption bands of anthocyanins (450–550 
nm) and chlorophyll-α (680 nm) and chlorophyll-β (640 nm) connected 
to colour samples, and usually adopted as quality attributes to assess 
fruit ripeness (ElMasry et al., 2007). The NIR section (from 700 to 1000 
nm) is characterised by the second and third overtones of fundamental 
vibration of –OH and –CH. In particular, absorption bands related to 
water can be identified at 750 (OH third overtone) and 960 nm (OH 
second overtone), while the small absorption at 840 nm (slight inflection 
in reflectance spectra) is ascribable to sugar. 

Regarding the FT-NIR, Fig. 4 shows the raw and pre-processed (SNV, 
D1 and D2) absorbance spectra of all samples. The spectra are charac-
terised by overtones and combinations of fundamental vibration of –OH, 
–CH, and –NH groups. Specifically, five peaks around 974 (OH first 
overtone), 1200 (CH first overtone), 1460 (OH second overtone), 1780 
(CH second overtone) and 1930 nm were identified, according to (Cic-
coritti et al., 2019). These peaks are related to the absorption of water, 
cellulose, and sugars (McGlone & Kawano, 1998). In addition, in this 
case, the spectral shape was the same for all samples. As for the Vis/NIR, 
the raw spectra were pre-processed (SNV, D1 e D2) to emphasise the 
peaks and to remove offset baseline and resolve overlapped peaks. 

PLS regression models were developed to estimate the quality in-
dexes (FF, SSC, FH, and DM), starting from Vis/NIR or FT-NIR data by 
using individual data sets or data fusion approaches (data or feature 
level). Results of PLS models developed considering the individual data 

Fig. 2. Flowchart of the different steps of the data fusion adopted in the study.  

Table 2 
Mean, minimum, maximum and standard deviation (SD) of the quality 
parameters.   

SSC (◦Brix) FH (◦H) FF (kg) SS (%) 

Average 12.88 103.18 3.68 17.71 
Standard deviation 3.51 4.51 2.47 1.71 
Minimum 4.00 94.96 0.12 13.62 
Maximum 19.70 115.60 10.87 21.77 

SSC: soluble solid content; FH: flesh hue; FF: flesh firmness; DM: dry matter. 

Table 3 
Pearson correlation matrix of the quality parameters.   

SSC (◦Brix) FH (◦H) FF (N) DM (%) 

SSC (◦Brix) 1    
FH (◦H) − 0.855 1   
FF (N) − 0.825 0.665 1  
DM (%) 0.510 − 0.582 − 0.262 1 

SSC: soluble solid content; FH: flesh hue; FF: flesh firmness; DM: dry matter. 
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set are shown in Table 4, according to the pre-treatment type and 
number of latent variables (LV). 

For the Vis/NIR data set, the best results were obtained with the S +
D2+MC pre-treatment (R2

P from 0.704 to 0.859), although, overall, the 
differences between the two pre-treatments were negligible. Compara-
ble results were achieved starting from absorbance Vis/NIR data (Sup-
plementary material, Table S1). 

The FT-NIR data set had the best results adopting a S + D1+MC pre- 
treatment sequence (R2

P from 0.731 to 0.889) regardless of the quality 
parameter. For both data sets, SSC was the parameter with the highest 
R2

P (Vis/NIR: 0.859, FT-NIR: 0.889) and RPD (Vis/NIR: 2.7, FT-NIR: 3.7) 
values. 

To identify which spectral portions were most effective in the 
regression, VIP scores were evaluated. These values quantify the extent 
of contribution for each variable, and variables with VIP scores greater 
than 1 are usually considered important in the prediction. VIP scores of 
all prediction models are shown in Fig. 5 (Vis/NIR) and 6 (FT-NIR). As 
expected, considering the Vis/NIR range the FH prediction is mainly 
affected by the visible part up to 750 nm (VIP>1), while for the other 
parameters, VIP scores higher than one were also observed in the NIR 
range. Similar VIP score trends were reported by Afonso et al. (2022) for 

the prediction of the same quality parameters. 
Considering the FT-NIR range, spectral ranges characterised by VIP 

>1 are quite similar, regardless of the quality parameter prediction 
model. Overall (the raw spectra were pre-treated by S + D1+MC), these 
ranges are attributable to first and second overtone of –CH and –OH 
(previously described). New PLS models were developed considering 
only variables with VIP >1. For both the spectral ranges, the results with 
and without VIP selection were fully comparable, and only in some cases 
were the results obtained after VIP selection slightly lower. 

