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In everyday life, the brain processes a multitude of stimuli from the surrounding 
environment, requiring the integration of information from different sensory 
modalities to form a coherent perception. This process, known as multisensory 
integration, enhances the brain’s response to redundant congruent sensory 
cues. However, it is equally important for the brain to segregate sensory inputs 
from distinct events, to interact with and correctly perceive the multisensory 
environment. This problem the brain must face, known as the causal inference 
problem, is strictly related to multisensory integration. It is widely recognized 
that the ability to integrate information from different senses emerges during the 
developmental period, as a function of our experience with multisensory stimuli. 
Consequently, multisensory integrative abilities are altered in individuals who 
have atypical experiences with cross-modal cues, such as those on the autistic 
spectrum. However, no research has been conducted on the developmental 
trajectories of causal inference and its relationship with experience thus far. 
Here, we  used a neuro-computational model to simulate and investigate the 
development of causal inference in both typically developing children and those 
in the autistic spectrum. Our results indicate that higher exposure to cross-modal 
cues accelerates the acquisition of causal inference abilities, and a minimum level 
of experience with multisensory stimuli is required to develop fully mature behavior. 
We  then simulated the altered developmental trajectory of causal inference in 
individuals with autism by assuming reduced multisensory experience during 
training. The results suggest that causal inference reaches complete maturity 
much later in these individuals compared to neurotypical individuals. Furthermore, 
we discuss the underlying neural mechanisms and network architecture involved 
in these processes, highlighting that the development of causal inference follows 
the evolution of the mechanisms subserving multisensory integration. Overall, 
this study provides a computational framework, unifying causal inference and 
multisensory integration, which allows us to suggest neural mechanisms and 
provide testable predictions about the development of such abilities in typically 
developed and autistic children.
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1. Introduction

During everyday life, our nervous system has to deal with the 
multitude of stimuli coming from the surrounding external world. To 
produce a coherent perception of the environment, the brain needs to 
integrate information from different sensory modalities into a unitary 
perception, if produced by the same source. One of the main 
mechanisms that the brain exploits to achieve such a goal is 
multisensory integration (MSI), which denotes the brain’s capability 
to produce a better response to redundant congruent sensory cues, 
with respect to their single unisensory components.

Nevertheless, even if MSI is central to the nervous system’s ability 
to interact with such a complex external world, the integration of 
information from different sensory modalities is not always the best 
solution to interpret external events and it could lead to maladaptive 
behaviors when sensory signals originating from distinct sources and 
not causally related are integrated and not segregated. Therefore, the 
brain’s ability to correctly perform segregation and integration is as 
crucial as MSI for coherent perception of the multisensory 
environment we live in.

The problem of identifying when the stimuli come from a single 
source or multiple sources is usually referred to as the causal 
inference problem.

One of the most known and analyzed examples of this process is 
the speech-in-noise paradigm: when we are in a crowdy and noisy 
environment, to listen to and understand someone speaking the brain 
exploits the integration of auditory stimuli (the acoustic sounds 
correlated with spoken words) and congruent visual cues (lip 
movements) (Sumby and Pollack, 1954; Ross et al., 2007; Foxe et al., 
2015). In this case, congruent auditory and visual information can 
improve the brain’s performance to detect spoken words and 
sentences. In the context of speech perception, another example of the 
brain dealing with the binding or segregation problem is the spatial 
ventriloquism illusion (Howard and Templeton, 1966; Bertelson and 
Radeau, 1981; Bertelson and Aschersleben, 1998; Alais and Burr, 2004; 
see Bruns, 2019 for a review). Moving an inanimate puppet’s mouth 
while speaking without moving his/her own mouth, a ventriloquist 
creates a powerful multisensory illusion leading us to perceive the 
voice as being produced by the puppet’s mouth. In this illusion, 
differently from the speech-in-noise condition, simultaneous spatially 
incongruent cues are incorrectly processed by the brain as belonging 
to the same event. The position of the visual stimulus alters the 
perceived location of a temporally congruent auditory cue due to the 
better spatial acuity of the visual system with respect to the auditory 
system, which instead is characterized by better temporal precision 
(Alais and Burr, 2004).

Even if the integrative abilities are fundamental to correctly 
navigating this multisensory world, optimal integration is not present 
at birth and appears to be dependent on post-natal experience. Several 
developmental studies characterized their maturational trajectories 
and how their acquisition is strictly related to the specific sensory 
experience gathered during infancy through adolescence. For 
example, Wallace et al. (2004a) found that kittens raised in the absence 
of visual cues were unable to combine cross-modal information. 
Moreover, animals exposed to altered sensory environments develop 
multisensory principles based on the unique sensory experience they 
are exposed to (Yu et al., 2010; Xu et al., 2014). These results highlight 
how the multisensory experience individuals are exposed to is critical 

to developing fully mature integrative capabilities. Specifically, a 
reduced multisensory exposure results in a delayed acquisition of MSI 
and integrative deficits (Yu et al., 2009; Xu et al., 2017; also consider 
Xu et al., 2014). Several studies highlight the existence of integrative 
deficits in children with a diagnosis of autism spectrum disorder 
(ASD) (see Baum et  al., 2015 and Wallace et  al., 2020 for recent 
reviews, but also O'Neill and Jones, 1997; Happé and Frith, 2006; Foss-
Feig et al., 2010; Taylor et al., 2010; Cascio et al., 2012; Stevenson et al., 
2012, 2014a,b,c; Brandwein et al., 2013; Wallace and Stevenson, 2014; 
Foxe et al., 2015, Beker et al., 2018). One possible explanation for 
reduced MSI in ASD is that these individuals experience a lower 
exposure to multisensory stimuli, possibly due to how attention is 
allocated (e.g., suppression of unattended signals; selectively focusing 
on one sensory modality at a time; not looking at faces consistently), 
as we tested and discussed in previous work (Cuppini et al., 2017b). 
Interestingly, while MSI deficits are found in children with ASD, they 
appear to be recovered in older subjects (Foxe et al., 2015; Beker et al., 
2018). Indeed, adults with ASD show task performance matching 
those that neurotypical individuals (NT) reach already in late 
adolescence (see, e.g., Stevenson et al., 2018; Crosse et al., 2022).

Here we  sought to investigate whether sensory experience 
contributes to the maturation of the ability to solve the causal inference 
problem, as this skill is strongly correlated with intact and mature MSI 
(Cuppini et  al., 2017a,b). Although a wide array of research has 
focused on the integrity of MSI in Autism, the development of the 
capability of ASD individuals to solve the causal inference, and its 
relationship with multisensory processing, remains largely unexplored.

To the best of our knowledge, the presence of anomalous causal 
inference in the ASD population has been investigated only by one 
previous study (Noel et al., 2022), with mixed results, and in a limited 
age-related population (16.0 ± 0.5 years). Therefore, the underlying 
neural mechanisms and network architecture involved in these 
processes are not clearly identified yet.

To fill this gap, the purposes of the present computational study 
were (1) to extend the use of a previous neural model to study the 
developmental trajectories of causal inference, highlighting the 
underlying neural mechanisms, and how they can be affected by 
different sensory experiences; (2) to exploit this model to test the 
hypothesis that causal inference and its development are altered in 
ASD individuals, analyzing what mechanisms are involved. To 
address these questions, we exploited a neuro-computational model, 
based on physiologically plausible hypotheses, previously utilized to 
study multisensory interactions in ASD and causal inference 
(Cuppini et al., 2017a,b). We first assessed the relationship between 
multisensory experience and the development of causal inference. 
The developmental period was simulated by implementing a Hebbian 
learning algorithm and presenting the model with different 
percentages of auditory, visual, and congruent audiovisual stimuli. 
Results show the higher the exposure rate to cross-modal cues, the 
faster the acquisition of the ability to solve the causal inference 
problem. Next, we sought to investigate how this development is 
altered in the ASD population. ASDs’ causal inference development 
was simulated by assuming a lower multisensory experience at the 
beginning of the training, as suggested by previous computational 
work (Cuppini et  al., 2017b). Indeed, altered MSI in autistic 
individuals has often been ascribed to their reduced attention, leading 
them to experience reduced multisensory exposure, which would 
compromise the emergence of integrative abilities, as discussed 
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above. It has been hypothesized that at the beginning of puberty, 
thanks to several different reasons, among others changes in executive 
function and hormonal changes characterizing this phase of life, 
ASDs exhibit a renewed interest in the surrounding context and 
increase their social interactions. This, in turn, leads to increased 
experience with cross-modal events (Kuusikko et al., 2009; Beker 
et  al., 2018). This is in accordance with cross-sectional studies 
suggesting a recovery of multisensory function as ASD individuals 
grow older (Foxe et al., 2015; Beker et al., 2018). To reproduce this 
scenario, we trained the ASD model by progressively increasing the 
percentage of audiovisual stimuli presented to the network. Similar 
to findings in multisensory paradigms involving speech stimuli or 
low-level cues (such as flashes and beeps), our results suggest that 
also causal inference reaches complete maturity much later in ASD 
individuals, compared to NT.

Overall, our study paves the way for future experiments aimed to 
test the model’s predictions and increases the knowledge of the autistic 
phenotype. Moreover, if verified experimentally, the results of our 
model suggest that children with ASD may benefit from multisensory 
training approaches, intended to favor a faster recovery of MSI and 
causal inference abilities.

2. Methods

The model’s architecture (Figure  1) is based on a network 
previously realized to study the causal inference (Cuppini et al., 2017a) 
(the files and codes for this previous work are available online at 
figshare.com). The model was developed in Matlab.

