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Abstract. We present a brief survey on the theory of the real analytic regularity for

the solutions to sums of squares of vector fields satisfying the Hörmander condition.

Sunto. Presentiamo una breva rassegna sulla regolarità reale analitica delle soluzioni

di operatori somme di quadrati di campi vettoriali che soddisfano la condizione di Hör-

mander.

2020 MSC. 35H10, 35H20 (Primary); 35B65, 35A20, 35A27 (Secondary).

Sums of squares of vector fields; Analytic hypoellipticity; Treves con-

jecture

1. Introduction: the C∞ hypoellipticity

The purpose of this paper is to present a brief survey to the theory of the real analytic

regularity for the solutions to sums of squares type equations.

The problem of the C∞ hypoellipticity of sums of squares has been settled by the

famous paper of L. Hörmander, [35], whereas the problem of the analytic hypoellipticity

is still open and seems much more involved than the latter.

The starting point for any further study is based on the results in the C∞ category.

Consider the following second order degenerate elliptic equation

Q =
n∑

i,j=1

ai,j(x)∂i∂ju(x) +
n∑

j=1

bj(x)u(x) + c(x)u(x) = f(x).

Let us start by assuming that the coefficients of the above equation are real and smooth,

i.e. C∞ functions defined in an open subset Ω ⊂ Rn. It is well-known by Hörmander
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[35], Corollary 2.2 that if Q is C∞−hypoelliptic then the quadratic form
∑n

i,j=1 ai,j(x)ξiξj

corresponding to the principal symbol must be semidefinite (non negative or non positive)

at any point x ∈ Ω. In general, the quadratic form can change type moving x in Ω. To

show this we can mention the Kannai example in R2 ([37])

x1∂
2
x2

+ ∂x1

which turns out to be C∞−hypoelliptic although its principal symbol changes type across

the hypersurface {x1 = 0}. A more detailed insight to this kind of questions can be found

in Beals-Fefferman [28].

In what follows we assume that the matrix

A(x) = [ai,j(x)]i=1,...,n
j=1,...,n

has constant rank near a point where its determinant vanishes; as a trivial consequence,

if Q is C∞−hypoelliptic, its principal symbol cannot change type and, without loss of

generality, we can suppose that it is non-negative
n∑

i,j=1

ai,j(x)ξiξj ≥ 0.

Furthermore, at least locally, we may find a finite number of vector fields

(1.1) Xj(x,Dx) =
n∑

k=1

αj,k(x)Dk, j = 0, 1, . . . , r,

such that the above operator is written as
r∑

j=1

Xj(x,D)2 +X0(x,D) + α(x),

(see also the fundamental paper [35].) Here and in what follows we use the notation

Dj = i−1∂xj
.

In what follows we focus on operators of the form

(1.2) P (x,D) =
r∑

j=1

Xj(x,D)2,

where Xj denotes a vector field with smooth (or real analytic) coefficients, aj,k(x), with

aj,k ∈ C∞(Ω) or aj,k ∈ Cω(Ω), the latter denoting the class of all real analytic functions
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on Ω.

A different approach consists in studying the hypoellipticity of a general second order

differential operator Q replacing the sum of squares structure by some geometrical con-

ditions on its characteristic manifold. In this respect, the lower order terms of Q play a

fundamental role (see, for instance, [12], [13], [36], [34], [39], [43]).

In the paper [35] Hörmander proved his famous result on the C∞ hypoellipticity for

operators of the form (1.2)

Theorem 1.1 ([35]). Let P be given by (1.2), where the vector fields have C∞ coeffi-

cients in the open set Ω ⊂ Rn. Assume that among the operators Xj1, [Xj1 , Xj2 ], . . . ,

[Xj1 , [Xj2 , [Xj3 , . . . Xjk ]]], . . . , where jℓ = 1, 2, . . . , r, there exist n which are linearly inde-

pendent at any given point in Ω. Then P is C∞ hypoelliptic.

The condition on the vector fields appearing in Theorem 1.1 has been stated literally

as Hörmander stated it, but it has a deep geometric meaning. In fact by [X, Y ] we denote

the commutator of the vector fields: [X, Y ]u = XY u− Y Xu. We easily see that [X.Y ] is

a vector field and that

[X, Y ] =
n∑

j,k=1

(aj(x)∂jbk(x)− bj(x)∂jak(x)) ∂k,

where aj, bk denote the (smooth) coefficients of X and Y , respectively.

The condition in Theorem 1.1 can then be rephrased as

Hörmander’s Condition (HC):

The Lie algebra over the open set Ω generated by the vector fields Xj and their brackets

has dimension n, i.e. the dimension of the ambient space.

In general, the HC is only a sufficient condition in order for P to be C∞-hypoelliptic.

To see this, fix an integer k > 0 and let

f(x1) =

 0 for x1 = 0,

e−1/|x1|k for x1 ̸= 0.

The sum of squares operator in R2
x1,x2

D2
x1

+ f(x1)
2D2

x2
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is C∞-hypoelliptic although P does not satisfy the Hörmander hypothesis (see Fedii[27],

Thm.5).

Derridj, in [26], proved that if the coefficients of the vector fields have real analytic

regularity, then the HC is also necessary.

