
05 July 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Laneve, C., Parenti, A., Sartor, G. (2023). Legal Contracts Amending with Stipula. Cham : Springer
[10.1007/978-3-031-35361-1_14].

Published Version:

Legal Contracts Amending with Stipula

Published:
DOI: http://doi.org/10.1007/978-3-031-35361-1_14

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/954482 since: 2024-01-30

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1007/978-3-031-35361-1_14
https://hdl.handle.net/11585/954482

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Laneve, C., Parenti, A., Sartor, G. (2023). Legal Contracts Amending with . In: Jongmans, SS.,

Lopes, A. (eds) Coordination Models and Languages. COORDINATION 2023. Lecture Notes in

Computer Science, vol 13908. Springer, Cham..

The final published version is available online at: https://doi.org/10.1007/978-3-031-35361-

1_14

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's
website.

https://cris.unibo.it/
https://doi.org/10.1007/978-3-031-35361-1_14
https://doi.org/10.1007/978-3-031-35361-1_14

Legal Contracts amending with Stipula ?

Cosimo Laneve1[0000−0002−0052−4061], Alessandro Parenti2[0000−0002−9855−7792],
and Giovanni Sartor2[0000−0003−2210−0398]

1 Department of Computer Science and Engineering, University of Bologna, Italy
2 Department of Legal Studies, University of Bologna, Italy

Abstract. Legal contracts can be amended during their lifetime through
the agreement of the parties or in accordance with the doctrines of force
majeure and hardship. When legal contracts are defined using a program-
ming language, amendments are made through runtime adjustments to
the contract’s behavior and must be expressed by means of appropriate
language features. In this paper, we examine the extension of Stipula,
a formal language for legal contracts, with higher-order functionality to
enable the dynamic updating of contract codes. We discuss the seman-
tics of the language when amendments either extend or override the
contract’s functionality. Additionally, we study two techniques for con-
straining amendments, one using annotations within the contract and
another that allows for runtime agreements between parties.

1 Introduction

In [7] we presented Stipula, a domain specific language that can assist lawyers
in drafting executable legal contracts, through specific software patterns. The
language is based on a small set of programming primitives that have a precise
correspondence with the distinctive elements of legal contracts [6]. By means of
these primitives, it is possible to transfer rights (such as rights of property) from
one party to another and to take advantage of escrows and securities. The bene-
fits of coding legal contracts are evident: it enables the identification of potential
inconsistencies in regulation, reducing the complexity and the ambiguity of legal
texts and automatically executing legal rules.

Stipula has been designed with the principle of having an abstraction level as
close as possible to traditional legal contracts, which are written in natural lan-
guages, thus easing the writing and inspecting of the codes. In this contribution
we pursue on our programme addressing the need of removing or amending the
effects of a contract after it has been agreed upon.

There may be several reasons for modifying a contract. For example, a con-
tract may be declared totally or partially void by an adjudicator because its
content, or the process of its formation, violates the law. More interesting are
the situations of force majeure and hardship, which occur when unforeseen events

? Supported by the SERICS project (PE00000014) under the MUR National Recovery
and Resilience Plan funded by the European Union – NextGenerationEU – and by
the H2020 ERC Project CompuLaw (G.A. 833647).

make performance impossible or impracticable (force majeure) or substantially
upset the economic balance of the contract (hardship) [3, 11]. While in the first
case the party successfully invoking force majeure may be relieved, at least tem-
porarily, from performance or may terminate the contract, in the second case
the party subject to hardship may be entitled to to obtain an adaptation of the
contract to the changed circumstances.

The current Stipula contracts are immutable. Therefore, in order to model
either force majeure or hardship one should anticipate when the contract is
traded all the appropriate amendments for each possible circumstance. While
this is easy for termination clauses (it is enough to include a transition to a final
state), it is clearly impossible for generic amendments [18]. Even an attempt
to do that would raise drafting costs and introduce huge complexities in the
contract, thus nullifying one of the main objectives of Stipula, which is to have
a simple and intelligible code.

To address amendments we propose an extension of Stipula with a higher-
order mechanism. Following [20], we admit that function invocations may carry
codes that patch the previous ones. In Section 4 we study the formal semantics
of the resulting language, called higher-order Stipula. In particular, we identify
and discuss two paradigmatic scenarios. A scenario where the modification af-
fects the whole body of the contract and its code is completely changed and
substituted by a new code. Another scenario is where the amendment only re-
gards some parts of the contract while leaving the other parts still operative.
This situation adds a further level of semantic complexity in that it requires to
deal with the coexistence of old and new code. We give examples of the use of
higher-order Stipula in Section 3 that will spot these issues.

According to the semantics defined in Section 4, in higher-order Stipula amend-
ments are unconstrained: a party may modify the contract without the consent
of all the parties involved. This is clearly at odds with the fundamental princi-
ples of contract law (i.e., consensus ad idem). We then explore two methods for
limiting amendments. In Section 5 we discuss a set of static-time constraints on
amendments that the parties agree when the contract is traded. The constraints
allow one to implement a predicate that parses the (run-time) amendments and
verifies their compliance. In Section 6 we study a technique that requires the
agreement of the parties in correspondence of every amendment.

We end our contribution by discussing the related work in Section 7 and
delivering our final remarks in Section 8.

2 From Stipula to higher-order Stipula

Higher-order Stipula is an extension of Stipula with higher-order functions. In
this contribution, for simplicity, we extend a lightweight version of the language
in [7] (the full language also has the agreement clause and events); this allows us
to avoid discussions that are out of the scope of this paper. Additionally, since
Stipula is not popular, we first present the lightweight language and then the
extension.

