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Abstract

Genetic diversity is theorized to decrease in populations closer to a species’
range edge, where habitat may be suboptimal. Generalist species capable of

long-range dispersal may maintain sufficient gene flow to counteract this,

though the presence of significant barriers to dispersal (e.g., large water bodies,

human-dominated landscapes) may still lead to, and exacerbate, the edge

effect. We used microsatellite data for 2421 gray wolves (Canis lupus) from

24 subpopulations (groups) to model how allelic richness and expected hetero-

zygosity varied with mainland–island position and two measures of range edge

(latitude and distance from range center) across >7.3 million km2 of northern

North America. We expected low genetic diversity both at high latitudes, due

to harsh environmental conditions, and on islands, but no change in diversity

with distance to the range center due to the species’ exceptional dispersal abil-
ity and favorable conditions in far eastern and western habitats. We found that

allelic richness and expected heterozygosity of island groups were measurably

less than that of mainland groups, and that these differences increased with

the island’s distance to the species’ range center in the study area. Our results

demonstrate how multiple axes of geographic isolation (distance from range

center and island habitation) can act synergistically to erode the genetic

diversity of wide-ranging terrestrial vertebrate populations despite the

counteracting influence of long-range dispersal ability. These findings empha-

size how geographic isolation is a potential threat to the genetic diversity and

viability of terrestrial vertebrate populations even among species capable of

long-range dispersal.
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INTRODUCTION

Genetic diversity is one of three pillars of biodiversity that
conservationists seek to maintain, along with species and
ecosystem diversity (DeWoody et al., 2021). Populations at
the edge of a species’ range, which are often smaller and
host lower levels of genetic diversity compared with core
populations, are particularly vulnerable to stochastic
events and genetic drift (Lesica & Allendorf, 1995).

The central-marginal hypothesis (CMH; Eckert et al.,
2008), also called the center-periphery hypothesis
(Pironon et al., 2016), aims to explain and predict pat-
terns of genetic diversity along the core–edge continuum.
The CMH predicts that a decrease in population size and
gene flow toward the edges of a species’ range increases
the relative effect of genetic drift, leading to lower genetic
diversity (hereafter “edge effect”; Brussard, 1984; Eckert
et al., 2008). Diminished genetic diversity among edge
populations might also result from receiving immigrants
from fewer source populations (Schwartz et al., 2003) and
repeated extinction and recolonization events near the
range edge (Mayr, 1942; Volis et al., 2016).

Although the CMH is logically appealing, some
researchers have questioned its generality (Dai & Fu, 2011;
Eckert et al., 2008). For example, Lira-Noriega and
Manthey (2014) found no consistent relationship between
genetic diversity and distance from the geographic range
center for 40 species including insects, plants, birds, mam-
mals, and worms. Few CMH studies have focused on
wide-ranging, highly mobile terrestrial vertebrates (Kyle &
Strobeck, 2002; Schwartz et al., 2003), which are notable
as they potentially maintain sufficient gene flow across
their range such that genetic diversity varies little along
the core–edge continuum (Kozakiewicz et al., 2017).

Gray wolves (Canis lupus) historically occupied one of
the largest ranges of any mammal, spanning much of
North America and Eurasia (Young & Goldman, 1944).
Currently, North American gray wolves are found from
above 80� N in the High Arctic islands and Greenland,
through much of continental Canada, Alaska, the Western
United States, and Great Lakes area of the Eastern
United States (Boitani, 2003; U.S. Fish and Wildlife Service,
2020a). Wolves are highly mobile and disperse long dis-
tances across mountains, deserts, and waterways (Jimenez
et al., 2017; Linnell et al., 2005; Morales-Gonz�alez et al.,
2022; Muñoz-Fuentes et al., 2009), with documented cases
of >500-km straight-line dispersal distances (Fritts, 1983;
Treves et al., 2009; Wabakken et al., 2007).

