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ABSTRACT
The power requirements of modern High-Performance Computing
(HPC) systems pose environmental and financial challenges, as they
contribute to carbon emissions and strain power grids. Optimizing
power consumption together with system performance has thus
become a crucial goal for HPC centers. As jobs running on a sys-
tem contribute to the whole system’s power usage, predicting their
power requirements before execution on the system would allow
to forecast the overall power consumption and perform techniques
like power capping at the workload manager level. Such predictive
studies need quality data, which is limited due to the inherent com-
plexity of collecting structured data for job power characterization
in a production system. This paper aims to fill the lack of resources
for job power prediction and provide the HPC community with (i)
a methodology to create a job power consumption dataset from
workload manager data and node power metrics logs, and (ii) a
novel and large dataset comprising around 230K jobs and their cor-
responding power consumption values. The dataset is derived from
M100, a holistic dataset extracted from a production supercomputer
hosted at the HPC centre CINECA in Italy.
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1 INTRODUCTION
In the rapidly advancing landscape of High-Performance Comput-
ing (HPC), the demand for computational resources continues to
surge, driven by the ever-increasing complexity of scientific simula-
tions, data analysis, and machine learning applications. The power
requirements of HPC systems are significant, and they not only
pose financial challenges but also raise environmental concerns.
Therefore, optimizing power consumption together with system
performance has become a central objective for HPC facilities, aca-
demic institutions, and research laboratories worldwide[9].

A job running on an HPC system contributes to the whole sys-
tem’s power consumption. Job power consumption refers to the
amount of electrical power consumed by the job while executing
its computational tasks on the system resources. Hence, the total
power consumption of a job is computed by aggregating the power
consumption of all the resources allocated to the job during its exe-
cution. Predicting the power consumption of a job before its execu-
tionwould allow to forecast thewhole system’s power consumption.
Past work proved the feasibility of predicting job power consump-
tion by leveraging on workload manager information [5, 13–15].
The prediction can then be exploited by the workload manager to
perform techniques like power capping [6, 16].

All the referenced work addressed the prediction task by using
data-driven techniques exploiting a structured dataset. Due to the
steady development of such techniques, the availability of quality
data extracted from a production HPC system has thus become
a leading priority. Such resources are, however, often limited due
to the inherent complexity of collecting structured data for job
power characterization in a production system. Power consump-
tion measurement relies on, among others, hardware sensors and
different software interface. To give an idea, most of the modern
systems have in-band software interface (available within the op-
erating system of the compute node) for the power measurement
of compute elements, whereas for node-level and component-level
measurement, they rely on out-of-band interface (observable in the
management network) and smart power switches which monitor
cluster power consumption (observable in the facility management
network). Job information instead requires monitoring the work-
load manager, which is possible from the login and master node.
Accessing simultaneously to all these data resources requires differ-
ent privilege levels and monitoring software validation procedures.
While this is relatively easy in a test environment, it is not the case
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in a production machine. On the other hand, job characteristics of
a production machine are more relevant for predictive studies as
they reflect the behaviour of a multitude of real user. Test clusters
tend to have synthetic and small-scale workload submitted from a
smaller set of users with larger idle time, which limits generality.

In this paper, we fill the lack of resources for job power predic-
tion. We propose an approach to extract job power consumption
data from workload manager data and node power metrics logs,
which can easily be obtained through system plugins. Moreover,
we present a large job dataset named PM100, with fine-grained job
power consumption information. The PM100 dataset is derived from
the M100 workload [8], a holistic dataset extracted from a large-
scale production HPC, using the approach that we propose and is
accessible through Zenodo [3]. Finally, we provide an overview of
PM100, by analysing the data and discussing how it can be exploited
for different prediction tasks.

