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A B S T R A C T   

This paper analyses a new hybrid paradigm resulting from the integration of unmanned aerial vehicles (UAV), 
commonly referred to as drones, in logistics and distribution processes. This work is motivated by a real 
application, where the company Connect Robotics, the first drone delivery provider in Portugal, made a part
nership with a pharmacy located at a rural region to start implementing the delivery of medicines by drone. The 
pharmacy receives orders throughout the day and has to deliver in the same day with tight lead-times. The 
resulting problem is modelled as a Dynamic Parallel Drone Scheduling Vehicle Routing Problem with Lead-Time. 
A solution method is devised to solve it, thus helping the pharmacist to plan the car and drone delivery routes 
during the day. The results obtained on real instances revealed that the solution method is effective when 
compared to the optimal solutions of the static version of the problem, since the dynamic solution only differs, on 
average, about 7% from the static one. Moreover, some managerial insights about the impact of adding drones to 
the distribution operation are discussed, namely the economic and environmental impacts with cost savings up to 
41% and reduction of monthly CO2 emissions of 310 kg, the use of spare batteries which increase the benefit 
from 16% to 41%, and same-day versus next-day delivery.   

1. Introduction 

Unmanned aerial vehicles (UAV), commonly referred to as drones, 
have been growing rapidly in popularity while also breaking tradition
ally impenetrable barriers for technological innovation across different 
industries (Conceição, 2018). Although they are still in an early stage of 
mass adoption, drones’ capability to reach remote areas autonomously 
with minimum effort, time and energy has been proven useful for 
various applications, from military to commercial sectors (Joshi, 2018). 
Consequently, drones were recognized as a disruptive technology 
(Bamburry, 2015). 

One of the most promising applications for drones is the delivery of 
packages to previously hard-to-access areas, where they can improve 
lead times, decrease costs, and reduce CO2 emissions. Additionally, 
recent technology advancements contribute to the feasibility of drone 
deliveries with longer flight times, automated navigation systems and 
improved payloads, which is the maximum amount of weight a drone 
can carry in addition to its weight (Shavarani et al., 2018). Hence, 

several delivery and logistics providers have already started to introduce 
this technology in their operations, such as DHL, SwissPost, Google and 
Amazon, either by developing their own drone technology or by part
nering up with drone manufacturers (Dorling et al., 2017). However, the 
regulatory issues and the airspace management still represent a concern 
for the implementation of drone deliveries, which is being surpassed 
with the drafting of regulations across different countries and the 
development of Unmanned Traffic Management (UTM) platforms by 
several companies and associations to manage the increased presence of 
autonomous vehicles in the air, especially in cities (Mendes, 2017). 
Therefore, since the existing barriers are fading, there is a new distri
bution paradigm that must be studied. 

Despite these advantages, there are still logistics challenges to be 
tackled in the implementation of a drone-based distribution operation, 
such as battery limitations (which limit flight times), low maximum 
payload, affected by adverse weather conditions. Therefore, a drone- 
only based distribution operation is not feasible for most companies. 
The research opportunity that we aim to explore in this work is the 
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integration of drones in a medicines delivery system that currently 
serves remote areas using only cars. This work is motivated by a real 
application, where the company Connect Robotics, the first drone- 
delivery provider in Portugal, made a partnership with a pharmacy 
located in a rural region to start implementing the delivery of medicines 
by drone. This pharmacy delivers medicines to five nursing homes every 
day. However, this is a service that causes some problems in the phar
macy’s daily operations. First, it requires an available car and an 
employee (pharmacist) leaving their station for a large portion of the 
day, meaning that the pharmacy will have one pharmacist less during 
the deliveries to the nursing homes. Second, rural travels on the 
mountain are very time-consuming even for small distances and, un
fortunately, car accidents are not unprecedented either. Third, the or
ders are received along the day, each nursing home places multiple 
orders each day, and some of them are urgent, requiring sometimes 
multiple car trips per day, with the drawbacks mentioned before. 
Therefore, drone deliveries appear as a potential answer to these issues, 
but it requires tackling some logistics challenges brought by the drones’ 
characteristics. The drones used by Connect Robotics can carry packages 
up to 3 kilos, the maximum flight time is 35 min, the recharge time for 
the battery is 1 h, it requires a landing site with at least 3 m2 and the 
travelling speed is 40 km/h. Given the characteristics of this problem, 
where a new transportation mean (drone) with specific constraints will 
be added to the traditional road mean (car), coupled with non-regular 
requests from the nursing homes received throughout the day that 
must be fulfilled with tight lead-times, new models and solution ap
proaches are demanded to support the day-by-day car and drone de
livery planning. Consequently, the ambition of this work is to develop 
models that are able to support the day-by-day drone delivery planning 
and to analyse the impact of using drones as a complementary trans
portation mean for delivery of medicines. Therefore, our main contri
butions are as follows:  

• First, we introduce a new variant of the vehicle routing problem in 
which cars and drones are combined to make same-day deliveries, 
complying with a maximum lead-time, and considering a dynamic/ 
uncertain environment regarding the orders to be received 
throughout the day. The problem is named as Dynamic Parallel 
Drone Scheduling Vehicle Routing Problem with Lead-Time (D- 
PDSVRP-LT);  

• Second, a mixed integer linear program (MILP) is proposed to 
formulate mathematically the static version of the problem 
(PDSVRP-LT), and it is embedded into a three-step solution approach 
to solve the dynamic version (D-PDSVRP-LT);  

• Third, the solution approach is tested on real data instances, and by 
comparing the results from different versions of the problem (same- 
day versus next-day, one versus two drone batteries, static versus 
dynamic, only-car operation versus car + drone operation), useful 
managerial insights are retrieved to support the decision of deliv
ering medicines by drones. 

The paper is structured as follows. In Section 2, the relevant litera
ture is presented. In Section 3, the D-PDSVRP-LT is described, and in 
Section 4 the solution method proposed to solve it is detailed. Section 5 
presents the data and results of a proof-of-concept project to evaluate the 
potential benefit of integrating drones in the distribution of medicines to 
nursing homes in a rural area and discusses some managerial implica
tions of adding drones to the traditional delivery operation. Section 6 
concludes the paper and identifies some future research directions. 

2. Literature review 

Nowadays, the transportation industry is changing, and the key 
drivers of innovation are the new technologies. According to Speranza 
(2018), six technologies are contributing to innovation in the trans
portation industry: (a) autonomous vehicles, (b) electric vehicles, (c) 

connected vehicles, (d) collaborative consumption, (e) efficient multi- 
modal networks, (f) new materials. Another trend that is driving a 
shift in the landscape of the transportation and logistics industry is 
machine learning in delivery routes optimization. Logistics companies 
rely on route optimisation to make deliveries efficiently. Considering the 
trend for on-demand deliveries, these companies are now required to 
generate optimised routes faster to improve their speed and fuel con
sumption. Therefore, machine learning technologies can enable the 
aggregation and analysis of not only real-time data, like weather, traffic 
and construction delays, but also historical data regarding demand for 
deliveries and pick-ups (Zimberoff, 2018). 

Different models are now being introduced to deliver parcels in the 
last-mile, and one of them is drone deliveries. According to Joerss et al. 
(2016), drones have two disadvantages. The first is the maximum 
payload. Even considering a raise in the payload limit to 15 kilos, a 
drone delivery operator would still require an alternative model to 
deliver the remaining items. The second is the area required for landing 
since current drones have significant size. Even small drones are difficult 
to land in tight urban areas. To diminish these disadvantages, drones 
should be used for delivering small parcels in rural areas. Moreover, 
delivering in rural areas within a specific time-window, or even in the 
same day, with other delivery models can be quite expensive due to the 
vast distances that have to be covered. Hence, drone delivery might as 
well be the only cost efficient or even feasible alternative to offer remote 
recipients high reliability and same-day deliveries. Overall, although the 
total distance traveled in a drone-only delivery system will likely be 
longer than in a truck-only delivery system due to the drone’s limited 
payload, drones may be faster than trucks, have a lower cost per mile to 
operate, and emit less CO2. Thus, they represent a greener alternative to 
conventional delivery modes (Otto et al., 2018). 

The acknowledgement of the potential advantages of employing 
drones in transportation have already generated considerable research 
efforts focused on operational planning challenges associated with 
drones. Most of these studies explore variants of the travelling salesman 
problem (TSP) and the vehicle routing problem (VRP). Otto et al. (2018) 
stated that the drone’s related planning problems are manifold. The 
authors divided these problems into (1) drone-only operations (e.g., area 
coverage, search operations, routing for a set of locations, etc.) and (2) 
combined operations of drones and other vehicles. The latter is divided 
into four sub-classes, where the focus of this paper lies on the “Drone and 
Vehicles Performing Independent Tasks”, i.e., without the need of syn
chronization. In Otto et al. (2018) survey, only six works were identified 
in this sub-class, and just four are related with delivery systems. In a 
recent survey, Macrina et al. (2020) identified five more works in the 
sub-class of problems without synchronization between trucks and 
drones, to which the work of Nguyen et al. (2021) has been recently 
added. 

The TSP version of the problem was first studied by Murray and 
Amanda (2015). The authors faced a delivery problem with customers 
located in close proximity to a warehouse. Drones and a truck pick-up 
packages at the warehouse to deliver them to customers. Packages 
may be delivered either by drone, which transports a maximum of one 
package per sortie, or by truck, which can transport several packages but 
moves at a slower speed. The problem is named as parallel drone 
scheduling traveling salesman problem (PDSTSP). The objective is to 
determine the required number of drones and find tours for the truck 
and for the drones that minimize makespan. Only very small size- 
instances were solved through heuristics. Mbiadou Saleu et al. (2018) 
and Dell’Amico et al. (2020) focused on the same problem, and proposed 
heuristics and matheuristics that proved to be more efficient and 
effective than the methods proposed in the seminal work of Murray and 
Amanda (2015). Li et al. (2018) addressed the same problem, but 
considered multiple depots, while Schermer et al. (2020) combined the 
TSP with the location of drone stations. 

The VRP version, where a fleet of trucks are available, was studied in 
the works of Ham et al. (2018), Ulmer and Thomas (2018) and Nguyen 
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et al. (2021). Ham et al. (2018) considered drop and pickup features, 
and customer time-windows. Also, a multi-depot setting is studied. The 
authors proposed a constraint programming procedure to solve the 
problem. Ulmer and Thomas (2018) investigate the same-day delivery 
setting, in which randomly arriving customer orders should be accepted 
or declined for same-day delivery by the logistics provider. Deliveries 
can be performed either by vehicles or by drones. The solution method 
combines a parametric policy function approximation (PFA) to decide 
either drone or vehicle, a Markov decision-process model and an 
insertion heuristic for the routing problem. Nguyen et al. (2021) studied 
the min-cost Parallel Drone Scheduling Vehicle Routing Problem, where 
the authors consider multiple trucks, and the objective is to minimize 
the total transportation cost. A heuristic is proposed and tested in 
benchmarking instances, where some new best-known solutions are 
obtained. 

A different objective function in a different problem context is pre
sented by Fikar et al. (2016). The authors proposed a decision support 
system that simulates disasters and plans shipments of relief goods via 
transfer points to demand points in the affected area. This enables 
decision-makers to analyze the last-mile distribution of goods by 
scheduling and routing trucks, off-road, as well as UAVs. A mixed 
integer linear programming (MILP) formulation is presented, which 
minimises the average lead-time. The problem is solved through a 
heuristic procedure. 

A multi-objective problem in a cross-docking environment is pre
sented in Tavana et al. (2017). Drones may deliver orders directly from a 
supplier to a customer, but can carry only a very limited payload. As an 
alternative, trucks have a much larger carrying capacity, but they have 
to transport the orders indirectly via an interim warehouse, called cross- 
dock, where goods are unloaded, re-bundled into vehicle loads based on 
their destination, and loaded onto new vehicles, which takes much time 
because of the reloading of the goods and the limited capacity of the 
cross-dock. Two objective functions are considered: cost minimization 
and delivery time minimization. The Epsilon-Constraint method is 
applied to solve the multi-objective problem. A very small instance is 
solved with 3 suppliers and 3 customers. 

Although the problem without synchronization is getting more 
attention from the academy in the recent years, it is receiving less in
terest when compared with the problem with synchronization (e.g., 
Salama and Srinivas (2020), Murray and Raj (2020), Dayarian et al. 

(2020), Thomas et al. (2022)). This imbalance can be observed from the 
surveys of Otto et al. (2018) and Macrina et al. (2020). It is worth to 
mention the work of Jackson and Srinivas (2021), where the delivery of 
medicines by drone is explored by discrete event simulation over three 
delivery-mode scenarios: truck-only, drone-only, and truck-drone tan
dem. Here, drones and trucks work independently but not in parallel. 
Since the focus of this paper is on the problem without synchronization, 
where vehicles and drones work in parallel, we will not further discuss 
the problems with synchronization. 

