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ABSTRACT
As modern High-Performance Computing (HPC) reach exascale
performance, their power consumption becomes a serious threat to
environmental and energy sustainability. Efficient power manage-
ment in HPC systems is crucial for optimizing workload manage-
ment, reducing operational costs, and promoting environmental
sustainability. Accurate prediction of job power consumption plays
an important role in achieving such goals. In this paper, we apply
a technique combining Machine Learning (ML) algorithms with
Natural Language Processing (NLP) tools to predict job power con-
sumption. The solution is able to predict job maximum and average
power consumption per node, leveraging only information which is
available at the time of job submission. The prediction is performed
in an online fashion, and we validate the approach using batch
system logs extracted from Supercomputer Fugaku, hosted at the
RIKEN Center for Computational Science, in Japan. The experimen-
tal evaluation shows promising results of outperforming classical
technique while obtaining an R2 score of more than 0.53 for our
two prediction tasks.
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1 INTRODUCTION
High-performance computing (HPC) systems have emerged as piv-
otal infrastructure for executing complex and computationally de-
manding tasks across various domains. Latest HPC systems have
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reached exascale performance, and in the future more systems
are expected to have similar characteristics [8]. Their power re-
quirements have become a significant concern due to the steady
increase of overall system power, electricity costs, and negative
environmental impact from carbon emissions. Thus, developing
efficient strategies for power resource management in HPC systems
is needed to optimize the power consumption and performance of
the system.

This challenge can be addressed at workload level, by predicting
power consumption of HPC jobs prior to their execution on the
system. Such information can be exploited to compute the system
power consumption beforehand, enabling better workload man-
agement decisions. Prior work [2, 4, 5, 14] leverages on job power
prediction models to infer power awareness in workload manage-
ment strategies, such as power capping and workload scheduling.
Hence, the need for accurate prediction models for job power con-
sumption gained prominence in the HPC community.

In our previous work[1], we presented a methodology to perform
online workload features prediction in an HPC system. We lever-
aged NLP tools to extract more meaningful job information from
the textual data of the job, and we showed that the combination
of ML and NLP techniques outperformed classical models in the
context of job failure prediction (defined as a binary classification
task). Moreover, we explained that predictive models in HPC sys-
tems are required to work in an online context, where jobs with
different characteristics are continuously submitted to the system.
The results of our experimental evaluation showed that it is fun-
damental that the models are re-trained and updated to adapt to
the change of workload of the system, aiming to guarantee optimal
prediction accuracy over time.

In this work, we propose the following contributions. First, we
explain how to modify our original algorithm to create a pipeline
for the prediction of job power consumption. The task is here
defined as a regression problem, since we target the estimation of
a mapping between the job workload manager data and its power
consumption value. Second, we enhance our algorithm with new
ML models, and we compare them to related work (i.e., traditional
ML approaches which had been designed specifically for this task).
Third, the prediction models are validated on a new dataset, namely
the job traces extracted from the Supercomputer Fugaku. Finally,
we present an online job power prediction algorithm which is able
to efficiently predict two different targets, namely the maximum
and average job power consumption.
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The rest of the paper is organized as follows. We first introduce
the data and the models used in our experiments in Section 2. Then,
we describe in Section 3 the methodology used to perform online
prediction and how we apply it to the new task and the new data.
Finally, we present our experimental evaluation (Section 4) and
conclusions (Section 6).

2 BACKGROUND
In this section, we present the data used in this study and themodels
selected for the power consumption prediction tasks.

2.1 Fugaku Traces
Supercomputer Fugaku. The data used in this study is ex-

tracted from the operational log data of Fugaku, an exascale super-
computer hosted at RIKEN Center for Computational Science1, in
Japan. The system was deployed in 2020, and, at the time of writing,
is ranked second in the TOP500 list2 of the most powerful super-
computers in the world. A summary of the system characteristics
of Fugaku is reported in Table 1.

System characteristic Description
Architecture Armv8.2-A SVE 512 bit
OS Red Hat Enterprise Linux 8
#Nodes 158.976
#Cores 48 + 2 assistant cores (per node)
Memory HBM2, 32 GiB (per node)
Peak Performance ≈ 537 Pflop/s (FP64)
Internal Network Tofu D Interconnect (28 Gbps)

Table 1: Fugaku system architecture.

Fugaku relies on a proprietary operationsmanagement software3
which includes job management components, such as job manager
and job scheduler. The software supports logging functions that
allow for the collection of information on the job execution after
its ending.

Job data. In this work, we consider the traces collected between
January and March 2022, which contain the data of 1.5 million of
jobs. We do that because we consider the amount of data in the
sample already suitable for our experiments.

The job data comprises features related to the job submit-time,
run-time and end-time. The first category contains the informa-
tion available when a job is submitted, such as submission time,
requested resources, user information and system state. To the second
category belongs all the information about the job launch, such
as waiting time, execution start time, and the actual number of
allocated resources. At job termination, the end-time features are
collected, such as ending time, duration, outcome of the execution,
and power consumption values. The full list of features of the job
is reported in the GitHub repository.4

1https://www.riken.jp/en/
2https://www.top500.org
3https://www.fujitsu.com/global/about/resources/publications/technicalreview/
2020-03/article10.html#cap-03
4https://github.com/francescoantici/job-pcon-predictor/blob/main/documentation/
job_features.md

Figure 1: Distribution of job submission date.