2

F ::= -- | @Q A : f(y)[k] (E){S } => @Q′ F | @Q A : FLX M{H } F
P ::= E → x | E → A | E × h(h′ | E × h(A | if (E) {S } else {S }
S ::= -- | P S
E ::= v | V | E opE | uopE
H ::= (remove X)? (add X)? run X

Table 1. Syntax of Stipula (in black only) and higher-order Stipula

We use disjoint sets of names: contract names, ranged over by C, C′, · · · ;
names referring to digital identities, called parties, ranged over by A, A′, · · · ;
function names ranged over f, g, · · · (in general, function names start with a
small-case letter); asset names, ranged over by h, k, · · · , to be used both as
contract’s assets and function’s asset parameters; non asset names, ranged over
x, y, · · · , to be used both as contact’s fields and function’s non asset parameters.
Assets and generic contract’s fields are syntactically set apart since they have
different semantics, similarly for functions’ parameters. Names of assets, fields
and parameters are generically ranged over by V . Names @Q, @Q′, · · · will range
over contract states. To simplify the syntax, we often use the vector notation x
to denote possibly empty sequences of elements. With an abuse of notation, in
the following sections, x will also represent the set containing the elements in
the sequence.

The code of a Stipula contract is

stipula C { parties A fields x assets h init @Q F }

where C identifies the contract name; A are the parties that can invoke contract’s
functions, x and h are the fields and the assets, respectively, and the initial state
is set to @Q. The contract body also includes the sequence F of functions, whose
syntax is defined in Table 1 (the terms in black). It is assumed that there is
no clash of names of parties, fields, assets and functions’ parameters. In the
following, the declaration part of a contract, namely the sequence parties A

fields x assets h F will be ranged over by the symbols D, D′, · · · .
First-order functions highlight who is the caller party A, the state @Q when

the invocation is admitted and the name of the function. The invocation has two
lists of parameters: the formal parameters y in brackets and the asset parameters
k in square brackets. The precondition E constrains the execution of the body;
the body { S } => @Q′ specifies the statement part S and the state @Q′ of the
contract when the function execution terminates.

Statements S include the empty statement -- and different prefixes followed
by a continuation. Prefixes P use the two symbols → and (to differentiate
operations on non-asset names and on assets, respectively. The prefix E → x
updates the field or the parameter x with the value of E; E → A sends the
value of E to the party A; E × h (h′ subtracts the value of E × h from the
asset h and adds it to h′, E × h (A subtracts the value of E × h from the
asset h and transfers it to A. (The semantics in Section 4 will enforce that assets
never have negative values.) In the rest of the paper we will always abbreviate
1×h(h′ and 1×h(A (which are very usual, indeed) into h(h′ and h(A,

3

stipula Deposit {
parties Client, Farm

fields cost flour

assets flour

init @Standard

@Standard Farm: send()[h]{ h → Client h (flour } => @Standard

@Standard Client: buy(x)[w] (w == x×cost flour NN x <= flour){
(x/flour)×flour (Client w (Farm

} => @Standard

@Standard ~ : HardshipLX,Y, Z M{ remove X add Y run Z }
}

Table 2. The Deposit contract with a higher-order function

respectively. It is worth to spot the difference between h→ A and h(A: in the
first case, the real number representing the value of h is sent to A, but h still
retain its value; in the second case, the asset h is sent to A and h is emptied.
We also use “ ˜ ” to address all the parties. For instance, if the parties are A

and B, then "hello" → ˜ means "hello" → A "hello" → B (the order is
not relevant, according to the extensional semantics in [7]). Prefixes also include
conditionals if (E) {S } else {S′ } with the standard semantics.

Expressions E include constant values v, which may be strings, reals, booleans,
and asset values, names V , and both binary and unary operations (on reals and
booleans). In particular, real numbers n are written as nonempty sequences of
digits, possibly followed by “.” and by a sequence of digits (e.g. 13 stands for
13.0). The number may be prefixed by the sign + or -. Reals come with the
standard set of binary arithmetic operations (+, -, ×, /). Boolean constants are
false and true; the operations on booleans are conjunction NN, disjunction
||, and negation !. Constant values of type asset represent fungible resources
(e.g. digital currencies). For simplicity, fungible asset constants are assumed
to be identical to nonnegative real numbers (assets can never assume negative
values). Relational operations (<, >, <=, >=, ==) are available between any ex-
pression.

To illustrate lightweight Stipula, we discuss a simple contract in Table 2 (the
part in black). A Client contracts with a Farm to pay flour at a given cost. The
protocol is the following: Farm sends the flour (function send) and the good is
stored in the flour asset: no delivery to Client is operated till he pays for it.
The prefix h → Client communicates to the Client that a new amount of flour
is available. The function buy takes in input a value x denoting that the Client

wants to buy an amount x of flour, and an asset w representing the money he
wants to spend. The function takes x kg of flour from the deposit (provided it is
in – see the guard), sends the flour to the Client and updates the asset flour

correspondingly – operation (x/flour)×flour (Client –; the money w is
transferred to Farm.

Contract are invoked by specifying the actual identities of parties and the
fields’ values (at the beginning all the assets are empty) – c.f. the semantics

4

in Section 4. We use italic fonts A, B, Farm, Client , · · · , to distinguish parties’
actual identities from parties formal names A, B, Farm, Client, · · · . These parties’
actual identities correspond to digital identities and the same identity may be
given to different formal names (which are always pairwise different). Indeed, it
may happen that the same party may have two roles in a legal contract. The
contract will begin in the state that is specified in the init clause.