Theorem 1.1 has received a lot of attention over the years and we would like to men-

tion the extensions that are particularly meaningful in the discussion of the real analtic

hypoellipticity.

We first remark that the proof of the hypoellipticity of the operator P is done by

establishing an a priori inequality showing the loss of derivatives of the operator P . The

inequality with the optimal loss of derivatives is due to Rothschild and Stein, [44].

Theorem 1.2. Let x0 ∈ Ω and denote by U a neighborhood of x0, U ⊂ Ω. Assume that

in U the Hörmander Condition is satisfied by taking iterated brackets involving at most

m vector fields. Then for every u ∈ C∞
0 (U) there is a positive constant C such that

(1.3) ∥u∥21
m
+

r∑
j=1

∥Xj(x,D)u∥2 ≤ C
(
⟨Pu, u⟩+ ∥u∥2

)
.

Here ∥u∥s denotes the norm of u in the Sobolev space Hs and the notation ⟨u, v⟩ denote

the L2 scalar product.

A very important point of view when it comes to the problem of the real analytic

hypoellipticity is the microlocal theory for sums of squares.

First of all we note that the symbol of the commutator of two vector fields is the Poisson

bracket of the symbols. Let X(x,D) =
∑n

j=1 aj(x)Dj then the symbol of X is

X(x, ξ) =
n∑

j=1

aj(x)ξj.

Defining the Poisson bracket of two functions f(x, ξ) and g(x, ξ) as

{f, g} =
n∑

j=1

(
∂ξjf∂xj

g − ∂xj
f∂ξjg

)
,

we have that

σ ([X, Y ]) =
1

i
{X(x, ξ), Y (x, ξ)}.
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The Hörmander Condition can then be stated microlocally. In order to do this we define

first the characteristic variety of the operator P in (1.2).

Definition 1.1. Let P be as in (1.2). We define the set

Char(P ) = {(x, ξ) | (x, ξ) ∈ T ∗Ω \ {0}, Xj(x, ξ) = 0, for j = 1, . . . , r}.

Here T ∗Ω\{0} denotes the cotangent bundle over Ω minus the zero section. We point out

that, unless ad hoc assumptions are made this set in general is not a manifold.

The following is the microlocal statement of Hörmander’s Condition; we refer to Bolley,

Camus and Nourrigat, [11], and to Fefferman and Phong, [9], for a microlocal version of

the results by Hörmander and Rothschild and Stein.

Microlocal Hörmander’s Condition:

We may suppose that, instead of having vector fields we are dealing with (real valued)

pseudodifferential operators of order 1. Let (x0, ξ0) ∈ T ∗Ω \ {0}. Then there exists an

iterated commutator of length r ≥ 2, i.e. an operator of the form

ad(Xi1)(ad(Xi2(· · · ad(Xir−1)(Xir) · · · )),

where ad(X)Y = XY − Y X, whose symbol is elliptic—i.e. non zero—at (x0, ξ0).

As an example we state Hörmander theorem in a microlocal context.

Theorem 1.3 ([11]). Let aj(x,D), j = 1, . . . , r, be real pseudodifferential operators of

order 1 defined in Ω. Let (x0, ξ0) ∈ T ∗Ω\{0}∩Char(P ), where P (x,D) =
∑r

j=1 aj(x,D)2.

Assume further that the Microlocal Hörmander Condition holds at (x0, ξ0).

Let U be a neighborhood of x0 in Ω and u, f ∈ D ′(U) such that Pu = f in the distribu-

tion sense in U . Then if (x0, ξ0) ̸∈ WF (f), there is a neighborhood U ′ ⊂ U of x0 and a

conic neighborhood Γ′ of ξ0, such that WF (u) ∩ U ′ × Γ′ = ∅.
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2. The real analytic case

As pointed out above, in [26] Derridj proved that the HC provides an “optimal” geo-

metric characterization of C∞−hypoellipticity of a sum of squares operator with analytic

coefficients. Therefore the analytic setting seems to better put in evidence the geometry

underlying sums of squares operators. A natural question about the regularity of solutions

to this class of operators is whether there is real analytic regularity provided the vector

fields have real analytic coefficients and satisfy Hörmander Condition. More precisely,

Definition 2.1. We say that the operator P is analytic hypoelliptic in the open subset

U ⊂ Ω if for every u ∈ D ′(U) and for every open subset U1 ⊂ U , Pu ∈ Cω(U1) implies

that u ∈ Cω(U1).

It is well known that in the non degenerate case, i.e. the elliptic case, the answer is in

the affirmative.

The first example showing that the situation might be more involved is due to Baouendi

and Goulaouic, [8], but before stating and discussing it let us introduce the definition of

Gevrey class of functions.

Definition 2.2. Let Ω be an open subset of Rn. We say that the function u ∈ C∞(Ω) is

in the Gevrey class Gs(Ω), with s ≥ 1, real number, if for every compact set K ⊂ Ω there

is a positive constant CK such that

|∂αu(x)| ≤ C
|α|+1
K α!s, for every x ∈ K,

and for every multiindex α.