Following the classification made in the survey of Macrina et al. 
(2020), Table 1 summarizes the works where vehicles and drones work 
independently (without synchronization). It can be observed that 
customer time window, customer lead-time and drop and pickup oper
ations are very seldom studied. Moreover, capacity constraints (for truck 
or drone) are not considered by a large part of the works, and only one 
work considers a dynamic framework. In addition, the great majority of 
the papers tested the models and solution methods proposed only in 
literature instances, where real instances are only considered in one 
work. Our work contributes to fill some of these gaps by considering 
some real features like customer lead-time, capacity constraints, and 
tackles a dynamic environment. Moreover, a real application triggered 
this work, where real data was used to test the solution methodology 
proposed and to get managerial insights regarding this new distribution 
paradigm, where medicines can be delivered by drones. 

3. Problem description 

The Dynamic Parallel Drone Scheduling Vehicle Routing Problem 
with Lead-Time is an extension of the PDSTSP introduced by Murray and 
Amanda (2015). In the PDSTSP, given a set of requests i ∈ R , three 
decisions must be taken: i) which transportation mean should serve each 
order (car or drone), ii) which is the visit sequence (for the car route), 
and iii) when each order must be served. In the Dynamic PDSVRP with 
Lead-Time (D-PDSVRP-LT), a dynamic environment is addressed, where 
orders are received throughout the day from multiple customers (and 
even the same customer sends multiple orders throughout the day) and 
must be delivered on that same day with tight lead-times. Therefore, a 
decision must be made each time an order is received: should we wait for 
receiving more orders and deliver later, or should we fulfil the order 
right now using either car or drone? Moreover, in the D-PDSVRP-LT, 

Table 1 
Summary of the main features of contributions where vehicles and drones work independently (without synchronization).  

Reference # 
Drones 

# 
Trucks 

# 
Depots 

Objective Function T- 
W 

Lead- 
Time 

Drop- 
Pick up 

Drone 
Capacity 

Trucks 
Capacity 

Dynamic Instances 

Murray and 
Amanda 
(2015) 

n 1 1 Makespan No No No No No No Literature (up to 
10 cust.) 

Fikar et al. 
(2016) 

n n n Average Lead-Time No Yes No No No Yes Real (up to 58 
requests) 

Tavana et al. 
(2017) 

n n n Multi-Objective 
(Completion Time and 
Operations Costs) 

No No No No Yes No 7 instances (with 
3 customers) 

Ulmer and 
Thomas (2018) 

n n 1 Expected number of 
customers served 

No No No No No Yes Literature (up to 
800 requests) 

Mbiadou Saleu 
et al. (2018) 

n 1 1 Completion Time No No No No No No Literature (up to 
229 cust.) 

Li et al. (2018) 1 1 n Operations Costs No No No No No No Literature (up to 
20 customers) 

Ham (2018) n n n Makespan Yes No Yes No No No Literature (up to 
100 customers) 

Schermer et al. 
(2020) 

n 1 n Makespan No No No No No No Literature (up to 
50 customers) 

Dell’Amico et al. 
(2020) 

n 1 1 Completion Time No No No No No No Literature (up to 
229 customers) 

Nguyen et al. 
(2021) 

n n 1 Operations costs No No No Yes Yes No Literature (up to 
400 customers) 

This Paper n n 1 Operations Costs No Yes No Yes Yes Yes Real (up to 30 
requests)  
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multiple car and drone trips are allowed, meaning that for the drone 
case, the battery recharge time must be taken into consideration for 
scheduling purposes. 

The same-day delivery assumes that all requests received at day t 
must be satisfied within the same day, with a maximum lead-time. This 
means that vehicle allocation (either car or drone) and routes must be 
scheduled by taking into account a maximum waiting period for the 
customer between ordering and receiving the medicines. For example, 
given a lead-time of 3 h, if a request is received by the pharmacy at 10 a. 
m., it must be delivered before 1 p.m. Since the demand is uncertain, 
with no pattern, this means that making the decision on when to send a 
car or a drone to serve a certain customer becomes more difficult, 
because the pharmacy does not know if more orders from the same 
customer will arrive or if a nearby customer will also send additional 
orders throughout the day. For example, if by 11 a.m. an exit from the 
pharmacy is scheduled to make a delivery to customer 1 (who had 
placed an order of 3 units by then), and if by 1 p.m. an order for 6 
additional units has arrived from the same customer, then if the delivery 
was scheduled to start after 1 p.m. a trip would have been spared. 

The problem can be stated as follows. A single car with capacity QC 
and a single drone with capacity QD are available at the depot location 
(the pharmacy). Both means of transportation can do multiple trips per 
day to deliver medicines to a set of customers c ∈ H (nursing homes) to 
fulfil a set of requests R (recipes) that are ordered throughout the day. 
The car workday is made up of a set of car trips C = {1,⋯,w} and the 
drone workday is made up of a set of drone trips D = {1,⋯, g}. We as
sume that both car and drone trips are performed in the order 1, 2, …, w 
and 1,2, …, g, respectively. The drone battery recharge time is given by B 
and the number of available spare batteries is given by Ω. These pa
rameters will dictate the time elapsed between two consecutive drone 
trips. Each request i ∈ R is characterized by a release time si, that in
dicates the time in which a request is received by the pharmacy, a 
quantity demanded qi, that indicates the number of units ordered, a 
service time pi, that accounts for the time spent at the nursing home to 
deliver the medicines, and a maximum lead-time li, that represents the 
maximum time to fulfil each request. If a request is urgent, then it must 
be delivered in a short period of time, i.e., within a short lead-time. The 
sub-set Rc ⊆ R represents the requests by customer c. The goal is to 
determine the car trips and drone trips and schedule them to meet the 
maximum lead-time of each order in order to minimize the trans
portation cost. The transportation cost corresponds to the fuel cost for 
the car trips plus the energy cost for the drones’ trips. 

4. Solution approach for the dynamic parallel drone scheduling 
vehicle routing problem with lead-time 

The solution approach devised to tackle the Dynamic PDSVRP with 
Lead-Time is made up by three main modules (see Fig. 1): 1) Decision- 
Moments, where it is identified which are the moments when the 
Deliver or Wait decision must be made, e.g., every time an order arrives, 
on an hourly basis, three times per day, etc.; 2) Decision-Making, where 
for each decision moment, and for each order received until that 
moment, the Deliver or Wait decision is made; and 3) Routing & 
Scheduling, where the orders whose decision was Deliver are assigned to 
a transportation mean, and the visit sequence is defined and scheduled. 

4.1. Module 1: Decision-moments 

Decision moments are time instants during the day when the phar
macy needs to decide if the orders received until then should either be 
delivered now or wait for the next decision moment. The time interval 
between decision moments is called shift. The number of decision mo
ments could vary from each time an order is received (i.e., the maximum 
number of decision moments is equal to the number of orders received in 
a day) to the ratio between the workday duration and the lead-time (i.e., 
if the workday duration is equal to 10 h, and the lead-time is equal to 5 h, 

the minimum number of decision moments is equal to two). In between, 
another event should be taken into account to decide the number of 
decision moments: a drone is available to start a trip. Each time a drone 
trip is available also influence the number of decision moments (and 
when they occur). To this end, the battery duration, the recharge time, 
and the number of spare batteries must be considered. Note that a 
decision-moment implies that the decision maker runs the algorithm 
(Modules 2 and 3, see Fig. 1), then the car and/or drone are loaded, and 
the deliveries are performed. Therefore, too many decision-moments 
would imply a too large effort from the decision-maker, and too many 
interruptions on his/her normal activity at the pharmacy. Hence, the 
number of decision moments should be tested starting from the mini
mum number, and gradually increasing that number according to drone 
availability until an appropriate value from an operational point of view 
is reached. 

To schedule the potential decision moments (where φm stands for 
schedule time of decision moment m) we start from defining when the 
last moment should occur (φM), in order to be able to deliver the re
quests before the end of the day (T). To this end, the maximum duration 
between the longest car drive, i.e., the shortest car route that visits all 
customers, and the longest drone trip, i.e., the drone trip to the farthest 
customer, is determined. Therefore, the last moment is defined as T – 
max {longest car drive + loading time + service time × |H|; longest 
drone trip + loading time + service time}. All other moments are 
scheduled starting from the last one accordingly with drone availability. 

For each shift, the general objective is to maximize the number of 
drone trips. Thus, we backtrack from the last moment, considering the 
battery recharge time, the longest drone trip (including loading and 
service time) as the battery duration (to be conservative), and the 
number of spare batteries available. After all the possible decision mo
ments are defined, different options regarding the number of decision 
moments can be considered, and for each number different schedules 
can be defined (this is illustrated in Fig. 2). 

In Fig. 2 is given an illustrative example where the workday duration 
is 10 h (600 min), from 9 am until 7 pm, and the lead-time is 4 h (240′). 

Fig. 1. Overview of the solution approach.  
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In Fig. 2a) the potential decision-moments are defined considering the 
last moment and going backward by considering a battery recharge time 
plus the longest drone trip of 120 min (no spare batteries are available in 
this example). Given the minimum number of decision moments equal 
to 3 (600/240 = 2.5), Fig. 2b) shows two possible options to schedule 
the 3 decision moments (Option1 : φ1 = 200′, φ2 = 320′, φ3 = 560′,

Option2 : φ1 = 80′, φ2 = 320′, φ3 = 560′). Fig. 2c) shows two possible 
solutions when considering 4 decision-moments. 

All orders received until each decision-moment are subject to the 
decision-making module (Module 2). 

4.2. Module 2: Decision-making 

At each decision moment, a decision must be made: either to deliver 
now all the orders received so far or deliver partially, or wait for more 
orders to arrive and deliver at the next moments. Since the drone trips 
have a much lower cost than the car, the goal is to send the maximum 
possible number of requests by drone. An algorithm was devised to solve 
Module 2 (see Fig. 3). 

Each order i from customer c (i ∈ Rc) can be categorized into four 
types: i) mandatory car order, ii) mandatory drone order, iii) optional 
car order, iv) optional drone order. If they break the lead-time constraint 
(
φm+1 + tij + U − si ≥ li

)
, then they are mandatory, otherwise they are 

optional; if they fit the drone capacity (qi≤ QD), then they are drone 
orders, otherwise they are car orders. Note that although the former are 
here defined as drone orders, the transportation mean for those orders is 
decided within Module 3. Mandatory orders always have to be delivered 
in the current decision-moment. However, if a customer has a manda
tory car order, then, to save trips, all this customer’s current orders are 

delivered too. 
If a customer has an optional car order, then the decision is to wait, 

because this means that a trip by car to that customer will be made, so it 
can encompass more orders that will possibly appear in the future. If a 
customer has an optional drone order, it is put on a list of optional drone 
orders (Conditional Delivery). Conditional Delivery means that after 
checking all customer’s orders, if the mandatory drone orders are less 
than the drone trips available for that shift, some or all optional drone 
orders can be delivered now. If the optional drone orders are less than or 
equal to the remaining drone trips available, all optional drone orders 
are delivered. Otherwise, we have to choose which optional drone or
ders should be delivered sorting the customers by a priority coefficient. 
This procedure uses past data to determine which customer usually 
makes more car orders. To this end, past data is aggregated by customer 
and by shift. All the customer’s orders in a shift that have qi > QD are 
added, and then divided by the number of days this customer makes 
orders. Then they are sorted by increasing values of this coefficient. 
Meaning that the first customer usually makes less of car orders, and so 
forth. This is to give drone usage priority to the customers that are more 
likely to be able to receive all their orders by drone, therefore saving a 
car trip. While preserving this order, first, it is checked if the customer 
has a current total number of optional drone orders smaller than or equal 
to the current drone trips available. In other words, if all current orders 
of this customer can be delivered by drone, then the decision is to deliver 
them and to subtract the number of drone trips from the current avail
able ones. Otherwise, we move on to the next customer until either the 
customers are all served, or all drone trips are used. If this process ends 
and there are still drone trips available, then use them all to send the 
orders belonging to the customer with highest priority. All other orders 

Fig. 2. Illustrative example of the definition of the decision-moments.  
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are delayed. 

4.3. Module 3: Routing & scheduling 

When the decision is to Deliver, the delivery routes must be planned 
and performed. In this module, the PDSVRP with maximum lead-time is 
solved, considering the set of requests whose decision is “Deliver” from 
the previous module. Note that this set of requests is given as an input, 
and it is the model that decides the transportation mean, route sequence 
and scheduling that minimizes the transportation cost. Even if in the 
analysis of the previous module an order could be delivered by drone 
(qi ≤ QD), the decision taken by this module could be to deliver it by car, 
since here also other orders from a nearby customer are considered. 

