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Abstract

The latency location routing problem (LLRP), a combination of the facility location problem and the cu-
mulative capacitated vehicle routing problem, is a recently proposed variant of location routing problems. It
corresponds to a customer-centric problem, in which the aim is to minimize the sum of the arrival times at the
customers. This paper proposes three novel metaheuristic algorithms to solve the LLRP. They use a simulated
annealing framework, which after each temperature reduction is intensified through a variable neighborhood
descent procedure. Each algorithm uses a different search strategy as intensification. Results on 76 bench-
mark instances indicate that the proposed metaheurstics outperform the state-of-the-art algorithms, finding
new best solutions for all the large-sized instances (over 100 customers), or the currently known optimal ones
for most of the small- and medium-sized instances, in comparable computing times. Furthermore, in more
than 80% of the instances the average value of the solutions found by the proposed algorithms is better than
or equal to that of the current best known solution.

Keywords: cumulative routing; LLRP; location routing; simulated annealing; variable neighborhood descent

1. Introduction

The location routing problem (LRP) corresponds to a problem in which two decisions must be
taken simultaneously: the location of logistic facilities and the routing of vehicles departing from
these facilities. Therefore, the LRP is a combination of two well-known combinatorial optimization
problems: the facility location problem (FLP) and the vehicle routing problem (VRP). Since both
these problems are NP-hard, the LRP is NP-hard too. The LRP and its extensions have been largely
studied in the last decades due to their important applications in transportation and logistics. The
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traditional approach has been to minimize the total cost, which includes the transportation cost,
the fixed costs to set up the open facilities, and the costs of the used vehicles. Nevertheless, LRP may
not be appropriate to model customer-centric problems, in which customer satisfaction, defined as
the requirement to attend the customer requests as soon as possible, is the key factor. As an answer
to this issue Moshref-Javadi and Lee (2016) began studying the latency LRP (LLRP), which is
a combination of the FLP and the cumulative capacitated VRP (CCVRP) (see Ngueveu et al.,
2010). The LLRP seeks for minimizing the sum of the arrival times at the customers (latency).
As other cumulative routing problems, research on LLRPs is mainly motivated by postdisaster
planning operations and humanitarian logistics problems (Ngueveu et al., 2010; Moshref-Javadi
and Lee, 2016). Since the LLRPs are closely related to humanitarian logistic, a bad planning may
lead to losses of human lives. As pointed out in Nucamendi-Guillén et al. (2022), the LLRP has
also important applications in commercial systems where perishable products should be delivered,
and in city logistics problems, where deliveries to the customers are performed by means of shared
intermediate facilities.

It has been empirically proved that the solutions found by algorithms designed for routing or
LRPs minimizing the global travel time are not appropriate for latency problems (Moshref-Javadi
and Lee, 2016; Sze et al., 2017). This is related to the nature of the two objective functions: While
the global travel time of a route can be computed as the sum of the travel times of the edges com-
posing it, the latency of a route corresponds to the sum of the travel times of the edges, with each
travel time multiplied by the number of customers following the considered edge in the route. Also
note that for the latency problems the last edge of each route is not involved in the computation
of the corresponding term of the objective function. There is also evidence that the sequential ap-
proach, that is, solving first the location problem and then the routing problem, leads to suboptimal
solutions (Salhi and Rand, 1989). This consideration strongly supports the importance of solving
efficiently LLRPs.

In this paper, three versions of a new metaheuristic algorithm called SA-VND are proposed
to solve the LLRP. The algorithm is a combination of simulated annealing (SA) (see Kirkpatrick
et al., 1983) and variable neighborhood descent (VND) procedures (Duarte et al., 2018). The main
difference between the three algorithms is the VND strategy used. The proposed approaches are
capable to outperform, in comparable computing times, the state-of-the-art algorithms in terms of
solution quality.

The paper is structured as follows. In Section 2, a formal description of the problem is provided
and the related literature is analyzed. Section 3 describes the proposed metaheuristics. In Section 4,
the computational results and the comparison with the state-of-the-art exact and heuristic algo-
rithms are presented and discussed. In addition, valid lower bounds are reported for the instances
not solved to prove optimality by the previously proposed exact methods. Finally, in Section 5, the
main conclusions are drawn and future directions are proposed.

2. Problem statement and literature review

The LLRP can be defined as follows. Let us consider a complete undirected graph G = (V, E ),
where V corresponds to the set of nodes and E is the set of edges. The set V is equal to V ′ ∪ D,
where V ′ represents the set of Nc customers and D is the set of Nd homogeneous uncapacitated
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depots. Let also K be the set of Nv homogeneous vehicles, each with capacity Q. Each customer
i ∈ V ′ has a nonnegative demand qi. Each edge (i, j) ∈ E , with i �= j, has an associated nonnega-
tive travel time ci j , which satisfies the triangular inequality. The problem is to select at most p (where
p is a given value) depots to open, from which the vehicles must perform their routes in order to
minimize the sum of the arrival times at the customers. Each customer must be visited once, and
each vehicle must start from an open depot. As previously mentioned, an important feature of the
cumulative routing problems is that the edges traveled from the last customer of each route to a
depot do not affect the objective function (Ngueveu et al., 2010). A mixed integer linear program-
ming (MILP) model of the LLRP has been proposed in Moshref-Javadi and Lee (2016). Although
the MILP model considers a vehicle capacity potentially different for each vehicle, the algorithm
proposed in this paper and the instances studied were designed for homogeneous fleets of vehicles.

Note that, since the travel time matrix satisfies the triangular inequality and the edges connecting
the last customer of each route to a depot do not affect the objective function, in an optimal solution
of the LLRP min{Nv, Nc} vehicles are used. On the other hand, in an optimal solution, the number
of open depots can be smaller than p (e.g., when the number of depots “close” to the customers
is smaller than p). However, since an open depot is not forced to be used (i.e., to have customers
assigned to it), we can assume that the number of depots to be opened is exactly equal to p (although
some of them could not be used).

In Moshref-Javadi and Lee (2016), due to the NP-hardness of the problem, the authors proposed
two heuristic algorithms to solve efficiently the LLRP: a memetic algorithm (MA) and a recursive
granular algorithm (RGA). According to their computational experiments, MA performs better
than RGA for the instances analyzed. More recently, Nucamendi-Guillén et al. (2022) proposed two
MILP models, three enumerative algorithms, and a GRASP-based iterated local search (GBILS)
algorithm for the solution of the LLRP, and report computational experiments on a subset of the
LLRP benchmark instances. They were able to provide the optimal solution for several instances
with up to 50 customers using the five exact methods, while the metaheuristic algorithm GBILS
was able to find globally better quality solutions than those obtained by algorithms RGA and MA
in small computing times. The computational results reported in Nucamendi-Guillén et al. (2022)
clearly show that exact methods are not able to find within reasonable computing times good-
quality solutions for the instances with more than 50 customers. As a consequence, it is necessary
to design effective metaheuristic algorithms for tackling large LLRP instances.

In Dukkanci et al. (2019), the authors studied the green LRP (GLRP), addressing it as a cu-
mulative LRP. Despite the similarities in the names of the problems, the GLRP corresponds to the
family of the cumulative VRPs (CuVRPs), in which the cumulative objective function is not the sum
of the arrival times at the customers but the sum of the travel times of the edges traveled weighted
by the load inside the vehicle. In the particular case of unitary loads both cumulative functions lead
to the same value, nevertheless, the GLRP and the LLRP are not equivalent for several reasons.
First, the aim of the GLRP is to minimize the total cost, which is the sum of the costs associated
with the fuel consumption and the fixed costs for using the depots. The CuVRP idea is included
in the fuel consumption expression but it is not the only component, since the speed of the vehicle
and the technical components (engine) are also considered in the computation of this cost. In addi-
tion to the nature of the objective functions, the GLRP also considers time windows, which are not
included in the LLRP. The differences between the CCVRPs and the CuVRPs have also been dis-
cussed recently in Corona-Gutiérrez et al. (2022), where a review of the different cumulative routing
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problems is presented. Note that the LLRP is an extension of the CCVRP since, if Nd = p = 1, the
problem reduces to a CCVRP.

For comprehensive surveys on the LRPs the reader is referred to the following works in chrono-
logical order: Nagy and Salhi (2007), Lopes et al. (2013), Prodhon and Prins (2014), Cuda
et al. (2015), Drexl and Schneider (2015), Schneider and Drexl (2017), Albareda-Sambola and
Rodríguez-Pereira (2019), and Mara et al. (2021).