In Figure 1, we show the distribution of the number of jobs (y-
axis) submitted per day (x-axis), and its Kernel Density Estimate
(KDE). The KDE (blue solid line) represents the probability density
function estimation of the job submission per day, and is plotted
to ease the outlining of patterns or seasonality in the distribution.
However, neither seasonality nor uniformity is present in the data.
This characteristic is common in HPC systems, since their loads
can change for several reasons. For instance, the difference in load
between weekdays and weekend5, scheduled maintenance, or occa-
sional dedication of large portion of the system to particular tasks.6
Moreover, not all the jobs actually executed are kept in the final
dataset, due to errors in the data collection process, missing values
or wrongly formatted data.

Furthermore, we plot the distribution of the nodes allocated per
job in Figure 2, along with its KDE (solid blue line). The plot shows
that the majority (960K) of the jobs present in our dataset run on a
single node, while very few jobs use a large portion of the system
nodes. This reveals that our data is composed mainly of small-scale
jobs, and it confirms that large-scale executions are an exception
to the normal behaviour of the system. Nevertheless, we also have
records of such large-scale jobs (the maximum of nodes allocated
to a job is 152064), showing that our data is comprehensive of the
different loads of the system.

For each job 𝑗 , the data contains the power consumption of the
different resources of the system (processor, core, node, memory)
allocated to the job 𝑗 during its execution. Fugaku’s job manager
prevents the sharing of nodes among multiple jobs. Therefore, the
values of power consumption depend only on job 𝑗 execution and
there are no interferences caused by other jobs’ execution (besides
the typically shared resources: storage and network).

For the purposes of this work, we define the job power con-
sumption as the power consumption of the job 𝑗 recorded at node
level. We do that because the node power consumption includes the

5The jobs submitted the 02-15 (Tuesday) are almost 100K, while the jobs submitted
the 02-12 (Saturday) and 02-13 (Sunday) are close to zero.
6https://www.hpci-office.jp/en/using_hpci/proposal_submission_past/r03_fugaku_full-
scale
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Figure 2: Distribution of the number of nodes allocated per
job.

power consumption of all the other resources of the node (proces-
sors, cores and memory). In the original data, each job 𝑗 information
contains three node power consumption features, namely𝑚𝑖𝑛𝑝𝑐𝑜𝑛 𝑗 ,
𝑎𝑣𝑔𝑝𝑐𝑜𝑛 𝑗 , and𝑚𝑎𝑥𝑝𝑐𝑜𝑛 𝑗 . These are the minimum (𝑚𝑖𝑛𝑝𝑐𝑜𝑛 𝑗 ), av-
erage (𝑎𝑣𝑔𝑝𝑐𝑜𝑛 𝑗 ) and maximum (𝑚𝑎𝑥𝑝𝑐𝑜𝑛 𝑗 ) value of the sum of
the power consumption of all the nodes allocated to the job during
its execution. Each of these values is a single number, measured in
Watts.

2.2 Regression and Language Models
We approach the job power prediction task as a regression problem,
exploiting supervised ML techniques for regression, along with a
pre-trained state-of-the-art NLP model to represent jobs features
as input to the model.

As for the ML algorithms, we consider widely adopted ensemble
methods, such as Random Forest, XGBoost and Adaptive Boosting.
Ensemble methods are particularly well suited for ML tasks, since
they exploit multiple learning algorithms to obtain better predic-
tive performance than any of the constituent learning algorithms
alone[11].

Random Forest. Random Forest (RF) [6] is a popular ML algo-
rithm used for both classification and regression tasks. It belongs to
the ensemble learning family, and it is based on creating a diverse
set of Decision Tree (DT) regressors by introducing randomness
in each DT construction. Each DT is constructed independently
using a random subset of the training data and a random subset
of the input features. As discussed in [6], individual DTs typically
exhibit high variance and tend to overfit, so the aim of the RF en-
semble method is to remove the error by taking an average of the
predictions of the single DTs.

XGBoost. XGBoost (XG) [9], is a gradient boost algorithm de-
signed for several prediction tasks, such as classification and regres-
sion. XG relies on an ensemble of predictive models (usually DTs),
with each model attempting to correct the mistakes made by the

other ones. Leveraging on Gradient-based optimization, XG aims to
optimize a specific loss function defined for the task. Moreover, XG
includes regularization techniques to control model complexity and
prevent overfitting. Due to such characteristics, XG excels in han-
dling large-scale datasets, capturing complex interactions among
features and delivering high predictive performance, as discussed
in [9].

Adaptive Boosting. Adaptive Boosting (AD) [12], is a popular
ML algorithm combining several prediction models to obtain bet-
ter prediction performances. It is particularly effective in binary
classification problems, but can also be extended to multi-class clas-
sification and regression tasks. During the training, AD computes
a weight to assign to each model by analysing its prediction per-
formance. In this phase, wrongly predicted instances are valued
more than correct ones, making difficult instances more influential
in subsequent iterations. The final prediction is delivered through
a majority voting, weighted accordingly to the weights computed
in the training phase.