Higher-order Stipula extends the syntax of Stipula in Table 1 with higher-
order functions – the red part. In particular, we use higher-order function names
ranged over F, G, · · · (in general, function names that start with an upper-case
letter). We discuss the declaration @Q A : FLX,Y, Z M{ remove X add Y run Z }
that has a complete set of (amendment) directives H. The parameters of F are
X, Y and Z: X is a sequence of function names (possibly with state and party
names) that will be removed from the contract; Y is a possible empty sequence
of declarations of new parties with their identities, fields and assets as well as of
functions that will amend the contract – it will be instantiated by codes D; Z is
the body of F and will be instantiated by codes {S } => @Q, where @Q may also be
a new state defined in (the code that instantiates) Y . According to the syntax in
Table 1, the remove and add clauses in the directives H are optional, while the
run clause is mandatory. For example, the function Hardship of the Deposit

contract in Table 2 represents a clause included by Client and Farm according
to which a party can ask either for the amendment of the contract or for its
termination. (This may be subordinated to a third party’s decision – a court,
an arbitrator or a mediator – assessing the existence of hardship conditions;
here, for simplicity, we empower Client and Farm to perform these updates). In
Section 3 we will study possible amendments of the Deposit contract.

We notice that our syntax has been inspired by the Delta-Oriented Program-
ming paradigm [15]: the directives “remove” and the “add” are taken from that
paradigm. Preliminary investigations show that these directives are already suf-
ficient for specifying hardship clauses. It will be a focus for future works to test
higher-order Stipula with the representation of more complex, context-specific
contracts.

Remark 1. The syntax of (higher-order) Stipula is type-free: types have been
dropped because there are no such annotations in standard legal contracts and
therefore they may be initially obscure to unskilled users, such as legal practi-
tioners. The paper [7] defines and the prototype [8] implements a type inference
system that allows one to derive types of assets, fields and functions’ arguments,
and that can be used in the future to develop a user-friendly programming in-
terface for Stipula.

3 Examples of amendments

Because of the variety of situations, needs and dynamics involved, the contrac-
tual practice is, by nature, a very heterogeneous field. This makes it difficult, if
not impossible, to create general overarching examples starting from particular

5

cases. Here we discuss three simple examples built on the Deposit contract of
Table 2, with the specific purpose of explaining the technical functioning of the
higher-order to modify Stipula contracts.

The initial example is commonly found in practice, i.e. hardship cases [11],
and builds a simplistic representation of contractual relationship around it. Be-
cause of a war outbreak and a sudden rise in production costs, the Farm requests
to amend the contract: she requires that the payment is performed in advance
with respect to the delivery and that half of the amount is sent immediately to
her. Therefore she invokes

Farm : HardshipL ε,D, {"Pay in Advance"→˜ flour(Farm} => @Excp M

where ε indicates that there is no function to remove and D is

assets wallet

@Excp Client: order()[w] {
w/cost flour → Farm 0.5×w (Farm w (wallet } => @Excp2

@Excp2 Farm: send()[h] (h == (2×wallet)/cost flour){
h (Client wallet (Farm } => @Excp

@Excp ~ : HardshipLX,Y M{ add X run Y }

That is, the code D is specifying a new asset and three new functions. The func-
tion order lets Client pay in advance, sends to Farm the order w/cost flour

and half of the cost 0.5 × w, the other half is stored in the new asset wallet.
Once the flour is ready, it is delivered to the Client (function send) and the
wallet is delivered to Farm. Notice that the third parameter (the one replacing
Z in Table 2) empties the flour asset returning the amount to Farm and lets the
contract transit to the new state @Excp. Overall, the old behaviour is suppressed
in favour of the new one because it is not possible to return to the @Standard

state.
After some time, the parties want to return to the old protocol. However,

a new law imposes a 20% tax on flour sales. To bear the new taxation, the
Farm invokes the hardship clause to increase flour price (also tax payment to
the Government gets implemented). Therefore, in the state @Excp, Farm invokes
HardshipL D′, B′ M (notice that the Hardship in @Excp has two arguments only
and a different body than the one in @Standard) where

D′ = parties Government = Govern

@Standard Client: buy(x)[w] (w == x×cost flour NN x <= flour){
(x/flour)×flour (Client 0.2×w (Government w (Farm

} => @Standard

B′ = { "Back to Standard and upgrade flour price" → ~

cost flour + 0.2×cost flour → cost flour } => @Standard

D′ is extending the parties with a new one (Government whose id is Govern)
and the function buy dispatches the 20% of the cost of every transaction to the
Government. The old protocol is restored because the body in the last line is

6

making the transition to the Standard state. However, in this case, the new
function @Standard Client:buy is overriding the old one in Table 2, which
will be never accessed again because its guard is the same of the new function.
We observe that, in higher-order Stipula, parties, assets and fields names may be
added by the amendment; we only constrain the new names not to clash with
old ones.

Later on, Farm decides to accept orders only if they are above a certain quan-
tity lbval. Therefore, in the state @Standard, she invokes HardshipL buy,D′′, B′′ M
where

D′′ = fields lower bound

@Standard Client: buy(x)[w]

(w == x×cost flour NN x <= flour NN x >= lower bound){
(x/flour)×flour (Client 0.2×w (Government w (Farm

} => @Standard

B′′ = { "No order below lbval anymore" → ~ lbval → lower bound

} => @Standard

In this case, the directive to execute is remove buy add D′′ run B′′ that removes
the function buy from D and adds the new one in D′′. We observe that the
new field lower bound is initialized in B′′. It is also worth to notice that the
invocation Farm:HardshipL ε,D′′, B′′ M would have displayed a different effect: in
this last case, since the buy in Table 2 is still in force, the invocations of buy
with amount lower that lbval would have been dispatched to the old buy and
accepted. This is an issue because the buy in Table 2 does not comply with the
new law about taxes.