3. The proposed algorithms

The proposed algorithms combine SA and VND techniques. The SA is a technique used to avoid
local optima, in which random moves of a neighborhood are generated and accepted with a certain
probability, which decreases proportionally to a “temperature” parameter that is updated according
to a “cooling” procedure. The acceptance of bad moves is used as diversification strategy, neverthe-
less, at low temperatures the algorithm intensifies the search by accepting almost only moves which
improve the objective function value. The VND techniques are local search based algorithms that
use different neighborhoods of a certain solution. The basic principle of the VND algorithms is that
a local optimum for a certain neighborhood is not necessarily a local optimum for other neighbor-
hoods. VND applies a deterministic descent search along each neighborhood until a local optimum
with respect to all the neighborhoods is reached.

The proposed metaheuristics combine the properties of both algorithms, diversifying the search
through the SA random exploration and intensifying the search on potentially good solutions using
a VND approach. Furthermore, the cooling procedure of the SA helps the algorithms to converge.

The proposed algorithms (whose pseudo-code is presented in Algorithm 1) start by setting the
current solution sc and the best feasible solution so far sbf equal to the initial feasible solution s0

(see Section 3.2). Then an SA framework is used. The current temperature temp is set equal to the
initial temperature t0, and the number of iterations without changes NC is set equal to 0. The pro-
cedure is applied until the minimum temperature t f is reached (temp ≤ t f ) or until the algorithm
is unable to escape from a local optimum for a maximum number NCmax of temperature updates
(NC ≥ NCmax). For each temperature value, itSA random moves are evaluated. The moves are cho-
sen from neighborhoods that are classified in two groups: Group (i) inter/intraroute operators
of insertion, swap, and 2-opt, and Group (ii) DepotOpenClose, RouteSwap, and RouteRelocation.
Neighborhoods in Group (i) keep the opened depots, and the number of vehicles allocated to each
depot unchanged, while neighborhoods in Group (ii) can change these choices. The probability of
selecting moves from Groups (i) and (ii) is different and depends on the parameter GP. Further
details about the neighborhoods and the selection process are presented in Section 3.3. A new so-
lution sp is generated by applying one of the mentioned random moves to sc, and is accepted as the
new sc under the classical SA conditions. The new solution sp replaces the current solution sc only
if one of the two following conditions holds: (a) if � f = f (sc) − f (sp) > 0, where f (sc) and f (sp)
are the objective function values of the current solution and of the current solution with the move
applied, respectively, or (b) if � f ≤ 0 and r < exp(� f /temp), where r is a random number ∈ [0, 1].
The above rule ensures that the algorithms converge to a local optimum after a certain number
of cooling steps. If f (sc) < f (sbf), and sc is feasible (i.e., the result of the procedure IsFeasible(sc)
is true), the current solution is saved as the best feasible solution so far. Note that the algorithms
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Algorithm 1. Main scheme

1: Input: t0, t f , GP, NCmax, itSA, α, pen, s0

2: Output: sbf (F inal Solution)
3: temp = t0, NC = 0, sc = s0, sbf = s0

4: while (temp > t f and NC < NCmax) do
5: it = 0, stemp = sc

6: while (it < itSA) do
7: sp = RandomMove(GP, sc)
8: if (AcceptanceCriteria(temp, sp, sc)) then
9: sc = sp

10: if ( f (sc) < f (sbf ) and IsFeasible(sc)) then
11: sbf = sc

12: end if
13: end if
14: it = it + 1
15: end while
16: if ( f (stemp) = f (sc)) then
17: NC = NC + 1
18: temp = α ∗ temp
19: else
20: NC = 0
21: sc = V NDX (sc)
22: if ( f (sc) < f (sbf ) and IsFeasible(sc)) then
23: sbf = sc

24: end if
25: temp = α ∗ temp
26: end if
27: end while
28: sLKH = solution obtained by applying for each open depot the procedure LKH-3 to the set of customers and the

set of vehicles assigned to the considered depot in the solution sbf.
29: if ( f (sLKH) < f (sbf )) then
30: sbf = sLKH

31: end if
32: Return: sbf

allow infeasible solutions (violating the capacity constraints of the vehicles) in order to extend the
search space. Infeasible solutions are penalized with a factor pen for each unit of load exceeding
the vehicle capacity; see Section 3.1 for details. If none of the itSA moves generated were accepted,
that is, the current solution sc remains same as the solution stemp at the beginning of the current
temperature, the counter of nonchanges NC is augmented by 1, otherwise it is set equal to 0. After
the random phase, a VND procedure (V NDX (sc)) is applied to the current solution sc. The type of
VND procedure applied in this phase is the only difference between the three proposed algorithms;
these procedures are presented in Section 3.4. Then, the value of temp is reduced according to a
cooling factor α. Note that the random moves applied before the VND procedure act as a pertur-
bation step for escaping from local optima. Finally, when the stopping condition is reached, the
Lin–Kernighan–Helsgaun (LKH-3) heuristic proposed in Helsgaun (2017) is applied to each open
depot, solving the corresponding CCVRP. The customers and vehicles assigned to each depot are
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obtained from the best feasible solution sbf. If the solution sLKH obtained by applying the LKH-3
heuristic is better than the current best feasible solution, sbf is updated.

Note that the LKH-3 is the most recent update of the heuristic solver LKH, which was originally
presented for solving the traveling salesman problem (Helsgaun, 2000). The LKH solvers are based
on the Lin–Kernighan algorithm (Lin and Kernighan, 1973), which essentially consists of using
λ-opt moves, calculating the value of λ in an iterative way. The last update of the solver (LKH-
3) incorporates different optimization routines and features such as local search, special moves,
perturbations, genetic algorithm, and penalization functions in order to solve effectively a large
number of routing problems (for further details, see Helsgaun, 2017).

3.1. Search space

In order to extend the search space and avoid local optima, all the parts of the algorithms accept
infeasible solutions by applying a penalization term. Thus, the value of the objective function f (sc)
of a solution sc, feasible or not, is given by the following formula:

f (sc) = f̄ (sc) + pen�Q, (1)

where pen is a penalization coefficient calculated as a percentage of the value of the objective func-
tion corresponding to the initial solution, f̄ (sc) is the sum of the arrival times at the customers,
and �Q is the total amount of load violating the capacities of the vehicles. Note that for feasible
solutions, the second term of the formula is equal to 0. The best improvement strategy is used in the
local search procedures, in which the penalized objective function is considered. In the same way,
the random moves applied may also be infeasible and penalized.

3.2. Initial solution

In order to provide a good initial feasible solution s0 in short computing time, a combination of
the k-means clustering algorithm (MacQueen et al., 1967) and the LKH-3 is used. Let us consider
the instance with Nc = 19, Nd = 5, p = 2, and Nv = 5 presented in Fig. 1a, where the triangles
are the customers and the squares are the depots. The k-means algorithm is used to define Nv
clusters of customers and the corresponding centroids (Fig. 1b; the clusters are represented by big
circles, and their centroids are represented by stars). Then, a scoring process is used to decide which
depots are opened. The depots are chosen by considering their closeness to the centroids of the
clusters. Each cluster is assigned to its closest depot, and each cluster assigned adds one point to
the score of the depot (Fig. 1c). Then, the p depots with the highest scores are opened (depots D2
and D3 in Fig. 1d), and the clusters that were assigned to depots not selected are allocated to the
closest one among the open depots (Fig. 1d). In case of depots with the same score, the selection is
random. Let us consider OD as the set of the p opened depots. The next step is to apply the LKH-3
procedure, solving a CCVRP for each depot j ∈ OD, considering all the customers allocated to
the depot j (Fig. 1e). The number of vehicles assigned to each open depot j (NVj) is calculated
rounding up the ratio between the total demand of the customers allocated to j (demj) and the

© 2023 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies

 14753995, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13294 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [05/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



A. Osorio-Mora et al. / Intl. Trans. in Op. Res. 30 (2023) 3801–3832 3807

Fig. 1. Initial solution procedure. (a) An LLRP instance, (b) K-means procedure, (c) scoring, (d) allocation process,
(e) LKH-3 procedure, and (f) repair procedure.
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vehicle capacity, NVj = 	demj/Q
. In case
∑

j∈OD NVj �= Nv, a redistribution of the vehicles is
carried out. If

∑
j∈OD NVj < Nv, a new vehicle is assigned to the depot, which has the smallest

value of (NVjQ − demj), that is, the depot that is using most intensively the capacity of its assigned
vehicles. On the other hand, if