It is straighforward that the class G1(Ω) = Cω(Ω) i.e. it coincides with the class of all

real analytic functions in Ω. Roughly speaking, the order s of the class Gs measures how

a smooth function is far from being analytic.

Theorem 2.1 ([8]). Consider the operator in R3

(2.1) PBG(x,Dx) = D2
1 +D2

2 + x2
1D

2
3.

It obviously satisfies Hörmander Condition, but there exist solutions of PBGu = f , with

f ∈ Cω(R3), belonging to G2 and not to Gs with 1 ≤ s < 2.
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Proof. The proof is the construction of a suitable solution of the equation PBGu = 0.

Define

u(x) =

∫ +∞

0

eix3ρ2−
x21
2
ρ2+zx2ρ−ρdρ,

where z ∈ C is suitable. The integral converges provided we keep x2 in a small neighbor-

hood of the origin. Now

D2
1u(x) = −

∫ +∞

0

eix3ρ2−
x21
2
ρ2+zx2ρ−ρ

(
−ρ2 + x2

1ρ
4
)
dρ.

Moreover

x2
1D

2
3u(x) = −

∫ +∞

0

eix3ρ2−
x21
2
ρ2+zx2ρ−ρ(−x2

1ρ
4)dρ

and finally

D2
2u(x) = −

∫ +∞

0

eix3ρ2−
x21
2
ρ2+zx2ρ−ρz2ρ2dρ.

If we choose z = ±1 we see that PBGu = 0 in a slab where x2 is in a sufficiently small

neighborhood of 0. Setting z = 1 then

u(x) =

∫ +∞

0

eix3ρ2−
x21
2
ρ2+x2ρ−ρdρ.

An easy check shows that u ∈ G2 in small neighborhood of the origin. Furthermore, if we

compute ∂k
3u(0), we get:

∂k
3u(0) =

∫ +∞

0

ρ2ke−ρdρ = (2k)! =
(2k)!

k!2
k!2 ≥ k!2.

This shows that u ∈ G2 and that its Gevrey regularity is not better than 2. □

Moreover, in [4] it is shown that a general sum of squares operator P with analytic

coefficients, satisfying the HC, can violate the analytic hypoellipticity in a “large subset”

of the ambient space; more precisely, it can happen that a solution u of the homogeneous

problem Pu = f has a large analytic singular support even if the datum f is analytic.

For instance, there exists a solution of equation

(D2
1 +D2

2 + x2
1D

2
3)u = 0 in R×]−∞, 2[×R,

such that sing suppu = {(x1, x2, x3) ∈ R×]−∞, 2[×R | x1 = 0}. Therefore, the HC is a

condition too weak in order to ensure the analytic hypoellipticity.
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At the end of the seventies Tartakoff, [45], and Treves, [46], proved with different

methods the following important result:

Theorem 2.2 ([45], [46]). Consider a sum of squares operator

P (x,D) =
r∑

j=1

Xj(x,D)2,

where the vector fields Xj have real analytic coefficients defined in an open subset Ω ⊂ Rn

and satisfy Hörmander condition.

Assume further that

(a) - Char(P ) is a symplectic submanifold of T ∗Rn \ {0}.

(b) - The principal symbol of P , p(x, ξ) =
∑r

j=1Xj(x, ξ)
2 vanishes exactly to the second

order on Char(P ).

Then P is analytic hypoelliptic.

We clarify briefly what the expression “vanishes exactly to the second order” means.

Denote by p(x, ξ) the (principal) symbol of P as defined above and by dist(x, ξ) the dis-

tance of the point (x, ξ/|ξ|) to Char(P ). We say that p(x, ξ) vanishes exactly to the second

order near a point (x0, ξ0) ∈ Char(P ) if, for suitable positive constants c(x0,ξ0), C(x0,ξ0),

c(x0,ξ0)|ξ|2dist(x, ξ)2 ≤ |p(x, ξ)| ≤ C(x0,ξ0)|ξ|2dist(x, ξ)2.

Note that the second inequality is a trivial consequence of the non negativity of the prin-

cipal symbol p(x, ξ), hence Hypothesis (b) is reduced to the first inequality above.

Let us list a few examples of operators satisfying the assumptions of the theorem.

(a) The quadratic Grušin operator (also called the harmonic oscillator)

n−1∑
j=1

(D2
j + x2

jD
2
n).

(b) The Heisenberg Laplacian

(D1 − x2D3)
2 + (D2 + x1D3)

2.
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We remark that the operator PBG does not satisfy the assumptions of the theorem. In

fact, its characteristic variety is a real analytic submanifold of T ∗R3 \ {0} given by

(2.2) Char(PBG) = {(x, ξ) ∈ T ∗R3 \ {0} | ξ1 = ξ2 = x1 = 0, ξ3 ̸= 0}.

Char(PBG) has codimension 3 so that it is not symplectic. This suggests that the “sim-

plecticity” of the characteristic manifold can play an important role in the study of the

analytic hypoellipticity.

3. Geometry of the characteristic variety: stratifications and the

Treves conjecture

In 1996, see the paper [47], F. Treves came up with an idea for the study of the analytic

hypoellipticity of sums of squares. In this section we are going to give a fairly precise

description of his idea, because it is important for what follows.