To the best of our knowledge, the only publicly available dataset
for job power consumption is presented in [13]. The dataset contains
80K jobs using CPU cores and is extracted from two production
HPC clusters, with 560 and 728 nodes, respectively. Our work differs
from [13] in a number of ways. First, our dataset is based on the
first holistic dataset M100 of a more powerful tier-0 production
supercomputer (Marconi100) and contains many more jobs (80k vs
230k). Second, as the nodes of Marconi100 are equipped with GPUs,
the collected power consumption data refers to two types of jobs
(those using only cores and also GPUs). Third, the data presented
in [13] lack job information present in PM100, such as the job exit
state, making the dataset not suitable for the job failure analysis and
prediction tasks presented in Section 4. Finally, our approach can
be applied to any public workload data with node power metrics
logs so as to create new job power consumption datasets. With
our work, we strive to empower the HPC community with tools
to drive research in optimizing system performance and power
consumption.

In the rest of the paper, we first briefly describe the M100 work-
load dataset (Section 2), then explain our methodology to create
the PM100 dataset starting from M100 (Section 3), finally give an
overview of PM100 (Section 4) and conclude (Section 5).

2 M100 DATASET
Marconi100 is a tier-0 production supercomputer hosted at CINECA1

in Italy, and at the time of writing (July 2023), is ranked 26𝑡ℎ in the
top500 list.2 The cluster is composed of 980 computing nodes, and
all the components are connected by a Mellanox Infiniband EDR
DragonFly+ 100 Gb/s network infrastructure. Computing resources
are allocated through job submission to the workload manager
Slurm installed in the system. Technical details of the system are
summarized in Table 1.

The M100 workload data [8] is collected during two and a half
years of operation of Marcon1100. It is the first holistic dataset
of a tier-0 supercomputer, and it is the largest (49.9 TB in size
before compression) publicly available. It contains data ranging
from the computing nodes’ internal information such as core load,
temperature, power consumption, to the system-wide information,

1https://www.cineca.it
2https://www.top500.org

System characteristic Description
#Nodes 980
#Processors (per node) 2x16 cores IBM POWER9 AC922, 3.1 GHz
#Accelerators (per node) 4 x NVIDIA Volta V100 GPUs, 16 GB
#CPU cores (per node) 32
Amount of RAM (per node) 256 GB
Peak performance 32 PFlop/s

Table 1: Marconi100 system characteristics.

including the liquid cooling infrastructure, the air-conditioning
system, the power supply units, workload manager statistics, and
job-related information. For our purposes, we are interested in the
job data and node power metrics.

Job data. The job data is collected in the job table plugin. We
focus on the data that describes the jobs present in the workload
by features related to their submit-time, run-time and end-time.
The first category contains the information available when a job is
submitted, such as submission time, number of requested resources,
user information and system state. The second category comprises
the information about the job launch, such as waiting time, execu-
tion start time, and the actual number of allocated resources. At job
termination, the end-time features are collected, e.g., ending time,
duration and outcome of the execution. The full list of job features
is available at the dataset repository.3 The job termination features
do not contain job power consumption, so we need to extract this
information from the power metrics logs of the nodes present in
M100.

For the purposes of our work, we consider only a part of the
dataset4 and use only the data collected between May 2020 and
October 2020. The reason is that this is the only period where the
dataset contains information on the requested resources, which is
useful to give a more in-depth description of each job and could
be exploited for prediction tasks. The considered period contains
around 1 million jobs.

Node power metrics. The power consumption data of the sys-
tem components is contained in the IPMI plugin, which collects
several metrics on cluster nodes, such as ambient temperature, node
temperature, fan speed, node power, CPU power, memory power. The
full list of metrics present in the IPMI data, and their relative sam-
pling time, is reported in the original documentation of the dataset.5
The values of all the metrics are collected every 20 seconds on all
the system nodes. The final data is saved in a table, divided by node
and collection time.