The problem is defined on a complete directed graph G = (V,A) with 
arcs (i, j) ∈ A and vertices V = {1,⋯, n+2w}. Although a single physical 
depot location exists, we assign it to two unique sets of depots: the de
parture depots and the arrival depots, where each car trip starts at a 

unique departure depot and ends at a unique arrival depot. Therefore, 
the single physical depot location is replicated as many car trips exists, i. 
e., w. Thus, V = Vd ∪ R ∪ Vf , where Vd = {1,⋯,w} are the set of de
parture depots, R = {w+1,⋯,w+n} are the set of requests and 
Vf = {w+n+1,⋯, n+2w} are the set of arrival depots. A car travel time 
tij is associated with every arc (i, j) ∈ A. 

The mathematical formulation for the PDSVRP with maximum lead- 
time is given below. 

Sets  

• Set of nodes V = {1, 2,…,w, w + 1, …, w + n, w + n + 1, …, n + 2w}  
o Sub-set of departure depots Vd ⊆ V,Vd = {1, 2, …, w}  
o Sub-set of requests nodes R ⊆ V, R = {w + 1, w + 2, …, w + n}  
o Sub-set of arrival depots Vf ⊆ V, Vf = {n + w + 1, n + w + 2, …, 

n + 2w}  
• Set of car trips C = {1, 2, …, w} 

Fig. 3. Flowchart of Module 2.  
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• Set of drone trips D = {1, 2, …, g}  
• Set of departure depots plus requests V+ = Vd ∪ R  
• Set of requests plus arrival depots V0 = Vf ∪ R 

Parameters  

• qi quantity demanded by request i ∈ R (in units)  
• si release time of request i ∈ R (in minutes)  
• li maximum lead-time of request i ∈ R (in minutes)  
• pi service time of request i ∈ R (in minutes)  
• tij travel time by car from node i ∈ V+ to node j ∈ V− (in minutes)  
• di travel time by drone to request i ∈ R (in minutes)  
• mik = 1 if car trip k ∈ C corresponds to depot i ∈ Vd ∪ Vf  
• QC car capacity (in units)  
• QD drone capacity (in units)  
• U loading/unloading time (in minutes)  
• B Battery recharge time (in minutes)  
• T duration of a working day (in minutes)  
• α car travel cost per minute (in euros)  
• β drone travel cost per minute (in euros)  
• M Big enough number 

Variables 
xijk binary variable that is equal to 1 if node j is visited after node i by 

car trip k (i ∈ V+, j ∈ V0, k ∈ C) 
yij flow variable (i, j ∈ V) 
bik binary variable that is equal to 1 if request i is visited by car trip k 

(i ∈ R, k ∈ C)
ei fulfilment time of request i served by car (i ∈ R)
ej start time of car trip k (j ∈ Vd, mjk = 1) 
ej′ end time of car trip k (j′ ∈ Vf , mj′k = 1) 
δih binary variable that is equal to 1 if order i is visited by drone trip h 

(i ∈ R, h ∈ D)
τih fulfilment time of request i by drone trip h (i ∈ R, h ∈ D)
γk binary variable that is equal to 1 if car trip k is used ( k ∈ C) 

Model 

minC = α
∑

i∈V+

∑

j∈V0

∑

k∈C
xijktij + β

∑

i∈R

∑

h∈D
2diδih (1) 

s.t. 
∑

k∈C
bik +

∑

h∈D
δih = 1, i ∈ R (2)  

∑

j∈V

j∕=i

(yji − yij) = qi

∑

k∈C
bik, i ∈ R (3)  

∑

i∈Vd

∑

j∈R
yij =

∑

j∈R
qj

∑

k∈C
bjk (4)  

∑

j∈R

∑

i∈Vd

yji ≤ wQC −
∑

j∈R
qj

∑

k∈C
bjk (5)  

∑

i∈Vf

∑

j∈R
yij ≤ wQC (6)  

∑

j∈V

i∕=j

xijk +
∑

j′∈V

i∕=j′

xj′ik = 2bik, i ∈ R, k ∈ C (7)  

yij ≤ QC
∑

k∈C
xijk, i, j ∈ V, i ∕= j (8)  

bik =
∑

j∈V
xijk, i ∈ V, k ∈ C (9)  

∑

i∈Vd

∑

j∈R
xijk ≤ 1, k ∈ C (10)  

∑

j∈V
xijk = 0, i ∈ Vd , k ∈ C : mik = 0 (11)  

∑

i∈V
xijk = 0, j ∈ Vf , k ∈ C : mjk = 0 (12)  

∑

j∈V
xijk ≤ 1, i ∈ Vd , k ∈ C : mik = 1 (13)  

∑

i∈V
xijk ≤ 1, j ∈ Vf , k ∈ C : mjk = 1 (14)  

∑

j∈R

∑

k∈C
xijk ≤ 1, i ∈ Vd (15)  

∑

j∈R

∑

k∈C
xjik ≤ 1, i ∈ Vf (16)  

∑

i∈R
bik ≤ nγk, k ∈ C (17)  

γk ≤
∑

i∈R
bik, k ∈ C (18)  

γk ≥ γk+1, k = 1,⋯,w − 1 (19)  

ei + pi + tij − M

(

1 −
∑

k∈C
xijk

)

≤ ej, i ∈ V+, j ∈ V0, i ∕= j (20)  

ej ≥ (si +U)bik, j ∈ Vd, i ∈ R, k ∈ C : mjk = 1 (21)  

ei ≤ ei− n− w+1, i = n+w+ 1,⋯, n+ 2w − 1 (22)  

ei ≤ (si + li)
∑

k∈C
bik, i ∈ R (23)  

ei ≤ T, i ∈ Vf (24)  

∑

i∈R
δihqi ≤ QD, h ∈ D (25)  

∑

i∈R
δih ≤ 1, h ∈ D (26)  

∑

i∈R
δih ≥

∑

i∈R
δih+1, h = 1, ⋯, g − 1 (27)  

τih + pi +B + diδih +U + djδjh+1 ≤ τjh+1 +M
(
1 − δjh+1

)
, i, j ∈ R, h ∈ D

(28a)  

τih + pi + diδih +U + djδjh+1 ≤ τjh+1 +M
(
1 − δjh+1

)
, i, j ∈ R, h ∈ D (28b)  

τih + pi +B + diδih +U + djδjh+2 ≤ τjh+2 +M
(
1 − δjh+2

)
, i, j ∈ R, h ∈ D

(28c)  

τih ≥ (si+U)δih + diδih, i ∈ R, h ∈ D (29)  

Mδih ≥ τih, i ∈ R, h ∈ D (30)  

τih ≤ si + li, i ∈ R, h ∈ D (31)  

τih ≤ T − di, i ∈ R, h ∈ D (32)  

xijk ∈ {0, 1}, i, j ∈ V, k ∈ C (33)  

bik ∈ {0, 1}, i ∈ V, k ∈ C (34) 

T.R.P. Ramos and D. Vigo                                                                                                                                                                                                                    



Expert Systems With Applications 234 (2023) 120992

8

yij ≥ 0, i, j ∈ V (35)  

δih ∈ {0, 1}, i ∈ R, h ∈ D (36)  

ei ≥ 0, i ∈ V (37)  

τih ≥ 0, i ∈ R, h ∈ D (38)  

γk ∈ {0, 1}, k ∈ C (39) 

The objective function (1) is to minimize transportation cost. The 
first part corresponds to fuel cost when requests are served by car trips. 
The second part corresponds to energy cost when requests are served by 
drone trips. Equations (2) ensure that each request must be served either 
by car or by drone. Constraints (3) to (24) are related with car trips, 
while constraints (25) to (32) are related with drone trips. 

Constraints (3) ensure that if request i is served by car trip k, then the 
inflow minus the outflow of request i is equal to its demand. Constraints 
(4) to (6) model the flows from/to the departure/arrival depots. Con
straints (4) ensure that the total outflow from the departure depot is 
equal to the total demand that is served by car trips. Constraints (5) 
impose that the total inflow to the departure depot must be less or equal 
than the residual capacity of the car trips. Constraints (6) ensure that the 
total outflow from the arrival depot must be less or equal than the total 
capacity of the car trips. Constraints (7) impose that if request i is served 
by car trip k, there must be an arc entering and an arc leaving request i. 
Constraints (8) state that the flow of arc (i,j) must be lower than or equal 
to the car capacity if that arc is transversed. If node i is visited by car trip 
k, then the variable bik takes the value 1 (Constraints (9)). Constraints 
(10) ensure that each car trip can departure at most once from the de
parture depot. Constraints (11) to (14) link the car trip k to the corre
sponding departure and arrival depot. Constraints (15) and (16) ensure 
that each departure and arrival depot are used at most once. Constraints 
(17) to (19) impose that the car trips must be in order. Constraints (20) 
to (24) model the time constraints. Constraints (20) guarantee the 
arrival time of request i plus the service time plus the traveling time from 
i to j is equal to the arrival time of request j. Constraints (21) ensure that 
the start time of car trip k must be higher than or equal to the release 
time of the requests belonging to that car trip. Constraints (22) guar
antee that the start time of the next car trip must be higher than the end 
time of the previous car trip. The maximum lead-time of each request is 
ensured by constraints (23) and the total duration of a workday by 
constraints (24). 

Drone capacity is ensured by constraints (25). Constraints (26) 
guarantee that each drone trip serves at most one request. Constraints 
(27) imply that drone trips must be in order. Constraints (28) set the 
start time of the drone trips taken into account the number of batteries 
available. If only one battery is available (28a), the arrival time of 
request j by drone trip h + 1 is equal to the arrival time of request i by 
drone trip h plus the service time plus the traveling time to the depot 
plus the battery recharge time plus the loading time plus the travelling 
time to request j. If a spare battery is available (i.e., two batteries are 
available in total), then drone trip h + 1 can start after drone trip h has 
finished (constraint 28 b), but trip h + 2 must lag the battery recharge 
time from trip h (constraint 28 c). Constraints (29) ensure that the 
arrival time to request i by drone trip h must be equal or greater than the 
release time plus the loading time plus the travelling time. Constraints 
(30) imply that the arrival time variable only takes values if request i is 
served by drone trip h. The maximum lead-time of each request is 
ensured by constraints (31) and the total duration of a workday by 
constraints (32). Finally, constraints (33) to (39) specify the decision 
variable domains. 

5. Proof-of-Concept 

In this section we present the results of a proof-of-concept project to 

evaluate the potential benefit of integrating drones in the distribution of 
medicines to nursing homes in a rural area. 

5.1. General description 

Farmácia da Lajeosa, a pharmacy located in the district of Viseu, 
serves the population of the parish of Lajeosa do Dão but also some 
nearby populations. Nowadays, the pharmacy is testing drones to 
deliver medicines in the region, to offer a better response to the needs of 
the most isolated populations. 

In addition to over-the-counter sales, the pharmacy offers two types 
of services to the nursing homes: punctual delivery of medicines and 
weekly deliveries. Punctual deliveries of medicines, which are the focus 
of this study, are made on the same day they are ordered and includes 
medication that users have started taking due to changes in medication 
or detection of new diseases, and it may be urgent or not. If urgent, it 
may be necessary to carry out the delivery immediately. The punctual 
orders are communicated to the pharmacy either by phone or by email, 
where the name of the nursing home, as well as the user, the medicine 
and the respective dosage are transmitted. Subsequently, the pharmacist 
registers the order in the database and proceeds to prepare it. Currently, 
punctual visits take place around 4 pm, therefore all orders placed up to 
that time are answered on the same day, unless there is no medicine in 
stock. As a rule, requests that arrive after that time are only fulfilled on 
the next day, except rare situations of high urgency (Sismeiro, 2021). 
Moreover, the pharmacy intends to deliver all orders within 5 h, which is 
currently impossible given that only one deliver per day (around 4p.m.) 
is performed. 

The pharmacy supplies five nursing homes, which are scattered 
throughout the Lajeosa do Dão region (see Fig. 4) from Monday to 
Saturday. 

The current service is performed by car using the personnel of the 
pharmacy. Due to the relatively long distances, the irregularity of the 
demand and the conflict on the use of personnel from the pharmacy to 
perform the delivery duties, in many cases delays and postponement to 
the next day of the deliveries are observed. Therefore, the pharmacy 
started using drones to perform occasional delivery tasks. The aim of this 
proof-of-concept is to evaluate the potential of drone deliveries when the 
service is planned by using structured routing and scheduling 
techniques. 

Fig. 4. Location of the nursing homes (numbered from #1 to #5) and Farmácia 
da Lajeosa (signed with a D). Retrieved from Google Maps (2020). 
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5.2. Data 

The pharmacy provided data of the requests received from nursing 
homes #1 to #5 from January 2018 until June 2018 (151 days), where a 
total of 14 527 recipes were received, corresponding to 15 891 units 
ordered. The distribution of the order quantity for the 5 nursing homes is 
given in Fig. 5. Nursing home #2 is the one which orders the larger 
quantity of medicines, while nursing home #1 orders less. 