∑
j∈OD NVj > Nv, a vehicle is removed from the depot that has the

largest value of (NVjQ − demj), that is, the depot with the largest unused vehicles capacity. The
LKH-3 algorithm is applied considering its default parameter configuration, except for the number
of runs that is set equal to 1. Since the obtained LLRP solution may be infeasible in terms of the
vehicle capacity, a repair procedure is applied if one or more routes are infeasible. This procedure
consists of applying a sequential interroute local search procedure on the insertion, swap, and 2-opt
neighborhoods (further details are given in Section 3.3). The move that minimizes the sum of the
penalizations associated with the infeasibilities, plus the global latency, is applied (Fig. 1f). Other
approaches combining clustering and LKH procedures have been successfully used to solve the
CLRP in Escobar et al. (2013). Nevertheless, the proposed clustering and the location/allocation
procedures are totally different from the one presented in this paper. The mentioned work proposed
an iterative procedure that splits a giant tour into clusters composed of consecutive customers
taking into account the capacity of the vehicles, and then the location/allocation is determined by
solving an MILP model.

3.3. Local search

The whole framework of the algorithms uses eight neighborhoods, and the random moves are
selected from six of them. First, we describe the neighborhoods used in the random phase (Groups
(i) and (ii)), and then the remaining two neighborhoods, which are used only in the VND procedure.
Note that the neighborhoods in Group (i) are used also in the VND procedure. Note that, since the
objective of the LLRP is to minimize the global latency (and not the global travel time) of the
routes, each change of the current solution (concerning the positions of the customers within the
routes, the assignment of a route to an open depot, the opening or closing of a depot) must be
evaluated in an effective way in order to reduce the computing times of the proposed procedures.

The neighborhoods in Group (i) can be applied in both the intraroute and the interroute cases.
For the interroute case, they can be applied for routes starting from the same depot or from different
depots. The neighborhoods are as follows.

• insertion: This operator selects customer i and position j, and relocates customer i in position j.
• swap: This operator selects two customers i and j and swap their positions.
• 2-opt: This operator deletes two edges, (i, j) and (k, l ), and creates two new edges, (i, k) and ( j, l ).

When the operator is applied to edges belonging to the same route, the edges (i, j) and (k, l ) are
deleted, then the edges (i, k) and ( j, l ) are created, and the path from k to j is reversed. The above
is the classical 2-opt operator used in the traveling salesman problems. On the other hand, when
the operator is related to two different routes, a crossing is applied: the heads of routes 1 and 2
(until nodes i and k, respectively) are merged with the tails of routes 2 and 1 (from customers l
and j, respectively).

The mentioned neighborhoods have been largely used in the routing problem literature, and in
the context of CCVRPs they were studied in the seminal work of Ngueveu et al. (2010), where the
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Algorithm 2. IntraLS procedure

1: Input: rc, NeighIntra = {insertion, swap, 2-opt}
2: Output: rp (IntraLS route)
3: rp = rc

4: for (each ng ∈ NeighIntra) do
5: f lag = true
6: while( f lag = true) do
7: r′

p = route(ng, rp)
8: if ( f (r′

p) < f (rp)) then
9: rp = r′

p

10: f lag = true
11: else
12: f lag = f alse
13: end if
14: end while
15: end for
16: Return: rp

reader can find the way to compute them efficiently. The evaluation of a move in these neighbor-
hoods can be performed in constant time by following the procedures proposed by Ngueveu et al.
(2010).

The neighborhoods in Group (ii) correspond to operators that change the depot/vehicle rela-
tionship. These operators are applied only in the random phase, and are described as follows.

• DepotOpenClose: This operator selects two depots: i (open) and j (closed). All the routes assigned
to i are reassigned to j. Since the current routes may not be good for the new depot, an intraroute
local search (IntraLS) procedure is applied to each route by considering j as the starting depot.
This procedure explores each insertion, swap and 2-opt neighborhood until no improvement is
found, without cycles. The pseudo-code of procedure IntraLS is presented in Algorithm 2 (rc and
rp represent, respectively, the input and output routes; route(ng, rp) denotes the route obtained by
exploring the neighborhood ng starting from the route rp).

• RouteSwap: This operator selects two routes r1 and r2 allocated to different open depots i and
j, respectively. The relation route–depot is swapped, that is, r1 will start from depot j and r2 will
start from depot i. The IntraLS procedure is applied to the routes r1 and r2.

• RouteRelocation: This operator selects a route starting from a depot with more than one route
assigned. Then, this route is reassigned to a different open depot, and the IntraLS procedure is
applied.

Since the application of the IntraLS procedure inside the neighborhoods of Group (ii) implies
a larger computational effort compared to the neighborhoods in Group (i), a lower (or equal)
probability of selecting moves in Group (ii) is considered. This probability is defined by an integer
parameter GP. The random move selection is detailed in Algorithm 3. Note that if GP = 1, the
random move has the same probability to be selected from all the six considered neighborhoods.
Similar neighborhoods have been used in other LRPs, as done in Vincent et al. (2010) for the CLRP.
The main difference between the operators described in the mentioned paper and those presented
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Algorithm 3. Random move selection (RandomMove)

1: Input: GP, sc

2: Output: sp

3: m = Rand [1, 3GP + 3]
4: if (m ≤ GP) then
5: sp = RandomInsertion(sc)
6: end if
7: if (GP < m ≤ 2GP) then
8: sp = RandomSwap(sc)
9: end if

10: if (2GP < m ≤ 3GP) then
11: sp = RandomTwoOpt(sc)
12: end if
13: if (m = 3GP + 1) then
14: (sp) = DepotOpenClose(sc)
15: end if
16: if (m = 3GP + 2) then
17: (sp) = RouteSwap(sc)
18: end if
19: if (m = 3GP + 3) then
20: (sp) = RouteRelocation(sc)
21: end if
22: Return: sp

here is the local search procedure applied at the end of the move. Furthermore, Vincent et al. (2010)
include these operators into the insertion and swap neighborhoods, therefore they are not allowed
to be treated as “special moves” (with different probabilities of being selected and optimized with
a local search procedure).

Note that the presented SA scheme is also known in the literature as multineighborhood SA
(Bellio et al., 2021; Rosati et al., 2022).

Finally, the following two neighborhoods are considered only in the VND procedures. In case
the operators are applied to different routes, these can start from the same depot or from different
depots. These neighborhoods are also well known in the literature related to the VRPs, and have
been used successfully for the solution of the CCVRPs. Information about how to compute them
in constant time can be found in Kyriakakis et al. (2021):

• arc–swap: Two pairs of consecutive customers (i, j) and (k, l ) exchange their position. This oper-
ator can be applied both for the intraroute and the interroute cases.

• shi f t2−1: A pair of consecutive customers (i, j) assigned to route r1, and a customer k assigned
to a different route r2 exchange their position.

3.4. Variable neighborhood descent strategies

Denote by Neigh = {insertion, swap, 2-opt, arc − swap, shi f t2−1} the set of the Nneigh = 5 pre-
viously described neighborhoods, and consider ng ∈ Neigh as the ngth neighborhood of the
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current solution sc. The neighborhoods are explored according to the order in which they are
listed in the set Neigh. The three search strategies VND0, VND1, and VND2 are described in the
following:

• VND0: The exploration starts from the first neighborhood, which is explored until no improve-
ment is found. Then the exploration moves to the next neighborhood, and the process is repeated
until the last neighborhood does not improve the current solution sc. If some improvement was
found in any of the neighborhoods, the search is restarted from the first neighborhood. If no
improvement is found for all the neighborhoods, the VND0 procedure ends.

• VND1: The exploration starts from the first neighborhood. Each neighborhood is explored un-
til no improvement is found, then the exploration moves to the next neighborhood: if there is
an improvement, the search restarts from the first neighborhood. The procedure ends when no
neighborhood improves the current solution sc.

• VND2: This procedure is a combination of the VND0 and VND1 search strategies previously
described. When an improvement is found at the ngth neighborhood, the search remains at the
current neighborhood until no improvement is found, then the search restarts from the first neigh-
borhood. The procedure ends when no neighborhood improves the current solution sc.