For our purposes, we consider only themetrics 𝑝𝑠0_𝑖𝑛𝑝𝑢𝑡_𝑝𝑜𝑤𝑒𝑟
and 𝑝𝑠1_𝑖𝑛𝑝𝑢𝑡_𝑝𝑜𝑤𝑒𝑟 , which contain the power consumption val-
ues recorded at the input of the two power supplies of the nodes.
Thus, the power consumption of a node 𝑛 at time 𝑡𝑖 can be obtained
by summing 𝑝𝑠0_𝑖𝑛𝑝𝑢𝑡_𝑝𝑜𝑤𝑒𝑟𝑛,𝑡𝑖 and 𝑝𝑠1_𝑖𝑛𝑝𝑢𝑡_𝑝𝑜𝑤𝑒𝑟𝑛,𝑡𝑖 .

3https://gitlab.com/ecs-lab/exadata/-/blob/main/documentation/plugins/job_table.
md
4https://doi.org/10.5281/zenodo.7588815
5https://gitlab.com/ecs-lab/exadata/-/blob/main/documentation/plugins/ipmi.md
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3 PM100 DATASET CREATION
In this section, we first discuss the information that needs to be
included in the data to apply our methodology. Then, we describe
how we selected the jobs in M100 to include in the dataset PM100;
this step is crucial to guarantee data soundness. We then explain
how to extract job power consumption data starting from the power
metrics logs of the nodes present in M100. At the end, we discuss
the job features present in PM100.

Data requirements. The methodology we propose in this work
can be applied to any workload manager data and node power
metrics logs, providing the following information.

The workload manager data need to contain, for each job 𝑗 , its
start time, end time, and the nodes 𝑛𝑜𝑑𝑒𝑠 𝑗 allocated to the job 𝑗 .
This information will be used to filter out the exclusive jobs and to
extract the job 𝑗 power consumption 𝑝 𝑗 .

The node power metrics logs must keep record of the power
consumption values of the single nodes of the systems, at different
timestamps 𝑡𝑖 . Such values are used to compute the job 𝑗 power
consumption 𝑝 𝑗 , at the different time 𝑡𝑖 .

In this work, we consider the node 𝑛 power consumption at
time 𝑡𝑖 as the sum of 𝑝𝑠0_𝑖𝑛𝑝𝑢𝑡_𝑝𝑜𝑤𝑒𝑟𝑛,𝑡𝑖 and 𝑝𝑠1_𝑖𝑛𝑝𝑢𝑡_𝑝𝑜𝑤𝑒𝑟𝑛,𝑡𝑖 ,
as discussed in Section 2. However, if the 𝑝𝑠0_𝑖𝑛𝑝𝑢𝑡_𝑝𝑜𝑤𝑒𝑟 and
𝑝𝑠1_𝑖𝑛𝑝𝑢𝑡_𝑝𝑜𝑤𝑒𝑟 values are missing, the node power consumption
can be defined differently, in accordance with the data present in
the node power logs.

Job filtering. In Marconi100, multiple jobs can run on the same
node at the same time. Therefore, node power consumption depends
on the power consumption of the execution of multiple jobs on the
node’s resources. We are not aware of a methodology to evaluate
accurately the contribution of each job execution to the node power
consumption. Thus, we consider only the jobs that run alone on all
the allocated nodes throughout their execution, to provide accurate
power consumption information.