To test our approach and be able to discuss some managerial insights 
regarding this new distribution paradigm, the data provided was divided 
into two subsets: a learning set that will be use to “learn” how orders 
behave and calculate the priority coefficient (Module 2); and a testing 
set, where the whole solution approach is going to be applied and the 
results compared with the current solution (where the deliveries are 
made only by car). The learning period consists of the first 120 days of 
data (it represents approximately 80% of the whole data set), and the 
testing period consists of the remaining 31 days (from day 121 to day 
151). 

The parameter’s values considered are shown in Table 2. 
The car travel cost per minute (α) considers an average car’s con

sumption of 6 L per 100 km and the average cost of fuel in Portugal of 
1.65€ per litre and an average speed of 60 km per hour. Note that only 
the fuel cost is being pondered, thus representing a conservative 
approach, since the car travel cost should also account for the labour 
cost regarding the pharmacist that drives the car to make the deliveries. 
Moreover, the fuel consumption and the average speed considered are 
optimistic taken into account the type of roads involved, again leading 
to a very conservative approach. 

The drone travel cost per minute (β) considers that a regular drone 
battery usually has a voltage of 11.1 V and an approximate capacity to 
store energy of 5200 mAh, which allows for a maximum flight time of 
35 min. Conversely, this battery requires a power of 57.72 Wh to 
recharge fully. According to official statistics, the cost of electricity in 
Portugal is around 0.20€ per kWh. Consequently, the battery costs 
0.0115 € in Portugal to be recharged to its maximum capacity (POR
DATA, 2018). Since the battery duration is 35 min, the energy cost per 
minute is 0.0003286 €. 

The drone routes require ANAC approval, so for the approved routes, 
the distances from the nursing homes to the pharmacy are shown in 
Table 3. Considering a speed of 40 km/h, the expected flight time is 
determined. 

The travel time by car (tij) was retrieved from Google Maps (see 
Table 4). 

5.3. Settings  

• Number of drone batteries 

The number of batteries available will dictate the number of poten
tial drone trips. A battery has a capacity of 35 min. The shortest drone 
route is to nursing home #2, with 12 min (round-trip), plus the service 
time of 2 min. The longest drone route is to nursing home #5, with 24 
min, plus the service time of 2 min. From a conservative perspective, the 
pharmacy intends that after a drone trip, the battery should be 
recharged. The recharge time is 60 min. If a spare battery is available, 
after the first drone trip, a second one can be made right after, by 
replacing the used battery by a fully recharge one. Therefore, it will be 
tested the existence of 1 spare battery (meaning that 2 batteries are 
available), and the no existence of a spare battery (meaning that only 1 
battery is available).  

• Decision-moments 

The minimum number of decision-moments is three since the 
workday has 660 min, and the maximum lead time is 300 min. To define 
all possible decision-moments taken into account the drone’s trip 
availability, we apply the procedure mentioned at Section 3.2, consid
ering that one or zero spare battery are available. 

We start by defining when the last decision-moment must be 
scheduled, in order to be able to deliver the orders before the end of the 
day (8:00 p.m., 660 min). Considering that the longest car drive is 72 
min, passing through all 5 customers, plus 2 min of service time per 
customer and 5 min to load the car, the total time of delivery is 87 min. 
So, 660 min–87 min = 573 min (6:33 p.m.). This means that 6:33 p.m. is 
the last decision-moment. All other decision-moments are backtracked 
from the last one, considering the battery recharge time plus the longest 
drone trip, to be conservative. The battery recharge time is 60 min, and 
the longest drone trip is 24 min of travel time, 5 of loading time and 2 of 
service time which equals a total of 31 min. When only 1 battery is 
available (zero spare batteries), the possible decision-moments are 
identified at Fig. 6a). When 2 batteries are available (one spare battery), 
the possible decision-moments are identified at Fig. 6b). 

Since only 11% of the orders are received in the first two hours (from 
9 a.m. to 11 a.m., see Fig. 7), we decide that the first decision moment Fig. 5. Distribution of the order quantity by nursing home in 151 days.  

Table 2 
Parameter’s values for the testing set.  

Parameters Value 

QC Car capacity 90 units 
QD Drone Capacity 7 units 
U Loading time 5 min 
B Battery recharge time 60 min 
T Working day length 660 min (from 9 am to 8 pm) 
li Lead-Time (equal to all requests i) 300 min (5 h) 
pi Service time (equal to all requests i) 2 min 
α car travel cost per minute 0.1 €/minute 
β drone travel cost per minute 0.0003286€/minute  

Table 3 
Distance and travel time for drone trips to visit each nursing home.  

Nursing Homes #1 #2 #3 #4 #5 

Distance to Pharmacy (km) 3.77 5.98 6.28 4.22 7.63 
Travel time by drone (m) 6 9 10 7 12  

Table 4 
Travel time by car.   

#1 #2 #3 #4 #5 

Pharmacy 14 20 19 6 12 
#1 – 6 29 12 15 
#2  – 28 18 10 
#3   – 23 19 
#4    – 19  
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can be at minute 118 (or later), and the last decision moment has to be at 
minute 573. With this time interval in mind, several combinations will 
be tested, varying the decision-moment times (accordingly with the 
possible decision-moments shown in Fig. 6) to find the best combination 
and the best number of decision-moments. From three to six decision- 
moments will be tested. More than six decision-moments is, from an 
operational point of view, difficult to implement since the pharmacists 
also have to serve the public. 

5.4. Results 

The proposed solution approach was coded in Python, using CPLEX 
version 12.10 to solve the mathematical model, and all the experiments 
were run in a computer Intel i9-10850K 3.60 GHZ, 64 GB RAM. As 
previously mentioned, the results presented in this section are simula
tions of what would happen if the methodology proposed would be 
implemented by the pharmacy to decide which orders should be deliv
ered by car or by drone, and when. 

Fig. 8 shows the total cost (considering the 31-day testing period) by 
varying the number of decision-moments (DM) and selecting the best 

combination for decision-moments times (the results for all combina
tions tested are shown in Appendix A). We can observe that the differ
ence in the total cost is not significant among the four options studied 

Fig. 6. Definition of the potential decision-moments, considering a) one battery, and b) two batteries.  

Fig. 7. Percentage of orders received by hour.  

Fig. 8. Best Total Cost by Number of Decision-Moments.  
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[219.68–227.11€]. Nonetheless, three and four decision-moments had 
worse results than five and six decision-moments solutions. The best 
result for three DM is 227.11 € with the combination {209′, 422′, 573′} 
and 224.12 € for four DM with the combination {118′, 240′, 422′, 573′}. 
With five and six DM, there are slight improvements. The best result for 
five DM is 221.46 € with combination {209′, 391′, 422′, 482′, 573′} and 
219.68€ for six DM with combination {209′, 331′, 391′, 422′, 482′, 573′}. 
One of the advantages of having more DM is related to the lead-time 
constraint of the orders. More DM mean higher flexibility in relation 
to what shift an order has to go in. Let’s take the three DM example. 
Because there is such a big gap between 209 and 422, all orders that 
were made roughly before minute 122 (11:02 h), cannot go in the next 
shift due to the lead-time constraint (less than 300 min). Fig. 9 shows 
that with 3 and 4 DMs only a reduce percentage of orders is postponed 
(at shift 1, around 15% of the orders are postponed, and at shift 2, 
around 30% of the orders are postponed), while with 6 DM the per
centage of orders postponed are always (every shift) higher that 45%. 

Given the best combination found, the number of drone trips avail
able are shown in Table 5. The number of drone trips and car trips 
actually performed is given in Fig. 10, where we can see that the trend is 
to perform more drone trips in the firsts shifts and more car trips in the 
lasts shifts. Comparing the number of available drone trips with the 
actual number, we find a utilization rate of 6.28/10 for 3 DM, and 6.84/ 
10 for 6 DM. Thus, regardless of the number of decision-moments, the 
average number of drone trips per day do not differ significantly. The 
same conclusion is obtained for the average number of car trips: 2.24 car 
trips per day with 3 and 4 DM and 2.36 with 5 and 6 DM. 

5.5. Discussion  

• Effectiveness of the proposed solution method 

To assess the effectiveness of the proposed method to solve the Dy
namic PDSVRP-LT, the results are now compared with the optimal ones 
if the demand were known in advance (static version of the problem). If 
at the beginning of the day we had perfect information about the 
number of units that each nursing home will order during the day, and 
which will be the release time of each order, what would be the optimal 
planning (routing and scheduling) to fulfil those orders? To answer this 
question, the mathematical model for the PDSVRP presented in Section 
4 is solved for each day, considering the information about all daily 
orders. The model was executed for the 31-day period and the results are 
presented in Table 6. Table 6 shows the total number of requests 
received per day, the objective function value (OFV) when solving the 
MILP model with information of all orders in advance, the CPLEX lower- 
bound gap, the computational time (every run was limited to 3600 s), 
and the number of car and drone trips obtained for each day. Note that 
the time limit of 3600 s was only imposed for the static version (just to 

test the effectiveness of the algorithm, not for practical purpose since in 
real-life we do not have information about all orders at the beginning of 
the day to plan ahead). For the dynamic version, a time limit of 2 min 
was imposed for every run, and never reached. 

The (quasi) optimal transportation cost for the 31-day sample, using 
car and drone trips to fulfil the orders, is 205.41€, with a total of 53 car 
trips and 175 drone trips. We need to use the term quasi optimal since 
for some runs the optimality has not been proven within the computa
tional time limit. The results are compared with the proposed solution 
method for the Dynamic PDSVRP-LT in the last five columns of Table 6. 
Considering the best solution found (with 6 decision-moments), a total 
deviation of 7% from the (quasi) optimal solution is obtained, where for 
8 days the optimal solution was reached, and in 12 days the deviation 
was less than 9%. Note that in days 128 and 135, the dynamic approach 
found a solution better that the static one, which was not solved to 
optimality. These results demonstrate that the proposed method is 
effective, along with the short computational time needed to provide a 
solution (in less than two seconds optimality was proved for every 
decision-moment). On the other hand, in 9 days the deviation is higher 
than 11% where the dynamic solution has almost always one car trip 
more than the static one. In two days, the deviation was higher that 65% 
(days 125 and 142). We examined in detail these two days to find out the 
reasons behind this difference. Fig. 11 shows both solutions for day 125. 
Request #9 was released at 173′ with a demand of 12 units (s9 = 173′ and 
q9 = 12), meaning that it must be delivered by car (q9 > QD). At the 
static optimal solution (on the left of Fig. 11), request #9 is delivered by 
car in a route that starts at 461′ and arrives at nursing home #4 at 473′, 
exactly 300 min after the release time, complying with the maximum 
lead-time. In the same route, requests #15, #17, and #19 are delivered 
as well (all of them belong to nursing home #4). Note that request #19 
was released at 456′ and the delivery route had started right before that 
(5 min after given the loading time). At the dynamic solution (on the 
right of Fig. 11), at DM1 (209′) it was decided to postpone the delivery of 
request #9. Also, at DM2 (331′) and DM3 (391′) the decision was the 
same. However, at DM4 (422′) it was no longer possible to postpone the 
delivery for the next DM since DM5 is at 482′, meaning that the lead time 
for request #9 would not be met (482′+ 5‘+ 7′– 173′ > 300′). Therefore, 
a car trip needs to be performed at DM4, and includes all the requests 
received so far from nursing home #4 and not delivered yet (i.e., re
quests #9 and #15). Since we are at 422′, and requests #17 and #19 will 
only be released at 432′ and 456′, respectively, this car trip only delivers 
#9 and #15. Therefore, at the dynamic solution another car trip to 
nursing home #4 needs to be performed at DM6 (573′), since request 
#19 has a demand of 8 units (q19 > QD). 

A similar situation happened at day 142, where in the static optimal 
solution one car trip is performed starting at 533′, including requests 
that were released between 240′ and 528′. The request released at 240′ 
had arrived at 539′, meeting the lead-time constraint. At the dynamic 
solution, that request was delivered at DM5 (482′) since at DM6 (573′) 
was not possible to meet the lead-time. Moreover, at shift 6 three re
quests were received, and only 2 drone trips are available, so one of the 
requests needed to go by car. Therefore, two car trips are done in the 
dynamic solution, increasing the cost of the solution comparing with the 
static one, where all information regarding the release times were knew 
beforehand.  