In the following, the model structure, the implemented 
mechanisms, and the sensory training employed to mimic the 
transition from childhood to adult-like abilities are described 
qualitatively. Next, we provide the mathematical description of the 
model, including all equations, and the criteria for parameters  
assignment.

2.1. Model’s structure and mechanisms

The network consists of three areas: two unisensory regions 
(visual and auditory) processing the corresponding noisy external 
stimuli, and a multisensory region, responsible for the solution of the 
causal inference problem. Each area is made up of an array of N = 180 
elements (the number of elements is arbitrary here), topographically 
organized; that is, proximal neurons code for proximal spatial 
positions. We assume a distance of 1° between adjacent elements. 
Neuronal responses to any input are described with a first-order 
differential equation which simulates the integrative properties of the 
cellular membrane, and a steady-state sigmoidal relationship 
simulating the presence of a lower threshold and an upper saturation 
for neural activation. The saturation value is set at 1, i.e., all outputs 
are normalized to the maximum. In the following, the term “activity” 
is used to denote neuron output. The topological organization in the 
regions is realized assuming that each element is connected with other 
elements of the same area via lateral connections (intra-layer 
connections, La, Lv, Lm in Figure 1). These connections include both 
excitatory and inhibitory lateral synapses, which are arranged with a 
Mexican hat disposition (a central excitatory zone surrounded by an 
inhibitory annulus). Therefore, each neuron excites (and is excited by) 
its proximal neurons and inhibits (and is inhibited by) more distal 
neurons. Hence, activities of neurons belonging to the same region 
and stimulated by distal stimuli tend to suppress reciprocally (i.e., they 
interact via a competitive mechanism). For simplicity, in the network, 
we implemented the same lateral connectivity among elements in the 
unisensory regions, but we  used a different connectivity in the 
multisensory layer to improve the solution of the causal inference.

Unisensory areas simulate the level of sensory processing 
performed in the unisensory cortical regions of the brain and are 
responsible for inferring the spatial location of the sensory stimuli. In 
the model, the perceived position of the external stimuli is obtained 
by computing the barycenter of the activities elicited in the visual and 
auditory areas, respectively. It is worth noting that we  mimicked 

FIGURE 1

Structure of the network. The visual and auditory regions process external sensory stimuli. These regions are reciprocally connected through direct 

excitatory synapses (Wav and Wva
), and send long-range feedforward projections (Wmv and Wma

), targeting the causal inference area. All these 
inter-area synapses are realized via Gaussian functions. The three regions in the network also include intra-area synapses (L), linking elements 
belonging to the same area. These connections are implemented using a Mexican hat function.
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auditory and visual localization in the same way. This is a strong 
simplification, as the presence of a topographic organization is well 
documented in the primary visual areas, but it has not been observed 
in the auditory regions of the brain. This aspect is further discussed in 
previous papers (Cuppini et  al., 2017a). Moreover, for this same 
reason, the acoustic area must be considered as functionally equivalent 
to several stages of processing in the auditory cortex. Elements in the 
unisensory regions also excite each other by means of reciprocal 
excitatory cross-modal synapses (Wav, Wva). These connections are 
symmetrical, and they are realized using a Gaussian function. Due to 
the presence of cross-modal projections, the inferred spatial 
localization of the auditory or visual inputs is affected by the 
concurrent presentation of the stimulus in the other sensory modality, 
even if the two events are processed separately in the two unisensory 
regions. From this point of view, the presence of the sigmoidal I/O 
relationship, with an “activation threshold”, is important. In fact, many 
neurons (especially in the auditory region) are silent but close to this 
threshold and can be easily excited by noise or cross-modal influences.

Accordingly, the net input reaching a neuron in the unisensory 
regions is the sum of three components: an external input, a 
multisensory input from neurons in the other modality (via cross-
modal synapses Wav, Wva), and a lateral input coming from other 
neurons in the same unisensory area (via lateral synapses La and Lv). 
Moreover, to mimic the variability of sensory stimuli in a real 
environment, we added a noisy component targeting every element in 
the unisensory regions.

Information regarding the stimuli’ spatial configuration, extracted 
by these regions, is sent to a multisensory area (simulating an 
association cortex), for example, the anterior intraparietal sulcus, as 
shown by Rohe and Noppeney (2015a) through excitatory feedforward 
synapses (Wmv, Wma), for which we used again a Gaussian function, 
identical for the two modalities. Units in the multisensory region also 
receive a lateral input, generated by the lateral synapses linking 
elements in the multisensory region (Lm). The role of this region is to 
solve the causal inference problem. To answer this question, the 
activity elicited in the multisensory region is compared with a 
threshold (the “detection threshold”). The number of distinct peaks of 
activity, in the multisensory region, above this threshold identifies the 
number of distinct input sources inferred by the model. Stimuli placed 
in proximal positions (i.e., likely caused by the same event) excite 
proximal neurons in the multisensory region, producing a single peak 
of activity above the threshold. Conversely, stimuli from different 
spatial positions (i.e., likely generated by different events) stimulate 
distant multisensory neurons, eliciting multiple peaks above the 
threshold in the multisensory area.

Accordingly, the network presents two different levels of 
multisensory processing: the first, at the level of unisensory regions, 
mediated by the cross-modal synapses, influences the judgment about 
the spatial position of the external stimuli (some authors refer to this 
process as an “implicit causal inference,” see Odegaard et al., 2015, 
2016; Rohe and Noppeney, 2015a; Odegaard and Shams, 2016; Noel 
et al., 2022; Shams and Beierholm, 2022); the second, performed in 
the multisensory region, is responsible for the solution of the causal 
inference problem (the “explicit causal inference” in Rohe and 
Noppeney (2015a), but see also Wallace et al., 2004b; Noel et al., 2022).

A further important mechanism in the model consists of 
competition/cooperation between elements in the same area. This is 

achieved via intra-area (lateral) synapses linking elements belonging 
to the same region, realized through a Mexican hat disposition, so that 
elements sensitive to proximal portions of the external world excite 
one another, and elements sensitive to different portions of the space 
are reciprocally inhibited. This synaptic arrangement concurs to 
identify the minimal distance between two activities in the same area 
that the network can separate, and thus are identified as produced by 
different events.

To summarize the role of the main mechanisms delineated above:

 1. The two external inputs (auditory and visual) separately excite 
the two unisensory areas.

 2. The cross-modal synapses between unisensory regions modify 
the spatial perception of the sensory inputs. In cases of 
proximal stimuli, which are usually perceived as originating 
from a common cause, the two positions are reciprocally 
attracted, thus generating typical perceptual illusions (such as 
ventriloquism). In cases of distant stimuli, which are usually 
perceived as coming from distinct input sources, these cross-
modal synapses have a less important role, and intra-area 
inhibition becomes the dominant mechanism.

 3. The feedforward synapses from the unisensory input regions 
realize a classic MSI, that is, the enhancement of the activities 
in spatial register. This is used to encode information on the 
mutual spatial coincidence of the cross-modal stimuli, and the 
likelihood that two stimuli were generated by a common 
source. Indeed, when two multisensory stimuli fall inside the 
RFs of the same multisensory neurons, the multisensory area 
integrates the information and presents a unique peak of 
activity, identifying a single input source.

 4. The inhibitory lateral synapses implement a competitive 
mechanism, which allows the survival of the stronger stimuli 
only, while spurious or negligible stimuli are suppressed. This 
has two fundamental functions: it favors a spatial shift in the 
unisensory areas (where less reliable stimuli are shifted in the 
direction of the more reliable ones), and it engenders the 
effective elimination of unimportant sources in the 
multisensory area, where the readout of causal inference is 
effectively realized.

The visual and auditory inputs are described with a Gaussian 
function to mimic spatially localized external stimuli. The central 
point of the Gaussian function corresponds to the application point of 
the stimulus in the external world (ρa and ρv, for the auditory and 
visual stimuli, respectively). The standard deviation of the Gaussian 
function (σ a and σ v) reflects the width of neurons’ RFs and the 
reliability of the external input, in other terms it mimics the spatial 
acuity of the two sensory modalities. Specifically, the two sensory 
modalities differ only for the width of the respective receptive fields 
and time constants. Indeed, because the visual spatial resolution is 
better than the acoustic one, visual receptive fields are smaller 
(σ σv a< ). On the contrary, the better temporal resolution is the 
auditory one, therefore we chose (τ τv a> ).

As for the temporal properties of the external stimuli, for 
simplicity in this work we chose synchronized auditory and visual 
stimuli, kept constant throughout the simulations (except for the 
analysis of the temporal window for the MSI, see below in Section 2).
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2.2. Training the network

As stated in the Introduction, the first aim of this work was to test 
how the maturation of CI abilities depends on cross-modal 
experience. For this purpose, starting from the initial immature 
configuration, characterized by ineffective cross-modal projections 
(i.e., Wav = Wva= 0), we simulated the maturation of such connections, 
presenting the network with different percentages of unimodal and 
cross-modal inputs for a total amount of training epochs sufficient to 
reach an adult configuration.

In a first series of simulations, we run four different trainings, 
characterized by an increasing multisensory experience (Table 1).