Wolves provide the opportunity to determine if terres-
trial vertebrate species with high dispersal potential and
adaptability to various habitats express patterns of genetic
diversity consistent with the CMH. Additionally, the edge
effect may interact with the population genetic aspect of

the Island Biogeography Theory (MacArthur & Wilson,
1967; Vellend, 2003; Vellend & Geber, 2005), which postu-
lates that loss of genetic diversity to genetic drift, like
loss of species diversity, may be substantial in island
populations (hereafter “island effect”). Our objective was
thus twofold: to determine if geographic patterns of genetic
diversity in North American gray wolves are consistent
with the CMH, and to assess how the predicted edge effect
interacts with the island effect. To that end, we tested how
population genetic diversity varies in relation to two
indices of the edge effect—latitude (Castellanos-Morales
et al., 2014; De Kort et al., 2021; Jenkins et al., 2018;
Rodríguez-Rodríguez et al., 2015; Wultsch et al., 2016) and
distance to the center of the species’ range (Langin et al.,
2017; Lima-Rezende et al., 2019; Natesh et al., 2017;
Trumbo et al., 2016)—and we evaluated how these rela-
tionships are modified by island habitation.

Due to wolves’ exceptional dispersal abilities, we
predicted that populations at the edge of the species’ north-
ern North American range, when measured by distance
from the range center, would not have lower genetic diver-
sity than core populations. However, we expected genetic
diversity to decrease with increasing latitude due to the
increasingly harsh climate conditions and limited prey avail-
ability at higher latitudes (Boitani, 2003) that may reduce
wolf population densities (Mech, 2005) and limit gene flow
from southern populations (Carmichael et al., 2008).

Finally, we expected that genetic diversity would be
lowest for island populations (Carmichael et al., 2007;
Frankham, 1997; Patiño et al., 2017) and that this island
effect would exacerbate the negative effects of distance
and latitude on genetic diversity by further reducing dis-
persal and gene flow.

MATERIALS AND METHODS

Sampling locations and genotyping

We analyzed three previously published datasets (A–C;
Carmichael et al., 2007, 2008; McNay, 2006; Musiani
et al., 2007) and one new dataset generated for this study
(D), for a total of four autosomal microsatellite datasets
differing in genetic marker sets (Appendix S1: Figure S1;
Frévol et al., 2023). Dataset A includes 1897 wolves from
the tundra and boreal zones of Canada and Alaska, and
some coastal Pacific and Arctic islands (Carmichael et al.,
2007, 2008). Dataset B includes 384 wolves from the cen-
tral tundra and boreal zones of Canada (Musiani et al.,
2007), and Dataset C includes 119 wolves from the boreal
zone of interior Alaska (McNay, 2006). Sampling proto-
cols, genetic markers used, and approvals are detailed in
each respective study. We did not include samples near
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to and south of the Canadian–US border, that is, regions
that have been recently recolonized by the species
(Boitani, 2003; U.S. Fish and Wildlife Service, 2020a).

Dataset D includes 21 wolves sampled from Ellesmere
Island (Umingmak Nuna), Nunavut, that have not been
previously analyzed. Ellesmere Island is a 196,235-km2

island in the Canadian Arctic Archipelago that harbors
one of the most northerly distributed wolf populations in
the world. Samples were collected over three sampling
periods in this edge population: 2005, 2009–2010, and
2014–2017. Wolves were captured and handled following
protocols in accordance with applicable guidelines from
the American Society of Mammalogists (Sikes et al.,
2011) and approved by the Utah State University
Institutional Animal Care and Use Committee (protocol
# IACUC-2365, 2489). During the first two periods, 48 scat
samples (2005: 17 adult scats, 2009–2010: 31 pup scats)
were collected from around active dens. An additional
tissue sample was collected from an adult male wolf
fitted with a GPS collar in 2009 (Mech & Dean Cluff,
2011). During the 2014–2017 period, genetic samples
were collected from 10 wolves fitted with GPS collars,
from ear biopsies, blood, and hair samples. An additional
hair sample was collected from a breeding female found
dead in 2015 (Anderson et al., 2019).