Results of PLS models developed by adopting data fusion approaches 
(low and mid-level) are shown in Table 5. After low level data fusion, the 
global matrix was composed of 2187 variables. PLS results were better 
than those obtained by using the individual data sets for all quality 
parameter (R2

P from 0.806 to 0.896, RPD from 2.4 to 3.5), except for DM 
(Rp

2 = 0.672, RPD=1.7). The VIP method (VIP >1) was used to reduce 
the data set and to remove redundant and unnecessary information. In 
particular, the reduction was from 47 (SCC: 1162 variables) to 75% (FH: 
546 variables). Spectral ranges characterised by VIP higher than 1 
(selected variables) are indicatively the same as shown in Figs. 5 and 6. 
The application of variable selection to low data level fusion models 
further improved the results (R2

P up to 0.905; RPD up to 3.6), reporting a 

Fig. 3. Mean Vis/NIR HIS spectra: A) raw reflectance, B) Standard Normal Variate (SNV) pretreatment; C) first derivative (D1) pretreatment; D) second derivative 
(D2) pretreatment. 
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mean RMSEP reduction of 15.0 ± 1.3% than the models developed with 
the individual data sets. As for the individual data set models, the best 
results were achieved for SSC, and the worse was achieved for DM. 

The mid-level feature fusion was performed by using two different 
approaches. In the first case, the scores of the first 10 PCs were fused in a 

single matrix for a total of 20 variables. The cumulative variance 
captured by the first 10 PCs is shown in Fig. 7 for Vis/NIR and FT-NIR 
data. In both cases, the 10 PCs describe 99% of variance. 

In the second cases, starting from the PLS models developed for each 
quality index, the scores of the selected LVs were concatenated, 

Fig. 4. FT-NIR spectra: A) raw absorbance, B) Standard Normal Variate (SNV) pretreatment; C) first derivative (D1) pretreatment; D) second derivative (D2) 
pretreatment. 

Table 4 
Results of the PLS models developed to predict quality parameters, starting from individual FT-NIR or Vis/NIR HSI data matrices.  

Technique Quality parameter Pretreatment R2
C R2

CV R2
P (n=57) RMSEC RMSECV RMSEP (n=57) RPD LVs 

Vis/NIR SSC (◦Brix) S + D1+MC 0.897 0.859 0.842 1.13 1.33 1.42 2.6 13 
S + D2+MC 0.899 0.869 0.859 1.13 1.28 1.34 2.7 11 