4. Computational results

The proposed metaheuristics were implemented in C++, and the experiments were carried out
on an Intel(R) Core(TM) i7-8700K CPU @ 3.70 GHz with 32 GB RAM, under Linux Ubuntu
18.04 operative system (single thread). The 76 instances belonging to the three available LLRP
benchmark data sets were considered to compare the proposed algorithms with the state-of-the-
art algorithms. The travel time matrix for all the instances was calculated with double precision. In
order to have a fair comparison with the algorithms proposed in Moshref-Javadi and Lee (2016), 30
random seeds were created, and each instance was solved with each seed (i.e., 30 runs were executed
for each instance).

The 76 instances used in Moshref-Javadi and Lee (2016) to test algorithms MA and RGA corre-
spond to the 36 instances of the Tuzun and Burke data set (Tuzun and Burke, 1999), the 30 instances
of the Prodhon data set proposed by Prins et al. (2004), and 10 of the 19 instances of the Barreto
data set (Barreto, 2004). Only the results corresponding to the 30 instances of the Prodhon data set
and to 8 of the 10 instances of the Barreto data set are reported in Nucamendi-Guillén et al. (2022).

4.1. Parameter tuning

Since the number of combinations of the parameters is too large to test all of them, the iterated rac-
ing for automatic algorithm configuration (IRACE) method (proposed in López-Ibáñez et al., 2016)
was used. This software applies an elitist procedure, which iteratively takes samples of parame-
ter combinations according to a certain probability, selecting the best ones, and discarding those
which lead to low-quality results. At each iteration the samples are updated, and the parameter
values with the best performance increase their probabilities of being selected.
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Table 1
Best configuration of parameters for each algorithm

Algorithm t0 t f α itSA NCmax GP pen1

SA-VND0 500 1 0.9893 300 6 1 1
SA-VND1 1000 1 0.9888 300 5 2 1
SA-VND2 1500 1 0.9885 500 2 1 15

1As percentage of the value of the initial solution s0.

The IRACE software was trained with a set of instances, which correspond to one-third of the
instances of each data set, considering different geographical distribution types, sizes, and other
features. Globally, 26 of the 76 instances were used: 12 from the Tuzun–Burke data set, 10 from the
Prins et al. data set, and 4 from the Barreto data set. The objective of selecting a heterogeneous
sample of the instances is to obtain a parameter configuration that fits well for different types
of instances.

The output of the software IRACE is a set of parameter configurations that correspond to the
most promising ones according to the training phase. Then, after preliminary experiments, the best
configurations were selected considering the obtained solution quality and the required comput-
ing time. It is important to note that each algorithm was calibrated independently of the other
algorithms. This implies that algorithms SA-VND0, SA-VND1, and SA-VND2 have different pa-
rameter configurations. The values evaluated for each parameter were the following: t0 = {500, 800,

1000, 1200, 1500, 2000}, t f = {1, 5, 10, 50, 100, 150}, α = [0.90, 0.99], itSA = {30, 50, 100, 200, 300,

500}, NCmax = {1, 2, 3, 4, 5, 6}, GP = {1, 2, 3, 4, 5, 6}, and pen = {1, 3, 7, 10, 15, 20}. The selected
configurations are presented in Table 1. The calibration process required 67,020.9, 118,441.5, and
122,871.7 seconds for algorithms SA-VND0, SA-VND1, and SA-VND2, respectively.

4.2. Gobal results

In order to provide an understandable presentation, the results are divided into four subsections,
one for each considered data set, and one for the overall data set. In the Supporting Information,
the reader can find the detailed results of each run.

Tables 2–4 show the results obtained by algorithms RGA, MA, SA-VND0, SA-VND1, and SA-
VND2 by executing 30 runs for each instance of the three data sets. Tables 3 and 4 also show the
results obtained on the second and third data sets by algorithm GBILS executed five times for each
instance, and the best solution value found by the two MILP models (solved with the Gurobi 9.0.1
solver) and the three enumerative algorithms (implemented with the algebraic modeling language
AIMMS) as reported in Nucamendi-Guillén et al. (2022). The experiments in Moshref-Javadi and
Lee (2016) were performed on a 3.1 GHz computer with 4 GB RAM. The above is the only in-
formation available about this computer. Since the differences between the used computers are not
clear, the CPU times presented in the tables for algorithms RGA and MA are those reported in
Moshref-Javadi and Lee (2016); nevertheless, by considering the ratio between the corresponding
values of GHz, it is possible to estimate that our computer is about 1.2 times faster than that used
in Moshref-Javadi and Lee (2016). On the other hand, the computing times of the exact methods
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and algorithm GBILS are multiplied by a “scaling factor” equal to 0.61, since the computer used
in this paper is faster than that used in Nucamendi-Guillén et al. (2022). The value of the “scaling
factor” was calculated as the ratio between the single thread scorings of the two computers, which
can be obtained in https://www.cpubenchmark.net/.

For each instance, the following values are given.

• Instance: Name of the instance.
• Nc: Number of customers.
• Nd : Number of depots.
• LB: Lower bound. It corresponds to the largest value between LB1, LB2 (which are the lower

bounds proposed in Moshref-Javadi and Lee, 2016), the optimal solution value of the linear
relaxation found after implementing the first MILP model (Model 1) presented in Nucamendi-
Guillén et al. (2022) for the LLRP, and solving it using CPLEX 20.1, and the optimal solution
value/best lower bound obtained after implementing and solving (with a time limit of 216,000
seconds) the first MILP model (Model 1) presented in Bruni et al. (2022) for the multidepot k-
traveling repairman problem (MDk-TRP). The optimal solution value of the MDk-TRP is indeed
a valid lower bound for the LLRP because it is a special case of LLRP in which the capacity
constraints of the vehicles are not considered, and all the available depots can be opened. Note
that new tighter lower bounds are reported in italic in the Tables 2–4. Furthermore, note that the
value (331.9) of LB2 reported in Moshref-Javadi and Lee (2016) for the instance 20-5-1 of the
Prodhon data set is larger than the proved optimal solution value 330.0 (see Nucamendi-Guillén
et al., 2022). Hence, we implemented a correct procedure and computed again the value of LB2
for all the instances.

• BKS0: Best known solution value considering algorithms RGA, MA, the five exact methods,
and algorithm GBILS (i.e., the best known solution value found by the current state-of-the-art
algorithms). Each BKS0 value proved to be the optimal solution value by Nucamendi-Guillén
et al. (2022) is presented in boldface.

• BKS: Best known solution value considering all the algorithms.
• GapLB: Percentage gap between BKS and LB, computed as GapLB = 100 (BKS-LB)

LB .

Note that for the Prodhon and Barreto data sets, the columns Nc and Nd are not reported since
this information is present in the name of the instance: the first number corresponds to Nc and the
second one to Nd .

In addition, for each algorithm and each instance the following values are reported.

• Best: Best solution value found.
• GapB: Percentage gap between Best and BKS, computed as GapB = 100 (Best-BKS)

BKS .
• Avg: Average solution value (computed over 30 runs) for the RGA, MA, SA-VND0, SA-VND1,

and SA-VND2.
• time: Global computing time for finding the Best value (expressed in seconds). For all the algo-

rithms, with the exception of the exact methods, it corresponds to the average computing time
spent for each run multiplied by the number of runs. The global computing time of the exact
methods proposed in Nucamendi-Guillén et al. (2022) is given by the sum of the “scaled” com-
puting times required by the five exact methods for solving the considered instance. In particular,
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for each instance a time limit of two hours was imposed for the execution of each MILP model,
while for the execution of each enumerative algorithm the time limit was set to 2000 seconds for
the instances with Nc ≤ 50 and to two hours for the remaining instances. This means that if, for
an instance with Nc > 50, all the five exact methods reach the corresponding time limit, the value
of time is given by 0.61 × (2 × 2000+3 × 7200) = 21,960.00 seconds.

The values of Best equal to BKS are presented in boldface. The average values Avg better than or
equal to BKS0 are presented in italic. For each column, at the bottom of the corresponding table
an average summary (Global avg) is presented, in which the best values are presented in boldface.