4 Semantics

Following the presentation of Section 2, we first define the operational semantics
of lightweight Stipula and then we discuss the extension. We use a transition

relation between configurations, i.e. D @Q , ` , Σ
µ−→ D′ @Q′ , `′ , Σ′ where

– D, D′ are the declaration part of a contract (in Stipula, it is always D = D′,
in higher-order Stipula D and D′ may be different because of amendments,
see below);

– @Q, @Q′ are states of D or D′;
– `, `′ called memories, are mappings from names (parties, fields, assets and

function’s parameters) to values. The values of parties are noted with italic
fonts A,A′, · · · . These names cannot be passed as function’s parameters and
cannot be hard-coded into the source contracts, since they do not belong to
expressions; they are initialized when the contract is instantiated or, for new
parties, in the higher-order step;

– Σ, Σ′ are (possibly empty) residuals of function bodies, i.e. Σ is either --
(idle) or a term S => @Q. We assume that -- S => @Q is equal to S => @Q;

7

[Value-Send]

JEK` = v `(A) = A

D @Q , ` , E → A Σ
v→A−→ D @Q , ` , Σ

[Field-Update]

JEK` = v `′ = `[x 7→ v]

D @Q , ` , E → x Σ −→ D @Q , `′ , Σ

[Asset-Send]

`(A) = A 0 ≤ JEK` ≤ 1 JE × hK` = u
Jh− uK` = v `′ = `[h 7→ v]

D @Q , ` , E × h(A Σ
u(A−→ D @Q , `′ , Σ

[Asset-Update]

0 ≤ JEK` ≤ 1 JE × hK` = u Jh− uK` = v
Jh′ + uK` = v′ `′ = `[h 7→ v, h′ 7→ v′]

D @Q , ` , E × h(h′ Σ −→ D @Q , `′ , Σ

[Cond-true]

JEK` = true

D @Q , ` , if (E) {S } else {S′ } Σ
−→ D @Q , ` , S Σ

[Cond-false]

JEK` = false

D @Q , ` , if (E) {S } else {S′ } Σ
−→ D @Q , ` , S′ Σ

[State-Change]

D @Q , ` , -- => @Q
′ −→ D @Q′ , ` , --

[Function]

@Q A : f(y)[k] (E){S } => @Q′ ∈ D[@Q A : f]`,u,v
`(A) = A `′ = `[y 7→ u, k 7→ v]

D @Q , ` , --
A:f(u)[v]−→ D @Q , `′ , S => @Q′

[HO-Function]

@Q A: FLX,Y, Z M{ remove X add Y run Z } ∈ D[@Q A : F]`,ε,ε
D′ = parties A′ = A′ fields z assets k F `(A) = A `′ = `[k 7→ 0, A′ 7→ A′]

D @Q , ` , --
A:FL P,D′,B M−→ D \ P C D′ @Q , `′ , B

Table 3. The transition relation of Stipula (in black only) and higher-order Stipula

– µ is a label, which is either empty, or a function call A : f(u)[v], or a value
send v → A, or an asset transfer v (A. Labels are used to highlight the
interactions between the contract and the parties.

We also use the evaluation function JEK` that returns the value of E in the
memory `. In particular:

– JvK` = v for values, JV K` = `(V) for names of assets, fields and parameters.
– let uop and op be the semantic operations corresponding to uop and op, then

JuopEK` = uop v, JE opE′K` = v op v′ with JEK` = v, JE′K` = v′.

Finally, let the selection operation be

D[@Q A : f]`,u,v ={
@Q A : f(y)[k] (E){S } => @Q′ | @Q A : f(y)[k] (E){S } => @Q′ in D

and JEK`[y 7→u,k 7→v] = true

}
That is, the selection D[@Q A : f]`,u,v returns a set of functions in D such that
the corresponding guard E is true.

Table 3 reports the definition of the transition relation for lightweight Stipula
(the black part); the additional rule for the higher-order functions is discussed
afterwards. Among standard rules, [Asset-Send] delivers part of an asset h to A.

8

This part, named u, is removed from the asset, c.f. the memory of the right-hand
side configuration in the conclusion. In a similar way, [Asset Update] moves a
part u of an asset h to an asset h′. For this reason, the final memory becomes
`[h 7→ v, h′ 7→ v′], where v = `(h) − u and v′ = `(h′) + u. Rule [State-Change]

says that a contract changes state upon termination of the statement in the
function body. The relevant rule is [Function] that defines invocations of (first-
order) functions: the label of the transition specifies the party A performing the
invocation and the function name f with the actual parameters. The transition
may occur provided (i) the contract is in the state @Q that admits invocations
of f from A, (ii) it is idle, and (iii) the code D contains a function @Q A :
f(y)[k] (E){S } =>@Q′ such that E is true in the memory ` updated with the
actual parameters.

A contract stipula C{ parties A fields x assets h init @Q

F } is triggered by executing C(A, u) that corresponds to the initial configuration

parties A fields x assets h F @Q , [A 7→ A, x 7→ u, h 7→ 0] , -- .

That is, parties’ names are instantiated to parties’ identities, fields are initialized
to values u and the initial value of assets is 0.

In higher-order Stipula the declaration part of a configuration has the form
D C D1 C · · · C Dn, where D is the declaration of the initial contract and
D1, · · · ,Dn is a sequence of amendments. We recall that amendments Di have
shape

parties A′ = A′ fields z assets k F

that extends the declaration part of a contract by admitting initializations of
parties’ names.

Let D = D0 C · · · C Dn; we let parties(D), assets(D) and fields(D) be the
union of party names, asset names and field names defined in every Di, with
0 ≤ i ≤ n, respectively. The sequence D0 C · · · C Dn is defined provided that, for
every i, j ∈ 0..n, i 6= j: parties(Di)∩parties(Dj) = ∅ and assets(Di)∩assets(Dj) =
∅ and fields(Di) ∩ fields(Dj) = ∅. In the following, with an abuse of notation,
we will use D, D′, · · · to range over sequences D0 C · · · C Dn.