In order to filter out the exclusive jobs, we implement a pipeline
defined as follows. First, we create a hash-table for each node 𝑛,
where the keys are the timestamps 𝑡𝑖 of a fixed period of time Δ,
sampled every \ seconds. The value related to the key 𝑡𝑖 is a list
containing the IDs of the jobs running on 𝑛 during that particular
timestamp 𝑡𝑖 . For each job 𝑗 , we round the start time (ceiling round-
ing) and the end time (floor rounding) to the closest 𝑡𝑖 (referred
to as 𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 𝑗 and 𝑒𝑛𝑑_𝑡𝑖𝑚𝑒 𝑗 ). We then add the job ID to the
lists of all the 𝑡𝑖 that fall between 𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 𝑗 and 𝑒𝑛𝑑_𝑡𝑖𝑚𝑒 𝑗 , for
all the nodes 𝑛 ∈ 𝑛𝑜𝑑𝑒𝑠 𝑗 allocated to 𝑗 . Finally, from the resulting
tables, we filter out all the jobs 𝑗 that are the only members of the
lists hashed by 𝑡𝑖 falling between 𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 𝑗 and 𝑒𝑛𝑑_𝑡𝑖𝑚𝑒 𝑗 for all
𝑛 ∈ 𝑛𝑜𝑑𝑒𝑠 𝑗 .

Despite considering all the 𝑡𝑖 of all the jobs is a costly operation,
it can be very useful for future work. For instance, it can be used
to study the power consumption of concurrent jobs and how their
power consumption intertwine during their execution. Moreover,
one can augment the data by considering the power profiles of the
concurrent jobs just in the timespans where they ran alone.

Job power consumption extraction. In order to extract job
power consumption, we need to perform a data post-processing
pipeline to correlate each job to the power consumption caused by

Input : 𝑗𝑜𝑏 𝑗, 𝑝𝑠0_𝑖𝑛𝑝𝑢𝑡_𝑝𝑜𝑤𝑒𝑟, 𝑝𝑠1_𝑖𝑛𝑝𝑢𝑡_𝑝𝑜𝑤𝑒𝑟
Output :𝑝 𝑗
𝑝 𝑗 = []
𝑡𝑖 = 𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 𝑗
\ = 20
while 𝑡𝑖 ≤ 𝑒𝑛𝑑_𝑡𝑖𝑚𝑒 𝑗 do

𝑝_𝑛𝑜𝑑𝑒𝑠 𝑗,𝑡𝑖 = 0
for 𝑛 ∈ 𝑛𝑜𝑑𝑒𝑠 𝑗 do

𝑝_𝑛𝑜𝑑𝑒𝑠 𝑗,𝑡𝑖 = 𝑝_𝑛𝑜𝑑𝑒𝑠 𝑗,𝑡𝑖 + 𝑝𝑠0_𝑖𝑛𝑝𝑢𝑡_𝑝𝑜𝑤𝑒𝑟𝑛,𝑡𝑖 +
𝑝𝑠1_𝑖𝑛𝑝𝑢𝑡_𝑝𝑜𝑤𝑒𝑟𝑛,𝑡𝑖

end
𝑝 𝑗 = 𝑝 𝑗 + [𝑝_𝑛𝑜𝑑𝑒𝑠 𝑗,𝑡𝑖 ]
𝑡𝑖 = 𝑡𝑖 + \

end
Algorithm 1: Job power consumption extraction

its execution. We define the power consumption of an exclusive
job 𝑗 as a list 𝑝 𝑗 , where each element is the job power consumption
computed at 𝑡𝑖 , for all the 𝑡𝑖 intersecting the job execution. The
job power consumption at time 𝑡𝑖 is obtained as the sum of the
power consumption of the nodes 𝑛 ∈ 𝑛𝑜𝑑𝑒𝑠 𝑗 allocated to the job 𝑗

(𝑝_𝑛𝑜𝑑𝑒𝑠 𝑗,𝑡𝑖 ). As mentioned in Section 2, the power consumption
of a single node 𝑛 at time 𝑡𝑖 is the sum of 𝑝𝑠0_𝑖𝑛𝑝𝑢𝑡_𝑝𝑜𝑤𝑒𝑟𝑛,𝑡𝑖 and
𝑝𝑠1_𝑖𝑛𝑝𝑢𝑡_𝑝𝑜𝑤𝑒𝑟𝑛,𝑡𝑖 . Thus, 𝑝_𝑛𝑜𝑑𝑒𝑠 𝑗,𝑡𝑖 can be computed as shown
in Equation 1. Combining the definitions, we can create the job
power consumption values list as shown in Equation 2.