Sentence BERT. Sentence-BERT (SBert) [15] is a languagemodel
that leverages pre-trained transformer-based models, typically vari-
ants of BERT (Bidirectional Encoder Representations from Trans-
formers) [10], to generate numerical vector representations (em-
beddings) for sentences or short text segments. Unlike traditional
BERT, which was primarily designed for word-level contextual
embeddings, SBert focuses on obtaining semantically meaningful
sentence embeddings. As discussed in [15], the key idea behind
SBert is to fine-tune pretrained BERT models on specific tasks re-
lated to sentence similarity or sentence-level tasks. By doing so,
BERT becomes capable of producing meaningful sentence embed-
dings that capture the meaning and context of entire sentences or
pieces of text. The final representation of a string of text produced
by SBert is a fixed-size 384-dimensional floating-point array, which
can be used as input to train models for specific sentence-level
tasks.

3 METHODOLOGY
In this section, we describe how we modify and apply our previ-
ously published methodology [1] to a new task, namely the job
power consumption prediction of the jobs in the Fugaku dataset.
First, we describe how we prepare the data for the prediction tasks,
presenting the features used to represent the jobs and the job power
consumption values used as target. Then, we present the original
methodology used to perform the job feature encoding and how
we apply it to the Fugaku data.

We describe the two algorithms used to evaluate the models in
the original work, namely offline and online. In the first setting,
the training and testing of the models are performed just once on
fixed splits of data, while, in the second, the model is retrained
periodically on the data of a fixed recent period, and it is tested on
a future one coming close in time.

3.1 Data Preparation
Starting from the original job data presented in Section 2.1, we
perform some data engineering steps to isolate the information we
need to perform the prediction.
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Name Description Type
Job type Category of the job (Batch, Step, etc.) String
User User name String
Group Name of the group the user belongs to String
User id ID of the user submitting the job Integer
Group id Group of the user submitting the job Integer
Frequency Requested frequency of the processor Int
Job name Name of the job String
Host name Name of the host node String
Priority The priority assigned to the job Int
#Cores Requested The number of cores requested Int
#Nodes Requested The number of nodes requested Int
Arrival time Time of job submission Timestamp
Memory size limit The limit to the memory size allocated Int
Time limit Maximum allowed run time in minutes Integer
Environment The set of environment variable String

Table 2: Job features description.

Feature selection. In order to describe the characteristics of
a job in a prediction task, we need to associate it with certain
features. As in [1], we can only rely on job submit-time features,
since our goal is to predict the power consumption in advance.
Such features are the information available when a job is submitted,
hence that can be retrieved without further modification to the
normal workload submission workflow. Moreover, this allows to
compute a prediction before the job is queued, staged, and executed.
After analysing the full set of job features available in the dataset,
we filter the submit-time ones. The final list of submit-time features
of the job are listed in Table 2, along with their description.

As explained in [1], in HPC production systems, users tend to sub-
mit jobs in batches containing similar experiments. Jobs submitted
in the same batch are prone to have similar names, characteristics
and perform similar operations. Given that the power consumption
of a job depends on the computational operations it performs, jobs
performing the same or similar operations will have similar power
consumption. Therefore, features like the user name, job name and
environment variables, might be the key to identify similar jobs, and
consequently, perform accurate job power consumption prediction.

In an initial experimental phase, we evaluate models’ prediction
performance on a smaller sample of the data, using different subsets
and combinations of the features presented in Table 2. We observed
that the use of particular subsets of features to represent a job is
beneficial for both prediction performance7 and computation time,
since the number of features to encode is smaller. The subset of
features which yields the best predictive performance is composed
of the following features, user name, job name, # cores requested, #
nodes requested and environment. Therefore, we decide to use such
features to represent each job in our dataset.

Job power consumption. The prediction tasks require the defi-
nition of a prediction target for the training phase of the models.
In this work, we focus on the maximum and average job power
consumption. As explained in Section 2.1, both this information is

7The investigation of this phenomenon is still ongoing and outside the scope of this
work, we will provide a thorough study on the feature selection process in future
work.

present in each job 𝑗 data, namely in the𝑚𝑎𝑥𝑝𝑐𝑜𝑛 𝑗 and 𝑎𝑣𝑔𝑝𝑐𝑜𝑛 𝑗
features. The original power consumption values range from few to
millions of Watts, depending on the resources allocated to the job.
This makes the prediction task very hard and the possible relative
prediction error very high. In light of that, we decide to perform
some data pre-processing to make the target more suitable for the
regression task, as outlined hereafter.