FH (◦H) S + D1+MC 0.850 0.806 0.808 1.77 2.02 2.10 2.4 16 
S + D2+MC 0.868 0.824 0.809 1.66 1.93 2.05 2.4 9 

FF (N) S + D1+MC 0.820 0.789 0.787 10.98 11.86 11.86 2.2 10 
S + D2+MC 0.861 0.814 0.789 9.60 11.17 11.96 2.2 10 

DM (%) S + D1+MC 0.829 0.783 0.686 0.69 0.78 0.96 1.8 9 
S + D2+MC 0.835 0.782 0.704 0.69 0.79 0.89 1.8 12 

FT-NIR SSC (◦Brix) S + D1+MC 0.934 0.898 0.889 0.92 1.14 1.16 3.4 9 
S + D2+MC 0.867 0.789 0.788 1.32 1.58 1.59 2.2 6 

FH (◦H) S + D1+MC 0.819 0.751 0.731 1.96 2.31 2.31 1.9 8 
S + D2+MC 0.791 0.668 0.632 2.10 2.67 3.01 1.6 6 

FF (N) S + D1+MC 0.857 0.802 0.804 9.70 11.37 10.78 2.4 8 
S + D2+MC 0.878 0.759 0.691 8.93 12.64 13.13 1.8 8 

DM (%) S + D1+MC 0.838 0.767 0.747 0.69 0.83 0.84 2.0 9 
S + D2+MC 0.815 0.681 0.610 0.74 0.94 1.11 1.6 5 

SSC: soluble solid content; FH: flesh hue; FF: flesh firmness; DM: dry matter; R2: determination coefficient; RMSE: root mean square error; RPD: residual prediction 
deviation; latent variables LVs; C:calibration; CV: cross-validation; P: external validation. 
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Fig. 5. VIP scores obtained by PLS regression models developed to predict soluble solid content (SSC), flesh hue (FH), flesh firmness (FF) and dry matter (DM) 
starting from individual Vis/NIR data set (pretreatment: smoothing 7 points, second derivative D2; mean cantering MC). 

Table 5 
Results of the PLS models developed to predict kiwi quality parameters, starting from the data fusion by low and mid-level approaches.  

Fusion level Quality parameter Variable number R2
C R2

CV R2
P (n=57) RMSEC RMSECV RMSEP (n=57) RPD LVs 

Low-level SSC (◦Brix) 2187 0.961 0.883 0.896 0.74 1.10 1.05 3.5 8 
FH (◦H) 2187 0.896 0.80 0.806 1.53 2.01 1.96 2.4 6 
FF (N) 2187 0.924 0.823 0.848 7.25 10.78 9.51 2.6 8 
DM (%) 2187 0.841 0.691 0.672 0.69 0.97 1.01 1.7 6 

Low-level (VIP selection) SSC (◦Brix) 1162 0.961 0.903 0.905 0.74 1.03 0.99 3.6 8 
FH (◦H) 546 0.892 0.842 0.832 1.56 1.84 1.85 2.6 5 
FF (N) 547 0.923 0.837 0.829 7.25 10.58 10.88 2.5 7 
DM (%) 617 0.862 0.761 0.704 0.65 0.85 0.89 2.0 5 

1) Mid-level (PCA-PCs scores) SSC (◦Brix) 20 0.871 0.866 0.865 1.21 1.34 1.34 2.7 5 
FH (◦H) 20 0.777 0.763 0.786 2.11 2.34 2.31 2.2 3 
FF (kg) 20 0.831 0.813 0.823 10.29 10.78 10.58 2.5 6 
DM (%) 20 0.792 0.651 0.631 0.92 1.04 1.08 1.6 5 

2) Mid-level (PLS-LVs scores) SSC (◦Brix) 21 0.936 0.913 0.914 0.91 1.07 0.97 3.7 2 
FH (◦H) 16 0.863 0.838 0.843 1.73 1.94 1.82 2.7 2 
FF (N) 19 0.870 0.856 0.866 9.51 9.90 9.41 2.9 2 
DM (%) 22 0.866 0.862 0.854 0.63 0.63 0.64 2.7 4 

SSC: soluble solid content; FH: flesh hue; FF: flesh firmness; DM: dry matter; R2: determination coefficient; RMSE: root mean square error; RPD: residual prediction 
deviation; latent variables LVs; C:calibration; CV: cross-validation; P: external validation. 
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obtaining global matrices characterised by 21 (SSC), 16 (FH), 19 (FF), 
and 22 (DM) x-variables. Adopting the first approach, R2

P values equal to 
0.914 (RMSEP = 0.07 ◦Brix), 0.843 (RMSEP = 1.82 ◦H), 0.866 
(RMSEP=9.41 N), and 0.854 (RMSEP=0.64 %) were reached for SSC, 
FH, FF and DM, respectively. The second approach of mid-level data 

fusion further improved, with respect to PLS from individual data set, 
reporting RMSEP reduction up to 13% and 24% for FF and DM, 
respectively. The R2

P of the PLS model developed to estimate DM 
increased more than 14%, passing from 0.747 to 0.854, confirming the 
potential of the data fusion in improving PLS prediction power. 

Fig. 6. VIP scores obtained by PLS regression models developed to predict SSC, FH, FF and DM starting from individual FT-NIR data set (pretreatment: smoothing 7 
points, first derivative D1; mean cantering MC). 