Stimulated by the papers [32], [33] by N. Hanges and A. A. Himonas, who proved that

the Olĕınik and Radkevič operator for special values of p and q, is not analytic hypoelliptic,

even though its characteristic manifold is a real analytic symplectic submanifold (see Thm.

4.1 below), F. Treves introduced the idea that in order to establish if there is analytic

hypoellipticity or not one has to look at the strata of a stratification of the characteristic

variety.

Hence he proposed a certain stratification that will be henceforth called the Poisson

stratification and formulated the conjecture that an operator is analytic hypoelliptic if

and only if all the strata in the stratification of its characteristic variety are symplectic

real analytic submanifolds.

We now give a detailed description of the Poisson stratification as well as some examples.

We shall follow the presentation in the paper [20].

Denote Σ the variety Char(P ), where the symbols of all the vector fields are zero.

First of all let us define what we mean by the term stratification.



110 MARCO MUGHETTI

Definition 3.1 (see e.g. [49]). By an analytic stratification of Σ in T ∗Rn \ {0} we mean

a partition of Σ

Σ =
⋃
i∈I

Si,

where the Si are connected analytic submanifolds of T ∗Rn \ {0} satisfying the conditions

(i) Every compact subset of T ∗Rn \ {0} intersects at most finitely many submanifolds

Si.

(ii) For any i, i′ belonging to the index family I, Si′ ∩ Si ̸= ∅ implies Si′ ⊂ ∂Si and

dimSi′ < dimSi.

The next is the definition of a (micro)local stratification. The definition is given in gen-

eral terms, the adaptation to the homogeneous-on-the-fibers situation is straghtforward.

Definition 3.2 ([49]). By a local analytic stratification of Σ we mean a system (U, {Si}i∈I),

where U is an open set in T ∗Rn \{0}, I is a finite index family, Si is a connected analytic

submanifold of U satisfying condition (ii) above and such that

Σ ∩ U =
⋃
i∈I

Si.

A (micro-)local analytic stratification can be accomplished in several ways; for a detailed

description of this point we refer to [20].

3.1. The analytic stratification. We follow [20]. Let us denote by

X(x, ξ) = (X1(x, ξ), . . . , Xr(x, ξ))

the map whose components are the symbols of the vector fields. Moreover let Σ =

X−1(0) ∩ T ∗Ω \ {0} be the characteristic variety. Note that, since our maps are real

valued, we might have used the function p(x, ξ) =
∑r

j=1Xj(x, ξ)
2 to define Σ, but since

in the following steps the minors of the Jacobian matrix of X are going to play a role,

keeping the consistency of the notation would have been much more complicated. Thus

we stick to the vector notation.
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Define R0(Σ) as the subset of Σ whose points z0 = (x0, ξ0) have a neighborhood Uz0 ⊂

T ∗Ω \ 0 such that there are indices jα, α = 1, . . . ,m, 1 ≤ j1 < · · · < jm ≤ r, for which

Uz0 ∩ Σ = {z ∈ Uz0 | Xjα(x, ξ) = 0, α = 1, . . . ,m},

and the differentials dXjα(z0) are all linearly independent. The latter is equivalent to

saying that the minor
∂(Xj1 , . . . , Xjm)

∂(zi1 , . . . , zim)
(z0),

where 1 ≤ i1 < · · · < im ≤ 2n, is non zero. It is evident that R0(Σ) is a Cω manifold of

codimension m.

Next we define two subsets of Σ, Σ1 and Σ2. Let Σ1 denote the subset of Σ in which

all the m×m minors of the matrix ∂X
∂z

vanish identically.

Define Σ2 as the zero set in T ∗Ω \ (Σ1 ∪R0(Σ)) of all the (m+ 1)× (m+ 1) minors

∂(Xj1 , . . . , Xjm+1)

∂(zi1 , . . . , zim+1)
,

1 ≤ i1 < · · · < im+1 ≤ 2n.

We may now iterate for Σ1, Σ2 what has been done for Σ. For Σ1 define the map

X(1)(x, ξ) =
(
X(x, ξ), Xj1,...,jm

i1,...,im

)
: T ∗Ω → Rr1,1

with Xj1,...,jm
i1,...,im

denoting the m ×m minors and r1,1 = r + r1, r1 being the number of the

m×m minors.

Analogously define

X(2)(x, ξ) =
(
X(x, ξ), X

j1,...,jm+1

i1,...,im+1

)
: T ∗Ω → Rr1,2

with X
j1,...,jm+1

i1,...,im+1
denoting the (m + 1) × (m + 1) minors and r1,2 = r + r2, r2 being the

number of the (m+ 1)× (m+ 1) minors.

This leads to a local stratification of Σ: if V is a neighborhood of z0 with a compact

closure then

(3.1) V ∩ Σ =

NV⋃
α=0

Λα,

where the Λα are Cω manifolds. The Λα shall be called the analytic strata of Σ.
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3.2. The symplectic stratification. Assuming we already have a stratified variety of

the form (3.1), we denote by Σ one of the strata Λα in (3.1), i.e. a connected Cω sub-

manifold defined near a point z0 ∈ Char(P ), and let σ be the symplectic form in R2n.