We analyse the power traces of the nodes allocated to the jobs
which run on multiple nodes. The analysis reveals that, during the
job 𝑗 execution, there is a small difference between the power
consumption values of the different nodes allocated to the job
(𝑛𝑜𝑑𝑒𝑠_𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑗 ). Thus, for each 𝑛 ∈ 𝑛𝑜𝑑𝑒𝑠_𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑗 , its power
consumption is well approximated by the average of the power
consumption of all the nodes 𝑛 in 𝑛𝑜𝑑𝑒𝑠_𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑗 . This allows
us to predict each job power consumption as if it was running on
a single node, making the prediction task less error-prone. The
final job power consumption values used in the prediction tasks are
defined as the average of𝑚𝑎𝑥𝑝𝑐𝑜𝑛 𝑗 (𝑝_𝑚𝑎𝑥 ) and 𝑎𝑣𝑔𝑝𝑐𝑜𝑛 𝑗 (𝑝_𝑎𝑣𝑔)
per node, as shown in Equations 1 and 2.

𝑝_𝑚𝑎𝑥 𝑗 =
𝑚𝑎𝑥𝑝𝑐𝑜𝑛 𝑗

#𝑛𝑜𝑑𝑒𝑠_𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑗
(1)

𝑝_𝑎𝑣𝑔 𝑗 =
𝑎𝑣𝑔𝑝𝑐𝑜𝑛 𝑗

#𝑛𝑜𝑑𝑒𝑠_𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑗
(2)

In order to gain more insights on the data for the prediction
phase, we plot the distribution of 𝑝_𝑚𝑎𝑥 𝑗 and 𝑝_𝑎𝑣𝑔 𝑗 in Figure 3
and 4. We do that also to show that the two values provide different
information, thus needing two different prediction tasks. The values
range from a minimum of 24 W (for 𝑝_𝑚𝑎𝑥 𝑗 ) and 20W (for 𝑝_𝑎𝑣𝑔 𝑗 ),
to a maximum of 200 W for both power values. The average values
for 𝑝_𝑚𝑎𝑥 𝑗 and 𝑝_𝑎𝑣𝑔 𝑗 are, 97 W and 90 W. Nevertheless, the
majority of the values are around 110 W for 𝑝_𝑎𝑣𝑔 𝑗 , while, for
𝑝_𝑚𝑎𝑥 𝑗 , the values are shifted towards the 120W. We can observe
that in both cases, there is a predominance of jobs in two power
consumption bands, with the first being less than 50W per node,
and the second being in the range 110-130W. The values in between
the two power bands are more uniformly distributed, while the
jobs consuming very high amount of power (≥ 130W) are in a very
limited number with respect to the others.

This analysis shows that 𝑝_𝑚𝑎𝑥 𝑗 and 𝑝_𝑎𝑣𝑔 𝑗 are indeed different,
and predicting them defining two different tasks is necessary to
obtain reliable results.

3.2 Job Power Consumption Prediction
We describe the methodology for the prediction as presented in [1],
focusing on the job features encoding and on the models’ training
and testing algorithm.

Feature encoding. In order to compute a prediction for a job,
we need to convert the job data into the correct format to feed
into the regression models presented in Section 2.2. We achieve
that by relying on job feature values, and we use the two different
encodings proposed in [1], namely Integer encoding (INT) and
SBert based (SB). In the first (INT), an integer is assigned to the
values which are not numerical, i.e. user name, job name, and job
environment, while setting all the missing values in the other fields
to a default value of -1. In the second encoding (SB), first all the
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Figure 3: Distribution of 𝑝_𝑚𝑎𝑥 𝑗 .

Figure 4: Distribution of 𝑝_𝑎𝑣𝑔 𝑗 .

feature values are concatenated into a comma-separated string,
e.g. user1, job1, 1, 1, env1. Then the string is encoded with SBert,
obtaining a 384-dimensional floating-point array.

Following the hypothesis presented in [1], we believe that with
SBert we can extract more fine-grained insights about job features
expressed in natural language (e.g. user and job name). This is be-
cause SBert is designed to represent sequences, with semantically
similar contents, with similar encodings. As we discussed in Sec-
tion 3.1, jobs with similar names and users could belong to the
same submission batch running similar operations, therefore, such
features could reveal important patterns on the nature of the job
and its workload. This is hard to recognize with the INT encoding,
since similar natural language values will be mapped to different
integer values, while they would have similar representation in SB,
due to semantic similarity.

Models training and testing. As explained in [1], it is not
realistic to do inference on a job by learning from the data of the
future jobs submitted at a later time. This is because in a real system,
job data can be evaluated and collected correctly only after the job
ends and the data collection process finishes successfully. Thus,
whenever a job is submitted, we can use only the data of the jobs
which are already finished to perform the learning phase.

For the training and testing of the models, we use the same
settings presented in [1], namely offline and online. In both settings,
the data are ordered chronologically based on their submission time,
thus ensuring that the training data always comes chronologically
before the test set one.

The first setting is the offline, where the job data are considered
as a whole, training the model once on one portion of it, and testing
it using the data of the other portion in chronological order. To do
this, the jobs are split into two, using the first split preceding in
time as the training set, and the other as the test set.