Stimuli used during the training had a duration of 500 ms each 
and were generated through a uniform distribution of probability. 
We used stimuli at their highest level of efficacy, i.e., able to excite 
unisensory neurons close to saturation, in order to speed up the 
modeling process. During this period, both the intra-layer connections 
and the feedforward excitatory connections to the multisensory 
region were not subject to training. Therefore, we assume they are 
mature already in the initial configuration of the model. On the 
contrary, cross-modal synapses Wav and Wva were modified by using 
a simple rule for connection learning, consisting of Hebbian 
reinforcement and a decay term. In particular, the training algorithm 
reinforced the connections on the basis of the correlation between the 
activities in the pre-synaptic and post-synaptic neurons (Hebb rule). 
The decay term was proportional to the activity of the postsynaptic 
neuron and included a scaling factor that established the maximum 
saturation value for the connection.

It is worth noting that these values were not available in the 
literature, and presumably differ considerably across individuals and 
across the lifespan depending on circumstances. The first two 
trainings, performed with the highest multisensory experience, 
presumably resemble typical sensory experiences. Overall, each 
training lasted 8,000 training epochs, at which point the network 
showed steady-state configuration and performance.

The second goal of the work was to characterize the emergence of 
CI abilities in ASD subjects.

In a previous work (Cuppini et al., 2017b) we discussed that an 
altered/reduced exposure to cross-modal stimuli would be the most 
likely explanation for the delayed acquisition of integrative abilities in 
ASD children, compared to the two different hypotheses of a different 
level of synaptic plasticity, or reduced synaptic connectivity. Here, 
we assumed that a similar explanation could lead to altered maturation 
of the abilities to solve the causal inference problem in ASD. The sensory 
experience of ASD children was modeled by assuming a reduced 
exposure to multisensory stimuli. Moreover, ASD subjects naturally 
recover integrative deficit as they grow older (Foss-Feig et al., 2010; 
Taylor et al., 2010; Stevenson et al., 2012, 2014a,b,c; Brandwein et al., 
2013; Wallace and Stevenson, 2014; Foxe et al., 2015; Cuppini et al., 

2017b; Beker et al., 2018). Therefore, instead of performing the training 
of the simulated ASD subjects with a reduced and fixed percentage of 
AV stimuli, we chose to gradually increase the amount of AV stimuli 
presented to our network during the training phase. Accordingly, the 
fifth training performed to mimic the sensory experience of ASD 
subjects was characterized by the following sensory experience: 30% of 
AV stimuli during the first 2000 training epochs, 45% between 2000 and 
4,000 epochs, and 60% from 4,000 to 8,000 epochs.

2.3. Mathematical description of the model

In the following, each neuron will be denoted with a superscript, 
c, referred to a specific cortical area (c = a or v or m, for the auditory, 
visual, or multisensory region, respectively), and a subscript, j, which 
indicates the spatial position within that area. u(t) and y(t) are used to 
represent the net input and output of a given neuron at time t. Thus, 
y jc(t) represents the output of a unit at position j, belonging to the area 
c, described by the following differential equation:

 
τ c j

c

j
c

j
cdy t

dt
y t F u t( )

= − ( ) + ( )( )
 

(1)

where τ c is the time constant of neurons belonging to the area c, 
and F u( ) represents a sigmoidal relationship:

 
F u

e
j
c

s u jc
( ) =

+ − −( )
1

1 θ  
(2)

s and θ are parameters that establish the slope and the central 
position of the sigmoidal relationship, respectively. The saturation value 
is set at 1, i.e., all activities are normalized to the maximum. For the sake 
of simplicity, in this work neurons belonging to the three regions differ 
only for the time constants, chosen to mimic a quicker sensory 
processing for stimuli in the auditory region compared to visual stimuli.

The net input that reaches a neuron (i.e., the quantity u tjc ( ) in 
Eq. 1) is the sum of two terms: a within-region component (say l tjc ( )), 
due to the contribution of lateral synapses from other neurons in the 
same area, and a component coming from extra-area sources 
(say i tjc ( )). Hence, we have:

 u t l t i tj
c

j
c

j
c( ) = ( ) + ( ) (3)

To simulate the lateral input, l tjc ( ) , neurons within each area 
interact via excitatory and inhibitory lateral synapses: each neuron 
excites (and is excited by) its proximal neurons, and inhibits (and is 
inhibited by) more distal neurons. Thus, the input l tjc ( ) that a neuron 
receives from other elements of the same area is defined as:

 
( ) ( )c c c

j jk k
k

l t L y t= ⋅∑
 

(4)

where Ljk
c  is the strength of the lateral synapse from a presynaptic 

neuron at position k to a postsynaptic neuron at position j, both 

TABLE 1 The training experience.

AV (%) A (%) V (%)

Training 1 80 10 10

Training 2 60 20 20

Training 3 40 30 30

Training 4 20 40 40
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belonging to the same region c, and y tk
c ( ) is the activity of the 

presynaptic neuron at position k in the area c. These synapses are 
symmetrical and arranged according to a “Mexican hat” distribution 
(a central excitatory zone surrounded by an inhibitory annulus):

 

( )
( )

( )
( )

2 2

2 2
2 2

0 0 0;
0 0;

jk jk

c c
ex in

d d
c c c
jk jkex in

jk

L L e L e if d
if d

σ σ
− −


=  ⋅ − ⋅ =
 ≠  

(5)

In this equation, Lex0 and σex define the excitatory Gaussian 
function, while Lin0 and σ in the inhibitory one, d jk  represents the 
distance between the pre-synaptic and post-synaptic neurons in the 
same area. To avoid undesired border effects, we  use a circular 
structure to realize these synapses so that every neuron in each area 
receives the same number of side connections. This is obtained 
assuming the following expression for the distance:
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In this work, we assume that both unisensory areas have the same 
pattern of lateral synapses, in order to limit the number of hypotheses 
in building the model. On the contrary, the lateral connectivity pattern 
in the multisensory layer is different, it was chosen to improve solution 
of the causal inference.

The external component of the input, i tjc ( ), has a different 
expression for the unisensory areas (c = a, v) and for the multisensory 
one (c = m).

The input to each unisensory area includes: a sensory stimulus 
from the external world (say e tjc ( )), a cross-modal term coming from 
the other unisensory area (say c tjc ( )), and a noise component, n jc, 
realized by a standard uniform distribution on an interval 
− +[ ]n nmax max , where nmax is equal to the 10% of the strength of the 

external stimulus for each sensory modality. Hence:
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The first term in Eq. 7 is simulated by means of a spatial Gaussian 
function, to reproduce the uncertainty in the detection of external 
stimuli. Assuming a stimulus of sensory modality c (c = a or v) 
presented in the position pc, the consequent input to the network can 
be written as:
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where Ec0  represents the strength of the stimulus, d jc is the distance 
between the neuron at position j and the stimulus at position pc, and 
σ c  defines the degree of uncertainty in sensory detection (which 
establishes the overall number of elements in region c, activated by the 
same external stimulus). As previously described for the lateral 
synapses, to avoid undesired border effects, also the external inputs 

are implemented as having a circular structure; hence, the distance 
d jc is defined as:
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The cross-modal input, c tjc ( ), is obtained assuming that each 
unisensory neuron receives an excitation from the neurons processing 
the other modality. Hence:
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The weights of the excitatory cross-modal projections, Wijav and 
Wijva, were subject to the training. Thus, in the immature configuration, 
these connections were assumed ineffective.

The excitatory external input to the multisensory neurons is given 
by one contribution only, i.e., that due to the feedforward connections 
from the unisensory areas. Hence:
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where Wjk
ma and Wjk

mv are the connections linking the presynaptic 
neuron at position k in the unisensory area (auditory and visual, 
respectively) to the neuron at position j in the multisensory area. 
These connections were not subject to the training phase, and are 
described by a Gaussian function:
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where Wmc
0  is the highest level of synaptic efficacy, d jk  is the 

distance between the multisensory neuron at position j and the 
unisensory neuron at position k, and σ mc  defines the width of the 
feedforward synapses. In the model for simplicity, we  set the 
feedforward synapses identical for the two modalities 
(W Wma mv

0 0=  e σ σma mv= ).
During this phase, cross-modal connections (i.e., connections 

Wijav and Wijva) are trained with a Hebbian rule: this training  
modifies the synaptic weight based on the correlation between the 
presynaptic and postsynaptic activity. The training rule is the  
following:

 

1 2

1 2 1 2 1 2

1 2
1 2

max
,

c c
jkc c c c c c

jjk k c c

W
W y y c c av va

W
γ

 
 ∆ = − ∀ =
 
   

(13)

https://doi.org/10.3389/fncom.2023.1258590
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Monti et al. 10.3389/fncom.2023.1258590

Frontiers in Computational Neuroscience 07 frontiersin.org

which is an Hebb rule with learning rate γ c c1 2  and a decay term 
depending on the actual strength of the synapsis Wjk

c c1 2  and the highest 
value fixed for the synaptic reinforcement Wc c

max
1 2 . In particular, 

according to Eq. 13 at steady state we have:
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E{} is the expected value. Since the activities of neurons are 
normalized between 0 and 1, the previous equation signifies that 
each connection cannot overcome the maximum value 1 2max

c cW∆  
(that occurs when the presynaptic activity is close to 1, in 100% 
of cases).