• Economic and environmental impact of adding drones to the 
traditional operation 

Currently, all deliveries are made by car. As a rule, the pharmacy 
makes one delivery per day, around 4p.m. Nonetheless, sometimes two 
deliveries per day are made, one in the early afternoon and the other at 
the end of the day. To have a fair comparison between the operation 
with only car with the operation with drones, we assume two deliveries 
per day, since in that way the lead-time of 300 min (5 h) can be met. 
With only one delivery per day around 4p.m., besides not meeting the 

Fig. 9. Percentage of postponed orders in each shift for different number of 
decision-moments. 
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lead-time, around 30% of the orders would not be delivered in the same 
day. To simulate two car deliveries per day, two decision-moments were 
considered: the first at 2p.m. (300′) and the second at 6:33p.m. (573′). 
The PDSVRP model with only a set of car trips available was run for each 
moment, where all orders received until that moment must be delivered. 
The results are presented in Table 7. 

The total cost is 369€, where there is always one to two car trips in 
the early afternoon and one to three at the end of the day. Adding a 
drone to perform the delivery operations, brings savings of 41%, which 
represents a saving cost of around 150€ per month. Note that only a 

conservative fuel cost was considered for the car trips (the fuel con
sumption rate was assumed to be 6 l/100 km, what is a low value for the 
type of road network in the studied region). If the car travel cost per 
minute doubles (i.e., if a higher fuel consumption rate or a higher cost 
per litre of fuel are considered), the saving cost reaches 300€ per month. 
If the pharmacist cost were included, the cost savings would be even 
higher. A brief sensitive analysis was conducted on the car travel cost per 
minute (α) and on drone travel cost per minute (β), increasing the values 
from +10% until +100%, but the solutions did not change (the number 
of drone and car trips remains the same, given the large cost difference 

Table 5 
Number of drone trips available in each shift for different number of decision-moments.   

3 Decision-Moments 
{209′,422′,573′} 

4 Decision-Moments 
{118′,240′,422′,573′} 

5 Decision-Moments 
{209′,391′,422′,482′,573′} 

6 Decision-Moments 
{209′,331′,391′,422′,482′,573′} 

Shift 
2 

5 3 4 3 

Shift 
3 

3 4 1 1 

Shift 
4 

2 3 1 1 

Shift 
5  

2 2 1 

Shift 
6   

2 2 

Shift 
7    

2 

Total 10 12 10 10  

Fig. 10. Average number of (a) drone and (b) car trips performed in each shift for different number of decision-moments.  
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between them). 
Besides the positive economic impact of adding drones to the current 

operation, the environmental impact is also noteworthy. The impact in 
terms of CO2 emissions is here assessed through a simple method. The 
number of kilometres travelled by car are assessed in both situation 
(only car vs. car + drone). Those kilometers are then translated into fuel 
consumed and then converted into CO2 emissions through the conver
sion factor of 2.64 kg of CO2 per liter of diesel fuel (EEA Grants, 2021). In 
the only car solution, 2406 km are travelled. According to Demir et al. 
(2014), on a slope, wheel horsepower demand increases significantly 
with vehicle weight because of road slope force. In some regions, road 

gradient plays an important role and can result higher CO2 emissions, 
which is the case of the region studied (mountains). The study of Demir 
et al. (2011) shows that fuel consumption of a medium-duty vehicle on a 
1% road slope may increase by up to six liters on a 100 km road segment. 
Given that the roads on the mountains have a slope higher than 1%, but 
on the other hand we are dealing with a light-duty vehicle and not a 
medium-duty vehicle, we will use the increase of six liters. Thus, 12 l/ 
100 km is the fuel consumption rate considered for this application, 
meaning that 289 L are consumed. Applying the conversion factor of 
2.64 kg of CO2 per liter of fuel, 762 kg of CO2 are emitted per month for 
the only car operation. For the car + drone operation, the number of 

Table 6 
Comparison of the results obtained for the Static PDSVRP-LT and Dynamic PDSVRP-LT (with 6 DM) for the 31-day testing period.    

Static PDSVRP-LT Dynamic PDSVRP-LT Deviation 

Days # Req. Total OFV (€) GAP (%) CPU (s) # car trips # drone trips Cost CPU (s) # car trips # drone trips % 

121 9 6.026 0% 1.7 1 5 6.031 0.51 1 6 0.1% 
122 3 4.005 0% 1.1 1 1 4.005 0.40 1 1 0.0% 
123 17 6.845 0% 3258 1 8 8.041 0.71 2 8 17.5% 
124 10 9.205 0% 232 2 1 9.216 0.57 2 3 0.1% 
125 16 3.648 0% 352 2 8 6.040 0.82 3 7 65.6% 
126 21 12.409 39% 3600 3 2 12.422 0.73 3 4 0.1% 
127 7 4.015 0% 1.4 1 3 4.019 0.50 1 4 0.1% 
128 24 12.856 40% 3600 2 11 12.835 0.98 3 8 -0.2% 
129 15 7.850 0% 92 2 7 8.044 0.58 2 7 2.5% 
130 21 7.268 22% 3600 2 10 8.456 0.83 2 8 16.3% 
131 12 3.858 0% 2.3 1 10 3.858 0.54 1 10 0.0% 
132 16 8.800 38% 3600 2 0 11.016 0.53 3 4 25.2% 
133 5 0.027 0% 1 0 5 0.027 0.39 0 5 0.0% 
134 15 5.264 0% 458 2 11 6.459 0.74 3 10 22.7% 
135 19 11.614 33% 3600 4 3 10.431 0.77 3 6 -10.2% 
136 16 1.265 0% 12 1 10 1.265 0.53 1 10 0.0% 
137 14 8.213 0% 33 2 2 10.429 0.53 3 5 27.0% 
138 10 6.826 0% 38 2 4 7.622 0.44 3 4 11.7% 
139 6 0.035 0% 1.2 0 6 0.035 0.47 0 6 0.0% 
140 14 10.632 39% 3600 2 6 10.632 0.73 2 6 0.0% 
141 20 8.038 0% 3600 2 7 8.051 0.76 2 9 0.2% 
142 14 1.261 0% 1.7 1 10 2.461 0.55 2 10 95.2% 
143 17 10.806 28% 3600 3 1 10.818 0.62 3 4 0.1% 
144 10 9.018 0% 758 2 3 9.132 0.44 2 5 1.3% 
145 4 0.024 0% 1.1 0 4 0.024 0.50 0 4 0.0% 
146 20 15.944 42% 3600 4 8 17.338 1.91 4 7 8.7% 
147 14 9.028 11% 3600 2 6 9.235 0.58 3 7 2.3% 
148 18 4.458 72% 3600 2 9 5.455 0.58 2 10 22.4% 
149 13 9.620 11% 3600 2 4 9.634 0.54 2 6 0.2% 
150 16 6.542 37% 3600 2 8 6.638 0.87 2 7 1.5% 
151 2 0.012 0% 1.1 0 2 0.012 0.40 0 2 0.0% 
Total 418 205.41   53 175 219.68  61 193 6.9%  

Fig. 11. Representation of the solutions obtained for day 125 when solving the Static PDSVRP-LT (on the left) and the Dynamic PDSVRP-LT (on the right).  
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Table 7 
Results for the only car operation with two delivery-moments per day.   

Total 1st Delivery Moment 2nd Delivery Moment 

Days Cost (€) # car trips OFV (€) GAP (%) CPU (s) OFV (€) GAP (%) CPU (s) 

121 11.60 2 4.4 0 0.01 7.2 0 0.07 
122 5.20 2 1.2 0 0 4 0 0.07 
123 11.80 2 7.2 0 0.6 4.6 0 0.94 
124 10.20 2 6 0 0.09 4.2 0 0.1 
125 10.00 3 4.6 0 0.04 5.4 0 3.59 
126 15.60 3 8.4 0 5.84 7.2 0 0.04 
127 8.40 2 4 0 0.01 4.4 0 0.02 
128 13.90 2 6.7 0 0.22 7.2 0 2.72 
129 13.50 2 6.7 0 0.08 6.8 0 0.12 
130 15.20 3 7.2 0 0.09 8 0 0.52 
131 11.80 2 4.6 0 0.05 7.2 0 0.04 
132 9.20 2 4.6 0 0.18 4.6 0 0.65 
133 11.10 2 7.1 0 0.01 4 0 0.01 
134 11.70 2 7.1 0 0.06 4.6 0 0.13 
135 15.10 3 7.1 0 0.12 8 0 0.54 
136 11.80 2 4.6 0 0.09 7.2 0 0.68 
137 17.40 3 6.7 0 0.06 10.7 0 3.95 
138 11.80 2 4.6 0 0.05 7.2 0 0.02 
139 8.60 2 4.6 0 0.02 4 0 0.01 
140 13.90 2 7.1 0 0.06 6.8 0 0.16 
141 13.90 2 6.7 0 0.1 7.2 0 1.86 
142 9.20 2 4.6 0 0.1 4.6 0 0.64 
143 12.60 3 4.6 0 0.1 8 0 0.36 
144 11.00 2 4.2 0 0.02 6.8 0 0.05 
145 8.60 2 4.6 0 0.01 4 0 0 
146 18.40 4 7.2 0 0.08 11.2 0 18.09 
147 14.30 2 7.1 0 0.08 7.2 0 0.21 
148 11.80 2 4.6 0 0.1 7.2 0 0.21 
149 14.40 2 7.2 0 0.04 7.2 0 0.2 
150 9.20 2 4.6 0 0.05 4.6 0 0.61 
151 8.00 2 4 0 0 4 0 0 
Total 369.20 70 173.9 0 8.36 195.3 0 36.61  

Table 8 
Comparison of the results obtained with one or two drone batteries available.   

2 Batteries 1 Battery Deviation 

Days Cost (€) # car trips # drone trips Cost (€) # car trips # drone trips Cost (%) # car trips # drone trips 

121 6.03 1 6 6.03 1 5 0% 0 − 1 
122 4.00 1 1 4.00 1 1 0% 0 0 
123 8.04 2 8 14.83 4 5 84% 2 − 3 
124 9.22 2 3 9.22 2 3 0% 0 0 
125 6.04 3 7 10.23 4 5 69% 1 − 2 
126 12.42 3 4 14.81 4 3 19% 1 − 1 
127 4.02 1 4 5.21 2 2 30% 1 − 2 
128 12.83 3 8 14.91 3 3 16% 0 − 5 
129 8.04 2 7 10.42 3 3 29% 1 − 4 
130 8.46 2 8 13.53 3 5 60% 1 − 3 
131 3.86 1 10 10.43 2 5 170% 1 − 5 
132 11.02 3 4 11.01 3 3 0% 0 − 1 
133 0.03 0 5 0.03 0 5 0% 0 0 
134 6.46 3 10 14.33 3 5 122% 0 − 5 
135 10.43 3 6 10.42 3 5 0% 0 − 1 
136 1.27 1 10 11.03 3 5 772% 2 − 5 
137 10.43 3 5 14.42 4 3 38% 1 − 2 
138 7.62 3 4 7.62 3 4 0% 0 0 
139 0.03 0 6 4.02 1 4 11450% 1 − 2 
140 10.63 2 6 14.61 3 3 37% 1 − 3 
141 8.05 2 9 15.62 3 5 94% 1 − 4 
142 2.46 2 10 13.43 4 5 446% 2 − 5 
143 10.82 3 4 10.81 3 3 0% 0 − 1 
144 9.13 2 5 9.13 2 5 0% 0 0 
145 0.02 0 4 0.02 0 4 0% 0 0 
146 17.34 4 7 22.12 5 3 28% 1 − 4 
147 9.24 3 7 10.81 4 3 17% 1 − 4 
148 5.45 2 10 8.23 4 5 51% 2 − 5 
149 9.63 2 6 10.82 3 4 12% 1 − 2 
150 6.64 2 7 8.22 3 3 24% 1 − 4 
151 0.01 0 2 0.01 0 2 0% 0 0 
Total 219.68 61 193 310.35 83 119 41% 22 ¡74  
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kilometers is 1427 km, meaning 171 L of fuel are consumed, and 452 kg 
of CO2 are emitted per month. Therefore, 310 kg of CO2 less are emitted 
per month when adding drones to the traditional operation, represent
ing an annual environmental impact benefit of 3720 kg of CO2.  

• Impact of spare batteries available 

The results presented before assumed that the pharmacy has one 
spare battery at its disposal (i.e., a total of 2 batteries). However, the 
existence of one spare battery has an associated cost. Therefore, the 
hypothesis of having only one battery was studied, and the Dynamic 
PDSVRP-LT was solved considering that after a drone trip is performed, 
a recharging time of 1 h must be complied. 