Then there are functions Gj(x, ξ), j = 1, . . . , s, and an open set Ω′ ⊂ Ω such that

Σ∩Ω′ = {z ∈ Ω′ | Gj(z) = 0, j = 1, . . . , s}. Moreover we may assume that the rank of the

map G = (G1, . . . , Gs) is equal to codimΣ at each point of Σ ∩ Ω′. Thus if d = codimΣ,

each z0 ∈ Σ has a neighborhood Uz0 ⊂ Ω′ in which there are indices 1 ≤ i1 < · · · < id ≤ s

such that

(i) The differentials dGik(z0) are linearly independent.

(ii) Σ ∩ Uz0 = {z ∈ Uz0 | Gi1(z) = · · · = Gid(z) = 0}.

Consider the pull back of σ to Σ and denote it by σ|Σ. Let σz|Σ, z ∈ Σ, denote the

restriction of the symplectic form to TzΣ. The rank of the linear map corresponding to

the skew symmetric bilinear form σz|Σ is called the rank of the symplectic form on Σ at

the point z or the symplectic rank of Σ at the point z.

Denote by µ the maximum rank of Σ. Then the set Σ0 of all the points z where the

symplectic rank is equal to µ is a dense subset of Σ. Each connected component of Σ0 is

a Cω submanifold of Uz0 whose symplectic rank at every point is equal to µ.

The subset Σ \ Σ0 is an analytic variety that can be defined by the vanishing of the

functions G1, . . . , Gs, as well as of all the ν × ν minors of the matrix [{Gi, Gj}]1≤i,j≤s,

where ν = µ+codimΣ−dimΣ. Hence we can find an analytic stratification of this subset

and the dimension of each analytic stratum of Σ \ Σ0 is strictly less than the dimension

of Σ0 = dimΣ.

This implies that we can decompose Σ so that

Σ ∩ U =

NU⋃
α=1

Σα,

where each Σα is a connected Cω submanifold with a constant symplectic rank.

3.3. The Poisson stratification. Again we start with the analytic set Σ = Char(P ).

For each multiindex I = (i1, . . . , iν), ν ∈ N, we define

XI(x, ξ) = {Xi1 , {Xi2 , {· · · {Xiν−1 , Xiν} · · · }}}(x, ξ),
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if ν ≥ 2 and XI = Xi1 , if I = (i1). We also set |I| = ν. Here {f, g} denotes the Poisson

bracket of the functions f and g:

{f, g}(x, ξ) =
n∑

j=1

(
∂f

∂ξj

∂g

∂xj

− ∂f

∂xj

∂g

∂ξj

)
(x, ξ).

Of course we are assuming that the vector fields Xi satisfy the microlocal Hörmander

condition, i.e. that for every (x, ξ) ∈ Char(P ) there exists a multiindex I such that

XI(x, ξ) ̸= 0.

Let now U be a neighborhood of a point z0 = (x0, ξ0) and write as before Σ = Char(P ).

Then we may define a sequence of analytic subsets of U as

Σ(ν) = {z ∈ U | for every multiindex I, |I| ≤ ν,XI(z) = 0}.

We point out that the sequence Σ(ν) is non increasing in ν and that in particular Σ(1) = Σ.

Furthermore, by the Hörmander condition, we have that
∞⋂
ν=1

Σ(ν) = ∅.

Now there is an increasing sequence of integers 1 = ν1 < ν2 < · · · such that

(i) Σ(νp+1) ⫋ Σ(νp).

(ii) If νp < νp+1, then Σ(ν′) = Σ(νp), for every ν ′, νp ≤ ν ′ < νp+1.

Consider now for any integer p the symplectic stratification (in the open set U) of the

analytic set Σ(νp):

Σ(νp) =

NU⋃
α=1

Σ(νp)
α .

In each stratum Σ
(νp)
α the set of points z ∈ Σ(νp) \ Σ(νp+1) is either empty or else an open

and dense subset of Σ(νp)
α . If it is not empty, denote by Σ

(νp)
α,β its connected components.

Thus we get the decomposition

Σ(νp) = Σ(νp+1) ∪
NU⋃
α=1

MU⋃
β=1

Σ
(νp)
α,β .

Finally, letting p run over the integers we obtain a decomposition of the form

(3.2) Σ =
⋃
p

⋃
j

Σ
(νp)
j ,
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where p, j have a finite range (in the open set U) and

(i) The Cω manifolds Σ
(νp)
j are connected and pairwise disjoint.

(ii) The symplectic rank of Σ(νp)
j is constant.

(iii) At every point of Σ(νp)
j the Poisson brackets XI , with |I| < νp+1 vanish, but there

is at least one bracket XI with |I| = νp+1 which does not vanish.

We may then give the following

Definition 3.3. The partition (3.2) of Char(P ) = Σ is called the (local) Poisson stratifi-

cation corresponding to the vector fields X1, . . . , Xr. Each submanifold Σ
(νp)
j is a Poisson

stratum, or simply just a stratum, for Σ. We refer to the integer νp as the depth of the

stratum Σ
(νp)
j .