𝑝_𝑛𝑜𝑑𝑒𝑠 𝑗,𝑡𝑖 =
∑︁

𝑛∈𝑛𝑜𝑑𝑒𝑠 𝑗
𝑝𝑠0_𝑖𝑛𝑝𝑢𝑡_𝑝𝑜𝑤𝑒𝑟𝑛,𝑡𝑖 +𝑝𝑠1_𝑖𝑛𝑝𝑢𝑡_𝑝𝑜𝑤𝑒𝑟𝑛,𝑡𝑖

(1)

𝑝 𝑗 = [𝑝_𝑛𝑜𝑑𝑒𝑠 𝑗,𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 𝑗 , . . . , 𝑝_𝑛𝑜𝑑𝑒𝑠 𝑗,𝑒𝑛𝑑_𝑡𝑖𝑚𝑒 𝑗 ] (2)

Algorithm 1 lists the steps performed to extract the power consump-
tion of each exclusive job filtered in the previous step. For each job
𝑗 that has 𝑒𝑛𝑑_𝑡𝑖𝑚𝑒 𝑗 −𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 𝑗 > 0, we initialize 𝑝 𝑗 as an empty
list. The length of 𝑝 𝑗 will be 𝑒𝑛𝑑_𝑡𝑖𝑚𝑒 𝑗 − 𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 𝑗/\ , where \ is
the sampling time of the power values in the power data (20 seconds
in our case), namely the distance in time between two consecutive
power measurements in the data. We iterate over all the 𝑡𝑖 intersect-
ing the execution of 𝑗 , (i.e. 𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 𝑗 ≤ 𝑡𝑖 ≤ 𝑒𝑛𝑑_𝑡𝑖𝑚𝑒 𝑗 ), and we
compute the 𝑝_𝑛𝑜𝑑𝑒𝑠 𝑗,𝑡𝑖 . At the end of each iteration, 𝑝_𝑛𝑜𝑑𝑒𝑠 𝑗,𝑡𝑖 is
added to 𝑝 𝑗 and 𝑡𝑖 is updated. The algorithm returns 𝑝 𝑗 containing
the power consumption values of the job 𝑗 during its execution.

The code to perform the full pipeline is available on the GitHub
repository6 of the dataset.We run the scripts on amachine endowed
with 32 cores and 256 GB of RAM, and the runtime of the whole
process was around 8 weeks, with only the job power consumption
extraction requiringmore than 7 weeks. The lengthy computation is
mainly due to the size of the initial dataset, which contains around
1 million jobs. The filtering process removed all the jobs that do
not run exclusively on the nodes and with which we encountered
problems due to missing values in the power data. The final dataset
(∼ 100 MB) contains 231,238 jobs and is accessible through Zenodo
[3].
6https://github.com/francescoantici/PM100-data
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Job features. Each job in PM100 is represented with a set of
features, most of which are imported from the original dataset
M100. After inspecting the original feature values, we notice that
some information is duplicated or not meaningful enough. For
instance, multiple fields are related to the names of the allocated
nodes, so we aggregate them into a single feature called nodes. We
also observe that some features contain the same information in
different formats, e.g., time_limit_str and time_limit, thus we keep
only one of such features. We further remove the features that have
the same values across all the jobs, such as power_flags.