4.2.1. The Tuzun–Burke data set
The results for these instances are given in Table 2. No results for the exact algorithms and al-
gorithm GBILS are presented on this data set in Nucamendi-Guillén et al. (2022). As the table
indicates, the proposed metaheuristics outperform the other two algorithms (RGA and MA) in
terms of solution quality. Each of the proposed algorithms is able to improve the value BKS0 for
all the 36 instances of this data set. Algorithms SA-VND0, SA-VND1, and SA-VND2 provide
new values of BKS for 14, 10, and 13 instances, respectively. The average gap between the best
solution value found and the new value of BKS is 8.7% for RGA and 5.0% for MA. For these
two algorithms, for some instances the gap reaches 10%. Note that for each algorithms SA-VND0,
SA-VND1, and SA-VND2, the corresponding average values Avg are better than BKS0 for 35
instances. In terms of computing time, both RGA and MA are faster than the proposed meta-
heuristics. The fastest among the three proposed algorithms is SA-VND0. For all but six instances
in this data set, the value of the solution obtained by solving the MDk-TRP is a lower bound
tighter than that proposed in Moshref-Javadi and Lee (2016). The new LB values presented for
these instances correspond to the optimal solution values of the MDk-TRP, with exception of the
instances 121112, 121122, 121222, and 123122 for which the best lower bound is presented. Note
that these values are very close to the optimal solution values (the average MILP optimality gap
is equal to 0.008%). The average and maximum values of GapLB are equal to 15.1% and 32.4%,
respectively.

4.2.2. The Prodhon data set
The results of this data set are presented in Table 3. Also for these instances, the proposed algo-
rithms globally outperform the currently published algorithms in terms of solution quality. Over
the 30 instances of this data set, each of the proposed algorithms is able to improve or find the
value BKS0 for 27 instances. Algorithms SA-VND0, SA-VND1, and SA-VND2 provide new val-
ues of BKS for 10, 5, and 5 instances, respectively, while for 9 instances the proposed algorithms
find solution values equal to BKS0. Note that for these nine instances, the solutions found by the
exact methods were proved to be optimal by Nucamendi-Guillén et al. (2022). The best solution
values found by the three proposed metaheuristics are equal to those found by algorithms GBILS
for 5 instances, while are better for 25 (SA-VND0), 24 (SA-VND1), and 24 (SA-VND2) instances.
For the four instances with Nc = 20 the three proposed algorithms converge always to the optimal
solution. Regarding the average values Avg, the proposed algorithms find better values than those
found by RGA and MA for all the instances. In addition, for 20 (SA-VND0), 18 (SA-VND1), and
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19 (SA-VND2) instances, the average value Avg obtained by the proposed metaheuristics is bet-
ter than or equal to BKS0. The overall results are very similar for the three new algorithms, with
SA-VND0 showing slightly better results. Also for this data set, in terms of computing time, MA,
RGA, and GBILS, are faster than the proposed metaheuristics, and the fastest one among the latter
algorithms is SA-VND0. The three proposed algorithms are globally faster than the exact methods.
For 18 (resp., 1) instances in this data set, the value of the optimal solution of the MDk-TRP (resp.,
the linear relaxation of the LLRP) is the tightest lower bound, while for the remaining 11 instances
LB1 is the largest lower bound value. The average and maximum values of GapLB are equal to 8.9%
and 25.0%, respectively. However, note that for the 11 instances of this data set whose optimal so-
lution value is known, the average and maximum values of GapLB are equal to 5.4% and 11.4%,
respectively, while the average and maximum values of GapB (i.e., of the percentage gap of the Best
value with respect to the corresponding optimal solution value) for the proposed metaheuristics are
equal to 0.05% and 0.5%, respectively, which means that the real optimality gaps for these instances
are much smaller than the corresponding GapLB values.

4.2.3. The Barreto data set
For this data set, the results obtained by the proposed metaheuristics and by the state-of-the-art
algorithms are given in Table 4. It is to point out that for instance Christ-50-5 the best solution val-
ues found by the proposed algorithms (Best = 1661.6), and also by algorithm MA (Best = 1690.8),
are smaller than the optimal solution value (Best = 1719.9) reported in Nucamendi-Guillén et al.
(2022). After implementing and executing (using CPLEX 20.1) the first MILP model (Model 1)
presented in Nucamendi-Guillén et al. (2022) we proved that the solution found by the proposed
metaheuristics is optimal (the details are given in Appendix A), hence its solution value is presented
in boldface in column BKS. For the instance Christ-75-10, we found a valid lower bound equal to
2260.1, which is larger than the best solution value (Best = 2228.4) reported in Nucamendi-Guillén
et al. (2022). Because of the above, these two instances were not considered in the global average
results of the exact methods and of algorithm GBILS. For the instances Min-134-8 and Or-117-
14 no results are reported in Nucamendi-Guillén et al. (2022). The last line of Table 4 gives the
average values (Global avgNG) computed by considering only the six instances whose values are
correctly reported in Nucamendi-Guillén et al. (2022). The table shows that each of the proposed
algorithms is able to improve the value BKS0 for 5 of the 10 instances (including the optimal so-
lution found for the instance Christ-50-5); for the remaining 5 instances, the 3 algorithms are able
to find the optimal solution value. Algorithms SA-VND0, SA-VND1, and SA-VND2 provide new
values of BKS for 4, 2, and 2 instances, respectively. Comparing the average values Avg, for all the
instances the proposed algorithms find better results than those obtained by the RGA and MA
algorithms. In addition, for all the instances but one, the average value Avg obtained by the pro-
posed metaheuristics is better than or equal to BKS0. Also, for four instances the average value
Avg obtained by the three proposed algorithms is equal to the optimal solution value. In terms
of computing times there are not big differences between the heuristic algorithms, with the excep-
tion of algorithm GBILS, which has much smaller computing times. On the other hand, the exact
methods are clearly more time consuming than the heuristic ones. The global results show that the
performances of the three proposed algorithms are similar for what concerns the solution quality,
while algorithm SA-VND0 has the smallest computing times. For all the instances in this data set,
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the values of the new proposed lower bounds are tighter than those proposed in Moshref-Javadi
and Lee (2016). For nine instances, the solution value found by solving the MDk-TRP is the best
lower bound, and for one instance the value of the linear relaxation of the LLRP is the tightest
one. All the nine instances but instance Min-134-8 were solved to optimally (solving the corre-
sponding MDk-TRP), and the MILP optimality gap obtained for this instance is equal to 0.014%.
The average and maximum values of GapLB are equal to 6.2% and 12.9%, respectively, considering
all the 10 instances, and to 5.4% and 12.6%, respectively, considering only the 6 instances cor-
rectly solved by Nucamendi-Guillén et al. (2022). However, note that for the six instances of this
data set whose optimal solution value is known, the average and maximum values of GapLB are
equal to 5.1% and 12.6%, respectively, while the proposed metaheuristics solve all these instances
to optimality.

4.2.4. Overall data set
By considering the three data sets, we can note that the average values of the percentage gaps be-
tween Avg and Best computed for each instance and each of algorithms RGA, MA, SA-VND0,
SA-VND1, and SA-VND2 are, respectively, 10.1%, 11.3%, 1.5%, 1.6%, and 1.4% for the Tuzun–
Burke data set, 6.5%, 6.6%, 0.9%, 0.9%, and 0.9% for the Prodhon data set, and 10.9%, 6.4%, 0.7%,
0.8%, and 0.7% for the Barreto data set. This proves that the proposed algorithms not only pro-
vide better solutions but also are much more stable than the current state-of-the-art algorithms.
This analysis cannot be performed for algorithm GBILS, since the average values found by this
algorithm are not reported in Nucamendi-Guillén et al. (2022). Moreover, it can be noted that al-
gorithm SA-VND0 is able to find or improve the best solution value found by GBILS for all the
36 instances analyzed, while algorithms SA-VND1 and SA-VND2 do that for all the instances
but one. Furthermore, in, respectively, 29, 28, and 29 instances the average value obtained by al-
gorithms SA-VND0, SA-VND1, and SA-VND2 is better than or equal to the best solution value
found by GBILS. Similarly, the proposed algorithms are able to find or improve the best solution
value found by the exact methods for all the instances but three. Furthermore, in, respectively,
28, 27, and 27 instances the average value obtained by algorithms SA-VND0, SA-VND1, and
SA-VND2 is better than or equal to the best solution value found by the exact methods. With
respect to the lower bounds, by considering all the 76 instances of the three data sets, the value
of the optimal solution/best lower bound obtained by solving the MDk-TRP improved the LB
value corresponding to LB1 and LB2 for 57 instances, while the value of the linear relaxation of
the LLRP did it for 2 instances. The average and maximum values of GapLB are equal to 11.5%
and 32.4%, respectively. Although these values are large, it is important to remark that the cur-
rent lower bounds are not good approximations for the optimal solution values since, as previously
mentioned, even for the 17 instances for which the optimal solution value is known, the value of
GapLB is large. Indeed, if only the instances solved to optimally are considered, the average value
of GapLB is equal to 5.3%, with a maximum value equal to 12.6%. For 15 of these 17 instances,
the proposed metaheuristics are able to find the optimal solution value, and, for the remaining 2
instances, the maximum value of GapB for the proposed algorithms is equal to 0.5%. Thus, since
the proposed metaheuristics find optimal or near optimal solutions for these 17 instances, it is pos-
sible to infer that the algorithms provide good-quality solutions also for the remaining 59 LLRP
instances.
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Fig. 2. Computing times (seconds) required by each metaheuristic to reach the target values for the considered
instances.