Remark 3.1. It follows immediately from the definition above that the stratification of

Σ defined by the vector fields Xj, j = 1, . . . , r, is invariant under nonsingular Cω linear

substitutions, that means if we define

X̃j(x, ξ) =
r∑

k=1

ajk(x, ξ)Xk(x, ξ),

for j = 1, . . . , r where
(
ajk
)
j,k

is Cω and invertible, we obtain the same stratification.

Assume that a stratum, say Σ′, of the stratification (3.2) is not symplectic. Since the

symplectic rank is constant we have that Σ′ is foliated by Cω submanifolds whose tangent

space is isomorphic to TzΣ
′ ∩ (TzΣ

′)σ.

We may then state the

Conjecture 1 (Treves conjecture, [47], [48], [20]). The operator P is analytic hypoelliptic

if and only if each stratum in its Poisson stratification is (microlocally) a symplectic Cω

submanifold.

4. Examples and counterexamples

In this section we discuss some model operators and examine their Poisson stratifica-

tion as well as—when known—their hypoellipticity properties. To do so, it is useful to

introduce the following definition.
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Definition 4.1. We say that the operator P is Gevrey s (s ≥ 1) hypoelliptic in the open

subset U ⊂ Ω if for every u ∈ D ′(U) and for every open subset U1 ⊂ U , Pu ∈ Gs(U1)

implies that u ∈ Gs(U1).

Obviously, if s = 1 P is analytic hypoelliptic.

In view of [29] (see also [19]) every sum of squares operator P is Gm−hypoelliptic where

the integer m is the maximal length of the Poisson brackets required to span the ambient

space.

Therefore, finding the optimal Gevrey regularity of P can provide information about the

geometric obstruction to be analytic hypoelliptic. Let us show this by introducing the

following example.

4.1. The Olĕınik and Radkevič example. An important example was singled out by

Olĕınik, Olĕınik and Radkevič in [41], [42]. Let p, q be positive integers and consider in

R3 the following sum of squares

(4.1) POR(x, ξ) = D2
1 + x

2(p−1)
1 D2

2 + x
2(q−1)
1 D2

3,

where 1 < p ≤ q. Then

Theorem 4.1 ([41], [42], [24]). The operator in (4.1) is Gevrey hypoelliptic of order q/p.

This threshold is optimal.

This result shows that POR is analytic hypoelliptic if and only if q/p = 1, that is q = p.

Let us discuss this fact in view of the Treves conjecture 1. Consider the operator in (4.1),

with 1 < p < q. Then

Char(POR) = {(0, x2, x3; 0, ξ2, ξ3) | ξ22 + ξ23 > 0}.

This is obviously a symplectic submanifold, so that the rank of the symplectic form

restricted to Char(POR) is constant and equal to 4.

All Poisson brackets of length k + 1 of the form ad(X1)
kXj are zero for k < p − 1. It is

evident that X1 is the only field contributing to this computation since both X2 and X3

carry vanishing coefficients. The first non-vanishing Poisson bracket is

(4.2) ad(X1)
p−1X2 = (p− 1)!ξ2.
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Therefore the first Poisson strata (of depth p) are then

Σp,± = {(x, ξ) | ξ1 = x1 = 0, ξ2 ≷ 0}.

The Poisson bracket in (4.2) is zero if ξ2 = 0, which is possible, provided ξ3 ̸= 0. Hence

the strata of depth q are

Σq,± = {(x, ξ) | ξ1 = x1 = 0 = ξ2, ξ3 ≷ 0}

since

ad(X1)
q−1X3 = (q − 1)!ξ3 ̸= 0.

The latter is not symplectic since it has codimension 3. According to the Treves conjecture

POR is not analytic hypoelliptic.

Furthermore, if q = p we have only a Poisson stratum coinciding with the characteristic

manifold

{(0, x2, x3; 0, ξ2, ξ3) | ξ22 + ξ23 > 0},

which is symplectic; again, according to the Treves conjecture POR turns out to be ana-

lytic hypoelliptic.

4.2. Counterexamples. Let r, p, q ∈ N, 1 < r < p < q, and x ∈ R4. Consider the

operator

(4.3) P1(x,D) = D2
1 +D2

2 + x
2(r−1)
1

(
D2

3 +D2
4

)
+ x

2(p−1)
2 D2

3 + x
2(q−1)
2 D2

4.

Evidently P1 is a sum of squares operator verifying Hörmander condition, since ad(D1)
r−1xr−1

1 Di

yields Di, i = 3, 4.

The characteristic variety of P1 is

Char(P1) =
{
(x, ξ) | ξ1 = ξ2 = 0, x1 = x2 = 0, ξ23 + ξ24 > 0

}
.

The stratification associated with P1 is made up of a symplectic single stratum

Σ1 =
{
(0, 0, x3, x4; 0, 0, ξ3, ξ4) | ξ23 + ξ24 > 0

}
= Char(P1).

In this framework, we refer also to [16] for a multi-strata case. Then we have
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Theorem 4.2 ([3]). Let
1

s0
=

1

r
+

r − 1

r

p− 1

q − 1
.

Then P1 in a neighborhood of the origin is locally Gevrey s0 hypoelliptic and not better.