We then extend the selection operation to declaration parts of higher-order Stipula
configurations (D′ is a single amendment):

(D C D′)[@Q A : f]`,u,v =

{
D′[@Q A : f]`,u,v if D′[@Q A : f]`,u,v 6= ∅

D[@Q A : f]`,u,v otherwise

That is, our selection returns the newest set of functions in the list of amendments
whose guard E is true. When the function is higher-order, the selection returns
D[@Q A : F]`,ε,ε (i.e. fields and asset parameters are empty). Finally, let P range
over sequences of items p that are f or F, A : f or A : F, @Q A : f or @Q A : F. We
define D \ P by induction on the length of P:

– D \ ε = D;

9

– D\p ·P = D′ \P, where D′ is obtained from D by erasing (in every declaration
in D)
• every function f, if p = f;
• every function f that is invoked by A, if p = A : f;
• every function f that is invoked by A in a state @Q, if p = @Q A : f;
• similarly for higher-order functions.

Remark 2. The sequence P allows the programmer to be more and more selective
during the remove operation D\P. However, the operation D\P removes function
at every depth in D. We might be less demanding, extending the directives with
a “surface remove” that removes the more recent function only.

Every preliminary definition is in place, we therefore comment rule [HO-

Function] defining higher-order function invocations. This rule addresses higher-
order functions with a complete set of directives – the other type of invocations
are sub-cases of it. Once the function F has been chosen, the actual arguments
P, D′ and B′ are used as follows: functions in P are removed from the declara-
tion part D, which is then amended with the code D′ (provided this operation is
well-defined, c.f. the foregoing constraint about names in D′) and the memory `
is updated with the binding of party names and the initialization of new asset
names to 0. We observe that new fields are not initialized: in case, the initial-
ization must be explicitly performed in the body B (c.f. the third example in
Section 3).

To illustrate the semantics, consider the Deposit contract in Table 2 where
Client and Farm have identities Client and Farm, respectively, and cost flour

is assumed to be 2 (euro per kg). Let ` = [Client 7→ Client , Farm 7→ Farm, cost flour 7→
2, flour 7→ 0], DDep be the declaration part of the Deposit contract and let

S = h→ Client h(flour

S′ = (x/flour)× flour(Client w(Farm

B = "Pay in Advance"→ ˜ flour(Farm

We have the following transitions (in the rightmost column we write the rule
that has been used); memories `1, · · · , `5 are defined afterwards:

DDep @Standard , ` , --
Farm:send()[10]−→ DDep @Standard , `1 , S => @Standard [Function]

10→Client−→ DDep @Standard , `1 , h(flour => @Standard [Value-Send]
−→ DDep @Standard , `2 , -- => @Standard [Asset-Update]
−→ DDep @Standard , `2 , -- [State-Change]

Client:buy(4)[8]−→ DDep @Standard , `3 , S
′ [Function]

4(Client−→ DDep @Standard , `4 , w(Farm => @Standard [Asset-Send]
8(Farm−→ DDep @Standard , `5 , -- => @Standard [Asset-Send]
−→ DDep @Standard , `5 , -- [State-Change]

Farm:HardshipL--,D,B M
−→ DDep C D @Standard , `5 , B [HO-Function]

10

where D is the code of Section 3 and

`1 = `[h 7→ 10] `2 = `1[h 7→ 0, flour 7→ 10] `3 = `2[x 7→ 4, w 7→ 8]
`4 = `3[flour 7→ 6] `5 = `4[w 7→ 0]

Remark 3. (Higher-order) Stipula admits a form of nondeterminism, called in-
ternal in the literature, that is problematic in juridical acts: when a party can
invoke two homonymous functions. In this case the selection operator returns a
set that is not a singleton and, according to [Function] and [HO-Function], the
function that is executed is chosen randomly. This corresponds to those real legal
contracts that contain contradictions, which are usually solved by a court. In the
design of Stipula, we privileged the direct formalisation of normative elements as
programming patterns, so to increase transparency and help in disambiguating
contractual clauses. Contradictions and erroneous contracts behaviours can later
be identified by means of static analysis tools developed on top of the formal
semantics of the language.

5 Constraining amendments

Up-to now higher-order Stipula enables parties to make any kind of amendment,
which is considered too liberal by the current legal doctrines. Beside the limit
represented by the counterparties’ consent to amendings (which will be dealt
with in Section 6), parties’ freedom is often bound in legal system’s mandatory
rules (cf. the principle in Art. 1418 of the Italian Civil Code, the Art. 1:103
of PECL – the European Principle of Contract Law – and the Art. 1.4 of the
international Unidroit Principles). For example, the legislator can impose or set
limits to prices for basic commodities, employees’ salary or loan interest rates.
Additionally, parties themselves can decide to set constraints to their amendment
power by declaring them in specific clauses.

In order to implement such possibility, we first discuss restriction that can be
added at static-time. That is, when a contract is stipulated, parties agree on the
type of amendments they might accept in the future. In particular, by means of
a syntactic clause we are going to discuss below, we define a predicate T(·) that
takes amendments and verifies whether they comply or not with the restrictions
in the clause. In this context, the rule [HO-Function] becomes (for readability
sake, we rewrite the premises of [HO-Function]):

[HO-Function-SC]

@Q A: FLX,Y, Z M{ remove X add Y run Z } ∈ D[@Q A : F]`,ε,ε
D′ = parties A′ = A′ fields z assets k F `(A) = A `′ = `[k 7→ 0, A′ 7→ A′]

T(remove P add D′ run B)

D @Q , ` , --
A:FL P,D′,B M−→ D \ P C D′ @Q , `′ , B

that enables the transition if T(remove P add D′ run B) is true. The predicate
T(·) is defined by the following clause

11

stipula C { parties A fields x assets h init @Q F T }

T ::= constraints [(parties: fixed;)? (fields: z constant;)?
(assets: k not-decrease;)? (reachable states: @Q)?]