Table 8 contains the comparison between the possible operations 
with one and two batteries available, considering 6 decision-moments. 
Having only one battery increases the cost in 41% (310€ vs. 220€), 
what is somehow significant. It is also worth noticing that the number of 
car trips does not increase much with only 1 battery (83 vs. 61), meaning 
that more customers are visited in the same car trip. The number of 
drone trips reduces by a third (193 vs. 119). This is explained by the fact 
that the utilization rate when two batteries are available is 62% while 
when one battery is available is 77%. Moreover, in 11 out of 31 days, it 
doesn’t make any difference having two batteries instead of one. If the 
cost of a spare battery is 90€ or less per month, it worth to have a spare 
one; otherwise, no. Nonetheless, having only one battery implies a small 
reduction comparing with the only car operation (310€ vs. 369€, rep
resenting a cost saving of 16%).  

• Impact of Same Day delivery versus Next Day delivery 

The solution approach proposed permits the pharmacy to do the 
deliveries at the same day when orders are made. In this sub-section we 
intend to investigate what is the cost increment of delivering on the 
same day, instead of delivering on the next day. To obtain a solution for 
the next day delivery, the PDSVRP model can be used, since it gives a 
solution considering that all the demand is known and can be aggregated 
by nursing home. Moreover, the scheduling constraints are inactive 
since there is no need to comply with any lead-time since orders are 
delivered on the next day. The results with and without drones are 
described in Table 9. 

In the Next Day Delivery scenarios, as the route planning is done for 
the next day, it allows the number of trips for the same customer to be 
kept to a minimum, since all orders can be aggregated and delivered at 
the same time. For this reason, these scenarios have the lowest costs 
(195€ for an only-car operation, and 157€ for a car + drone operation). 
Considering the traditional operation, with only car trips, the same day 
delivery becomes very expensive comparing with the next-day delivery 
(the cost increases 89%). However, when an operation with drones is 
available, that cost difference reduces to 38%. We can also state that the 
cost of a same-day operation with drones (220€) is somehow similar 
with a next-day operation with only car (195€). Meaning that adding 
drones to the operation is able to increase the service level to the 

customers (providing a same-day delivery, with a tight lead-time), with 
a slight increase in cost. 

We also tested a hybrid scenario, where Same Day Delivery is made, 
but only for orders received until a particular hour. This means that 
orders received until that time are delivered on the same day, and the 
remaining orders are delivered next day. For that, we apply our meth
odology, but changed the last decision-moment to 4:00 p.m. (420′), and 
5:00 p.m. (480′). We notice that the cost is slightly higher than our 
proposal (with the last decision-moment equal to 573′), but the service 
level is significantly worse since 119 requests (28% of the total requests, 
that represents, on average, 3.8 requests per day) and 60 requests (14% 
of the total requests, that represents, on average, 1.9 requests per day) 
are delivered next day when the last decision-moment is 4:00p.m. and 5 
p.m., respectively (see Appendix B). One could expect that the cost 
would be lower and offset the decrease in service level, but what hap
pens is that the requests not served within the same day need to be 
delivered on the next day and become somehow “urgent”. In fact, their 
release time is now equal to 0’ (i.e., 9:00 a.m.) and their lead-time of 
300’ must be still met. This implies extra trips done in the morning that 
do not happen in our baseline scenario.  

• Testing scalability 

To test the scalability of the proposed algorithm and given the 
characteristics of this type of problem/application – rural areas, deliv
ering of medicines to nursing homes, where we are not serving indi
vidual customers – we opted to double the number of nursing homes to 
be served by the pharmacy. The locations for the new potential nursing 
homes are represented in Fig. 12. The orders of each new nursing home 
for the 31-day testing period were randomly generated, following the 
orders’ pattern of the original nursing homes (see Fig. 13). In the orig
inal data we had a total of 418 orders and now we generate 414 more, 
totalizing 832 orders. 

All parameters’ values were maintained except for the car capacity, 
where we consider QC = 135 (50% more than the original capacity), and 
the travel times matrices (car and drone) were updated. To apply the 
proposed algorithm, we need to recalculate the last decision moment 
and then check the number of drones trips that can be made in each shift. 
Now the shortest car route to visit all 10 nursing homes is 101 min. The 
last decision moment is now 534′ (660′ – 101′ – 2′ × 10 – 5′), and then we 
backtracked the other decision moments following the same pattern that 
the best one from the base case: {170′, 292′, 352′, 383′, 443′, 534′}. Since 
now the last decision moment is sooner, this will have two implications. 
On one hand, it is possible to do three drone trips in the last shift (instead 
of two, totalizing 11 possible drone trips per day). On the other hand, 
since the pharmacy receives orders until 6:30 p.m., all orders received 
after 5:54 p.m. will not be attended at the same day. We identify how 
many orders fall in this situation. In addition, we have performed a 
second simulation where all those orders were considered to be received 
before 5:54 p.m. to assess the impact. In practical terms, the pharmacy 
needs to inform all nursery homes about the last hour. The results of 
both simulations are in Table 10. 

From Table 10 we conclude that the proposed algorithm can scale 
and is able to solve larger instances, with more nursing homes and more 
requests. In the first simulation, where requests received after 534′ are 
not considered (74 requests out of 832), a solution is obtained in few 
seconds (on average 1.81 s, with a maximum of 9 s). For the second 
simulation, where all requests were considered to be received before 
534′, the average computational time needed increases (on average 8.18 
s, 6 s more that in the first simulation) but still in a very reasonable time 
for this type of application (the CPU time is the total considering the six 
DM). In the second simulation there is one day (day 128) where the 2- 
minute limit was reached for one decision-moment. 

Table 9 
Comparison of the results for the next and same day delivery, with and without 
drones.   

Next Day 
Delivery 
(Only Car) 

Same Day 
Delivery 
(Only Car) 

Next Day 
Delivery 
(Car þ
Drones) 

Same Day 
Delivery 
(Car þ
Drones) 

Cost (€) 195.3€ 369.2€ 157.05€ 219.68€ 
# car trips 44 70 36 61 
# drone trips 0 0 26 193 
Cost Deviation 

(Same versus 
Next Day)  

+89%  +38%  
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6. Conclusions 

This work tackles a new hybrid distribution paradigm where medi
cines can be delivered either by car or drone in rural areas. The potential 
of drones is greater in rural areas, since there are fewer obstacles to their 
use, as there are in urban areas. Furthermore, in rural areas there are 
isolated regions of difficult access, considering the road conditions and/ 
or large distances separating them from cities, making it expensive for a 
vehicle to travel to these places to meet demand. Thus, Farmácia da 
Lajeosa saw in this technology a way to improve their service to its 
customers (nursing homes), while reducing operation costs. Despite 
being a recent technology, there are already countless studies about 
deliveries by drones, and some where restrictions, such as battery and 
payload are already considered. However, for most studies done, route 
planning is done knowing the demand in advance. There are few studies, 
where demand uncertainty is taken into account. Hence, we developed a 
solution approach to solve the Dynamic PDSVRP with Lead-Time, since 
the pharmacy does not know what orders will be placed during the day, 
having to make decisions about when to deliver and by which trans
portation mean (car or drone), to comply with a same-day delivery with 
a certain lead-time. The solution approach involves three steps, where at 
the last step a new mathematical model was developed to solve the 
PDSVRP considering multiple car trips and drone trips, car and drone 
capacity, lead-time, and battery charging constraints. 

The solution approach was applied to 31 days considering the real 
orders received by the pharmacy in those days. Testing several combi
nations for the schedule of 3 to 6 decision-moments, the best solution 
was found for 6 DM, not evenly spread through the day {209′, 331′, 391′, 
422′, 482′, 573′}. The effectiveness of the solution method was assessed 
by comparing the results to the static version of problem and a total 

deviation of 7% was observed, meaning that dealing with the uncer
tainty regarding the orders that will be received throughout the day by 
the methodology devised only deviates 7% in cost from knowing in 
advance all information about the orders. 

Adding drones to the current operation for the pharmacy reduces 
costs by 41% and increases service level since all orders can be delivered 
within the same-day and respecting a tight lead-time. This result could 
be enhanced if urgent orders are considered. Moreover, the impact in 
cost reduction would be even higher since a conservative approach 
regarding the cost involved was followed in this work. Moreover, the 
reduction in CO2 emissions is something that is also worth to be pointed 
out. Another important conclusion is that using drones allows a same- 
day delivery operation to have almost the same cost as a next-day 
operation with only car. Also, the impact of having a spare battery 
was assessed as somehow significant. 

Given that companies are increasingly considering drones to make 
their deliveries, models and algorithms that could be incorporated into 
decision support tools to help them allocating orders among different 
transportation means, orders’ scheduling and routing are needed. Some 
future research directions should be pursued, such as, split deliveries to 
cope with the drone capacity constraint, modelling more accurately 
energy consumption and recharge (a conservative approach was fol
lowed in this work, meaning that results could be improved if the battery 
consumption was incorporated rather than assuming that after a drone 
trip, a recharge must happen). Also, stochastic models could be explored 
to tackle the dynamic feature. 

CRediT authorship contribution statement 
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Appendix A  

3 Decision-Moments Total Cost 

[118, 300, 573] 242.35 € 
[118, 331, 573] 238.29 € 
[209, 300, 573] 241.37 € 
[209, 331, 573] 237.31 € 
[209, 391, 573] 235.33 € 
[209, 422, 573] 227.11 € 
[209, 482, 573] 243.01 € 
[209, 513, 573] 252.08 €  

Table 10 
Results for larger instances.    

1st Simulation 2nd Simulation 

Days # Req. 
Total 

Cost CPU 
(s) 

Gap # car 
trips 

# drone 
trips 

# Req. after 
Last DM 

Requests 
Delivered 

Cost CPU (s) Gap # car 
trips 

# drone 
trips 

121 19 18.834 0.17 0.00% 3 6 2 17 18.850 0.58 0.00% 2 8 
122 10 4.062 0.10 0.00% 1 8 0 10 4.062 0.71 0.00% 1 8 
123 33 18.478 3.02 0.00% 4 11 4 29 19.278 22.68 0.00% 4 11 
124 29 18.568 1.62 0.00% 4 8 1 28 18.772 2.24 0.00% 4 9 
125 31 13.170 2.22 0.00% 3 10 2 29 13.170 2.37 0.00% 3 10 
126 39 22.155 0.56 0.00% 5 8 4 35 22.162 0.62 0.00% 5 9 
127 12 9.243 0.10 0.00% 2 7 0 12 9.243 0.10 0.00% 2 7 
128 40 15.186 3.70 0.00% 3 11 6 34 16.981 120.26 6.19% 3 11 
129 32 16.783 7.87 0.00% 3 11 1 31 16.783 12.21 0.00% 3 11 
130 37 23.185 1.29 0.00% 5 11 1 36 23.185 1.45 0.00% 5 11 
131 26 11.372 1.05 0.00% 2 11 2 24 11.872 7.07 0.00% 2 11 
132 36 24.237 0.70 0.00% 4 7 2 34 24.251 0.96 0.00% 4 9 
133 9 0.058 0.09 0.00% 0 9 0 9 0.058 0.07 0.00% 0 9 
134 26 14.076 0.21 0.00% 3 11 4 22 16.374 0.74 0.00% 3 11 
135 36 17.580 0.93 0.00% 4 10 6 30 18.482 38.73 0.00% 4 10 
136 34 20.961 2.09 0.00% 4 9 4 30 21.272 5.78 0.00% 4 10 
137 31 17.063 0.51 0.00% 4 9 4 27 19.473 2.79 0.00% 5 10 
138 29 12.981 2.34 0.00% 2 11 1 28 13.169 3.72 0.00% 2 10 
139 10 6.153 0.37 0.00% 1 8 0 10 6.153 0.17 0.00% 1 8 
140 29 18.460 0.40 0.00% 4 8 9 20 19.963 3.16 0.00% 4 8 
141 35 21.187 1.24 0.00% 4 11 3 32 21.187 3.90 0.00% 4 11 
142 27 13.470 9.40 0.00% 3 10 0 27 13.470 9.71 0.00% 3 10 
143 33 17.280 2.18 0.00% 3 10 2 31 17.883 2.23 0.00% 3 10 
144 27 18.173 1.68 0.00% 3 10 4 23 18.677 3.44 0.00% 3 10 
145 10 10.543 0.20 0.00% 2 6 0 10 10.543 0.18 0.00% 2 6 
146 31 16.674 0.79 0.00% 4 10 3 28 18.568 3.28 0.00% 4 9 
147 27 15.660 0.93 0.00% 2 9 3 24 15.952 4.04 0.00% 2 8 
148 31 11.972 1.43 0.00% 2 11 1 30 11.972 1.88 0.00% 2 11 
149 30 19.868 0.79 0.00% 4 10 3 27 21.068 12.10 0.00% 5 10 
150 26 9.966 1.94 0.00% 2 10 2 24 9.966 4.84 0.00% 2 10 
151 7 6.437 0.13 0.00% 2 5 0 7 6.437 0.15 0.00% 2 5 
Total 832 463.84   92 286 74 758 479.28   93 291 