It is not difficult to show that Theorem 4.2 implies the following

Corollary 4.1. The Conjecture 1 does not hold in dimension n for n ≥ 4.

We refer to [3] for a complete proof of Theorem 4.2. The first step consists in using the

subelliptic inequality to show that a distribution solution of P1u = f , with f real analytic

is in Gs0 near a characteristic point (in [15] it is provided an approach that does not use

the subelliptic inequality at all.)

The second step (which is actually the crucial point) is the converse statement: there is

a real analytic function f and a Gs0 function, u, such that P1u = f and moreover u is

not better than Gs0 . To this end we must construct such a function u, basically doing the

same as in Theorem 2.1, i.e. constructing some sort of inverse Fourier transform whose

exponential decay at infinity prevents analyticity. Of course both the (complex) phase

and the amplitude are more involved in this case. In particular the amplitude is obtained

by studying the semiclassical eigenfunctions and eigenvalues of a certain Schrödinger op-

erator with a double well potential with non degenerate minima blowing up at infinity.

We emphasize that in a global (or semiglobal) setting the operator P1 may be analytic

hypoelliptic, suggesting that analytic hypoellipticity might be a consequence of the spec-

tral behavior of some operator. Concerning this we cite the following theorem by Chinni

[22]:

Theorem 4.3 ([22]). Let

P1(x,D) = D2
1 +D2

2 + a2(x1)
(
D2

3 +D2
4

)
+ b21(x2)D

2
3 + b22(x2)D

2
4,

defined on T4, where a, b1, b2 are real valued real analytic functions not identically zero.

Then, given any subinterval I ⊂ T2
x′, x′ = (x1, x2), and given any u ∈ D ′(I × T2

x′′),

x′′ = (x3, x4), the condition P1u ∈ Cω(I × T2
x′′) implies u ∈ Cω(I × T2

x′′).
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We also would like to mention the following result: let r, p, q and k be positive integers

such that r < p < q. Consider the sum of squares operator in R4, obtained adding the

square of the vector field xp−1
2 xk

3D4 to the operator in (4.3),

P (x,D) = D2
1 +D2

2 + x
2(r−1)
1 D2

3 + x
2(r−1)
1 D2

4 + x
2(p−1)
2 D2

3

+ x
2(p−1)
2 x2k

3 D2
4 + x

2(q−1)
2 D2

4

(4.4)

The characteristic variety of P is actually the real analytic manifold

Char(P ) = {(x, ξ) | xi = ξi = 0, i = 1, 2, ξ23 + ξ24 > 0},

which is a symplectic manifold. Actually Char(P ) = Char(P1).

We have

Theorem 4.4 ([17]). The operator P in (4.4) is analytic hypoelliptic.

The theorem above as well as the choice of the operator P are worth some explanation.

The operator P1 in (4.3) is a counterexample to Treves conjecture. Actually the strat-

ification associated to P1 in the statement of the conjecture is made of the sole stratum

Char(P1) = {(x, ξ) | xi = ξi = 0, i = 1, 2, ξ23 + ξ24 > 0} = Char(P ).

An inspection of the proof though, shows that the real analytic submanifold

Σ1 = {(x, ξ) | xi = ξi = 0, i = 1, 2, ξ3 = 0, ξ4 ̸= 0}

is important for the Gevrey regularity of P1 because of the presence of the vector field

xp−1
2 D3. This remark would lead us to consider the characteristic set Char(P1) as the

disjoint union of the following two analytic strata

Σ0 = {(x, ξ) | xi = ξi = 0, i = 1, 2, ξ3 ̸= 0},

Σ1 = {(x, ξ) | xi = ξi = 0, i = 1, 2, ξ3 = 0, ξ4 ̸= 0}.

Actually Σ1 is non symplectic and has Hamilton leaves which are the x3 lines where the

propagation of the Gevrey–s0 wave front set occurs. Hence we might think of Σ1 as a “non

Treves stratum” where the existence of Hamilton leaves implies non analytic regularity.
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We must make it clear though that, to our knowledge, there is neither a replacement

conjecture nor an alternative definition of stratification.

The model operator P is such that, even though almost all the properties of P1, as far

as the Treves stratification is concerned, are retained, the manifold Σ1 is replaced by

(4.5) Σ1 = {(x, ξ) | xi = ξi = 0, i = 1, 2, 3, ξ4 ̸= 0},

due to the presence in P of both vector fields xp−1
2 D3 and xp−1

2 xk
3D3. We point out that

in this case Σ1 is a symplectic submanifold and hence has no Hamilton leaves.

In other words it seems that the analytic regularity of a sum of squares should depend

on a suitable stratification of the characteristic variety of the operator and on the fact

that its strata are analytic symplectic manifolds.

However, the following question has, to our knowledge, received no answer yet:

Problem 1. Define a stratification of the characteristic variety in real analytic mani-

folds such that when each stratum is a symplectic manifold then the operator in analytic

hypoelliptic.

This would allow to reformulate, regardless of the local or microlocal aspect of the

question, the Treves conjecture as

Conjecture 2. A sum of squares operator with real analytic coefficients is analytic hy-

poelliptic if and only if every stratum of the stratification is a symplectic real analytic

manifold.