The second setting is defined as online. As mentioned earlier,
this is more suitable to our context, since the job data is treated
as live and streaming in time. The model is re-trained periodically
every 𝜔 days on the data of the last 𝛼 days. It is then tested it on
the job data of the future 𝜔 days. To guarantee soundness of the
setting, we use the time information provided by the end_time of
the jobs to ensure that all the jobs in the training split end before
the submission of the jobs in the test set. We consider as the first
training set all the jobs that were submitted in the first 𝛼 days and
not finished after the date of the first test set. Starting from the
submission time of the first job not present in the first training
set, we divide the data in batches in chronological order, where
each batch contains the jobs submitted in the next 𝜔 days. We then
iterate over each batch, considering it as a new test set. At every
iteration, the training set is updated with the data of the last 𝛼 days
and the models are retrained.

As we discussed in Section 3.1, the workload of an HPC sys-
tem is usually submitted in batches having similar characteristics,
therefore the workload of an HPC submitted close in time can have
similar characteristics, while those may change completely at a
later time. Our experimental results in Section 4 confirm that the
retraining of the model on data close in time (online setting) sig-
nificantly improves the prediction performance with respect to a
single training over more timely distant data (offline setting).

The same set of experiments is performed for predicting both
the 𝑝_𝑚𝑎𝑥 𝑗 and 𝑝_𝑎𝑣𝑔 𝑗 value of a job. From here on, we refer to the
prediction of the 𝑝_𝑚𝑎𝑥 𝑗 and 𝑝_𝑎𝑣𝑔 𝑗 as the maximum and average
task.

4 EXPERIMENTAL STUDY
In this section, we present the experimental setting and the results
of the tests conducted for the study.

4.1 Experimental Setting
We run our experiments on a machine equipped with two AMD
EPYC 7302 CPUs with 64 cores and 512 GB of RAM.

The RF and AD algorithms are implemented with the scikit-
learn8 Python library, while the XG implementation is retrieved
8https://scikit-learn.org/stable/
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from the xgboost9 library. The sequence encoder model is provided
by the sentence transformers library10, while the weights for SBERT
are pulled from huggingface.11 We use the pre-trained model all-
MiniLM-L6-v212, since it is the best trade-off between prediction
performance and speed [15]. All the models are instantiated with
the default setting provided by the libraries. The implementation
and the details regarding the Python version and its packages are
available in a GitHub repository.13

Job power prediction. We evaluate the models for the prediction
of job power consumption on several metrics typically used in
regression tasks, namely Mean Squared Error (MSE), Root Mean
Squared Error (RMSE), Mean Absolute Error (MAE), Mean Absolute
Percentage Error (MAPE) and Coefficient of Determination (R2).

For the offline setting, the parameters are set as in [1], thus we
take the first 70% of the data as the training set and the remaining
30% as the test set. Concerning the online, we experiment with three
different values for the 𝛼 , namely 15, 30 and 60. We observe that, for
the Fugaku data, the best prediction performance is obtained with
𝛼 = 60. Therefore, differently from our previous work, we fix the
training interval 𝛼 to 60 (30 in the past work) days, while we keep
𝜔 = 1 day. The training/testing step of the models is performed
only if the data splits defined by 𝛼 and 𝜔 contain more than 1
element each, otherwise, we move on to the following splits. We
are able to compute 16 iteration over the data in the online settings,
corresponding to the job data submitted between the 16𝑡ℎ and the
31𝑠𝑡 of March 2022. Therefore, the results reported in Table 5 and 6
are the average of the results of the 16 tests.

For the evaluation phase, we distinguish between the job feature
encodings (INT and SB) and the supervised algorithms (AD, XG,
RF). Each regression algorithm is evaluated using the two feature
encodings, and are compared with two simple baselines predicting
constant values, namely c_max and c_avg. These baselines always
predict the same value, ignoring the input feature values (thus we
don’t need to distinguish between INT and SB encoding since the
input features are not considered for the prediction). The c_max
always predicts the maximum value among the power consumption
of the jobs in the training set, while the c_avg always predicts the
average one.

System power prediction. Furthermore, after testing the mod-
els at job level, we want to evaluate the prediction performances
at system level. We do that for two main reasons, (i) to see if our
models are capable of reconstructing the system power state ac-
curately, thus providing a tool which is able to predict the power
consumption of a whole system by considering only the job submit-
ted, and (ii) because the prediction error on a single job is either an
overestimate or an underestimate of the actual power consumption,
so we believe that such errors might cancel out each other at system
level, given the large amount of jobs running concurrently.

We estimate the real system global power consumption for each
hour (𝑝𝑠𝑦𝑠ℎ) of each day of the online testing phase. We start by
computing the power consumption of the system for a singleminute,

9https://xgboost.readthedocs.io/en/stable/index.html
10https://www.sbert.net
11https://huggingface.co
12https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2
13https://github.com/francescoantici/job-pcon-predictor

by summing the power consumption of all the jobs 𝑗 ∈ 𝐽ℎ,𝑚 running
concurrently on the system between the minutes𝑚 and𝑚 + 1 of
the hour ℎ. The hourly power consumption of the system is then
computed by taking the average of its power consumption for each
minute of the hour, as shown in Equation 3 and 4.