* 1st Simulation: Orders received after the last moment are not delivered. 
** 2nd Simulation: All orders are received until the last moment, so all orders received are delivered. 
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4 Decision-Moments Total Cost 

[118, 209, 331, 573] 237.33€ 
[118, 209, 391, 573] 235.35€ 
[118, 209, 422, 573] 227.12€ 
[118, 240, 331, 573] 237.31€ 
[118, 240, 391, 573] 234.99€ 
[118, 240, 422, 573] 224.12€ 
[118, 240, 482, 573] 238.39€ 
[118, 300, 331, 573] 237.31€ 
[118, 300, 391, 573] 234.98€ 
[118, 300, 422, 573] 224.81€ 
[118, 300, 482, 573] 233.52€ 
[118, 300, 513, 573] 241.46€ 
[118, 331, 391, 573] 235.29€ 
[118, 331, 422, 573] 229.77€ 
[118, 331, 482, 573] 235.11€ 
[118, 331, 513, 573] 238.79€ 
[209, 240, 331, 573] 237.29€ 
[209, 240, 391, 573] 234.92€ 
[209, 240, 422, 573] 224.73€ 
[209, 240, 482, 573] 238.36€ 
[209, 300, 331, 573] 236.33€ 
[209, 300, 391, 573] 234.93€ 
[209, 300, 422, 573] 224.45€ 
[209, 300, 482, 573] 233.50€ 
[209, 300, 513, 573] 240.46€ 
[209, 331, 391, 573] 234.13€ 
[209, 331, 422, 573] 225.05€ 
[209, 331, 482, 573] 232.61€ 
[209, 331, 513, 573] 236.61€ 
[178, 209, 360, 573] 236.82€ 
[178, 209, 391, 573] 235.26€ 
[178, 209, 451, 573] 231.45€ 
[178, 269, 360, 573] 236.82€ 
[178, 269, 391, 573] 234.94€ 
[178, 269, 451, 573] 227.16€ 
[178, 269, 482, 573] 233.49€ 
[178, 300, 360, 573] 236.83€ 
[178, 300, 391, 573] 234.95€ 
[178, 300, 451, 573] 227.18€ 
[178, 300, 482, 573] 233.51€ 
[178, 300, 542, 573] 239.59€ 
[178, 360, 391, 573] 234.14€ 
[178, 360, 451, 573] 226.38€ 
[178, 360, 482, 573] 231.22€ 
[178, 360, 542, 573] 234.52€ 
[178, 391, 451, 573] 233.72€ 
[178, 391, 482, 573] 233.93€ 
[178, 391, 542, 573] 239.07€   

5 Decision-Moments Total Cost 

[118, 149, 209, 331, 573] 237.34€ 
[118, 149, 209, 391, 573] 235.36€ 
[118, 149, 209, 422, 573] 227.13€ 
[118, 149, 209, 482, 573] 243.05€ 
[118, 149, 240, 331, 573] 237.32€ 
[118, 149, 240, 391, 573] 234.92€ 
[118, 149, 240, 422, 573] 224.14€ 
[118, 149, 240, 482, 573] 237.33€ 
[118, 149, 300, 331, 573] 236.26€ 
[118, 149, 300, 391, 573] 234.93€ 
[118, 149, 300, 422, 573] 224.84€ 
[118, 149, 300, 482, 573] 233.54€ 
[118, 209, 240, 331, 573] 237.32€ 
[118, 209, 240, 391, 573] 234.93€ 
[118, 209, 240, 422, 573] 224.15€ 
[118, 209, 240, 482, 573] 237.41€ 
[118, 209, 300, 331, 573] 236.25€ 
[118, 209, 300, 391, 573] 234.93€ 
[118, 209, 300, 422, 573] 223.85€ 
[118, 209, 300, 482, 573] 233.51€ 
[118, 209, 331, 391, 573] 234.14€ 
[118, 209, 331, 422, 573] 224.06€ 
[118, 209, 331, 482, 573] 232.62€ 
[118, 209, 331, 513, 573] 236.62€ 

(continued on next page) 
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(continued ) 

5 Decision-Moments Total Cost 

[118, 209, 391, 422, 573] 222.74€ 
[118, 209, 391, 482, 573] 225.78€ 
[118, 209, 391, 513, 573] 233.21€ 
[118, 240, 300, 331, 573] 236.34€ 
[118, 240, 300, 391, 573] 234.91€ 
[118, 240, 300, 422, 573] 223.82€ 
[118, 240, 300, 482, 573] 233.52€ 
[118, 240, 331, 391, 573] 234.11€ 
[118, 240, 331, 422, 573] 223.84€ 
[118, 240, 331, 482, 573] 232.64€ 
[118, 240, 331, 513, 573] 236.62€ 
[118, 240, 391, 422, 573] 222.31€ 
[118, 240, 391, 482, 573] 225.10€ 
[118, 240, 391, 513, 573] 232.77€ 
[209, 240, 300, 331, 573] 236.62€ 
[209, 240, 300, 391, 573] 235.00€ 
[209, 240, 300, 422, 573] 223.83€ 
[209, 240, 300, 482, 573] 233.49€ 
[209, 240, 300, 513, 573] 240.45€ 
[209, 240, 331, 391, 573] 238.10€ 
[209, 240, 331, 422, 573] 226.64€ 
[209, 240, 331, 482, 573] 232.62€ 
[209, 240, 331, 513, 573] 236.60€ 
[209, 240, 391, 422, 573] 222.32€ 
[209, 240, 391, 482, 573] 225.19€ 
[209, 240, 391, 513, 573] 232.68€ 
[209, 240, 422, 482, 573] 227.91€ 
[209, 240, 422, 513, 573] 222.94€ 
[209, 240, 482, 513, 573] 242.15€ 
[209, 300, 331, 391, 573] 238.12€ 
[209, 300, 331, 422, 573] 226.66€ 
[209, 300, 331, 482, 573] 232.62€ 
[209, 300, 331, 513, 573] 236.61€ 
[209, 300, 391, 422, 573] 222.14€ 
[209, 300, 391, 482, 573] 225.48€ 
[209, 300, 391, 513, 573] 232.69€ 
[209, 300, 422, 482, 573] 227.84€ 
[209, 300, 422, 513, 573] 222.36€ 
[209, 300, 482, 513, 573] 234.60€ 
[209, 331, 391, 422, 573] 223.34€ 
[209, 331, 391, 482, 573] 222.99€ 
[209, 331, 391, 513, 573] 231.80€ 
[209, 331, 422, 482, 573] 222.27€ 
[209, 331, 422, 513, 573] 222.20€ 
[209, 331, 482, 513, 573] 234.31€ 
[209, 391, 422, 482, 573] 221.46€ 
[209, 391, 422, 513, 573] 223.98€ 
[209, 391, 482, 513, 573] 229.95€ 
[209, 422, 482, 513, 573] 229.02€ 
[178, 209, 269, 360, 573] 236.81€ 
[178, 209, 269, 391, 573] 235.02€ 
[178, 209, 269, 451, 573] 227.16€ 
[178, 209, 269, 482, 573] 233.48€ 
[178, 209, 269, 542, 573] 238.88€ 
[178, 209, 300, 360, 573] 236.81€ 
[178, 209, 300, 391, 573] 235.03€ 
[178, 209, 300, 451, 573] 227.18€ 
[178, 209, 300, 482, 573] 233.50€ 
[178, 209, 300, 542, 573] 239.57€ 
[178, 209, 360, 391, 573] 234.13€ 
[178, 209, 360, 451, 573] 226.37€ 
[178, 209, 360, 482, 573] 230.12€ 
[178, 209, 360, 542, 573] 234.42€ 
[178, 209, 391, 451, 573] 225.87€ 
[178, 209, 391, 482, 573] 225.69€ 
[178, 209, 391, 542, 573] 231.81€ 
[178, 209, 451, 482, 573] 230.66€ 
[178, 209, 451, 542, 573] 230.25€ 
[178, 209, 482, 542, 573] 246.09€ 
[178, 269, 300, 360, 573] 236.82€ 
[178, 269, 300, 391, 573] 235.03€ 
[178, 269, 300, 451, 573] 227.17€ 
[178, 269, 300, 482, 573] 233.50€ 
[178, 269, 300, 542, 573] 239.58€ 
[178, 269, 360, 391, 573] 234.14€ 
[178, 269, 360, 451, 573] 226.36€ 
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5 Decision-Moments Total Cost 

[178, 269, 360, 482, 573] 230.13€ 
[178, 269, 360, 542, 573] 234.42€ 
[178, 269, 391, 451, 573] 225.38€ 
[178, 269, 391, 482, 573] 225.11€ 
[178, 269, 391, 542, 573] 231.72€ 
[178, 269, 451, 482, 573] 226.57€ 
[178, 269, 451, 542, 573] 226.27€ 
[178, 269, 482, 542, 573] 233.98€ 
[178, 300, 360, 391, 573] 234.14€ 
[178, 300, 360, 451, 573] 226.36€ 
[178, 300, 360, 482, 573] 230.14€ 
[178, 300, 360, 542, 573] 234.43€ 
[178, 300, 391, 451, 573] 225.38€ 
[178, 300, 391, 482, 573] 225.50€ 
[178, 300, 391, 542, 573] 231.72€ 
[178, 300, 451, 482, 573] 226.59€ 
[178, 300, 451, 542, 573] 226.29€ 
[178, 300, 482, 542, 573] 234.00€ 
[178, 360, 391, 451, 573] 223.49€ 
[178, 360, 391, 482, 573] 223.01€ 
[178, 360, 391, 542, 573] 230.99€ 
[178, 360, 451, 482, 573] 226.68€ 
[178, 360, 451, 542, 573] 225.59€ 
[178, 360, 482, 542, 573] 231.31€ 
[178, 391, 451, 482, 573] 232.94€ 
[178, 391, 451, 542, 573] 238.12€ 
[178, 391, 482, 542, 573] 235.73€   

6 Decision-Moments Total Cost 

[118, 149, 209, 240, 331, 573] 237.33€ 
[118, 149, 209, 240, 391, 573] 234.94€ 
[118, 149, 209, 240, 422, 573] 224.15€ 
[118, 149, 209, 240, 482, 573] 237.32€ 
[118, 149, 209, 300, 331, 573] 236.26€ 
[118, 149, 209, 300, 391, 573] 234.93€ 
[118, 149, 209, 300, 422, 573] 223.85€ 
[118, 149, 209, 300, 482, 573] 233.52€ 
[118, 149, 209, 300, 513, 573] 240.49€ 
[118, 149, 209, 331, 391, 573] 234.14€ 
[118, 149, 209, 331, 422, 573] 224.06€ 
[118, 149, 209, 331, 482, 573] 232.64€ 
[118, 149, 209, 331, 513, 573] 236.64€ 
[118, 149, 209, 391, 422, 573] 222.66€ 
[118, 149, 209, 391, 482, 573] 225.79€ 
[118, 149, 209, 391, 513, 573] 233.23€ 
[118, 149, 209, 422, 482, 573] 224.66€ 
[118, 149, 209, 422, 513, 573] 224.37€ 
[118, 149, 240, 300, 331, 573] 236.25€ 
[118, 149, 240, 300, 391, 573] 234.92€ 
[118, 149, 240, 300, 422, 573] 223.83€ 
[118, 149, 240, 300, 482, 573] 233.52€ 
[118, 149, 240, 300, 513, 573] 240.47€ 
[118, 149, 240, 331, 391, 573] 234.12€ 
[118, 149, 240, 331, 422, 573] 223.85€ 
[118, 149, 240, 331, 482, 573] 232.65€ 
[118, 149, 240, 331, 513, 573] 236.62€ 
[118, 149, 240, 391, 422, 573] 222.33€ 
[118, 149, 240, 391, 482, 573] 225.21€ 
[118, 149, 240, 391, 513, 573] 232.70€ 
[118, 149, 240, 422, 482, 573] 225.94€ 
[118, 149, 240, 422, 513, 573] 221.57€ 
[118, 149, 240, 482, 513, 573] 241.12€ 
[118, 149, 300, 331, 391, 573] 234.13€ 
[118, 149, 300, 331, 422, 573] 224.85€ 
[118, 149, 300, 331, 482, 573] 232.66€ 
[118, 149, 300, 331, 513, 573] 236.64€ 
[118, 149, 300, 391, 422, 573] 225.93€ 
[118, 149, 300, 391, 482, 573] 229.47€ 
[118, 149, 300, 391, 513, 573] 232.69€ 
[118, 149, 300, 422, 482, 573] 227.04€ 
[118, 149, 300, 422, 513, 573] 222.17€ 
[118, 149, 300, 482, 513, 573] 234.64€ 
[118, 149, 331, 391, 422, 573] 225.71€ 
[118, 149, 331, 391, 482, 573] 230.99€ 
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6 Decision-Moments Total Cost 