According to Eq. 13, the postsynaptic neuron must be active to 
have a change of synaptic efficacy. When this occurs, a postsynaptic 
neuron (in region c1, and position j), with a high activity y j

c1, 
modifies its targeting connections Wjk

c c1 2 , shaping them based on the 
actual activity yk

c2  of the presynaptic elements (in region c2, and 
position k). Conversely, silent postsynaptic neurons with poor 
output activity do not appreciably modify their connections, even 
when the presynaptic neural element is active. Moreover, the 
maximum value fixed for each pair of long-range excitatory 
connections is introduced to implement a saturation in the synaptic 
reinforcement. Thus, connections linking two neurons in the 
unisensory regions are modified as follows:
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with γ γav va= . Wav
max  = Wva

max  is the maximum saturation value 
that synaptic weights cannot overcome.

2.4. Parameters’ assignment

The values of all model parameters (Table 2) were assigned based 
on findings reported in the literature, in accordance with the criteria 
summarized below.

2.4.1. External inputs
The strength of the external visual and auditory stimuli 

(parameters Ev0  and Ea0 ) is chosen so that the overall input elicits a 
response in the upper portion of the linear part of the sigmoidal static 
characteristic (i.e., a little below saturation). Additionally, physiological 
evidence (see, for example, Recanzone, 2009) show that the visual 
system presents better spatial resolution than the auditory one. This 
was mimicked by setting σ σa v> . In particular, the value of σ v  was 
assigned to have a very acute visual perception (with a few degrees 
uncertainty). The value for σ a was set to have a large ratio σ σa v/ , 
according to our previous computational studies (Magosso et al., 2012; 
Cuppini et al., 2014).

Finally, the noise level was fixed to 10% of the stimulus strength 
for each sensory modality, as this value allowed us to highlight the 
involved neural mechanisms.

2.4.2. Parameters of individual neurons
The central abscissa, θ , was assigned to have negligible neural 

activity in basal conditions (i.e., when the input was zero). The slope 
of the sigmoidal relationship, s, was assigned to have a smooth 
transition from silence to saturation in response to external stimuli. 
The time constants were set so that the auditory processing is faster 
than the visual one, that is, τ τa v< , in accordance with experimental 
evidence of auditory cortical neurons presenting shorter latencies than 
neurons in the visual cortex (Maunsell and Gibson, 1992; Recanzone 
et al., 2000).

2.4.3. Parameters of the lateral synapses
Parameters which establish the width and the strength of lateral 

synapses in every area (i.e., Lex0, Lin0, σex and σ in) were assigned to 
simultaneously satisfy multiple criteria: (1) inhibition must be strong 
enough to warrant competition between two stimuli in the same area; 
(2) the balance between excitation and inhibition must avoid 
instability, i.e., an uncontrolled excitation which propagated to the 
overall area; (3) the width of inhibitory synapses is large in the 
unisensory regions, to realize a stronger competition between two 
inputs of the same modality; (4) conversely, the width of inhibitory 
synapses in the multisensory region is smaller, in agreement with the 
possibility to have the coexistence of two peaks of activity in case of 
external causally unrelated stimuli, even at a few degrees distance.

2.4.4. Parameters of the inter-area synapses
The strength and width of the feedforward synapses was chosen 

to provide an input to the multisensory neurons close to the central 
portion of the sigmoidal I/O relationship, when the network is 
stimulated by a strong unisensory external stimulus, but in the upper 
part close to saturation when stimulated by two concordant 
multisensory stimuli. This corresponds to the classic principle of 
multisensory integration (enhancement, inverse effectiveness). In 
particular, with this choice we have super-additivity in case of weak 
unisensory stimuli, and sub-additivity in case of stronger stimuli.

The strength of the direct cross-modal synapses between the 
unisensory regions was assigned high enough so that these 
connections can affect the responses of neurons of the opposite 
sensory modality when these elements are near or just above the 
activation threshold. Nevertheless, these synapses are maintained 
sufficiently low so that an external stimulus in one sensory modality 
does not induce a phantom activity in the other modality-specific area.

TABLE 2 Parameters values.

Neurons Inputs

N = 180

θ  = 20

s = 0.3

τ  = 1 ms

τ v  = 15 ms

τ a = 3 ms

Ev0 = 27; σ v = 4

Ea0  = 28; σ a  = 32

ηmax = 10%

Lateral synapses, unisensory areas Lateral synapses, multisensory area

Lex0 = 5; σex  = 3

Lin0 = 4; σin = 120

Lex0 = 3; σex  = 2

Lin0 = 2.6; σin = 10

Feedforward synapses Training parameters

W Wma mv
0 0= = 18

σ σma mv=  = 0,5
γ c = 5 10 5⋅ −

Wcmax = 1,4
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2.4.5. Parameters of the training phase
The learning factor (γ c) and the sensory experience used to train 

the model were adjusted to achieve a good fit between the model and 
the data about the TD maturation as reported in Foxe et al. (2015). In 
particular, the value of γ c was not subsequently varied for the 
simulations of ASD development.

2.5. Performance evaluation

As stated above, we designed this model to help clarify the neural 
mechanisms responsible for the maturation of the ability to solve the 
causal inference problem in NT and ASD children.

To this aim, first, we compared the outcomes of the first four 
training configurations, to investigate the dependence of the ability to 
solve the causal inference on the multisensory experience. 
Subsequently, the last training configuration, characterized by an 
increasing proportion of AV stimuli (simulating ASD children), was 
compared with the outcomes obtained from the first two training 
configurations (those performed administering the highest proportion 
of AV stimuli, 60% and 80%, respectively).

To do this, we performed several simulations in multisensory 
conditions, with auditory–visual stimuli presented to the network, 
with different spatial distances (0°, 5°, 10°, 15°, and 20°), and 
we evaluated the network performance at different moments of the 
training (simulating the developmental period). In particular, we kept 
the visual stimulus fixed in a specific position of the space, and 
we shifted the position of the auditory stimulus. For each stimulus 
configuration, we run 100 trials.

To evaluate the ability to solve the causal inference and to compare 
the so obtained developmental trajectories in the two groups, the 
behavior of the network has been analyzed in terms of the following:

 1. The “Report of Unity” (RoU), referring to how often the 
network identifies a common cause (C = 1, i.e., one peak above 
threshold in the multisensory area), or two different causes 
(C = 2, i.e., two peaks above threshold in the multisensory area) 
for the two stimuli, as described by Wallace et al. (2004b). This 
index has been plotted vs. the spatial disparity of the 
multisensory inputs, to identify the likelihood that the model 
integrates or segregates two multisensory stimuli at 
different distances.

 2. The “Auditory Perception Bias”, referring to the bias in the 
perceived position of an auditory stimulus when presented 
along with a visual stimulus in a different portion of the space. 
This index has been computed as the spatial disparity between 
the real position of the external auditory stimulus and the 
position evaluated by the model (i.e., the barycenter of the 
evoked activity in the auditory area), divided by the distance 
between the real auditory and the real visual stimulus. First, it 
has been computed in general condition, that is, without taking 
into account the number of sources identified by the network. 
Then, the computation has been evaluated separately in the two 
cases of a common cause (C = 1), and different causes (C = 2), 
to investigate the relationship between the perceived auditory 
localization and the number of inferred causes. Because the 
visual position is only barely affected by sounds, due to the 
higher visual acuity, the visual perception bias has not been 

reported. Results are then compared with those reported in 
Wallace et al. (2004b), Odegaard et al. (2015), Hairston et al. 
(2003), Rohe and Noppeney (2015b).

3. Results

First, several simulations were performed to characterize the 
model’s behavior in the case of multisensory stimulations and to 
analyze the role of the different neural mechanisms involved. Next, 
additional simulations were run to analyze the maturation of the 
ability to solve the causal inference problem under different sensory 
experiences during the training period. Finally, a series of simulations 
were performed to validate the model’s architecture and the 
implemented mechanisms and formulate testable predictions.

3.1. Model’s behavior

To visually demonstrate how the model works, Figure 2 illustrates 
two representative cases. In particular, Figure 2 aims to clarify how the 
model handles multisensory cues, addresses the causal inference, and 
how its behavior evolves during training epochs. In this figure, 
we compare the model’s behavior after 100 training epochs, when the 
cross-modal synapses are still very weak, and at the end of the training, 
when the synaptic configuration is mature. This illustrates that the 
ability of the model to solve the causal inference problem changes over 
time, as a function of synaptic strength.

In both examples, the network is presented with an auditory 
stimulus at position 90° (corresponding to the 90th element of the 
region, the central one) and a visual stimulus 10° away from the 
auditory cue (i.e., at 80°). The input presented to the network is exactly 
the same in the two cases, therefore, the different results can be only 
explained by the different synaptic strengths of the cross-
modal connections.

In the first simulation (Figure 2A), the two stimuli evoke activities 
in the corresponding unisensory regions centered on the neurons 
sensitive to the positions of presentation of the two inputs. These 
activities are minimally overlapping. The effect of immature cross-
modal synapses is weak and unable to attract the two evoked activities 
and the correlated perceived positions of the stimuli. In this condition, 
auditory and visual activities elicit two distinct peaks in the 
multisensory layer (i.e., C = 2), and the model recognizes two 
independent sources, one for each sensory cue. Moreover, the distance 
between the perceived positions of the stimuli, computed as the 
barycenter of the evoked activities, is larger than the real one, as the 
auditory percept is repulsed by the visual one.

In the second simulation (Figure  2B), the two stimuli are 
presented in the same spatial configuration as the previous case, but 
during the simulation, the mature cross-modal synapses affect the 
activity evoked in the unisensory areas. More specifically, since the 
visual stimulus is more reliable in the case of localization tasks, the 
visual cross-modal component attracts the auditory evoked activity 
toward the position of the visual cue, altering the perceived position 
of the auditory stimulus, even if the external stimuli are presented 10° 
apart. In the end, the activities in the two unisensory regions largely 
overlap. With such overlapping evoked activities, both input regions 
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send excitatory projections targeting the same neural elements in the 
multisensory area, producing a single peak of activity above 
the threshold.