𝑝𝑠𝑦𝑠_𝑎𝑣𝑔ℎ =

∑60
𝑚=1

∑
𝑗∈ 𝐽ℎ,𝑚 𝑝_𝑎𝑣𝑔 𝑗
60

(3)

𝑝𝑠𝑦𝑠_𝑚𝑎𝑥ℎ =

∑60
𝑚=1

∑
𝑗∈ 𝐽ℎ,𝑚 𝑝_𝑚𝑎𝑥 𝑗

60
(4)

The same methodology is used to compute the predicted system
power, by replacing the true job power consumption values with
the predicted ones.

4.2 Results
After computing all the experiments, we analyse the results ob-
tained. First, we present the power prediction performance of the
models in the offline and online setting. Finally, we show how well
our models perform at system level.

Offline job power prediction. Tables 3 and 4 report the results
of the offline experiments. These show that the SB+XG model is the
best-performing model for both the maximum and average task,
obtaining a RMSE of 29.6 and 25.8, respectively. It is noticeable how
the use of the SB encoding improves the performances of all the
models. For instance, on the RF model, the R2 score goes from -0.15
(INT+RF) to 0.23 (SB+RF), confirming that a meaningful representa-
tion of textual features improves the prediction performance. The
two baselines employed for the prediction tasks obtain poor results
in both the average andmaximum tasks. While the const_max base-
line obtains the worst results for the prediction task, the const_avg
baseline performs similarly to models trained with the INT encod-
ing. These results highlight the difficulty of the prediction task and
the importance of leveraging on a trained model to perform the
prediction.

Online job power prediction. In Tables 5 and 6 we show the
prediction performance of the models in the online setting. Coher-
ently with the offline setting, the use of the SB encoding improves
all the models performances significantly. For instance, the RMSE
score of the INT+RF model is almost twice the one of SB+RF for
both the maximum and average task. Moreover, the R2 score of all
the models increases significantly with the SB encoding, going from
values lower than zero to greater than 0.50 (INT+XG and SB+XG).
In this setting, the models obtaining better results are the SB+XG
and SB+RF. In the maximum task, both the models obtain the same
MAPE of 27%, but the SB+XG reaches slightly better results in terms
of MAE (18.70 vs 18.88), MSE (631.63 vs 655.32), RMSE (25.13 vs
25.59) and R2 (0.57 vs 0.55). Conversely, on the average task, the
trend is reversed. Indeed, the SB+RF model obtain better results in
terms of MAE (16.80 vs 17.14) and MSE (557.65 vs 557.81), while
the MAPE (0.26), RMSE (23.61) and R2 (0.53) scores are equivalent.

The comparison of the results of the online and offline setting
outlines that retraining the models is beneficial for prediction per-
formance. The most noticeable enhancement is obtained in terms of
the R2 score. Indeed, the score increases by 0.16 (maximum task) and
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Model MAE (W) MAPE (W) MSE (W) RMSE(W) R2
INT+AD 33.43 0.53 1372.86 37.05 0.05
INT+XG 35.00 0.55 1643.22 40.05 -0.14
INT+RF 39.64 0.59 2029.66 45.05 -0.41
SB+AD 33.41 0.52 1337.30 36.56 0.07
SB+XG 22.70 0.37 844.84 29.06 0.41
SB+RF 28.15 0.50 1368.74 37.00 0.05
c_max 110.42 1.80 13632.96 116.76 -8.46
c_avg 33.93 0.59 1564.92 39.55 -0.09

Table 3: Results in the offline setting for themaximum power
consumption task. For MAE, MAPE, MSE and RMSE metrics
the lower, the better, while for R2 score the higher, the better.
Best results are highlighted in bold.

Model MAE (W) MAPE (W) MSE (W) RMSE (W) R2
INT+AD 30.30 0.52 1161.94 34.1 0.0
INT+XG 25.16 0.38 886.54 29.77 0.24
INT+RF 31.76 0.44 1346.77 36.70 -0.15
SB+AD 29.72 0.51 1112.15 33.35 0.05
SB+XG 19.90 0.32 666.05 25.80 0.43
SB+RF 23.47 0.42 895.98 29.93 0.23
c_max 116.58 1.95 14758.07 121.48 -11.65
c_avg 31.18 0.55 1288.17 35.90 -0.10

Table 4: Results in the offline setting for the average power
consumption task. For MAE, MAPE, MSE and RMSE metrics
the lower, the better, while for R2 score the higher, the better.
Best results are highlighted in bold.

0.10 (average task) points. Based on the definition of the R2 metric,
this represents a significant improvement in the model capability
of capturing characteristics and variation of the target values.

We plot Figures 5, 7, 6 and 8 to visualize how much the models
are able to capture the variability of the target values. We create the
figures performing the following steps. First, we group all the job
data belonging to all the test splits together in a list; then we sort
them in ascending order by their actual power consumption values.
We further split the sorted job data in 3014 batches, with each batch
identifying a range of true power consumption values. Finally, for
each batch, we show the true (solid blue line) and the predicted
(whisker) power consumption values of the jobs belonging to it. This
allows us to understand how the model performs on the different
ranges of job power consumption values.