For Dataset D, DNA was extracted from scat samples
using QIAGEN Stool Minikits, and from tissue samples
using QIAGEN DNeasy Blood and Tissue Kits, following
standard protocol (https://www.qiagen.com/us/resources/
resourcedetail?id=68f29296-5a9f-40fa-8b3d-1c148d0b3030
&lang=en). A total of 22 dinucleotide microsatellite
markers developed from the Dog Genome Project, located
on different chromosomes and known to amplify effec-
tively in wolves, were genotyped from these samples:
C01.251, C02.30 (Breen et al., 2001; Ostrander et al., 1993),
CPH9 (Fredholm & Winterø, 1995), AHT121 (Holmes et al.,
2009), REN145P07, REN183B03, REN262I12, REN85N14,
REN181L14, REN210D03, REN316E23, REN69B24,
REN105L03, REN233H01, REN112G06, REN68B08,
REN144A06, REN297N05, REN199O08, REN94H15,
REN66E15, and REN106I06 (Breen et al., 2001).

We kept only markers shared between Datasets C
and D, both of which were sampled in a relatively small
geographic area, to ensure that all markers in all datasets
were sampled in at least two geographic locations, which
is necessary for identifying trends in genetic diversity
(Appendix S1: Figure S1): CPH9, AHT121, REN105L03,
REN199O08, REN112G06, REN144A06, REN233H01,
REN297N05, REN316E23, REN85N14, REN181L14,
REN106I06, REN183B03, REN210D03, and REN66E15.
Datasets A (15 markers) and B (13 markers) did not share
markers with each other or Datasets C and D, but were
both sufficiently expansive to encompass multiple

locations. We recognize that there was some unsampled
subspecific variation within our study area, especially in
the Arctic islands, but we doubt this affected our results
given the otherwise extensive geographic coverage of our
sampling (Appendix S1: Figure S1).

Defining wolf groups and species range
center

Patterns of population structure for North American gray
wolf populations have been elucidated in past studies
(Carmichael et al., 2007; Musiani et al., 2007; Schweizer
et al., 2016; Sinding et al., 2018; Stronen et al., 2014;
Weckworth et al., 2005) with several factors hypothesized
to influence the observed genetic clusters: islands
(Carmichael et al., 2001), separation at the northern tree
line (Musiani et al., 2007), prey specialization and migra-
tion linked to migratory caribou herds (Rangifer tarandus
groenlandicus; Heard & Williams, 1992; Walton et al.,
2001), climate (Geffen et al., 2004), and isolation by dis-
tance (Geffen et al., 2004).

We identified 24 possible wolf subpopulations (here-
after “groups”; Figure 1) based on prior knowledge of
genetic cluster delimitations (Carmichael et al., 2007;
Schweizer et al., 2016), ecotypes (Carmichael et al., 2007;
Musiani et al., 2007; Schweizer et al., 2016), land cover
(e.g., forest or tundra), island delineations, and caribou
herd migration patterns (Carmichael et al., 2007; Musiani
et al., 2007). We also used country and province borders
to separate particularly large groups, or in the absence of
these (e.g., Baffin Island), split a group in the middle to
account for isolation by distance (Geffen et al., 2004),
such that geographic measures such as latitude more
accurately represented sampled individuals.

Patterns of genetic diversity along the core–edge con-
tinuum may be expected to interplay with other patterns
of variation such as differentiation between the wolf eco-
types described in the study area. However, genetic diver-
sity does not appear to differ between mainland ecotypes
(Carmichael et al., 2007; Musiani et al., 2007; Schweizer
et al., 2016), and our use of neutral markers (rather than
genes under selection) may reflect patterns of genetic
diversity present in groups regardless of their subdivision
into subspecies or ecotypes.

We used QGIS 3.16 to determine (1) the spatial
boundaries and geographic centroid of each group
(Figures 1 and 2), and (2) the geographic centroid of the
group centroids (Figure 2). The latter corresponds to the
center of the sampled range (i.e., the geographic center of
our study area), and represents our proxy for the species’
range center. The true center of the species’ North
American range is probably some distance south of our
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proxy range center given that our data do not include
wolves living near or south of the Canadian–US border.

Measuring geographic isolation

We defined two continuous indices of geographical isola-
tion for each group: latitude of the group center and dis-
tance of the group center from the sampled range center
(Figure 2; Table 1). We also defined a categorical variable
(Location) with two levels (mainland and island) that clas-
sified each group according to whether it inhabited the
mainland or any of the Arctic or Pacific Coast islands.