where every constraint in T may be missing (when all the constraints are empty
then “constraints []” is omitted and we are back to the basic syntax). The
constraint “parties: fixed” specifies that amendments cannot modify the set
of parties. If this constraint was present in the Deposit contract of Table 2
then the amendment D′ of Section 3 would have been rejected. The constraint
“fields: z constant” disables updates of fields in z. For example, if the field
rate contains the interest rate of a loan, the parties may initially decide that the
rate can never be changed (loan with fixed rate). In higher-order Stipula this may
be simply enforced by “fields: rate constant”. The constraint “assets: k

not-decrease” protects private assets to be drained by unauthorised parties.
For example, in the code of Table 2, only Client can withdraw from the asset
flour. If this policy must not be changed during the contract lifetime, it is suf-
ficient to insert the constraint “assets: flour not-decrease” that disallows
amendments draining flour (on the contrary, addition of flour is always admit-
ted; we remind that asset values sent during invocation are always nonnegative).
Finally, the constraint “reachable states: Q” guarantees that, whatever con-
tract update is performed, the states in Q can be reached from the ending state of
the amendment. This is because, for example, the corresponding functionalities
cannot be disallowed forever.

Below we discuss the implementation of T(remove P add D run B) that we
are designing for our prototype [8], given a constraint clause in the code of the
contract.

Fixed parties. This constraint is easy to implement: it is sufficient to verify that,
no term parties: A, with A not empty, belongs to D.

Constant fields and not-decreasing assets. The technique for assessing the con-
straints about fields and assets amounts to parse the amendment and spot the
problematic instructions. In particular, if fields: z constant and y ∈ z then
both D and B must not contain the instruction E → y. Similarly, if assets:
k not-decrease and k′ ∈ k then D and B must not contain the instructions
E × k′ (h and E × k′ (A. The predicate T(·) uses the judgments f;h ` G,
where G ranges over D, B, F , and S, which are formally defined by a type system
whose key rules are in Table 4. The rules [T-Update], [T-Send], and [T-Asset-

update] are the basic one for guaranteing fields: f constant and assets:

h not-decrease; the other rules reduce the analysis to the components of a
code. More precisely, according to [T-Amendment], D, S @Q is correct provided
that the body of every function in D satisfies T(·) – premise f;h ` F – and the
statement S satisfies T(·) as well – premise f;h ` S.

State reachability. In general, it is not possible to assess state reachability at
static time because the values of guards of functions may depend on memories

12

[T-Update]

g /∈ f

f;h ` E → g

[T-Send]

k /∈ h

f;h ` E × k(A

[T-Asset-update]

k /∈ h

f;h ` E × k(h′

[T-Cond]

f;h ` S f;h ` S′

f;h ` if (E) {S } else {S′ }

[T-Seq]

f;h ` P f;h ` S
f;h ` P S

[T-Function](
f;h ` S

)@Q A: f(y)[k] (E){S }⇒@Q′ inF

f;h ` F

[T-Amendment]

D = parties A′ = A′ fields x assets h F
B = {S } => @Q f;h ` F f;h ` S

f;h ` D, B

Table 4. Key rules for verifying constant fields and not-decreasing assets

and actual parameters. That is the following technique may return false positives
(while it never returns false negatives: if a state is unreachable then there is no
computation ending in that state). False positives are ruled out only in the
restricted case when the functions in the contract code and in the amendments
are unguarded.

Following [5], we use the predicate is in: @Q A : f @Q′′ is in D holds true if

– D is a single declaration part and there is @Q A : f(y)[k] (E){ S } => @Q′ in D;
– or D = D′ C D′′, where D′′ is a single declaration part, and either @Q A :

f(y)[k] (E){ S } => @Q′ in D′ or @Q A : f(y)[k] (E){ S } => @Q′ in D′′.

The predicate @Q A : f @Q′′ is in D is false otherwise. Notice that we are consid-
ering first-order functions only.

The set of reachable states in D from @Q, noted Q@Q, is the least set such that

1. @Q ∈ Q@Q;
2. if @Q′ ∈ Q@Q and @Q′ A : f @Q′′ is in D then @Q′′ ∈ Q@Q.

We notice that Q@Q is always finite and can be easily computed by a standard
fixpoint technique that must be run in correspondence of every higher-order
function invocation. For example, in Section 3, the invocation

Farm : HardshipL ε,D, {"Pay in Advance"→˜ flour(Farm} => @Excp M

returns the declaration part DDep C D where @Standard /∈ Q@Excp, while the
second amendment gives a declaration part DDep C D C D′ where @Standard ∈
Q@Standard.

When reachable states: @Q is a constraint and D is the current declaration
part, the predicate T(remove P add D′ run {S } => @Q′) verifies that @Q ⊆ Q@Q′

when the declaration part is D \ P C D′.
We conclude by discussing the presence of false positives in T(·) with an

example. Consider the Deposit contract in Table 2 and change the final state of
buy into @End (the Client can buy only one time). Then assume the presence
of the constraint clause constraints [reachable states: @End] and verify

13

the predicate T(·) for the initial declaration part DDep. It is easy to check that
@End ∈ Q@Standard. However, if cost flour has been initialized with a negative
value (because of an error) then no transition buy will ever be performed because
of its guard that is always false and @End will never be reached. Overcoming
this issue is out of the scope of this paper. A possible technique could use the
definition of Q@Q to synthesize computations and verify the guards by means an
(off-the-shelf) constraint solver technique.

6 Agreement on amendments

The Unidroit Art. 6.2.3 states that a contract may be supplemented, amended,
or modified only by the mutual agreement of the parties. That is, to deal with
this principle, it is necessary to enforce an agreement protocol between parties
in correspondence of runtime amendments. Actually, the full Stipula language
already retains an agreement clause between parties that corresponds to the so-
called “meeting of the minds”: every one must accept the terms of the contract
and the legal effects of the Stipula contract are triggered by the achievement
of the agreement (see rule [Agree] in [7]; this feature has been omitted in this
contribution because we are addressing is a lightweight version of the language).