We plot the results of the RF and XG models, both with the INT
and SB encodings, to check that the improvement in the results
presented in Tables 5 and 6 actually corresponds to a better recon-
struction of the target values. As expected, the distribution of the
ranges is better approximated by the models with the SB encoding,
in both the maximum and average tasks. The models with the INT
encoding (Figures 5 and 6) tend to always predict the same values
regardless of the target, while the SB encoding (Figures 7 and 8)

14The number of splits is decided after an empirical evaluation to guarantee readability
of the plots.

Model MAE (W) MAPE (W) MSE (W) RMSE (W) R2
INT+AD 33.37 0.52 1346.27 36.69 0.08
INT+XG 37.75 0.41 2207.05 46.97 -0.50
INT+RF 43.01 0.57 2464.04 49.63 -0.68
SB+AD 28.74 0.44 1008.74 31.76 0.31
SB+XG 18.70 0.27 631.63 25.13 0.57
SB+RF 18.88 0.27 655.32 25.59 0.55
c_max 110.36 1.81 13647.47 116.82 -8.29
c_avg 34.21 0.59 1573.37 39.66 -0.07

Table 5: Results in the online setting for themaximum power
consumption task. For MAE, MAPE, MSE and RMSE metrics
the lower, the better, while for R2 score the higher, the better.
Best results are highlighted in bold.

Model MAE (W) MAPE (W) MSE (W) RMSE (W) R2
INT+AD 30.29 0.51 1129.74 33.61 0.05
INT+XG 33.15 0.42 1519.56 38.98 -0.28
INT+RF 33.48 0.39 1667.66 40.83 -0.41
SB+AD 27.37 0.45 925.28 30.41 0.22
SB+XG 17.14 0.26 557.81 23.61 0.53
SB+RF 16.80 0.26 557.65 23.61 0.53
c_max 116.50 1.96 14756.10 121.47 -11.47
c_avg 31.22 0.55 1281.47 35.79 -0.08

Table 6: Results in the online setting for the average power
consumption task. For MAE, MAPE, MSE and RMSE metrics
the lower, the better, while for R2 score the higher, the better.
Best results are highlighted in bold.

seems to make the models more flexible and adaptable to the differ-
ent distributions. Even though the prediction performance of the
models is improved with the SB encoding, there is still evidence
of power values that the models struggle in predicting15. For in-
stance, the extreme values of the ranges, both for the maximum
and average task. For the case of the jobs consuming low power,
the absolute prediction error is quite small, given the low power
values. Concerning the jobs consuming very high levels of power,
we can observe by the power distribution plots in Figures 3 and 4
that such values are the least numerous in the dataset. Therefore,
since their occurrence is very rare, it is very hard for the models to
learn patterns to predict their values.

System power prediction. Figure 9 and 10 present the system-
level evaluation of the best models for the maximum and average
task in the online setting, namely SB+XG and SB+RF. The period
of time represented in the plots is the testing period of the online
setting, which concerns the jobs submitted between the 16𝑡ℎ and
the 31𝑠𝑡 of March 2022 (Section 4.1). We plot the figures to show
how well the total true power consumption of the jobs (blue line) is
approximated by the predictions of our models (orange line). The
results confirm the hypothesis formulated in 4.1, i.e. that the pre-
diction performance is improved at system level (MAPE of around

15In Figure 8 there is an outlier in the predictions in correspondence to the true power
values between 115 and 120 Watts. The reasons for this are still under investigation.
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Figure 5: Job true and the predicted power for the maximum
target with the INT+XG model. The x-axis represents the
number of jobs in the test set.

Figure 6: Job true and the predicted power for the average
target with the INT+RF model. The x-axis represents the
number of jobs in the test set.

5% and a R2 > 0.97 for both tasks) with respect to the job level. This
can be caused by several factors. For instance, the predicted job
power consumption prediction might be either an overestimate, or
an underestimate of the actual values. These can balance each other
out when summing the power consumption of the concurrent jobs,
obtaining a better approximation of the overall power consumption.

In this scenario, it is important to specify that the reconstruction
is an estimate of the systems’ power consumption, which does
not match with the actual power consumption of Fugaku. This is
because we don’t have access to other power consumption sources
of the system (e.g. idle node power) and there are some missing
information in our data which prevents us to reconstruct the exact
load of the system through time, as explained in Section 2.1. Hence,

Figure 7: Job true and the predicted power for the maximum
target with the SB+XGmodel. The x-axis represents the num-
ber of jobs in the test set.

Figure 8: Job true and the predicted power for the average
target with the SB+RF model. The x-axis represents the num-
ber of jobs in the test set.

instead of seeing the Fugaku-typical constant load of about 19MW16,
we are seeing an increasing curve. Nevertheless, this plot shows
that for the available data, our prediction model nearly matches
the actual load of the system in Spring of 2022.