Genetic diversity modeling

We identified scoring errors and the presence of null alleles
using MICROCHECKER v2.2.3 for each wolf group (Van
Oosterhout et al., 2004). We also tested markers in each

dataset and group for deviations from Hardy–Weinberg
equilibrium and for linkage disequilibrium using the
exact probability test in Genepop v4.2 (Rousset, 2008;
Appendix S2). Error rates were adjusted using a Bonferroni
correction adapted to the number of markers per dataset.

We used the well-established allelic richness
(AR) and Nei’s unbiased expected heterozygosity (He;
Nei & Roychoudhury, 1974) as measures of group genetic
diversity. We used both measurements because AR mea-
sures the number of alleles in a population standardized
by sample size and is a measure of the raw amount of
variation at loci, whereas He accounts for both the num-
ber of alleles and the evenness of allele frequencies. We
calculated AR using the rarefaction method implemented
in FSTAT v2.9.4 (Goudet, 2003) and obtained He using
Genetix v4.05.2 (Belkhir et al., 2004).

Using different datasets with differing markers sam-
pled could hinder direct statistical comparison (de Groot
et al., 2016). All microsatellite allele data were derived
using the same capillary electrophoresis technique, but

F I GURE 1 Geographic distribution of 24 putative North American gray wolf groups (blue polygons) and four autosomal microsatellite

datasets included in this study (A–D). Points may represent ≥1 sampled individual (see Appendix S1: Figure S1 for dataset sampling extents).
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between-dataset calibration was not possible due to differ-
ences in focal markers and laboratories performing
genotyping. Thus, we analyzed AR, which is sensitive to
marker identity (Bashalkhanov et al., 2009), using only the
dataset with the greatest spatial extent (Dataset A). We used
linear mixed models (LMMs) in R package lme4 (Bates
et al., 2015) to analyze AR after checking that it approxi-
mated a normal distribution. All LMMs included marker
identity as a random intercept (Bolker et al., 2009).

Expected heterozygosity is less sensitive to marker
identity because it is defined by relative allele frequencies
as well as number of alleles. Thus, we scaled He estimates
from 0 to 1 following Smithson and Verkuilen (2006) and
analyzed these scaled estimates across all four datasets
using generalized linear mixed models (GLMMs) with a
beta family and logit link in R package glmmTMB (Brooks
et al., 2017; Appendix S3). GLMMs included marker iden-
tity as a random intercept, which accounted for differences
in genetic diversity among markers and unmeasured dif-
ferences among datasets (including differences among per-
sonnel who completed microsatellite calling), as each
consistently used a specific set of markers.

We compared multiple models for AR and He, includ-
ing intercepts-only null models (Appendix S3: Table S1).
In models including the Location variable, mainland was
the reference category. Models including interaction
terms also included the main effects in the interaction.
The best models explaining AR and He were selected

F I GURE 2 The degree of geographic isolation of wolf groups in northern North America was measured as the latitude and Euclidean

distance between each group centroid and the sampled range centroid.

TAB L E 1 Indices of geographic isolation hypothesized to

reduce genetic diversity of wolf groups in northern North America.

Variable Definition

Distance Distance of the group centroid to species’ sampled
range centroid

Latitude Latitude of the group centroid

Location Mainland or island habitation

ECOSPHERE 5 of 13
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using the Akaike information criterion corrected for
small sample size (AICc; Konishi & Kitagawa, 2008) and
the Akaike weight (W; Wagenmakers & Farrell, 2004),
which represents the relative likelihood of a model given
the candidate set of models. We identified biologically
significant variables in our regression models if the esti-
mated 95% CI for the corresponding coefficient excluded
zero. We plotted predicted values and CIs for the best fit
models of AR and He using R package ggplot2
(Wickham, 2016) and compiled graphs with R package
gridExtra (Auguie, 2017).