4.3. A comparison with the currently published heuristic algorithms

In order to compare the efficiency of the proposed metaheuristics with respect to that of the pub-
lished ones, experiments to determine the computing time required to reach target values were
carried out. Let us consider for each instance a target value given by the minimum value between
the solution values provided by algorithms RGA, MA, and GBILS. These experiments considered
a time limit for each instance equal to the minimum between 3000 seconds and the global scaled
computing time required by the corresponding best algorithm for executing its required number of
runs. The SA-VND0 algorithm is able to find or improve the target value for all the instances, while
both the SA-VND1 and SA-VND2 algorithms are not able to reach the target value for the instance
50-5-3, finding solution values with gaps equal to 0.1% and 0.17%, respectively. Furthermore, the
SA-VND1 algorithm is not able to reach the target value within the time limit for the instance 200-
10-2, obtaining a gap equal to 0.39%. Those are the only cases for which the proposed algorithms
cannot reach the target value within the time limit. The computing times for each instance and
each algorithm are drawn in Fig. 2, where Best heuristic corresponds to the best algorithm among
RGA, MA, and GBILS for the considered instance. For space reasons, the horizontal axis presents
only the associated data set and not the name of all the instances. The data sets are sorted from the
less complex to the most complex (in terms of size), that is, Barreto, Prodhon, and Tuzun–Burke.
The summary of the average results regarding the computing times, and the number of instances
for which each of the proposed algorithms is faster than the Best heuristic is presented in Table 5.
According to the results, the global average computing time required by the Best heuristic to reach
the target value is larger than that required by each of the three proposed algorithms (considering
all the instances). Furthermore, the computing time required by algorithms SA-VND0, SA-VND1,
and SA-VND2 to reach the target value is smaller than the computing time required by the Best
heuristic in 66, 61, and 59 instances, respectively (columns “# Faster than BH” in the table). Ana-
lyzing separately each data set, it is possible to note that the three proposed metaheuristics require
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Table 5
Average computing times required by each metaheuristic to reach the target values for each data set

Best heuristic (BH) SA-VND0 SA-VND1 SA-VND2

Data set time time # Faster than BH time # Faster than BH time # Faster than BH

Tuzun–Burke 1854.7 103.9 36 206.5 36 201.0 36
Prodhon 163.3 124.1 21 302.0 16 274.1 15
Barreto 577.9 7.9 9 9.2 9 11.5 8
Total 1019.0 99.3 66 218.3 61 204.9 59

Table 6
Average solution values and gaps provided by each part of the algorithms

SA-VND0 SA-VND1 SA-VND2
Initial

Data set Avg Gap
Avg
SA

Gap
SA

Avg
LKH

Gap
LKH

Avg
SA

Gap
SA

Avg
LKH

Gap
LKH

Avg
SA

Gap
SA

Avg
LKH

Gap
LKH

Tuzun–Burke 4513.2 20.4 3931.5 2.4 3910.6 2.0 3942.5 2.6 3916.9 2.2 3933.3 2.4 3910.6 2.0
Prodhon 1641.7 9.2 1527.1 1.3 1523.6 1.2 1528.2 1.4 1524.6 1.2 1527.5 1.4 1523.9 1.2
Barreto 12,133.5 11.7 9574.1 1.0 9556.5 0.9 9575.2 1.0 9551.1 0.9 9577.6 1.0 9556.4 0.8
Global avg 4382.4 14.8 3724.8 1.8 3711.3 1.5 3730.6 1.9 3713.9 1.6 3726.3 1.8 3711.3 1.5

considerably less computing time than the Best heuristic for finding the target value in the Tuzun–
Burke and the Barreto data sets, while for the Prodhon data set algorithm SA-VND0 is slightly
faster than the Best heuristic, while algorithms SA-VND1 and SA-VND2 are slightly slower than
it. As we already proved in the previous sections, running the proposed metaheuristics for a longer
time leads to much better solutions compared to those obtained by the state-of-the-art heuris-
tic algorithms. Nevertheless, we also proved that, in general, the proposed metaheuristics are able
to find similar quality solutions in shorter computing times compared to those of the published
heuristic methods.

Note that, in order to reduce the global computing times of the proposed metaheuristics, it is
also possible to reduce the number of runs executed for each instance. The average results obtained
when the number of runs is reduced to 10 and 5 runs are analyzed in Appendix B.

4.4. A detailed analysis of the components of the metaheuristics

Consider s0 as the initial solution, sSA as the best solution found by the proposed algorithm after
finishing the SA frame, and sLKH as the solution found by applying the LKH-3 procedure to sSA.
Table 6 presents, for each data set, the average values of the initial solution s0 and of the best solu-
tions sSA and sLKH found for each instance by executing 30 runs, and the averages of the correspond-
ing gaps computed with respect to the best known solution value for each considered instance. Note
that the initial solution is shared by the three proposed metaheuristics. The largest improvement is
achieved by the SA frame, while the LKH-3 procedure further improves the sSA solution value. This
behavior is similar for the three metaheuristics. The largest improvements produced by the LKH-
3 procedure (on average 0.4%) are found in the first data set, while for the second and the third
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Fig. 3. Relative computing time required by each part of the proposed metaheuristics.

data sets the average improvements are around 0.2% and 0.1%, respectively. Although the LKH-
3 procedure does not improve substantially the solution values, it has an important effect on the
stability of the algorithm; without including the LKH-3 procedure, the SA-VND0 and SA-VND2
algorithms are able to improve or find the value BKS0 for, respectively, 70 and 72 instances, instead
of the 73 instances they are able to find by including the LKH-3 procedure. On the other hand,
algorithm SA-VND1 is able to improve or find the value BKS0 for 73 instances with or without
including the LKH-3 procedure. Furthermore, if the LKH-3 procedure is not executed, the num-
ber of instances for which the average values Avg obtained by the metaheuristics are better than
or equal to BKS0 is reduced by 4, 4, and 3, for algorithms SA-VND0, SA-VND1, and SA-VND2,
respectively.

In Fig. 3 it is possible to analyze the percentage of the global computing time required by
each stage of the algorithms. The SA frame (SA in the figure) is the one that requires the largest
computing time. The computing time required by the LKH-3 procedure is close to 6% of the
total computing time for algorithms SA-VND1 and SA-VND2, and around 9% for algorithm
SA-VND0.

It is possible to conclude that the proposed metaheuristics produce high-quality results even
without the LKH-3 procedure; nevertheless, by paying a relative low cost in terms of computing
time, the stability of the algorithms improves.