After this initial pre-processing, we modify some features to
make the underlying information more explicit and easy to access.
In particular, we engineer the features related to the resources. In
the original data, each job record contains two fields listing the
amount of requested and allocated resources, namely tres_req_str
and tres_alloc_str. This data is structured as a comma-divided list
of features (#nodes, #cores, #GPUs, and amount of RAM) and their
values, e.g. "nodes=1,cpus=32,gpu=1,mem=256G". We unpack the list
of features and their values to individual features 𝑓𝑘 , where 𝑓 ∈
{𝑛𝑢𝑚_𝑛𝑜𝑑𝑒𝑠, 𝑛𝑢𝑚_𝑐𝑜𝑟𝑒𝑠, 𝑛𝑢𝑚_𝑔𝑝𝑢𝑠,𝑚𝑒𝑚} and 𝑘 ∈ {𝑟𝑒𝑞, 𝑎𝑙𝑙𝑜𝑐}. Fi-
nally, we add the 𝑝𝑜𝑤𝑒𝑟_𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 feature, which is the list 𝑝 𝑗
of job power consumption values recorded during its execution, as
computed in the previous paragraph.

Overall, each job has 32 features, which are documented in the
GitHub repository of the dataset.

4 PM100 DATASET OVERVIEW
In this section, we offer an overview of the PM100 dataset. First,
we conduct an Exploratory Data Analysis (EDA) to understand the
dataset and its underlying patterns, such as distributions, correla-
tions, and relationships between certain features. As the description
of the original M100 dataset [7] did not provide any such analysis,
we first start with the jobs and then continue with their power
consumption. This process provides insights into the nature of the
data, which could be useful for prediction purposes and choosing
the appropriate modeling techniques. We conclude the section with
some examples of prediction tasks that can be performed with the
dataset.

4.1 Job analysis
With job analysis, we investigate the classical workload characteris-
tics, such as job submission date, exit state, duration, and allocated
resources.

Submission date. In Figure 1, we plot the distribution of the
number of jobs (y-axis) submitted per day (x-axis), and its Kernel
Density Estimate (KDE). The KDE (blue solid line) provides a proba-
bility density function estimation of the job submission per day, and
it is plotted to spot patterns or seasonality more easily. Although
we may expect a uniform distribution of job submission throughout
the days, the figure shows that neither seasonality nor uniformity
is present in the data. This is not unexpected. The PM100 dataset
does not include all the jobs submitted to the system. Also, in a
real HPC environment, jobs maybe submitted non-uniformly due
to several reasons, like scheduled maintenance, holidays, and node
failures and outages. Moreover, occasionally, it may be necessary

Figure 1: The distribution of the jobs throughout the days.

to dedicate (a part of) the cluster to certain computations, as it
happened in our case with COVID-19-related tasks.7

Exit state. The exit state of a job represents its execution out-
come. Since the jobs in our dataset are executed on a production
machine, we expect to have a workload composed of mainly suc-
cessfully completed jobs. This is because production machines are
not used for tests, but only to execute stable jobs. We present in
Figure 2 the distribution of the possible outcomes. As expected,
the vast majority of the jobs (77%) are successfully completed. The
second most frequent category is failed, with the 14%. These are
the jobs that fail due to generic errors encountered during their
execution, such as bugs in the code or errors in the job script.
Some jobs are cancelled by their user during their execution due
to reasons like discovery of bugs or errors in the code by checking
intermediate results or of misconfigurations in batch scripts (e.g.
run-time duration configuration is not enough). They represent 5%
of the jobs in the dataset. With similar percentage (4%), there is
the timeout category, referring to the jobs that exceeded the time
limit set by the user or the system. Less than 1% of jobs run out
of memory (oom) due to misconfiguration and underestimation of
memory requirements. Similarly, less than 1% of the jobs fail due
to node fail. This phenomenon is very rare in production machines,
indeed, oom and node fail jobs combined account for around 1%.
Even though the dataset does not reflect the whole system load, the
expected unbalancing towards the successfully completed jobs is
still present and yet there exist a significant amount of jobs that
did not successfully complete (∼ 50K).