RESULTS

Allelic richness

Two equally competitive models (ΔAICc < 2) best explain
variation in AR (Table 2). Both include covariates for a

wolf group’s distance from the sampled range center
(Distance) and for geographic location indicating whether
the group inhabited an island or the mainland (Location;
Table 1). The top model includes an additive effect of
Distance and Location (ΔAICc = 0) but the model that
includes an interactive effect between Distance and
Location is equally competitive (ΔAICc = 0.43). The null
model fits the data poorly (ΔAICc = 179.64), implying that
the overall influence of the edge and island effects on AR
was strong.

Coefficients for the Distance × Location model
(Table 3a) and the Distance + Location model (Table 3b)
indicate that a group’s AR decreased with its distance
from the sampled range center and according to whether
the group inhabited an island (Figure 3a). The
Distance × Location interaction suggests that the island
effect strengthened the negative effect of distance from
the sampled range center, although the 95% CI for the
interaction term overlaps zero.

TAB L E 2 Model selection results for linear mixed models describing the effects of geographic isolation on allelic richness of wolves in

northern North America.

Model LL K AICc ΔAICc W

Distance + Location −397.76 4 803.61 0.00 0.55

Distance × Location −396.95 5 804.04 0.43 0.44

Latitude × Location −400.87 5 811.88 8.27 0.01

Latitude + Location −403.11 4 814.31 10.70 0.00

Location −404.16 3 814.38 10.76 0.00

Latitude −465.18 3 936.42 132.80 0.00

Distance −475.70 3 957.46 153.84 0.00

Null −489.61 2 983.25 179.64 0.00

Note: Log-likelihood (LL), number of parameters (K), corrected Akaike information criterion (AICc), differences in AICc compared to the best scoring model
(ΔAICc), and AICc weights (W) are given for each model. Models that are plausibly the best (ΔAICc < 2) appear in boldface.

TAB L E 3 Best fit linear mixed models for the effects of geographic isolation on allelic richness of wolf groups in northern North

America.

Model/parameter β SE t 95% CI

(a) Distance + Location

Intercept 5.19 0.19 27.21 4.82, 5.57

Distance −0.15 0.04 −3.60 −0.24, −0.07

Location:island −1.36 0.10 −14.16 −1.55, −1.17

(b) Distance × Location

Intercept 5.20 0.19 27.22 4.82, 5.57

Distance −0.13 0.05 −2.81 −0.22, −0.04

Location:island −1.32 0.10 −12.98 −1.52, −1.12

Distance × Location:island −0.15 0.12 −1.27 −0.38, 0.08

Note: Model coefficient (β), SE, and t value (t) are given for each model variable. The reference location is mainland.
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Expected heterozygosity

The model describing an interactive effect of distance
from the sampled range center and mainland–island
position on He (Distance × Location) outperformed all
other models, which performed poorly (ΔAICc > 18;
Table 4). The null model also fits the data poorly
(ΔAICc = 141.09), which indicates an overall strong
influence of edge and island effects on He.

The best model for He describes a reduction of genetic
diversity on islands compared with the mainland with a
95% CI for the Distance × Location interaction that
excluded zero, indicating strong support for synergistic
edge and island effects. The negative effect of distance on
He was measurably stronger for island groups than it was
for mainland groups (Table 5; Figure 3b).

DISCUSSION

Despite the logical appeal of the CMH, its applicability
may vary according to a species’ ecology and the physical
properties that shape its range (Dai & Fu, 2011; Eckert
et al., 2008). We sought to determine if the CMH’s central
prediction—that genetic diversity decreases in edge
populations—applies to a terrestrial vertebrate species

with exceptional dispersal ability, such as the gray wolf.
To do so, we compiled and analyzed microsatellite data for
2421 wolves in a study area spanning >7.3 million km2 of
northern North America, comparable in size to a few other
studies that also focused on wolf genetics at a continental
scale (Geffen et al., 2004; Schweizer et al., 2016; Vonholdt
et al., 2011).

Consistent with the CMH’s central prediction, we
found that genetic diversity of wolf groups decreased with
distance from the sampled range center irrespective of
the wolf’s long-range dispersal ability. Models accounting
for distance from the range center and mainland–island
position, as well as the interaction between the two vari-
ables, best explain patterns of wolf genetic diversity with
respect to AR and He.