As it was previously shown, the combined part of the algorithm (SA-VND) is the one that im-
pacts the most on the final solution. In order to understand the importance and the interaction
for each component of the combined phase, that is, the SA and the VND procedures, experiments
were carried out considering each procedure independently. Table 7 presents the average results,
regarding the gap between the best solution value found and the updated BKS (GapB), the gap
between the average solution value and the updated BKS (GapA-B), and the average computing
time in seconds (Avg. time). The columns “pure SA0,” “pure SA1,” and “pure SA2” correspond
to the results obtained by deleting the VND0, VND1, and VND2 procedures, respectively. Note
that for the cases of pure VND0, pure VND1, and pure VND2, the parameter itSA was set equal
to 1 in order to restart the VND procedures by evaluating/applying a single random move. Ac-
cording to the results, the computing times can be significantly reduced by applying each heuristic
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Table 7
Average results obtained by each part of the combined phase (SA-VND)

Criteria SA-VND0
pure
SA0

pure
VND0 SA-VND1

pure
SA1

pure
VND1 SA-VND2

pure
SA2

pure
VND2

GapB 0.1 9.6 4.9 0.2 10.6 4.7 0.2 9.0 6.1
GapA−B 1.3 11.8 10.4 1.4 11.9 10.2 1.3 11.7 11.6
Avg. time 146.7 38.0 25.1 228.2 34.7 25.6 221.5 47.8 25.2

by itself. Nevertheless, the quality of the best and average solutions found is considerably affected.
The values of GapB are close to 10% (5%) when only the SA (VND) is applied, while the origi-
nal metaheuristics present GapB values close to 0.0%. Furthermore, the GapA-B values are always
above 10% when each heuristic is independently applied, which means that it is necessary to run
several times the algorithms in order to obtain good-quality solutions. This behavior is totally
the opposite to that observed in the original metaheuristics, which are very stable (as we proved
in the previous experiments). These results highlight the importance of combining both heuristic
approaches.

Another interesting analysis regards the importance of each neighborhood both in the SA and
the VND phases. Figure 4 presents the percentage average contribution of each neighborhood in
terms of the number of times it is applied over the total number of moves applied, for each of
the proposed algorithms. Note that the contribution of the neighborhoods is analyzed indepen-
dently in the SA and VND phases. For the case of the SA neighborhoods, the analysis considered
the number of times a move was accepted (independently if it improved the solution or not) over
the total number of SA moves accepted, while for the case of VND the analysis considered the
number of times a move was applied improving the current solution over all the VND applied
moves. Regarding the SA phase (see Fig. 4a), as it is possible to note, the contribution of each
neighborhood for the SA-VND0 and the SA-VND2 algorithms is similar, presenting a dominance
in the use of neighborhoods of Group (ii), while for the SA-VND1 algorithm the contribution
of all the neighborhoods is similar, with a slightly dominance of the neighborhoods in Group
(i). The above can be explained by considering the values of the parameter GP, which is equal
to 1 for algorithms SA-VND0 and SA-VND2, and equal to 2 for algorithm SA-VND1. When
GP = 1, all the neighborhoods have the same probability of being selected, and as it has been
mentioned before, the neighborhoods in Group (ii) include an embedded local search procedure,
which implies that the generated move has potentially good quality, and thus higher probabil-
ity of being accepted. On the other hand, when GP = 2, the neighborhoods in Group (i) have
the double of probabilities of being selected in comparison to the neighborhoods in Group (ii).
With respect to the VND phase (see Fig. 4b), due to the descent design of the search strategy
the neighborhoods explored at the beginning contribute the most, and this behavior is shared by
the three proposed algorithms. It is possible to note that in the SA-VND1 algorithm the contri-
bution of the insertion neighborhood is larger in comparison to the other two algorithms, which
implies a smaller contribution for the other neighborhoods. This situation is explained by the na-
ture of algorithm SA-VND1, in which each time an improvement is found the search is immedi-
ately re-started from the insertion neighborhood. On the other hand, algorithms SA-VND0 and
SA-VND2 allow to explore in a deeper way the other neighborhoods, which can be a possible
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Fig. 4. Percentage average contribution of the neighborhoods: (a) SA and (b) VND.

explanation for the better results obtained by these two algorithms in comparison to the SA-VND1
algorithm.

According to the previous experiments, all the neighborhoods provide a contribution (whose
magnitude depends either on their position in the VND or on the probability of selection in the
SA) on the global performance of the algorithm. Thus, an experiment corresponding to the re-
moval of each neighborhood was carried out in order to determine the effects of this action on
the performance of the algorithms, both in terms of computing time and solution quality. Table 8
presents the global average results of this experiment by considering five runs for each instance. In
order to evaluate the effect of removing each neighborhood, the following criteria were considered
for the global case (average results considering the three algorithms SA-VND0, SA-VND1, and
SA-VND2):
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Table 8
Global average results by removing each neighborhood

Removed neighborhood Best Avg time (avg) GapB GapBKS0 leq BKS leq BKS0

None (original algorithms) 3667.8 3702.0 198.4 0.57 −2.58 19.7 72.3
insertion 3709.9 3758.9 157.5 1.36 −1.82 12.7 62.7
swap 3674.9 3710.5 178.8 0.75 −2.40 16.7 70.7
2−opt 3701.8 3742.1 196.0 0.94 −2.23 15.0 70.0
arc−swap 3673.0 3709.4 197.1 0.64 −2.52 18.0 71.3
shift2−1 3672.5 3707.9 199.3 0.62 −2.53 17.7 69.7
RandomInsertion 3667.0 3702.7 205.9 0.61 −2.54 17.3 71.3
RandomSwap 3670.2 3709.5 193.8 0.66 −2.50 16.7 70.7
RandomTwoOpt 3678.0 3709.2 195.8 0.60 −2.56 17.0 71.7
DepotOpenClose 3936.2 3956.2 193.6 9.28 5.79 12.3 37.0
RouteSwap 3671.2 3705.3 204.9 0.65 −2.51 15.3 71.7
RouteRelocation 3721.0 3750.0 215.9 2.15 −1.06 12.7 56.7

• Best: Best solution value found.
• Avg: Average solution value (computed over five runs).
• time (avg): Average computing time.
• GapB: Percentage gap between Best and the new best known solution value (reported in columns

BKS in Tables 2–4), computed as GapB = 100 (Best-BKS)
BKS .

• GapBKS0 : Percentage gap between Best and the best known solution value found by the current
state-of-the-art algorithms (reported in columns BKS0 in Tables 2–4), computed as GapBKS0 =
100 (Best-BKS0 )

BKS0
.

• leq BKS: The number of instances for which the best solution value Best found by the proposed
algorithm is better than or equal to BKS.

• leq BKS0: The number of instances for which the best solution value Best found by the proposed
algorithm is better than or equal to BKS0.

The mentioned criteria are relevant for analyzing the performance of the algorithms with respect
to both the currently published algorithms and the original version of the proposed metaheuris-
tics. According to the results, by removing the neighborhoods from the VND procedure reduces
the computing time, but also affects the quality of the average solution. The reduction in comput-
ing time depends on the position of the neighborhood in the VND procedure, thus, by removing
the insertion or the swap neighborhoods it is possible to achieve the largest reduction in comput-
ing time. By removing the other neighborhoods in the VND procedure, the reduction in computing
time is marginal. The results regarding the Avg values also indicate that the neighborhoods insertion
and 2-opt are essential in the VND procedure in order to consistently provide good-quality solu-
tions. By comparing the original algorithms with each of the versions obtained by removing each
neighborhood from the VND procedure, it is possible to note that the original version of the algo-
rithms is the best for all the criteria but one. On the other hand, the removal of the neighborhoods
in Group (i) from the random phase (SA) in general does not affect the performance of the algo-
rithms, while the removal of the neighborhoods in Group (ii) affects negatively the performance of
the algorithms in terms of solution quality. Note also that the computing times are generally not
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reduced by removing neighborhoods in the SA procedure. This occurs because the number of ran-
dom moves evaluated is not changed, thus, when a neighborhood is deleted the algorithms evaluate
the same number of moves from the rest of the neighborhoods. By considering all the neighbor-
hoods, the one that impacts the most on the performance of the algorithms (in terms of solution
quality) is the DepotOpenClose. In fact, this neighborhood affects the strategic part of the problem,
that is, the location of the depots, and, when it is not considered, the search avoids an important part
of the solution space. By comparing the original algorithms with each of the versions obtained by
removing each neighborhood from the SA procedure, it is possible to note that the original version
of the algorithms is the best in all the criteria but two. By considering all the possible 12 versions,
it is possible to note that the best Global performance is obtained by considering the original algo-
rithms. The original algorithms provide the best values for five of the seven criteria. According to
the results presented, there are no reasons for excluding some of the proposed neighborhoods from
the SA-VND framework presented in this paper.