[118, 149, 331, 391, 513, 573] 232.58€ 
[118, 149, 331, 422, 482, 573] 228.33€ 
[118, 149, 331, 422, 513, 573] 223.87€ 
[118, 149, 331, 482, 513, 573] 234.44€ 
[118, 149, 391, 422, 482, 573] 248.47€ 
[118, 149, 391, 422, 513, 573] 243.86€ 
[118, 149, 391, 482, 513, 573] 255.95€ 
[118, 209, 240, 300, 331, 573] 236.25€ 
[118, 209, 240, 300, 391, 573] 235.01€ 
[118, 209, 240, 300, 422, 573] 223.84€ 
[118, 209, 240, 300, 482, 573] 233.50€ 
[118, 209, 240, 300, 513, 573] 240.47€ 
[118, 209, 240, 331, 391, 573] 234.13€ 
[118, 209, 240, 331, 422, 573] 223.86€ 
[118, 209, 240, 331, 482, 573] 232.63€ 
[118, 209, 240, 331, 513, 573] 236.62€ 
[118, 209, 240, 391, 422, 573] 222.33€ 
[118, 209, 240, 391, 482, 573] 225.20€ 
[118, 209, 240, 391, 513, 573] 232.70€ 
[118, 209, 240, 422, 482, 573] 225.94€ 
[118, 209, 240, 422, 513, 573] 221.57€ 
[118, 209, 240, 482, 513, 573] 241.20€ 
[118, 209, 300, 331, 391, 573] 234.13€ 
[118, 209, 300, 331, 422, 573] 223.86€ 
[118, 209, 300, 331, 482, 573] 232.63€ 
[118, 209, 300, 331, 513, 573] 236.62€ 
[118, 209, 300, 391, 422, 573] 222.16€ 
[118, 209, 300, 391, 482, 573] 225.10€ 
[118, 209, 300, 391, 513, 573] 232.70€ 
[118, 209, 300, 422, 482, 573] 225.85€ 
[118, 209, 300, 422, 513, 573] 220.99€ 
[118, 209, 300, 482, 513, 573] 234.61€ 
[118, 209, 331, 391, 422, 573] 222.16€ 
[118, 209, 331, 391, 482, 573] 223.00€ 
[118, 209, 331, 391, 513, 573] 231.81€ 
[118, 209, 331, 422, 482, 573] 221.08€ 
[118, 209, 331, 422, 513, 573] 221.01€ 
[118, 209, 331, 482, 513, 573] 234.32€ 
[118, 209, 391, 422, 482, 573] 220.28€ 
[118, 209, 391, 422, 513, 573] 221.60€ 
[118, 209, 391, 482, 513, 573] 228.56€ 
[118, 240, 300, 331, 391, 573] 234.12€ 
[118, 240, 300, 331, 422, 573] 223.84€ 
[118, 240, 300, 331, 482, 573] 232.66€ 
[118, 240, 300, 331, 513, 573] 236.62€ 
[118, 240, 300, 391, 422, 573] 222.13€ 
[118, 240, 300, 391, 482, 573] 224.90€ 
[118, 240, 300, 391, 513, 573] 232.68€ 
[118, 240, 300, 422, 482, 573] 225.86€ 
[118, 240, 300, 422, 513, 573] 220.97€ 
[118, 240, 300, 422, 513, 573] 220.97€ 
[118, 240, 300, 482, 513, 573] 234.62€ 
[118, 240, 331, 391, 422, 573] 222.14€ 
[118, 240, 331, 391, 482, 573] 222.33€ 
[118, 240, 331, 391, 513, 573] 231.80€ 
[118, 240, 331, 422, 482, 573] 224.88€ 
[118, 240, 331, 422, 513, 573] 220.99€ 
[118, 240, 331, 482, 513, 573] 234.34€ 
[118, 240, 391, 422, 482, 573] 223.97€ 
[118, 240, 391, 422, 513, 573] 220.88€ 
[118, 240, 391, 482, 513, 573] 227.99€ 
[118, 300, 331, 391, 422, 573] 228.72€ 
[118, 300, 331, 391, 482, 573] 228.49€ 
[118, 300, 331, 391, 513, 573] 234.17€ 
[118, 300, 331, 422, 482, 573] 228.86€ 
[118, 300, 331, 422, 513, 573] 227.76€ 
[118, 300, 331, 482, 513, 573] 237.14€ 
[118, 300, 391, 422, 482, 573] 228.96€ 
[118, 300, 391, 422, 513, 573] 227.64€ 
[118, 300, 391, 482, 513, 573] 235.03€ 
[118, 331, 391, 422, 482, 573] 234.60€ 
[118, 331, 391, 422, 513, 573] 234.41€ 
[118, 331, 391, 482, 513, 573] 239.74€ 
[209, 240, 300, 331, 391, 573] 234.12€ 
[209, 240, 300, 331, 422, 573] 223.66€ 
[209, 240, 300, 331, 482, 573] 232.63€ 
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[209, 240, 300, 331, 513, 573] 236.60€ 
[209, 240, 300, 391, 422, 573] 222.14€ 
[209, 240, 300, 391, 482, 573] 225.00€ 
[209, 240, 300, 391, 513, 573] 232.78€ 
[209, 240, 300, 422, 482, 573] 227.05€ 
[209, 240, 300, 422, 513, 573] 222.17€ 
[209, 240, 300, 482, 513, 573] 234.60€ 
[209, 240, 331, 391, 422, 573] 226.14€ 
[209, 240, 331, 391, 482, 573] 228.20€ 
[209, 240, 331, 391, 513, 573] 235.78€ 
[209, 240, 331, 422, 482, 573] 227.68€ 
[209, 240, 331, 422, 513, 573] 223.80€ 
[209, 240, 331, 482, 513, 573] 234.32€ 
[209, 240, 391, 422, 482, 573] 225.36€ 
[209, 240, 391, 422, 513, 573] 223.28€ 
[209, 240, 391, 482, 513, 573] 231.88€ 
[209, 300, 331, 391, 422, 573] 226.15€ 
[209, 300, 331, 391, 482, 573] 228.60€ 
[209, 300, 331, 391, 513, 573] 235.79€ 
[209, 300, 331, 422, 482, 573] 227.68€ 
[209, 300, 331, 422, 513, 573] 223.81€ 
[209, 300, 331, 482, 513, 573] 234.32€ 
[209, 300, 391, 422, 482, 573] 225.17€ 
[209, 300, 391, 422, 513, 573] 223.30€ 
[209, 300, 391, 482, 513, 573] 232.17€ 
[209, 331, 391, 422, 482, 573] 219.68€ 
[209, 331, 391, 422, 513, 573] 223.39€ 
[209, 331, 391, 482, 513, 573] 229.28€ 
[209, 391, 422, 482, 513, 573] 226.26€ 
[178, 209, 269, 300, 360, 573] 236.81€ 
[178, 209, 269, 300, 391, 573] 234.93€ 
[178, 209, 269, 300, 451, 573] 227.17€ 
[178, 209, 269, 300, 482, 573] 233.49€ 
[178, 209, 269, 300, 542, 573] 239.57€ 
[178, 209, 269, 360, 391, 573] 235.32€ 
[178, 209, 269, 360, 451, 573] 226.36€ 
[178, 209, 269, 360, 482, 573] 231.12€ 
[178, 209, 269, 360, 542, 573] 233.71€ 
[178, 209, 269, 391, 451, 573] 226.45€ 
[178, 209, 269, 391, 482, 573] 225.00€ 
[178, 209, 269, 391, 542, 573] 231.80€ 
[178, 209, 269, 451, 482, 573] 226.57€ 
[178, 209, 269, 451, 542, 573] 226.27€ 
[178, 209, 269, 482, 542, 573] 233.98€ 
[178, 209, 300, 360, 391, 573] 235.33€ 
[178, 209, 300, 360, 451, 573] 226.36€ 
[178, 209, 300, 360, 482, 573] 231.12€ 
[178, 209, 300, 360, 542, 573] 233.72€ 
[178, 209, 300, 391, 451, 573] 226.46€ 
[178, 209, 300, 391, 482, 573] 225.38€ 
[178, 209, 300, 391, 542, 573] 231.81€ 
[178, 209, 300, 451, 482, 573] 226.59€ 
[178, 209, 300, 451, 542, 573] 226.29€ 
[178, 209, 300, 482, 542, 573] 233.99€ 
[178, 209, 360, 391, 451, 573] 223.48€ 
[178, 209, 360, 391, 482, 573] 223.98€ 
[178, 209, 360, 391, 542, 573] 230.89€ 
[178, 209, 360, 451, 482, 573] 224.97€ 
[178, 209, 360, 451, 542, 573] 224.50€ 
[178, 209, 360, 482, 542, 573] 230.21€ 
[178, 209, 391, 451, 482, 573] 224.98€ 
[178, 209, 391, 451, 542, 573] 227.96€ 
[178, 209, 391, 482, 542, 573] 228.38€ 
[178, 209, 451, 482, 542, 573] 230.23€ 
[178, 269, 300, 360, 391, 573] 234.14€ 
[178, 269, 300, 360, 451, 573] 226.37€ 
[178, 269, 300, 360, 482, 573] 231.13€ 
[178, 269, 300, 360, 542, 573] 234.42€ 
[178, 269, 300, 391, 451, 573] 224.28€ 
[178, 269, 300, 391, 482, 573] 224.81€ 
[178, 269, 300, 391, 542, 573] 231.81€ 
[178, 269, 300, 451, 482, 573] 226.59€ 
[178, 269, 300, 451, 542, 573] 226.47€ 
[178, 269, 300, 482, 542, 573] 234.00€ 
[178, 269, 360, 391, 451, 573] 222.29€ 
[178, 269, 360, 391, 482, 573] 223.71€ 
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[178, 269, 360, 391, 542, 573] 230.81€ 
[178, 269, 360, 451, 482, 573] 224.88€ 
[178, 269, 360, 451, 542, 573] 224.68€ 
[178, 269, 360, 482, 542, 573] 230.23€ 
[178, 269, 391, 451, 482, 573] 224.80€ 
[178, 269, 391, 451, 542, 573] 227.78€ 
[178, 269, 391, 482, 542, 573] 227.21€ 
[178, 269, 451, 482, 542, 573] 224.98€ 
[178, 300, 360, 391, 451, 573] 223.49€ 
[178, 300, 360, 391, 482, 573] 223.72€ 
[178, 300, 360, 391, 542, 573] 230.81€ 
[178, 300, 360, 451, 482, 573] 224.69€ 
[178, 300, 360, 451, 542, 573] 224.49€ 
[178, 300, 360, 482, 542, 573] 230.23€ 
[178, 300, 391, 451, 482, 573] 224.80€ 
[178, 300, 391, 451, 542, 573] 227.78€ 
[178, 300, 391, 482, 542, 573] 227.20€ 
[178, 300, 451, 482, 542, 573] 225.00€ 
[178, 360, 391, 451, 482, 573] 221.92€ 
[178, 360, 391, 451, 542, 573] 224.90€ 
[178, 360, 391, 482, 542, 573] 224.80€ 
[178, 360, 451, 482, 542, 573] 225.09€ 
[178, 391, 451, 482, 542, 573] 240.44€  

Appendix B 

When the last decision moment is set to 4:00 p.m. (420’), and 5:00 p.m. (480’), 119 requests and 60 requests, respectively, are delivered next day. 
The cost is slightly higher as in the baseline scenario (with the last decision-moment equal to 573’), and the service level is significantly worse. On the 
other hand, when testing a later time (e.g., 7:13 p.m., considering T= 8:00 p.m.; shortest car drive to the farthest customer (back and forth) = 40’; 
service time: 2’; loading time: 5’), no request is received after that time, but the cost is higher due to a higher number of car trips (69 vs. 61), and 
overtime is needed since in some days, the remaining 47 minutes (8:00 p.m. – 7:13 p.m.) are not enough to perform the car trips at the last shift.  

Last Decision-Moment (DM) Cost #car trips # drone trips # Req. after Last DM [%] Overtime 

420’ (4:00 p.m.) 222.11€ 60 194 119 [28%] – 
480’ (5:00 p.m.) 222.51€ 60 196 60 [14%] – 
573’ (6:33 p.m.) 219.68€ 61 193 0 – 
613’ (7:13 p.m.) 242.45€ 69 185 0 145’  

References 

Bamburry, D. (2015). Drones: Designed for product delivery. Design Management Review, 
26(1), 40–48. 

Conceição, A. (2018). Logistics Challenges in a New Distribution Paradigm: Drone Delivery - 
Connect Robotics Case Study [Master’s thesis. Instituto Superior Técnico, Universidade 
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