Fig. 7. Cumulative variance (%) captured by the first 10 principal component (PC) obtained by PCA of the individual Vis/NIR and FT-NIR data sets.  
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Fig. 8 shows the measured vs. predicted values (prediction data set) 
of all quality indices obtained by the best PLS regression. The signifi-
cance of all PLS models, as a function of the number of LV, was evaluated 
by permutation test reporting significance values less than 0.01. All the 
models developed were significant with at least a 99% confidence level. 
Correlation coefficients between the unpermuted and permuted 
regression vectors versus the standardised sums-of-squares (SSQ) are 
shown in Fig. 9 for SSC models (similar results were observed for all the 
quality indices). In a robust model, cross-validated and self-prediction 
(calibration) values should be quite close to each other but should be 
lower than the values calculated for the unpermuted y-block (right side 
of the plot), independently of the correlation with the reference values. 
The distance between the unpermuted results and the mean (y-value) is 
a measure of the robustness of the model. A higher distance indicates a 
more robust model, which is likely to be overfit. For the mid-level 
feature fusion, the distance is about 8, while for the other models, it 
varies from 1 to 5. This confirms that the mid-level fusion approaches 
produce a more robust model. The worst results, in terms of significance 
and robustness, were observed for the low-level data fusion. 

4. Discussion 

The mean values of the quality parameters obtained agree with those 

reported by (Feng et al., 2011) for yellow-fleshed kiwifruit evaluated 
pre- and post-harvest. Furthermore, the correlations observed between 
FH, SSC, and FF confirm that by decreasing the ◦H value (flesh the colour 
turns towards yellow), the ◦Brix increases and the fruit becomes softer. 

Results of the PLS models developed considering the individual data 
sets confirm that both spectral ranges are useful to predict all quality 
parameters, especially SSC. Comparing the two spectral ranges, the best 
results were obtained for the FT-NIR data set, except for prediction of 
yellow flesh colour (FH). In this latter case, PLS results of Vis/NIR 
spectra were clearly better. FH is a parameter that is directly connected 
with flesh colour variation, and consequently, as could be expected, the 
main contribution in the prediction is due to the visible range acquired 
only by the HSI camera. This is confirmed by the evaluation of VIP 
scores. FH prediction is mainly affected by the visible portion up to 750 
nm (VIP >1), while for all the other parameters VIP scores higher than 
unity were also observed in the NIR range. Similar VIP score trends were 
also reported by Afonso et al. (2022) for prediction of the same quality 
parameters. 

Concerning low-level data fusions, it is distinguishing the DM pre-
diction that was not improved by this fusion strategy. It is difficult to 
identify a motivation for this, especially considering that the literature 
data report a wide variability in the yellow kiwi DM prediction (R2

P from 
0.65 to 0.91). Further studies on a larger number of samples, from 

Fig. 8. Measured versus predicted values in external validation (soluble solid content (SSC), flesh hue (FH), flesh firmness (FF) and dry matter (DM)) obtained by PLS 
models developed after mid-level feature fusion (PLS scores). 
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several production seasons, could help to understand and, eventually, 
confirm these results. 

Regarding the results obtained after the mid-level feature, the first 
approach (PCA-PCs scores) gave worse results for all quality indexes 
than those achieved by all other fusion level models. Probably the PCA 
decomposition leads to information loss, resulting in poor predictive 
performance of the fused models. In contrast, the mid-level based on the 
concatenation of the scores obtained by independent PLS regressions 
showed the best results for all quality indices. The difficulty with feature 
level fusion concerns the selection of the optimal feature selection 
method, and improper methods could lead to information loss, as was 
observed for the first mid-level approach (PCA-PCs scores). To confirm 
this, permutation tests showed a higher robustness of the models 
developed by applying the mid-level fusion approaches compared to 
those obtained by individual data set or low-level data fusion. Further-
more, lower significance values were observed for the low-level data 
fusion. This is likely due to the high redundancy and unnecessary in-
formation associated with the concatenation of the two individual data 
sets. 