Our results are also consistent with an island effect.
Wolves can swim across open water (Stronen et al., 2014)
and travel long distances across frozen water bodies
(Anderson et al., 2018; Mech & Dean Cluff, 2011).
Nevertheless, we found that island groups exhibited less
genetic diversity than did mainland groups, consistent
with previous studies of wolves (Adams et al., 2011;
Carmichael et al., 2008; Hedrick et al., 2014; Räikkönen
et al., 2009; Robinson et al., 2019) and other species (see
review by Frankham, 1997). Our results add to this body
of knowledge by demonstrating how the detrimental

F I GURE 3 Effects of geographic isolation (distance to species’ sampled range center in kilometers and island habitation) on the allelic

richness (AR) (a) and expected heterozygosity (He) (b) of 2421 wolves from 24 groups across northern North America. Lines are

population-averaged fitted values with 95% CIs (shaded areas) from the best fit models of AR (Table 3a) and He (Table 5). Differences in the

range of the x-axes in (a) and (b) reflect minor differences in the spatial extent of the AR and He datasets. Due to the geography of North

America, island groups with centroids <800 km of the centroid of wolf distribution are nonexistent and were not fitted; likewise, no islands

were sampled beyond 2100 km of the centroid of wolf distribution.
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effect of island habitation on genetic diversity increases
with distance to the species’ range center, which is espe-
cially evident in our analysis of He. The stronger effect of
distance on island groups found with He compared with
AR may stem from heightened sensitivity of He to loss of
genetic diversity due to reduced gene flow in smaller
populations (Barrandeguy & García, 2021). Overall, we
provide rare empirical support for the patterns of genetic
diversity predicted by the CMH when “edge” is defined
by distance from the range center.

Contrary to expectations, we found little support for
the hypothesis that genetic diversity of wolf groups
decreased with increasing latitude, despite the generally
severe environmental conditions at high latitudes. This
result contrasts with empirical studies of other mammals
(Castellanos-Morales et al., 2014; Jenkins et al., 2018;
Rodríguez-Rodríguez et al., 2015), but it is consistent
with studies demonstrating wolf adaptations to the
extreme climatic conditions found in northern and Arctic
regions (Carmichael et al., 2008; Dalerum et al., 2018;
Hendricks et al., 2019), as well as previous findings that
low-latitude coastal islands were not on the whole more
genetically diverse than higher latitude Arctic islands
(Carmichael et al., 2007).

Although the genetic markers used in this study
reflect recent conditions more than long-term conditions,

our results provide some potential insight about the role
of historical climate during the Last-Glacial Maximum
on genetic diversity of wolves (see the methodological
approach in Yannic et al., 2014, which also used autoso-
mal microsatellites as markers). The absence of an effect
of latitude on genetic diversity in the samples we ana-
lyzed suggests a relatively weak influence of historical cli-
mate factors on contemporary geographic patterns of
genetic diversity of wolves in northern North America.
This could be related to the presence of higher latitude
ice-free refugia in Greenland and Alaska that, like the
low-latitude refugia in Southern United States and
Mexico, may have been continuously inhabited by wolves
during glacial periods (Nowak, 2003).

Conservation applications

The level of neutral genetic diversity found in edge
populations, including islands, relative to core
populations provides conservationists with information
on evolutionary processes outside of selection, most sig-
nificantly on the relative effects of gene flow and drift in
populations of interest (Moritz, 2002). This study there-
fore has practical applications for conservation planning
in wolves and other species.

TAB L E 5 Best fit beta regression model for the effects of geographic isolation on expected heterozygosity of wolf groups in northern

North America.

Parameter β SE Z 95% CI

Intercept 0.88 0.09 9.99 0.71, 1.05

Distance −0.04 0.03 −1.49 −0.10, 0.01

Location:island −0.43 0.07 −6.48 −0.57, −0.30

Distance × Location:island −0.32 0.07 −4.50 −0.46, −0.18

Note: Model coefficient (β), SE, and Z value (Z) are given for each model variable. The reference location is mainland.

TAB L E 4 Model selection results for beta regression models describing the effects of geographic isolation on expected heterozygosity of

wolves in northern North America.