Duration. In Figure 3, we present the job duration distribution.
In an HPC system, job duration may range from a few seconds to
several days, depending on the allocated resources, the operations
performed, and the system requirements (some systems may allow

7Quoting an e-mail from the HPC system support to the users: "Due to a COVID-
related urgent computing activity, most of M100 nodes will not be available for the
standard production from Friday, November 6, 4 pm, to Monday, November 9, 4 pm.
This will cause a significant increase in the waiting times and the impossibility to run
jobs with more than 60 nodes".
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Figure 2: Distribution of job exit state.

Figure 3: Distribution of job duration, divided by exit state.

long executions while others not). The figure reveals that the ma-
jority of jobs has a duration of less than 100 minutes. Very few jobs
run for more than a day, meaning that the jobs in our dataset are
mainly short to medium length. This can be a characteristic of the
users (not submitting jobs that require excessive computation) or
due to a system setting (lengthy executions are not allowed). In the
figure we also investigate how job duration is related to job exit
state. We observe all possible outcomes with jobs running up to
1300 minutes. We observe further that the jobs that run for more
than 1300 minutes all timeout. This is consistent with the informa-
tion provided in the official documentation of Marconi1008, stating
that the system limits the job duration to 24 hours (1440 minutes)
except some particular cases.

Allocated resources. The dataset is dominated by the jobs using
both cores and GPUs (91%). In Figures 4, 5, 6, and 7, we show the

8https://wiki.u-gov.it/confluence/pages/viewpage.action?pageId=336727645

Figure 4: Distribution of the number of allocated nodes.

Figure 5: Distribution of the number of allocated cores.

distribution of the amount of allocated nodes, cores, GPUs and RAM,
respectively. From Figure 4, we can conclude that the majority of the
jobs uses just one node for their execution. No job uses a significant
portion (≥ 20%) of the system nodes (980 in total), meaning that
the jobs in our data mainly represent small-scale executions. This
is also reflected in Figures 5, 6, and 7. Indeed, we notice an evident
spike in these figures in correspondence to the amount of cores
(128), GPUs (4), and RAM of a node (256 GB).

4.2 Job power consumption analysis
With job power consumption analysis, we investigate whether jobs
differ in their power consumption values and trends, as well as the
influence of GPU usage.

Power consumption. As discussed in Section 3, power_consumption
is the feature containing the list of power consumption values of the
job throughout its execution. We start our analysis by plotting in
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Figure 6: Distribution of the number of allocated GPUs.

Figure 7: Distribution of the amount of allocated RAM.

Figure 8 the power_consumption values of 7 randomly chosen jobs
whose resource usage is reported in Table 2. We observe that the
jobs with similar features (single-node jobs 1 and 2) tend to behave
similarly in their power consumption. As the number of allocated
nodes, cores and GPUs increase, so does the power consumption
values. We also observe that the consumption trend of the jobs vary.
For instance, while jobs 6 and 7 fluctuate between higher and lower
values, the others show a smoother behaviour. We can conclude
that our dataset contains a diverse set of jobs in terms of power
usage.

GPU influence on power consumption. Since the jobs are ex-
tracted from a heterogeneous machine, we want to explore how
the GPU usage impacts power consumption. In this analysis, we
consider the individual values of the jobs’ instantaneous power
consumption at each time point rather than their time distribution.
Thus, we merge all the values of all the power consumption lists

Figure 8: Job power consumption during execution.

Figure 9: Distribution of job power consumption.

into a single set, independently of the job. Then, we use this data
to plot Figures 9 and 10. In Figure 9, we show the distribution of
the set of power consumption values by distinguishing between
the jobs using only cores (9%) from those using also GPUs (91%).
The figure shows that jobs using only cores tend to reach lower
power values compared to the ones using also GPUs. This behav-
ior is normal in heterogeneous systems, since GPUs have higher
functional unit density and are usually characterized by a larger
Thermal Design Power (TDP) than cores. In Figure 10, we focus on
the single-node jobs and plot the distribution of the instantaneous
power consumption values, again by separating the jobs using only
cores from those using also GPUs. We see that independently of
the number of allocated nodes, the range of power consumption
values of jobs using also GPUs are higher than those using only
cores, validating the findings of the analysis of the previous plot.
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Job # #Nodes #Cores #GPUs RAM
1 1 40 4 74
2 1 128 4 237
3 4 64 16 512
4 8 1024 32 1900
5 12 1536 48 2695
6 16 2048 64 3800
7 20 1280 80 4804

Table 2: Amount of allocated resources of jobs in Figure 8.