Under these conditions, (1) our model identifies a single external 
event generating the two perceived stimuli (i.e., C = 1), and (2) the 
perceived position of the auditory stimulus is strongly attracted 
toward the actual position of the visual cue, thus resulting in a high 
auditory localization bias. In other words, the two stimuli are 
perceived as coming from portions of the external space close to each 
other and produced by the same event.

3.2. Developmental trajectories of TD 
children are a function of multisensory 
experience

These observations prompted us to analyze more in detail how the 
auditory localization bias and the RoU change across training epochs 
(Figure 3). Both the report of spatial unity and the percent perceptual 
bias decrease significantly with increasing spatial distance. However, 
this general trend changes substantially over the training phase, as a 
function of multisensory experience.

For all four trainings, characterized by different levels of 
multisensory experience (20%, 40%, 60%, and 80%), the likelihood of 
reporting a common cause increases overtraining. After 100 training 
epochs, the model is still in an immature state, and no significant 
difference among the four trainings can be  observed in the 
RoU. However, after 1,000 and 3,000 training epochs, multisensory 

experience and RoU are highly correlated. In particular, the increment 
of the RoU is more pronounced the higher the percentage of AV 
stimuli presented to the network. Between 3,000 and 5,000 training 
steps, the RoU attains its mature values for the training with 60 and 
80% of cross-modal stimuli, and there is no further increase during 
the subsequent training. It is worth noting that the performance (as 
evaluated by the RoU) reached at the end of the training, is comparable 
when using over 50% of AV stimuli to train the model. Indeed, 
although the training performed with 60% of cross-modal stimuli 
progresses slower, the RoU values ultimately become comparable to 
those obtained when training the network with 80% of AV stimuli. In 
contrast, when the training is performed with 20% or 40% of AV 
stimuli (i.e., with a percentage of multisensory experience lower than 
50%), the RoU continues to increase even after 8,000 epochs and 
never reaches levels comparable to those observed in the trainings 
with 60% or 80% of cross-modal cues.

Similar to the results just highlighted for the RoU, there is a 
consistent trend of increased auditory localization bias during the 
training, dependent on the level of multisensory experience utilized 
to train the network. Again, the cross-modal influence on the 
perceived position of the auditory cue is negligible after 100 epochs, 
for all four trainings. Yet, between 100 and 1,000 epochs a vision-
capturing effect of hearing emerges clearly, and a relationship between 
perceptual bias and audiovisual exposure can be observed: the bias 
progressively grows, with a more pronounced escalation as the 
percentage of AV stimuli used to train the network increases. Between 
3,000 and 5,000 epochs, the bias obtained with the training involving 
80% of cross-modal stimuli reaches complete maturity. After 5,000 

FIGURE 2

Temporal pattern of neural activity in the regions of the model. Panel (A) displays a simulation where two multisensory stimuli, separated by a spatial 
distance of 10°, are interpreted as originating from a single source. In contrast, Panel (B) presents an example where the same stimuli, with identical 
spatial configurations, are perceived as originating from separate sources due to the weaker cross-modal synapses. Within each figure, the gray area 
represents the activity in the auditory region, the pink is the activation of the visual region, and the black dashed line represents the activity of the 
multisensory area. Each panel consists of three columns, each representing a snapshot of network activity at different time points during the 
simulation. The left column reflects the initial stage of the simulation (10  ms), characterized by minimal activity below the threshold (gray horizontal 
dotted line in panels) in the multisensory area. The middle column corresponds to an intermediate moment (20  ms) when the threshold in the 
multisensory area has already been surpassed. Finally, the right column portrays the final configuration (60  ms) of the network activity.
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epochs of training, even the bias obtained from training conducted 
with 60% AV stimuli reaches its maximum values, comparable to the 
performance (as assessed by the bias) of the model trained with 80% 
multisensory stimuli. In other words, trainings with more than 50% 
of multisensory stimuli exhibit comparable bias values in the long 
term. The bias values achievable with the training involving 40% of 
multisensory stimuli, instead, partially recover between 3,000 and 
8,000 epochs, reaching relatively high values, but still not comparable 
to those achieved with trainings using over 50% of cross-modal 
stimuli. Finally, training the model with 20% of multisensory cues 
leads to even lower performance.

3.3. Delayed developmental trajectories 
predicted for ASDs

As said, the RoU and the bias are comparable in the long term 
(from 5,000 training epochs on) when the model is trained with over 
50% of AV stimuli. However, most notable is the finding that the 

training characterized by a progressive increase in multisensory 
experience (simulating ASD development, Figure 4A) achieves similar 
performances (Figure 4B). Nevertheless, both the bias and the RoU 
obtained through this type of training show a slower evolution 
compared to when the model is trained with a fixed and high 
proportion of AV stimuli. In fact, while trainings with 60% and 80% 
of multisensory cues reach full maturity between 3,000 and 5,000 
training epochs, the RoU and bias resulting from progressive training 
only catch up to neurotypical performance at the end of the training 
period (8,000 epochs). In other words, progressive training is capable 
of achieving performance similar to that of training conducted with a 
fixed and high (>50%) proportion of AV stimuli, but with a delayed 
maturation of 2000–3,000 epochs.

3.4. Model’s validation

To the best of our knowledge, in the literature, there are 
neither studies dealing with the development of causal inference 

FIGURE 3

Percentual RoU and auditory bias as a function of AV spatial distance (in degrees) at different training stages. The input noise was set to 25% of the 
input strength and the detection threshold in the causal inference layer was 0.15. In each figure, different colors represent trainings involving different 
levels of multisensory experience. In particular, the blue curve has been obtained by training the model with 80% of AV stimuli, 60% of AV stimuli were 
presented to the network to obtain the purple curve, 40% for obtaining the light blue curve, and 20% for obtaining the red one. Both the RoU and the 
bias decrease with increasing spatial distance. Moreover, their values progressively increase during the training. It is worth noting that the RoU and the 
bias increase as a function of the amount of AV stimuli presented to the network. Particularly, the performance reached by the trainings conducted 
with over 50% of AV stimuli (blue and purple curves) is comparable. In contrast, the performance achieved by trainings involving a lower multisensory 
experience never catches up. Simulations’ results obtained at the end of the training (8,000 epochs) are compared with behavioral data from Wallace 
et al. (2004b) (black dashed line), obtained with an experimental paradigm similar to the one simulated by the model. The model’s results obtained by 
training the network with 80% or 60% of AV stimuli accurately fit these empirical data.
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nor addressing this topic in ASD individuals. Therefore, 
we validated only the TD adult configuration of our model, while 
the developmental patterns of both TD and ASD represent 
valuable testable predictions to be  tested in future behavioral 
experiments. We chose to compare the model’s results with the 
experimental conditions that are the most similar to our simulated 
configurations of stimuli. In particular, the experimental 
paradigm of Wallace et al. (2004b), who presented multisensory 
stimuli at varying spatial and temporal disparities, closely 
resembles the one simulated by our model. Also, the work by 
Odegaard et al. (2015) was conducted by presenting multisensory 
stimuli at different spatial locations, but the two unisensory 
components of the AV stimulus were always spatially congruent. 
Therefore, to compare our model with the results obtained by 
Odegaard and colleagues, we ran an additional set of simulations 
with an AV distance of 0°.

3.5. Simulations with increased AV spatial 
disparities

In their mature configuration, the two trainings with the highest 
proportions of cross-modal stimuli (60 and 80%) fit the pattern of 
empirical data of Wallace et  al. (2004b). In particular, the bias 
decreases significantly with increasing cross-modal spatial disparity. 
However, a significant auditory bias (>45%) is still present at the 
largest simulated spatial distance (i.e., 15°). Similarly, also the RoU is 
influenced by the spatial relationship of multisensory stimuli. Indeed, 
also the RoU decreases substantially for increasing spatial disparities, 
even if unity is still reported on more than 55% of trials even at the 
largest spatial distance.

In accordance with what was stated by Wallace et al. (2004b), 
bias is a good predictor of RoU (i.e., whether perceptual unity will 
be reported or not). To further examine this relationship and how 

FIGURE 4

Simulated developmental trajectories of ASD children. Panel (A) illustrates the training process implemented for simulating ASDs development. Over 
the course of the training epochs, the proportion of AV stimuli increases to simulate the growing attention and exposure to multisensory stimuli 
experienced by ASD individuals during the developmental period. Panel (B) displays the percentual RoU and bias as a function of AV spatial distance (in 
degrees) at different training epochs. The input noise was set to 25% of the input strength and the detection threshold in the causal inference layer was 
set to 0.15. In each figure, different colors represent trainings involving different levels of multisensory experience. In particular, the blue and the purple 
curves represent trainings involving a fixed percentage of AV stimuli, equal to 80% and 60%, respectively. The yellow curve, instead, has been obtained 
by progressively increasing the proportion of AV stimuli presented to the network and is representative of ASD development. Both the RoU and the bias 
decrease with increasing spatial distance. Moreover, their values progressively increase during the training. It is worth noting that the RoU and the bias 
increase as a function of the amount of AV stimuli presented to the network: the blue curve is the first reaching full maturity, followed by the purple 
one, and, finally, by the yellow one. Notably, the final performance reached by the three trainings is comparable. This means that also the training 
performed by progressively increasing the multisensory experience is capable of achieving normotypical performance but with a delay of 2,000–3,000 
training epochs.
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it evolves across epochs, we followed the same approach adopted 
by Wallace et al. (2004b) and we separated trials into two groups, 
those in which a single cause was identified and those in which two 
causes were identified (Figure 5). In the mature configuration (i.e., 
after 8,000 epochs) when the model recognizes a common cause 
for the two sensory cues, the bias attains very high values, 
signifying that the perceived position of the auditory stimulus is 
almost completely attracted toward the visual one, and the bias 
does not change consistently as a function of spatial disparity. In 
contrast, when the stimuli were not perceived as originating from 
the same source, the auditory bias strongly depends on the spatial 
disparity between stimuli. Specifically, no bias is observed at the 
largest spatial distances, whereas an increasingly negative bias 
emerges when stimuli are in close proximity to each other. This 
pattern of behavior is the same observed experimentally (Wallace 
et al., 2004b).