Although there is no statistical basis as to how the threshold equal to 
two was determined, usually models characterised by RPD values higher 
than two are considered as excellent. Furthermore, for quality control 
purposes, the following RPD categories have been identified: i) 2.4–3.0 
rough screening quality; ii) 3.1–4.9 screening quality; iii) 5.0–6.4 
quality control; iv) 6.5–8.0 process control; v) > 8.1 any application 
(Williams & Norris, 2001). Considering the RPD values achieved in this 
study, the PLS models could be suitable for screening of quality. 

Overall, the prediction results are in agreement with or better than 
those reported in literature (Afonso et al., 2022; Feng et al., 2011; 
McGlone et al., 2007) for yellow kiwi in the Vis/NIR spectral range (SSC: 
R2

P from 0.81 to 0.92; FH: R2
P from 0.84 to 0.88; FF: R2

P = 0.57; DM: R2
P 

from 0.65 to 0.91). Especially for FF, the approach proposed in the 
present study showed notable improvements (R2

P until 0.866). 
Compared to SSC and DM, FF is associated with minor changes in 
chemical composition, such as pectin levels. Consequently, it is unlikely 
that NIR can be directly applied to detect these minor chemical changes 
in fruit. Furthermore, modifications in firmness could be also associated 
with change in cell wall adherence, and thus in cell shape modifications. 
This could result in changes in light scattering within the fruit that are 
detectable as a change in apparent absorbance variations. However, 
there is not a consistent link between scattering and firmness. Consid-
ering of all this and that FF is correlated to a range of other attributes, 
from pigment level to water content and starch-sugar conversion, sec-
ondary correlations in the Vis/NIR ranges are likely to be the most useful 
(Subedi & Walsh, 2009). 

Considering literature data, Ciccoritti et al. (2019), using a spec-
trometer working from 850 to 2500 nm, reported the best results for SCC 
and DM prediction. However, a comparison with our results may not be 
appropriate for several reasons. First of all, Ciccoritti et al. (2019) 
studied green-fleshed kiwifruit varieties and not yellow flesh kiwifruit, 
and the quality parameters were evaluated during storage (until 90 
days) and not at harvest. The SSC and DM ranges were quite different, 
and, in our opinion, not comparable. 

From an industrial point of view, in the light of the results obtained 
herein, the combination of Vis/NIR hyperspectral and NIR spectrometric 
techniques may be considered for possible application on real-time 
yellow kiwi selection lines. The two spectral ranges (400–1000 and 
900–2500 nm), characterised by different penetration depth and over-
lapping signals, would allow to contemporary evaluate internal, 
dimensional, and surface parameters (e.g. colour or any defects identi-
fiable with RGB images). This present study focused on internal quality 
parameters, and image processing is a well known technique to evaluate 

Fig. 9. Permutation test (100 permutations) results of PLS models developed to predict soluble solid content (SCC), considering individually FT-NIR and Vis/NIR 
data, and after low and mid level fusion (PCA and PLS scores). 
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and classify fruit according to external quality (Rocha, Hauagge, 
Wainer, & Goldenstein, 2009; Davies, 2009). Furthermore, Vis/NIR 
(408-117 nm) hyperspectral imaging was used to detect hidden bruises 
on kiwi fruit, which is a foundation for further development of an in-line 
inspection system (Ebrahimi et al., 2023; Lu & Tang, 2012). 

5. Conclusions 

In this study, the use of data fusion of Vis/NIR hyperspectral imaging 
and FT-NIR spectroscopy to non-destructively predict the quality pa-
rameters of yellow flesh "Jintao" kiwifruit was investigated. Data fusion 
improved the prediction power of PLS models, with a mean RMSEP 
reduction of 16.0 ± 4.8%. The best results were achieved using a mid- 
level data fusion approach, which combines the scores from PCA or 
PLS models developed for each data set. The results of this study suggest 
that data fusion is a promising approach to improve the non-destructive 
prediction of quality parameters in yellow flesh kiwifruit. This could be 
useful for growers and retailers to optimise the harvesting time and 
ensure that fruits are harvested at the optimal stage of maturity. Further 
studies are needed to investigate the use of data fusion to predict other 
relevant quality parameters on other vegetables, which have not been 
considered in the scientific literature. 
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