Figure 10: Power consumption of single-node jobs.

4.3 Prediction Tasks
Our dataset enables performing various prediction tasks in HPC
systems such as job duration prediction, job failure prediction, and
job power consumption prediction.

Job duration prediction. This concerns forecasting the exe-
cution duration of a job before its allocation in the system. This
information can be useful to develop dedicated workload manage-
ment strategies, as shown in [10], aiming at improving system
performance and achieving high quality of service (QoS) levels.
Past work, such as [1, 17], explored the task by relying on machine
learning techniques, while others like [10] tackled the problem
by employing a data-driven heuristic algorithm in the scope of
an online job dispatching problem. Such approaches can easily be
performed on our dataset by exploiting the run_time feature of the
jobs as target.

Job failure prediction. This is one of the hottest topics in the
area of workload prediction, and it concerns forecasting possible
failures during the execution of a job before its allocation in the
system. Failing jobs unnecessarily occupy resources which could
delay other jobs, adversely affecting the system performance, QoS
and power consumption. Similar to the job duration prediction,
forecasting failures a priori would allow to adopt ad-hoc workload
management strategies, as shown in [11]. Several past work ad-
dressed the job failure prediction task. For instance, [2, 4, 11, 12]

relied on data-driven techniques aimed at predicting job failure
by analysing workload features. As discussed in Section 4.1, our
dataset contains the exit state of each job, which can be found in
the job_state feature and used as a target in a classification task.

Job power consumption prediction. This is about predicting
the power consumption caused by the execution of a job on the
system. It can assist the development of power-aware workload
management techniques to optimize the system performance and
power consumption, as shown in [6]. The prediction can be per-
formed in different ways; for instance, by predicting the power
consumption values of a job throughout its execution time, as done
in [15]. Alternatively, it can be performed by predicting the average,
or the maximum power consumption value, as done in [5, 13, 14].
The data in PM100 can be used for both purposes. As discussed in
Section 3, each job has the power_consumption feature, which is
a list of power consumption values computed at each timestamp
intersecting the job execution. This feature can be used as it is for
the first purpose, and its average and maximum values can easily
be computed for the second.

5 CONCLUSIONS
In this paper, we discussed the importance and yet the scarcity
of publicly available job datasets including power consumption
information extracted from a production HPC system. To fill the
lack of resources, we proposed an approach to extract job power
consumption data, which is designed to create datasets starting
from any workload manager data and node power metrics logs. We
then presented PM100, a large dataset containing around 230K jobs
with fine-grained job power consumption information. PM100 is
derived from the M100 workload [8], a holistic dataset extracted
from a large-scale production HPC, using the approach that we
proposed and is accessible through Zenodo [3]. To provide insights
into the nature of the PM100 data, we conducted an EDA, showing
the characteristics of the jobs and their power consumption. We
finally presented some of the possible prediction tasks that can be
performed using PM100.

In future work, we plan to add in the dataset the power consump-
tion of the compute resources (cores, GPU, and RAM). In M100,
there are specificmetrics for this information at the node level. Thus,
knowing the resources allocated to each job and that the dataset
contains only jobs running alone in the nodes, we can extract the
job power consumption at compute resources level. Moreover, we
plan to study techniques to isolate the power consumption of con-
current jobs, so not to remove them from the original data. As
another future work, we want to find new workload data sources
so as to apply our methodology and create new power datasets and
increase the number of public data for job power prediction tasks.
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