As it was mentioned before, the presented neighborhoods have been used in several rout-
ing/LRPs in the literature, some of them have also been used by previous algorithms for solving
the LLRP. Indeed, all the neighborhoods used in the VND phase with exception of the arc-swap
and the shi f t2-1, were also included in the RGA algorithm presented in Moshref-Javadi and Lee
(2016), and all those neighborhoods but the arc-swap, the shi f t2-1 and the interroute 2-opt were in-
cluded in the GBILS algorithm (Nucamendi-Guillén et al., 2022). Furthermore, the solution space
of the MAs (Moshref-Javadi and Lee, 2016) is similar to the solution space of the three proposed
metaheurisrtics. Despite the above, the proposed algorithms clearly outperform all the contenders
in the literature in terms of solution quality. Thus, we can conclude that the combination of all the
proposed ingredients of the metaheuristics presented in this paper, that is, the initial solution, the
exploration (combining multineighborhood SA and VNDs), the LKH-3 procedure, and the search
space (allowing infeasible solutions) are more effective than the methodologies previously used in
the literature.

4.5. A statistical comparison of the proposed metaheuristics

According to the results reported in the previous sections, it is evident that, for what concerns the
quality of the solutions found, the proposed metaheuristics overcome the state-of-the-art heuristic
algorithms MA, RGA, and GBILS. Nevertheless, it is not clear which of the proposed algorithms
is the dominant one. In order to obtain statistical information about the means of the algorithms,
we conducted hypothesis tests using three t-tests, considering 30 runs for each instance, comparing
SA-VND0 versus SA-VND1, SA-VND0 versus SA-VND2, and SA-VND1 versus SA-VND2. The
t-test was chosen in order to perform the same statistical analysis proposed in Moshref-Javadi and
Lee (2016). The results indicate that for 60 instances, with a 5% of significance level, there are
no statistically significant differences among the means of the algorithms. The 16 instances for
which there are differences among the means of the algorithms are presented in Table 9, with their
preferred algorithm.

After analyzing the results, it is possible to conclude that the quality of the solutions provided by
the three algorithms is similar for most of the studied instances. SA-VND1 is the algorithm with
less preferences, while SA-VND0 and SA-VND2 presented different behaviors for few instances.
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Table 9
Summary of the results of the hypothesis tests for comparing the means of the algorithms

Preferred algorithm(s) Instances

SA-VND0 111212, 121112, 133112, 100-10-1b
SA-VND2 131122, 133122, 133222, 100-10-2b, Christ-100-10
SA-VND0 and SA-VND1 123212, 200-10-3, Christ-100-10
SA-VND0 and SA-VND2 111122, 111122, 112122, 122122

5. Conclusions and future research

An effective metaheuristic framework for the LLRP was proposed. It combines the well-known SA
and VND techniques.

The three proposed metaheuristics (SA-VND0, SA-VND1, and SA-VND2) were tested on
the three classical LLRP benchmark data sets, with a total of 76 instances. Extensive computa-
tional experiments show that the proposed metaheuristics outperform the state-of-the-art heuris-
tic algorithms MA, RGA (proposed in Moshref-Javadi and Lee, 2016), and GBILS (proposed
in Nucamendi-Guillén et al., 2022), and the five exact methods (proposed in Nucamendi-Guillén
et al., 2022) in terms of solution quality. Compared with the currently published algorithms, each
of the proposed algorithms is able to improve or reach the best known solution value for 73 of
76 instances. In addition, by neglecting the instances with a number of customers smaller than 50
(which can be easily solved to optimality by the MILP models), the average solution value found
by each of the proposed algorithms is better than the best solution value obtained by algorithm
GBILS for 70% of the remaining instances, and by algorithms MA and RGA for all but one of the
remaining instances. For the small- and medium-sized instances the proposed metaheuristics find
several proved optimal solutions, and in some cases the average value was equal to the optimal one.

Although the metaheuristics presented in this paper are more time-consuming than algorithms
MA, RGA, and GBILS (considering the average computing time associated with one run), they
are much more stable. The proposed metaheuristics are globally able to find target values in smaller
computing times than those of the state-of-the-art heuristic algorithms. Thus, the presented meta-
heuristics can reach solutions with the same or better quality within smaller computing times than
those of the currently published algorithms, and are able to achieve even better quality solutions
when more computing time is allowed.

Comparing the three proposed algorithms, we can conclude that there are not statistically sig-
nificant differences between their performances, nevertheless, SA-VND0 is the algorithm which
requires the smallest computing time.

Based on the obtained results, it is possible to suggest as future directions to apply the proposed
methodology to other problems related to the LLRP. Some examples are the multidepot CCVRP,
the LLRP with time windows, and other extensions of the CCVRP and the FLP.
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Duarte, A., Sánchez-Oro, J., Mladenović, N., Todosijević, R., 2018. Variable Neighborhood Descent. Springer Interna-
tional, Cham. pp. 341–367.
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Appendix A: Optimal solution for the instance Christ-50-5

Route 1
D1-2-24-7-43-3-8-6-26
Route 2
D1-23-48-27-46-12-47-18
Route 3
D1-14-25-9-5-4-13-41-19-40
Route 4
D4-33-45-15-44-37-17-42
Route 5
D4-10-49-38-11-32-1-22-28-31
Route 6
D4-39-30-34-50-16-21-29-20-35-36

Appendix B: The effect of reducing the number of runs

As noted in Section 4.2.4, the proposed metaheuristics are more time-consuming and much more
stable than algorithms RGA and MA. This indicates that, in order to obtain good-quality solutions
with the proposed algorithms, it is not necessary to execute many runs for each instance. Therefore,
it is possible to reduce the global computing time required by the proposed algorithms by reducing
the number of runs executed for each instance. In the experiments described in the following, the
number of runs for each instance is reduced to 10 and 5, and the results are compared with those
obtained by algorithms RGA and MA by considering 30 runs for each instance, algorithm GBILS
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by considering 5 runs for each instance, and the five exact methods. In particular, when the number
of runs for each instance is fixed to 10 (resp., to 5), the first 10 (resp., 5) random seeds, among the
30 created ones, are used. The summary of the results is presented in Tables B.1 and B.2 by con-
sidering the data sets: Tuzun–Burke (36 instances), Prodhon (30 instances), Barreto (10 instances),
Barreto-NG (containing the 6 instances reported in Nucamendi-Guillén et al., 2022), Total (con-
taining the 76 instances of the overall data set), and Total-NG (containing the 36 instances reported
in Nucamendi-Guillén et al., 2022). The rows in Table B.1 have the following meaning.

• #BKS: The number of instances for which the algorithm finds the value BKS. When the number
of runs for each instance is reduced, the values of BKS found with a larger number of runs are
not considered.

• #Avg-BKS0: The number of instances for which the average solution value Avg of the considered
algorithm is better than or equal to BKS0.

• #Best-BKS0: The number of instances for which the best solution value Best found by the pro-
posed algorithm is better than or equal to BKS0.

The columns in Table B.2 have the same meaning as in Tables 2–4. The only new column is
Gap avg, which represents the percentage gap between Avg and BKS0 for the considered instance.
The columns report the average values computed with respect to all the instances of the considered
data set. Note that negative values for Gap avg indicate that the corresponding average value is
better than BKS0

By reducing the number of runs to 10, algorithms SA-VND0, SA-VND1, and SA-VND2 are
able to improve or find the value BKS0 for 73, 73, and 72 instances, respectively. The number of
instances for which the average value is better than or equal to BKS0 is almost the same, while
the quality of the values of the best solutions is slightly reduced. The computing times are now
reduced by three times, which implies that algorithm SA-VND0 performs globally faster than the
RGA and MA algorithms, and the other two proposed algorithms are more competitive in terms
of computing time. On the other hand, by reducing the number of runs to 5, algorithm SA-VND0
is still able to improve or find the value BKS0 for 73 instances, while algorithms SA-VND1 and
SA-VND2 are able to do that for 72 instances. The quality of the values of the best solutions is
slightly reduced, nevertheless, for the three proposed algorithms, in over 80% of the instances the
average value is still better than or equal to the value BKS0. In this case, the computing times
are reduced by around six times, which leads to conclude that all the proposed algorithms require
smaller computing times than algorithms RGA and MA to find better solutions. Despite the above,
algorithm GBILS is the fastest algorithm among all the analyzed ones, but is outperformed by
the proposed algorithms in terms of solution quality. According to the reported results, when the
number of runs is reduced, algorithm SA-VND0 exhibits, among the three proposed metaheuristics,
the most stable performance in terms of solution quality and the smallest computing times.
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