Below we propose an extension of higher-order Stipula with an additional
agreement clause that occurs in correspondence of every amendment. To define
the rule, let A accepts H in ` be a predicate that takes a directive H and
verifies whether it complies or not with A’s policy in the memory `. It is worth
to notice that the predicate depends on the memory; therefore the policy of
A might change in accordance with the updates. In particular, if ` stores a
timestamp (the semantics of full Stipula has a global clock by which the events
are modelled), then accept may change from time to time. In this context, the
rule [HO-Function] becomes (we also rewrite the premises):

[HO-Function-AGREE]

@Q A: FLX,Y, Z M{ remove X add Y run Z } ∈ D[@Q A : F]`,ε,ε
D′ = parties A′ = A′ fields x assets h F `(A) = A `′ = `[h 7→ 0, A′ 7→ A′](

`(A′′) accepts remove P add D′ run B in `
)A′′∈parties(D) NN `(A′′)6=A

D @Q , ` , --
A:FL P,D′,B M−→ D \ P C D′ @Q , `′ , B

We notice that, according to [HO-Function-AGREE], the acceptance of the
directive is restricted to parties in D: the new parties in D′ have nothing to
accept. For instance, in the first example of Section 3, we have the invocation

Farm : HardshipL ε,D, {"Pay in Advance"→˜ flour(Farm} => @Excp M

(D refers to the declaration part defined in Section 3). At this point, for the
new code becoming operational and enter into force, Client must satisfies the
predicate

Client accepts add D run {"Pay in Advance"→˜ flour(Farm} => @Excp in `′

assuming that ` and `′ are the memories before and after the transition, respec-
tively. (In this case we have omitted the remove directive because it is empty.)

14

7 Related works

Higher-order have been widely used in programming languages to pass functions
as arguments to other functions, thus allowing to easily model closures and cur-
rying (cf. Haskell, JavaScript, and lambdas in C++ and Java). As regards lan-
guages for legal contracts, up-to our knowledge, no-one addresses amendments of
contracts. In particular, the literature reports a number of languages and frame-
works that aim at transforming legal semantic rules into code, e.g. [13, 10, 9, 14].
These languages are actually specification languages, that provide attributes
and clauses that naturally encode rights, obligations, prohibitions, which are
not easily mapped to high-level programming languages, such as Java. Stipula,
with its distinctive primitives and legal design patterns, aims to be intermediate
between a specification language and a high-level programming language. That
is, Stipula and its higher-order extension can be considered a legal calculus in
the terminology of [2], similar to Orlando [1] that has been designed for mod-
eling conveyances in property law and Catala [17] for modeling statutes and
regulations clauses in the fiscal domain.

Recently, there has been increasing interest in smart contract languages be-
cause they allow to define programs that can manage and transfer assets. These
programs run on distributed networks whose nodes store a common state (that
also includes the programs themselves) in the form of a blockchain. Due to the
immutability of information stored on a blockchain, several projects have pro-
posed legal frameworks that target smart contracts on Ethereum [4], such as
OpenLaw [22] and Lexon [16]. Amending the code of these frameworks is equiv-
alent to upgrading Ethereum smart contracts, which is not straightforward, as
once a smart contract is deployed on a blockchain, it is immutable. However,
since upgrading may be necessary to fix vulnerabilities or to change smart con-
tract business logic, designers have proposed a number of patterns for safely
modifying a contract still preserving the immutability of the blockchain [12].
These pattern rely either (i) on decoupling the data storage from the business
logic of a contract or (ii) on the usage of proxies. In case (i), the contract has
been defined in such a way that the business logic is accessed by an address
stored in the contract (this is similar to our requirement that a contract has
an hardship function). This means that updating the business logic amounts to
rewrite a new logic, store it in the blockchain at a (new) address x and use x to
update the address stored in the contract. In case (ii), the users interact with
a proxy contract rather than the original contract, whose data and functionali-
ties are accessed by means of addresses stored in the proxy. Therefore, updating
(both the state and the business logic of) the contract amounts to change the
addresses stored in the proxy. Proxies are also used for implementing contract
versioning: the address of the contract is actually that of a package and ad-hoc
policies may direct the invocation to one version or another. When several ver-
sions do coexist (cf. diamond patterns [19]) and a protocol may dispatch an
invocation to one version or another, we get a smart contract concept similar to
our operation D C D′.

15

Clearly, the foregoing solutions allow neither a control on whom is going
to modify the contract nor an agreement between the parties. In fact, higher-
order Stipula turns out to be at a higher level of abstraction than addresses or
proxies, thus allowing reasonings about amendments that integrate well with the
other features of the language. Said otherwise, higher-order Stipula seems more
appropriate and more faithful in representing the structure of a legal contract
and the procedure for amending it.

In designing higher-order Stipula we have been inspired by operations of Delta-
Oriented Programming [15] that has been conceived for implementing software
product lines. In this paradigm, deltas are codes that are attached to products
and can be combined to obtain complex products starting from a core feature.
Compliance and other correctness properties can be verified at static time. On
the contrary, in higher-order Stipula amendments are not known when the con-
tract is stipulated and every analysis must be postponed at runtime.

8 Conclusions

This paper discusses the amendments of legal contracts in Stipula by resorting to
higher-order. Our solution handles both amendments where the contract code
is completely modified and substituted as well as those where the new code
has to coexist with the old one. The latter case, though, may require particular
attention, especially to the conditions laid out in the new functions. A wrongly
formulated condition could affect the order of codes priorities. This, in turn,
could result in an unwanted function overriding or, vice-versa, in the persistence
uptime of a function that had to be overridden.