As is clearly evident from Figure 5, although the bias values at the 
beginning of the training are substantially smaller than in the mature 
configuration, the bias is already independent of the spatial disparity 
when spatial unity (C = 1) was reported. When the model does not 
report spatial unity (C = 2), the bias is strongly influenced by the 
distance between the stimuli, even at early development stages. 
Particularly, the bias is already negligible for the largest spatial 
distances, but it is significantly less negative than in adults when the 
sensory cues are close to each other. This pattern reflects the 
progressive development of the cross-modal synapses: as these 
connections become stronger, activities generated by close stimuli 
would progressively more likely be reciprocally attracted, producing 
overlapping activities in the two unisensory regions and eliciting the 
inference of a common source. This translates into a less negative bias 
in the case of independent sources inference for immature states than 
at the end of the training.

Wallace et  al. (2004b) also found an interaction between the 
variability in localization and the RoU (Figure 6). Similarly, in the 
mature configuration of our model, when a single cause is not 
reported the localization variability is maximum for spatially 
coincident stimuli, and it is significantly lower for larger AV spatial 
disparities. When, instead, a common cause is identified, the 
localization variability is relatively small and increases with the spatial 
distance. Although the model can reproduce the general trend 
highlighted by Wallace et al. (2004b), the variability values obtained 
with the model are systematically lower than the experimental ones. 
This difference can be  explained by the particular paradigm 
implemented by Wallace et al. (2004b), who investigated the causal 
inference problem both in the temporal and the spatial domain, 
presenting stimuli that are both spatially and temporally incongruent. 
Conversely, the stimuli we  presented to the model are always 
simultaneous, even if spatially disparate.

3.6. Simulations with no spatial disparities

A more detailed analysis of the model’s results obtained with 
spatially coincident stimuli is reported in Figure  7. As previously 
stated, this stimuli configuration allowed us to test our model against 
additional experimental data, in particular those of Odegaard 
et al. (2015).

First, we aimed to determine if the mature configuration of the 
model accurately replicates the empirical distribution of localization 
error. Figure  7A illustrates the comparison between the model’s 
results and experimental data. Notably, by adjusting the level of input 
noise, the model demonstrates the ability to replicate distinct 
behavioral data. In particular, a higher level of noise is necessary to 
reproduce the localization distribution of Wallace and colleagues, 

FIGURE 5

Auditory bias as a function of the AV spatial distance (in degrees) and number of sources, at different training epochs. The bias is examined separately 
when the network identifies a common cause (C  =  1) or different causes (C  =  2). The bias increases in absolute value during the training, as a function 
of multisensory experience: the higher the amount of AV stimuli presented to the network, the faster the development. At the end of the training 
process (8,000 epochs), the model trained with more than 50% of AV stimuli accurately reproduces the behavioral data from Wallace et al. (2004b) 
(black dashed line). In the case of C  =  1, the bias is nearly complete and remains relatively consistent across various AV spatial disparities. However, 
when C  =  2, the auditory bias is negative for distances smaller than 10°, while it is absent at larger disparities (i.e., 15°).
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whereas a lower noise level is sufficient to reproduce the data of 
Odegaard et al. (2015). A comparison with other empirical studies, 
in terms of standard deviations, is reported in Table  3. Next, 
we sought to test whether the model is capable of reproducing an 
additional finding of Wallace et al. (2004b). Particularly, these authors 
revealed that for spatially coincident AV stimuli, the pattern of 
localization responses is related to the RoU: when participants report 
a single cause, the localization error clusters closely around 0°; 
however, when two distinct causes are identified, the distribution of 
localization errors becomes broader. With an input noise equal to 
60% of the stimulus strength (that is needed to reproduce Wallace 
data, as discussed above), our model is capable of reproducing this 
pattern of localization errors (Figure 7B).

Finally, we investigated how the distribution of localization errors 
changes across epochs (Figure 7C). It appears evident that, in the 
multisensory condition, the distribution of the estimated A location 
becomes progressively more precise during the training, as it gradually 
clusters around 0°. This is particularly evident comparing the 
unisensory and multisensory distributions of the auditory localization 
error. While, at the beginning of the training, the standard deviation 
and the spatial distribution of auditory location estimate are 
comparable in the multisensory and unisensory conditions 
(Figure 7D), during the training we observe a significant improvement 
in the standard deviation of the auditory localization error (almost 
halved) in the multisensory case only. It is worth noting that the 
localization error in the unimodal auditory condition does not change 
during the training phase, as it is completely independent of the 
trained cross-modal synapses, and only depends on the dimension of 
the auditory receptive fields. Indeed, in a prior computational 
investigation (Ursino et al., 2017a), we provided evidence that the 
receptive fields of neural elements (both visual and auditory) undergo 
a reduction in size during training. This reduction enables the 
reproduction of spatial accuracy matching the respective sensory 

input and ultimately implements the likelihood estimate of unimodal 
spatial position. In this study, we made the simplifying assumption 
that the receptive fields are already fully developed at the start of the 
training process. As a result, considering that the receptive fields do 
not shrink over epochs, the unisensory localization abilities are also 
mature from the outset.

4. Discussion

The present work was designed with two fundamental goals: to 
study the effect of different sensory experiences on the development 
of causal inference and test the hypothesis that causal inference and 
its development are altered in ASD individuals due to an altered 
multisensory experience in childhood and adolescence.

In the literature, two approaches have been utilized to study the 
problem of how the brain deals with the problem of causal inference. 
One, namely the Bayesian approach, or Bayesian Causal Inference 
(Shams and Beierholm, 2022) assumes that the brain, first, infers the 
causal structure of the external stimuli, that is the number of sources/
causes generating the signals (Alais and Burr, 2004; Shams et al., 2005; 
Körding et al., 2007). Then, based on the assumption of the most likely 
causal structure of the input sources and the perceived stimuli, it infers 
if the stimuli must be integrated or kept segregated (Wozny et al., 
2010; Odegaard et al., 2015, 2016; Odegaard and Shams, 2016; De 
Winkel et al., 2018; Verhaar et al., 2022). In such a perspective, the 
tendency of the brain to integrate the different sensory information 
together to form a unitary percept is affected/based by the prior 
probability of common cause (p-common), that is the expectation of 
a common cause by the nervous system a priori, before receiving the 
sensory input (Alais and Burr, 2004; Shams et al., 2005; Körding et al., 
2007; Shams and Beierholm, 2022). The second approach, namely the 
binding and segregation approach, suggests that the brain integrates 
different cues, or keeps them segregated, based on their features: for 
example, the “temporal correlation hypothesis” postulates that 
different aspects of the same event are bound together in the brain 
through the synchronization in the gamma range (30–100 Hz) of the 
activity of the corresponding neural representations. Synchronization 
of cortical oscillatory activity has been observed in response to visual, 
auditory and somatosensory stimuli and during different types of 
tasks (Damasio, 1989; Lebedev and Nelson, 1995; Singer and Gray, 
1995; Singer, 1999; Varela et al., 2001; Brosch et al., 2002; Kaiser et al., 
2002). To do that, the brain can utilize low-level features of the 
perceived sensory cues, such as the temporal and spatial properties, as 
well as high-level properties, such as semantic congruency. According 
to this approach, multisensory integration and cross-modal inhibition 
are mechanisms exploited by the brain to bind the perceived 
congruent sensory cues and to segregate the incongruent stimuli. In 
the first case, the brain would infer a common cause, in the second one 
it would recognize the stimuli as produced from independent sources. 
From this perspective, therefore, the solution to the causal inference 
problem relies on integrative abilities. Indeed, in a previous paper, 
we demonstrated that multisensory processing and sensory integration 
at the level of primary sensory cortices affects the ability to identify a 
single event or separate causes (Cuppini et al., 2017a). In different 
computational work, we also demonstrated that biologically plausible 
connectionist models can explain how the brain incorporates Bayesian 
concepts of the prior probability of common cause (p-common) and 

FIGURE 6

Localization variability as a function of spatial disparity. According to 
the model’s predictions (purple lines), when a single cause is 
identified (solid squares), the level of variation in stimulus localization, 
as measured by the standard deviation, is relatively low and increases 
only slightly with the spatial disparity between the stimuli. 
Conversely, when distinct causes are reported (open diamonds), the 
variance in stimulus localization is consistently and significantly 
higher compared to the single-cause case. This pattern of results 
resembles the behavioral data from Wallace et al. (2004b).
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uncertainty about sensory cues (Ursino et al., 2017b) as the result of 
the developmental process.