Finally, in Figure 11 and 12 we report the average training time
for all the models employed in the experiments with the INT and
SB encoding. In each heatmap we show the average, maximum and
minimum training time of the model throughout the 16 days of
the testing of the online setting. We do that to investigate if the
training time has a very high variability through time, which would
represent a non-predictable behaviour of our algorithm. The figures
show that our models’ training time does not present a significant
16https://status.fugaku.r-ccs.riken.jp/
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Figure 9: System true and predicted power for the maximum
task with the SB+XG model.

Figure 10: System true and predicted power for the average
task with the SB+RF model.

dissimilarity between the minimum, average and maximum value.
The difference is justified by the variability of the number of job
data in the training splits, which range from a minimum of 1038542
jobs to a maximum of 1481037 (mean value of 1261219).

For the case of the INT encoding, the training time is almost
negligible for the RF and XG models, while it is around 2 minutes
for the AD.17 As introduced in Section 3, the SB encoding maps
the input to a 384 dimensional vector, with respect to the 5 dimen-
sional of the INT representation. This step introduces a significant
complexity to the model, since the feature space of the SB encoding

17Differently from the other twomodels, the scikit-learnAPI for the AdaBoostRegressor
algorithm currently does not support the distribution of the training operations on
multiple processors

is almost 80 times bigger than the INT one. RF relies on single fea-
tures values correlation with the target, so its computation time is
heavily influenced by the dimensionality of the input data (training
time more than 60 times bigger in the case of SB encoding). The
AD model is the one obtaining worse results in terms of training
time for the INT encoding (90 seconds), while it performs better
than RF with the SB encoding(∼ 7000 seconds less in every case).
The XG model is the most robust in terms of training time, since
despite the high-dimensionality of the input with the SB encoding,
it is able to perform the training in around 3 minutes for the worst
case scenario, making it easily deployable to a real system.

Figure 11: Models’ training time with the INT encoding.

Figure 12: Models’ training time with the SB encoding.

5 RELATEDWORK
In the past, several works have explored techniques to estimate
power consumption prediction of jobs executed on large-scale sys-
tems.
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Prior work, such as [7, 17], explored the use of workloadmanager
information to perform power-related prediction on the execution
of the job. In their work, differently from our approach, the job
data is not limited to submission time, making the online prediction
non-feasible.

In [3], the authors propose to predict job average power con-
sumption per node by using an RF model trained on historical data,
without relying on an online algorithm.

In [16] it is proposed an online algorithm to predict average job
power consumption per node based on exponential smoothing of
similar past jobs power consumption. This approach, though, relies
only on categorical features of the jobs (user id, group id, # tasks per
node), which are very general and less informative on the nature of
the job, as shown by the results obtained in this work when using
a language model to encode textual features.

Differently from those works, we propose to use a prediction
algorithm which is both online and relies on NLP techniques to
extract more meaningful insights from the job data. We apply the
methodology proposed in [1], but to a new task and new dataset.
Differently from [1], where the task is a binary classification prob-
lem, namely the job failure prediction, we apply the methodology
to a regression task, i.e. the job power consumption prediction.
Moreover, we validate the approach using different models and on
different data with respect to [1].

Furthermore, differently from all the cited works on power pre-
diction, we perform the prediction of average and maximum job
power consumption values. Both values can be exploited for differ-
ent power-aware scheduling strategies, such as power capping.

For instance, in [5] the authors propose a constraint-programming
based dispatching strategy exploiting job power consumption to
perform power-capping. In [14] the maximum power consump-
tion caused by the execution of the job to the system is used to
make informed decisions about the scheduling of the jobs, while
works like [2, 4] rely on the average job power consumption to
perform the same task. Moreover, the prediction of the maximum
job power consumption could be used to address the power supply
demand from the supercomputing center to the electricity company,
as shown in [13], aiming to estimate in advance the power load
required by the system.

6 CONCLUSIONS AND FUTUREWORK
In this work, we explored the application of a methodology for
online workload features prediction, aiming to perform maximum
and average job power consumption in an HPC system. We pro-
posed a similar methodology in a past work, addressing the job
failure prediction as a binary classification task. However, here we
modified the methodology to be suitable to predict job power con-
sumption, which we defined as a regression problem, and evaluated
the methodology’s applicability to Supercomputer Fugaku and its
typical job mix.

As in [1], our experimental results confirmed that (i) the re-
training of the model is more suited also for the prediction of job
power consumption, and (ii) the use of an NLP-based encoding to
represent job features improved the prediction performance of all
the models employed in the evaluation phase. We outperformed

classical techniques, obtaining a R2 score of 0.57 for the maximum
task and 0.53 for the average one.

We described how to approximate the system’s global power
consumption by using the running job power consumption. Our
models are able to accurately reconstruct the global power con-
sumption of the system, obtaining a R2 score greater than 0.96 for
both the maximum and average task. Moreover, we showed that
the XG model has the potential to be integrated into an existing job
manager pipeline of a large-scale system, since it provides accurate
power predictions, while requiring short training time.

In future work, we want to study continuous learning techniques
and investigate different retraining strategies. We plan to test our
approach on different data from other systems, to evaluate its gen-
erality. Furthermore, we aim at integrating the models into a sched-
uling pipeline to exploit the output of the model for power-aware
decision-making.
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