We believe that the higher-order extension is crucial for the effective appli-
cability of legal contracts in real-world scenarios. Specifically, it can be used (in
the full Stipula language which also includes events) to handle new events by
passing a function to be executed when an event occurs. This enables more flex-
ible and modular event handling that can account for unforeseen circumstances
at the time the contract was initiated. We are already experimenting the higher-
order extension of the Stipula prototype (that is available on-line at [8]). The
higher-order extension admits functions that input codes; these codes are com-
piled on-the-fly and added to the contract (the compilation also includes a type
inference analysis, see [7]). In correspondence of every invocation, a selection
function retrieves the right function code as specified by rule [HO-Function].

Future works on the matter shall deal with analyzing a set of more complex
use-cases and to implement the policies discussed in Sections 5 and 6. It is worth
to remark that our prototype, taking inspiration from visual interfaces as in [21],
is integrated with a user-friendly and easy-to-use programming interface. We
hope that this additional feature will allow us to collect comments and reports
of the proposal by non-expert users.

Acknowledgements. We are grateful to Silvia Crafa for the many insightful dis-
cussions about Stipula and Adele Veschetti for prototyping both Stipula and

16

higher-order Stipula. We also thank the anonymous Coordination referees for the
detailed suggestions that considerably improved the paper.

References

1. Shrutarshi Basu, Nate Foster, and James Grimmelmann. Property conveyances as
a programming language. In Proc. 2019 ACM SIGPLAN International Symposium
on New Ideas, New Paradigms, and Reflections on Programming and Software,
Onward! 2019, pages 128–142, New York, USA, 2019. Association for Computing
Machinery.

2. Shrutarshi Basu, Anshuman Mohan, James Grimmelmann, and Nate Foster. Legal
calculi. Technical report, ProLaLa 2022 ProLaLa Programming Languages and the
Law, 2022. At https://popl22.sigplan.org/details/prolala-2022-papers/6/
Legal-Calculi.

3. Fabio Bortolotti. Force Majeure and Hardship Clauses – Introductory note and
commentary. Technical report, International Chamber of Commerce, 2020.

4. Vitalik Buterin. Ethereum white paper. https://github.com/ethereum/wiki/

wiki/White-Paper, 2013.
5. Silvia Crafa and Cosimo Laneve. Liquidity analysis in resource-aware program-

ming. In In Proc. 18th Int. Conference, FACS 2022, volume 13712 of Lecture
Notes in Computer Science, pages 205–221. Springer, 2022.

6. Silvia Crafa, Cosimo Laneve, and Giovanni Sartor. Stipula: a domain specific lan-
guage for legal contracts. Presented at the Int. Workshop Programming Languages
and the Law, January 16, 2022.

7. Silvia Crafa, Cosimo Laneve, Giovanni Sartor, and Adele Veschetti. Pacta sunt ser-
vanda: legal contracts in Stipula. Science of Computer Programming, 225, January
2023.

8. Silvia Crafa, Cosimo Laneve, and Adele Veschetti. The Higher-order Stipula Pro-
totype, July 2022. Available on github: https://github.com/stipula-language.

9. Joost T. de Kruijff and H. Hans Weigand. An introduction to commitment based
smart contracts using reactionruleml. In Proc. 12th Int. Workshop on Value
Modeling and Business Ontologies (VMBO), volume 2239, pages 149–157. CEUR-
WS.org, 2018.

10. Joost T. de Kruijff and H. Hans Weigand. Introducing commitruleml for smart
contracts. In Proc. 13th Int. Workshop on Value Modeling and Business Ontologies
(VMBO), volume 2383. CEUR-WS.org, 2019.

11. Marcel Fontaine and Filip De Ly. Drafting International Contracts. BRILL, 2006.
12. Ethereum Foundation. Upgrading smart contracts. https://ethereum.org/en/

developers/docs/smart-contracts/upgrading, 2023.
13. Christopher K. Frantz and Mariusz Nowostawski. From institutions to code: To-

wards automated generation of smart contracts. In 2016 IEEE 1st Int. Workshops
on Foundations and Applications of Self* Systems (FAS*W), pages 210–215, 2016.

14. Xiao He, Bohan Qin, Yan Zhu, Xing Chen, and Yi Liu. Spesc: A specification
language for smart contracts. In 2018 IEEE 42nd Annual Computer Software and
Applications Conference (COMPSAC), volume 01, pages 132–137, 2018.

15. Roberto E. Lopez-Herrejon, Don Batory, and William Cook. Evaluating support
for features in advanced modularization technologies. In Andrew P. Black, editor,
In Proc. ECOOP 2005 - Object-Oriented Programming, volume 3586 of Lecture
Notes in Computer Science, pages 169–194. Springer, 2005.

17

16. Lexon Foundation. Lexon Home Page. http://www.lexon.tech, 2019.
17. Denis Merigoux, Nicolas Chataing, and Jonathan Protzenko. Catala: A program-

ming language for the law. Proc. ACM Program. Lang., 5(ICFP), aug 2021.
18. Eliza Mik. Smart contracts terminology, technical limitations and real world com-

plexity. Law, Innovation and Technology, 9:269–300, 2017.
19. Nick Mudge. How diamond upgrades work. https://dev.to/mudgen/

how-diamond-upgrades-work-417j, 2022.
20. Davide Sangiorgi. From pi-calculus to higher-order pi-calculus - and back. In

Proceedings of TAPSOFT’93, volume 668 of Lecture Notes in Computer Science,
pages 151–166. Springer, 1993.

21. Tim Weingaertner, Rahul Rao, Jasmin Ettlin, Patrick Suter, and Philipp Dublanc.
Smart contracts using blockly: Representing a purchase agreement using a graphi-
cal programming language. In 2018 Crypto Valley Conference on Blockchain Tech-
nology (CVCBT), pages 55–64, 2018.

22. Aaron Wright, David Roon, and ConsenSys AG. OpenLaw Web Site. https:

//www.openlaw.io, 2019.

18

	Copertina_postprint_IRIS_UNIBO
	HO_Stipula_llncs