Model LL K AICc ΔAICc W

Distance × Location 355.06 5 −699.98 0.00 1.00

Distance + Location 344.95 4 −681.81 18.17 0.00

Latitude × Location 345.62 5 −681.10 18.88 0.00

Latitude + Location 341.74 4 −675.39 24.59 0.00

Location 338.91 3 −671.76 28.22 0.00

Latitude 309.75 3 −613.44 86.54 0.00

Distance 295.60 3 −585.14 114.84 0.00

Null 281.46 2 −558.89 141.09 0.00

Note: Log-likelihood (LL), number of parameters (K), corrected Akaike information criterion (AICc), differences in AICc compared to the best scoring model

(ΔAICc), and AICc weights (W) are given for each model. The best model is in bold.
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Our results support previous research indicating that
island wolf populations are vulnerable to reduced gene
flow that may diminish genetic diversity and population
viability. Island wolves in the Arctic and west coast of
Canada do not currently exhibit any deleterious effects of
decreased genetic diversity comparable to those observed
in Isle Royale wolves prior to genetic rescue (Adams
et al., 2011; Hedrick et al., 2014; Räikkönen et al., 2009;
Robinson et al., 2019). Nevertheless, wildlife managers
might consider monitoring the genetic diversity of island
populations, especially those located at the edge of the
species’ distribution. There, they face the combined effect
of distance from the range center and island isolation.

Historical factors that were not directly accounted for
in this study may also contribute to shaping current pat-
terns of genetic diversity of wolf populations, for exam-
ple, island populations may be more susceptible to the
past and present effects of human activity as population
and genetic rescue by immigration to these populations is
more limited. This further emphasizes the need to moni-
tor these populations for loss in genetic diversity and the
effects of human activity.

Artificial islands resulting from historical processes
are also worth considering when assessing conservation
needs. Wolf populations in the contiguous United States
and Mexico, which form the southern edge of the North
American range, were eliminated nearly entirely in the
early to mid-1900s (U.S. Fish and Wildlife Service,
2020a). Following reintroduction efforts and successful
dispersal, some of the past range has been recolonized,
though some southern and western populations remain
partially isolated in a metapopulation structure similar to
European wolves (Boitani et al., 2018; U.S. Fish and
Wildlife Service, 2020a). Knowledge about the genetic
diversity of these lower 48 wolf populations is important
because diminished genetic diversity is one of several
potential threats considered in decision-making about
the classification of the gray wolf under the Endangered
Species Act (U.S. Fish and Wildlife Service, 2009, 2020b).
Our results suggest the potential for reduced genetic
diversity in some of these population due to their
island-like isolation and relatively long distance from the
species’ North American range center.

Our findings are also applicable to other terrestrial
vertebrates characterized by excellent dispersal ability
and expansive historical ranges. Bengal tigers (Panthera
tigris tigris) have the highest genetic diversity of the
extant tiger subspecies and, like gray wolves, are capable
of long-range dispersal through a variety of habitat types
(Mondol et al., 2009). However, they occupy highly
fragmented habitat islands (Goodrich et al., 2015), where
genetic erosion might be a conservation problem (Bay
et al., 2014). Our results suggest that terrestrial vertebrate

populations located in habitats that are both geographically
isolated and near the distribution edge may host less
genetic diversity, and thus be more prone to declines if
subject to environmental or human impacts (Bijlsma
et al., 1999; Sgrò et al., 2011; Spielman et al., 2004).

CONCLUSION

Broadly, there is value in evaluating how well ecological
theories such as the CMH explain observed ecological
patterns in species regardless of conservation concern,
especially since it has not been universally supported
(Eckert et al., 2008). We found some support for the
CMH in a species with ecological traits that could coun-
teract the predicted loss of genetic diversity at the range
edge. Knowing this provides important information for
the successful long-term management of the species, as
wolves are still endangered in many regions (Boitani
et al., 2018; Fritts et al., 2003). Our study emphasizes the
need to target monitoring and conservation efforts of
highly mobile terrestrial species to islands that are
peripheral to their distributions, as geographic isolation
remains a threat to the genetic diversity and viability of
terrestrial vertebrate populations among species capable
of long-range dispersal.
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