These two previous works laid the groundwork for the 
development of a comprehensive framework able to describe and 
explain how sensory experiences affect the ability of the brain to solve 
the causal inference problem and form a coherent percept of the 
external world.

It is well known that the capabilities to integrate stimuli of 
different sensory modalities require experience with the environment, 
showing a slow maturational trajectory that can extend into late 
adolescence, and that is strongly affected by the specific sensory and 
multisensory experiences an individual has perceived. Even with such 

FIGURE 7

Distribution of the auditory localization error. Panel (A) compares the empirical distribution of localization error with that obtained with the mature 
model, trained with over 50% of AV stimuli. In particular, when the input noise is high, the model’s results are comparable with the data from Wallace 
et al. (2004b) (left column). A lower noise level is enough for reproducing the localization error distribution obtained by Odegaard et al. (2015) (right 
column). Panel (B) displays the same distribution, plotting separately the results for C  =  1 and C  =  2. Both our computational simulations and data by 
Wallace et al. (2004b) revealed a much broader distribution of localization error when two distinct causes are identified (C  =  2), compared to when 
unity is reported (C  =  1). Panel (C) shows the development of the distribution of localization error predicted by the model in the multisensory condition. 
Throughout the training epochs, the distribution of the localization error shrinks around 0°. Panel (D) reports the distribution of the localization error 
when only the auditory stimulus is presented to the network.

TABLE 3 Variance of the auditory localization error.

Model (adult 
configuration)

Odegaard 
et al. 

(2015)

Hairston 
et al. 

(2003)

Rohe and 
Noppeney 

(2015b)

AV (distance 0°)

Ã= 2.14° Ã= 2.64° Ã= 1.5° Ã= 3°

A alone

Ã= 4.72° Ã= 3.01° Ã= 7° Ã= 3.68°

Model’s results are compared with empirical data. In all cases the standard deviation is 
reduced in the multisensory condition compared to the unisensory condition, although a 
large variability emerges across studies.
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evidence about the reciprocal correlation between multisensory 
integration and causal inference and the maturation of the integrative 
abilities as a result of specific sensory experience (Yu et al., 2009; Xu 
et  al., 2014), to our knowledge, no studies have been designed to 
analyze the acquisition of the ability to solve the causal inference 
problem in autistic subjects and in children in general.

To fill this gap in the literature, in this work we used a model, 
previously developed to analyze the ability of the adult brain to solve 
the causal inference, to make predictions about how sensory 
experience modulates the acquisition of such ability.

From our analysis two main predictions emerged. First, 
experience not only exerts a strong influence on the development of 
multisensory integrative abilities, but also affects the maturation of 
capabilities to identify the number of sources of the perceived external 
cues. More specifically, model simulations suggest that the brain needs 
a minimum multisensory experience (50% of audiovisual stimuli in 
our simulations) to reach a mature synaptic configuration able to 
support adult-like abilities to solve the causal inference problem. It is 
worth noting that with a low multisensory experience even a 
prolonged training period is not enough for the network to acquire 
fully mature behavior. Second, the acquisition of such abilities follows 
the maturation of the mechanisms underlying MSI. In our model, 
these mechanisms are identified by reciprocal cross-modal 
connections between primary unisensory cortices.

Given the lack of experimental evidence of how children perceive 
the causal structure of the environment, we validated our model and 
its predictions by comparing simulations’ results in the configuration 
at the end of the training with adult empirical data present in the 
literature. Despite its simple architecture, the model, in its adult 
configuration, effectively describes the relationship between spatial 
disparity and perceptual unification and reproduces the localization 
bias exerted by the visual modality on the auditory perception: both 
the bias and the report of perceptual unity increased for decreasing 
spatial disparity between the stimuli. Moreover, in a following set of 
simulations, we demonstrated that our model could reproduce several 
characteristics of MSI in the spatial domain. In particular, 
we examined the link between auditory bias and the report of unity. 
According to the literature, whenever individuals perceive an auditory 
and a visual stimulus as unified, the perceived position of the auditory 
stimulus is strongly attracted toward the actual localization of the 
visual one, independently of the real audiovisual spatial disparity 
(Bertelson and Radeau, 1981; Wallace et  al., 2004b; Rohe and 
Noppeney, 2015a,b). Conversely, when the auditory and visual stimuli 
were judged as produced by different events, the auditory bias is 
negligible for spatially distant stimuli and becomes increasingly 
negative (i.e., the perceived location of the auditory stimulus is 
repulsed by the visual one) as the spatial disparity decreases (Wallace 
et  al., 2004b). The mature architecture of the model proved to 
be  capable of reproducing these experimental patterns of results. 
Then, we  tested whether the model is able to reproduce the 
distribution of the localization error in the case of spatially coincident 
multisensory stimuli. It was sufficient to modify the noise level added 
to the sensory input, to reproduce different behavioral data from 
Wallace et al. (2004b) and Odegaard et al. (2015), reproducing also the 
dependence of the localization error on the number of perceived 
sensory sources: in case the model inferred a single source of the 
stimuli, the distribution of the perceived positions of the auditory 
components was centered around the real position of the stimuli (i.e., 

localization bias = 0°). Vice versa, in case of separate sources inferred 
by the model, the localization bias presented a more diffuse 
distribution, as shown also in empirical data (Wallace et al., 2004b).

It is worth noting that in recent years, numerous computational 
models have emerged with the aim of exploring how the brain solves 
the causal inference problem. Most of these computational models 
rely on the Bayesian approach and demonstrated that human behavior 
is nearly Bayes-optimal in a wide variety of tasks. Nevertheless, our 
understanding of the neural mechanisms underlying this optimality 
remains very limited. Our model suggests that Bayesian optimality 
might be implemented by our brain through the MSI mechanisms. By 
doing so, our model reconciles MSI mechanisms with Bayesian 
models and attempts to merge the two approaches into a 
unified framework.

As mentioned earlier, the second aim of this study was to 
investigate how altered multisensory experience of children with ASD 
could impact the development of their ability to solve the causal 
inference problem. In line with the study conducted by Cuppini et al. 
(2017b), we simulated the developmental pattern of ASDs by gradually 
increasing the proportion of audiovisual stimuli during the training 
period (as described in Section 2).

Our simulations suggest that an altered multisensory experience 
of children with ASD affects the maturation of their ability to solve the 
causal inference problem. The simulations also illustrate that these 
individuals reach adult-like performance later in life (at a 
developmental stage approximately coinciding with late adolescence 
or early adulthood), primarily due to the reduced exposure to 
multisensory stimuli, which prevents them from reaching the 
minimum multisensory experience, as discussed above, required for 
attaining adult-like abilities. It is important to note that at the 
beginning of the training designed to simulate individuals with ASD, 
the amount of multisensory experience provided to the network is 
lower than the minimum threshold. Indeed, in this initial training 
phase, both the RoU and the bias are lower for ASD individuals 
compared to their TD peers. However, as the training progresses, the 
percentage of audiovisual stimuli used to train the network gradually 
increases. Eventually, the multisensory experience reaches and 
overcomes the minimum threshold and drives improvements in 
performance. This indicates that the presence of a minimum threshold 
of multisensory experience, necessary for the development of fully 
mature integrative abilities, and the limited exposure to multisensory 
stimuli observed in individuals with ASD explain why their simulated 
developmental trajectories progress more slowly but ultimately reach 
the same level of performance as TD simulations.

The hypothesis of aberrant causal inference in Autism, and that it 
is linked to altered integrative abilities, is supported by abundant 
evidence for altered susceptibility of ASD subjects to multisensory 
illusions (other than the ventriloquism, see Table 4), in which the 
presentation of a stimulus in one sensory modality impacts the 
perception in another modality. Several studies (Taylor et al., 2010; 
Irwin et  al., 2011; Bebko et  al., 2014; Stevenson et  al., 2014a) 
demonstrated that ASD children are less vulnerable to a well-known 
audiovisual speech illusion, the McGurk effect (McGurk and 
MacDonald, 1976; Saint-Amour et  al., 2007). Contrary to the 
ventriloquism illusion, in the McGurk effect mismatching auditory 
and visual tokens of a speech syllable are presented such that they are 
spatially and temporally aligned as if they came from the same source. 
McGurk illusions refer to the influence that the incongruent visual 
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TABLE 4 Main findings from studies on ASD populations involving multisensory illusions.

Study # participants
Age (range, 
mean  ±  SD)

Paradigm Main findings in ASDs

Children

de Gelder et al. (1991) 17 ASD

17 TD

6.5–16.3 (10.9 ± 2.3)

6.8–11.1 (8.5 ± 1.3)

McGurk Lower rate of the McGurk effect

Williams et al. (2004) 15 ASD

15 TD

5–13 (8.8 ± 1.4)

5–13 (9.5 ± 1)

McGurk Less accurate in recognizing 

speech syllables in unimodal 

conditions, but normal integration 

of visual and auditory speech 

stimuli

Mongillo et al. (2008) 15 ASD

21 TD

8–19 (13.7 ± 3.9)

11–19 (13.4 ± 2.8)

McGurk Impaired audiovisual MSI

Taylor et al. (2010) 24 ASD

30 TD

7.9–16.4 (12.4 ± 2.4)

8.3–16.4 (11.8 ± 2.5)

McGurk Lower rate of the McGurk effect, 

but they “catch-up” with their NT 

peers as they grow older

Irwin et al. (2011) 13 ASD

13 TD

5–15 (9.1)

7–12 (9.2)

McGurk Lower rate of the McGurk effect

Woynaroski et al. (2013) 18 ASD

18 TD

8–17 (12.3 ± 2.6)

8–17 (11.5 ± 1.9)

McGurk Visual influence on heard speech 

over a wider time window (TBW)

Bebko et al. (2014) 15 ASD

19 TD

6.6–14.6 (10.5 ± 2.5)

6–15.6 (10.2 ± 2.7)

McGurk Lower rate of the McGurk effect

Stevenson et al. (2014a) 32 ASD

32 TD

6–18 (11.8 ± 3.2)

6–18 (12.3 ± 2.3)

McGurk Lower rate of the McGurk effect 

and wider TBW

Foss-Feig et al. (2010) 29 ASD

17 TD

8–17 (12.6 ± 2.6)

8–17 (12.1 ± 2.2)

SIFI (fusion and fission) Higher susceptibility and wider 

TBW

Stevenson et al. (2014b) 31 ASD

31 TD

6–18 (12.1 ± 3.1)

6–18 (11.9 ± 2.9)

SIFI (fission) Lower susceptibility

Cascio et al. (2012) 21 ASD

28 TD

8–17 (11.9 ± 2.8)

8–17 (13.4 ± 2.7)

RHI Delayed susceptibility

Adults

Keane et al. (2010)a 10 ASD

9 TD

19–47 (30 ± 9)

18–49 (30 ± 8)

McGurk No group differences

Van der Smagt et al. (2007) 15 ASD

15 TD

20.5 ± 3.2

20.7 ± 2.6

SIFI No group differences

Keane et al. (2010)a 10 ASD

9 TD

19–47 (30 ± 9)

18–49 (30 ± 8)

SIFI No group differences

Bao et al. (2017) 20 ASD

20 TD

13–29 (18.7 ± 4.7)

13–28 (18 ± 9.5)

SIFI (fusion and fission) No group differences for fission 

illusion, ASD more susceptible to 

the fusion illusion

Paton et al. (2012) 17 ASD

17 TD

32.06 ± 12.43

27.06 ± 6.2

RHI Reduced susceptibility and lower 

proprioceptive drift toward the 

rubber arm

Palmer et al. (2013) 28 subjects, sorted based on their 

ASD-like traits

28.96 ± 11.16 RHI The higher ASD-like traits, the 

lower the susceptibility

Mul et al. (2019) 22 ASD

29 TD

18–53 (27.1) Full body illusion (FBI) The higher ASD-like traits, the 

lower the susceptibility to FBI and 

self-location drift

Deltort et al. (2022) 15 ASD

15 TD

18–54 (28.5 ± 11)

18–54 (28.5 ± 10)

Enfacement illusion Absence of enfacement illusion

For each of the two sections of the table (children and adults), studies on the dark gray background are those utilizing speech stimuli (McGurk effect), those on white background used lower-
level sensory cues (SIFI), and those on light gray background focused on visuo-tactile illusions (RHI, full body illusion, enfacement illusion).  
aStudy that used both speech and non-speech stimuli and appears twice in the table.
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stimulus has on the perceived auditory stimulus. Thus, an auditory 
“ba” presented with a video of someone articulating “ga” may be heard 
as “da” Stevenson et  al. (2014b) found that ASD children are less 
vulnerable to non-speech audiovisual illusions as well, such as the 
sound-induced-flash illusion (SIFI) in which one visual flash is 
presented concurrently with multiple acoustic beeps, resulting in the 
illusion of perceiving multiple flashes. As such, the different 
susceptibility to audiovisual illusions is not due to difficulties of ASD 
subjects in processing socially relevant stimuli (such as speech) but is 
directly related to atypical multisensory processing. However, the 
literature provides conflicting results related to the susceptibility of 
ASD individuals to SIFI. Foss-Feig et al. (2010), for example, found a 
higher susceptibility to this illusion in ASD children, compared to 
their NT peers; whereas other studies (Van der Smagt et al., 2007; 
Keane et al., 2010) found no significant between-group differences. 
The different experimental paradigms used in these studies could 
explain the incoherent results. For example, the ratio between the 
number of flashes and the number of beeps used for producing the 
SIFI could have influenced perception. Indeed, Stevenson et  al. 
(2014b) presented a single flash, coupled with several beeps, ranging 
between 2 and 4. On the contrary, the experimental paradigm used by 
Foss-Feig et al. (2010) allowed for a number of flashes that overcomes 
the number of beeps, thus establishing a second type of illusion, that 
is the fusion illusion (when multiple flashes are perceived as a single 
one when presented along with one beep). Moreover, different results 
could be motivated by different age groups as well: those studies that 
did not find any group difference used adult subjects (see Table 4 for 
further details); therefore, different behaviors could reflect different 
developmental stages of ASD subjects. Evidence that ASD children are 
less liable to be affected by cross-modal illusions is not restricted to 
auditory–visual interactions. In fact, ASDs exhibit a lower 
susceptibility to haptic-based illusions, such as the rubber hand 
illusion (RHI): the fake and the real arms must be stroked for a much 
longer time in ASDs relative to NT for this effect to appear (Cascio 
et al., 2012); moreover, the proprioceptive drift toward the rubber arm 
is significantly lower in ASD children (Paton et al., 2012).

Another argument in favor of the altered causal inference in 
Autism comes from the predictive strategy used by ASD individuals 
(Tarasi et al., 2022). Indeed, according to the predictive coding theory 
(Friston et al., 2014), perception is not merely driven by the incoming 
sensory inputs but is shaped by a prior knowledge, the prior internal 
mode. In the ASD population perceptual inference relies less on the 
prior, and it is rigidly shaped by the contextual sensory information 
gathered from the surrounding environment (sensory-driven 
behavior), thus overweighting the ascending prediction errors (Tarasi 
et al., 2022). In this framework, during the process of solving the 
causal inference problem, ASDs tend to underestimate the precision 
of their internal model, which is needed to link possible input sources 
to the perceived signals (i.e., to infer the causal structure of sensory 
events) and then impacts downstream processes. Therefore, ASDs are 
less likely to recognize a common source, which translates into a lower 
susceptibility to multisensory illusions.

Overall, these findings provide further support for the results 
obtained from our simulations, indicating that young children with 
ASD exhibit altered causal inference abilities. Additionally, most 
studies involving older individuals have failed to identify significant 
differences between the behavior of ASD and TD (Beker et al., 2018). 
This further strengthens our hypothesis that the capacity to infer the 
causal link between perceived sensory cues develops at a slower pace 

in individuals with ASD compared to TD, but eventually reaches a 
level of performance similar to TD individuals.

4.1. Limitations

The present study is designed as a purely computational work, as 
only the performance of the adult model (i.e., at the end of the training 
phase) was validated against experimental data. Therefore, the 
simulated developmental trajectories produced by our model do not 
represent definitive results, but rather testable predictions that suggest 
plausible neural mechanisms and guide future experiments. In the 
near future, experimental studies conducted directly on individuals 
with autism will be needed to confirm these results.

4.2. Future directions

Finally, we outline the future directions for investigations in this 
field. Currently, the model includes solely the mechanisms governing 
MSI in the spatial domain. However, in future works, we will enrich 
the model by incorporating the rules that govern the integration in the 
temporal domain. In a separate computational study (Cuppini et al., 
2020) we  already proposed a plausible synaptic architecture that 
accounts for MSI in the temporal domain. Therefore, an important 
advancement would be to merge the neural mechanisms of the present 
“spatial model” with the ones delineated by Cuppini et al. for the 
“temporal model.” This would result in a comprehensive computational 
framework capable of explaining and accounting for various tasks 
involving MSI in both time and space.

Bringing together the spatial and temporal domains is crucial, 
especially considering the well-documented temporal processing 
impairments observed in individuals with ASD. Specifically, 
individuals with ASD tend to have an expanded audiovisual temporal 
binding window. This means they perceive highly asynchronous 
stimuli as synchronous, attributing them to a single event (Brock et al., 
2002; Foss-Feig et al., 2010; Stevenson et al., 2014b). Additionally, it is 
noteworthy that the temporal binding window undergoes 
developmental changes, even in typically developing individuals. It 
gradually decreases from childhood to adulthood, as observed by 
Hillock-Dunn and Wallace (2012), with adults having a smaller 
window compared to children and adolescents.

To conclude, we wish to point out that the model also suggests 
possible training strategies for the ASD population. Indeed, if the 
findings of this study are confirmed, it would be possible to explore 
rehabilitation strategies, specific for ASD individuals, based on 
multisensory stimulation, aimed at accelerating not only the 
development of multisensory abilities but also of causal inference 
abilities, which play crucial role in numerous everyday situations. 
Such a hypothesis is not purely speculative, and the result of this 
computational analysis is also confirmed by studies on animal models. 
For example, Stein and colleagues (Xu et al., 2017) showed that in 
multisensory neurons that did not develop integrative abilities, due to 
a lack of multisensory experience, a highly specific cross-modal 
training could speed up the acquisition of integrative abilities, if 
compared to an exposure to a normal environment, characterized by 
a higher sensory variability. Furthermore, it has been recently 
hypothesized (Stevenson et al., 2018) that perceptual and integrative 
deficits are at the origin of the core symptoms of autism (i.e., 
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communication and social interaction deficits), therefore, it is possible 
that this rehabilitative strategy may also expedite the improvement of 
higher-level cognitive deficits, thereby significantly enhancing the 
lives of individuals with autism.
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