5. Open problems

5.1. The 2 dimensional case. Let us consider a sum of squares operator in R2. Denote

by (x, y) the variables in R2:

(5.1) P (x, y,Dx, Dy) =
N∑
j=1

X2
j (x, y,Dx, Dy).

Without loss of generality we may suppose we are working in a neighborhood of the origin,

Ω, and that X1 = Dx.
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Thus one of the equations of the characteristic variety is ξ = 0. For j ≥ 2 we may

then write Xj(x, y, ξ, η) = aj(x, y)ξ + bj(x, y)η. Since η ̸= 0 we find that the other

relations describing the characteristic variety are bj(x, y) = 0, where the bj are real analytic

functions defined in Ω.

Since we are assuming that Hörmander condition is satisfied, we may suppose that

(0, 0; 0, η ̸= 0) is a point of the characteristic variety and that, possibly shrinking Ω, there

is an index j, 2 ≤ j ≤ N , such that ∂m
x bj(0, 0) ̸= 0; here m is minimal, i.e. ∂k

xbj(0, 0) = 0

when 2 ≤ j ≤ N and k < m. It is also evident that X1 = Dx is the only field that we can

meaningfully use to form brackets of vector fields, i.e. we have to consider only brackets

of the form ad(X1)
kXj, since any other vector field has a vanishing coefficient in front.

Set

f(x, y) =
N∑
j=2

bj(x, y)
2.

The characteristic variety of P is then given by

Char(P ) = {(x, y; 0, η) | η ̸= 0, f(x, y) = 0}.

We apply the Weierstrass preparation theorem to f and write

f(x, y) = e(x, y)

(
x2m +

2m∑
ℓ=1

aℓ(y)x
2m−ℓ

)
,

where e(x, y) is a Cω function such that e(0, 0) ̸= 0, aℓ(0) = 0 for every ℓ = 1, . . . , 2m.

Since e is different from zero, we may replace f by the Weierstrass polynomial above,

because they define the same variety. Let us denote it by q(x, y).

Definition 5.1 ([38], [49]). We say that a polynomial of the form

q(z′, zn) = zmn +
m∑
k=1

ak(z
′)zm−k

n ,

z = (z′, zn) ∈ U open subset of Cn, 0 ∈ U , ak ∈ O(U), holomorphic functions on U such

that ak(0) = 0 for every k is a Weierstrass type polynomial of degree m.

We have the following theorem
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Theorem 5.1 ([38], [49]). Let f be a holomorphic function defined in a neighborhood of

the origin, U ⊂ Cn. Suppose that f(0, . . . , 0, zn) ̸≡ 0 in U . Then there exists a Weierstraß

type polynomial, q#, whose discriminant is not identically zero in U and such that f = 0

iff q# = 0.

Same statement for a real analytic case.

Denote by D#(y) = discr q#. We have that D# ∈ Cω(π2(U)), where π2 is the projection

onto the y–axis.

As a consequence D−1
# (0) = {y1, . . . , yν}, for a certain ν ∈ N. Let m# = deg q# and

denote by ρ1(y), . . . , ρm#(y) the roots (real or complex) of q#. For every j ∈ {1, . . . , ν},

there are at least two indices, i1, i2 in the range {1, . . . ,m#} such that ρi1(yj) = ρi2(yj).

We set

(5.2) ρ̃j = (xi1 , yj), xi1 = ρi1(yj), j = 1, . . . , ν.

See, for instance, Fig.1 where two of such points are drawn.

Definition 5.2. We call ρ̃j a branching point of f−1(0). Denote by B(U) the set of

branching points in U .

ρ̃1

ρ̃2

Figure 1. An example of f−1(0) near (0, 0) = ρ̃1

The above described facts determine the stratification. There are two cases:

(a) The set B(U) is empty. This means that the roots of q# are simple and have

the form x = ρk(y), k = 1, . . . ,m#. Since, according to our assumption, (0, 0) ∈
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f−1(0, 0), we deduce that there is only one k ∈ {1, . . . ,m#} such that ρk(0) = 0.

Possibly shrinking U we obtain that f has the form

f(x, y) = ẽ(x, y)(x− ρ(y))2m
′
, ẽ(0, 0) ̸= 0, m′ ≤ m.

The characteristic variety of P is then symplectic and P is analytic hypoelliptic.

This has been proved by Ōkaji, [40], and Cordaro and Hanges, [25], for operators

where f has the above form.

(b) The set B(U) is not empty. Then we may always shrink the neighborhood U so

that the origin—or ρ̃1 is the only branching point in U . Then f has the form

f(x, y) = ẽ(x, y)
m′∏
j=1

(x− ρj(y))
mj ,

and ρj(y) ̸= ρk(y) if y ̸= 0, but ρj(0) = 0 for every j, m′ ≤ m#, ẽ(0, 0) ̸= 0.

The deeper stratum is

Σ1 = {(0, 0; 0, η) | η ̸= 0},

as we can see by taking derivatives of f with respect to x. Char(P )\Σ1 is a union

of disjoint arcs of Cω curves of the form

{(x, y, 0, η) | η ̸= 0, (x, y) ̸= (0, 0), x = ρj(y)},

which gives simplectic strata at each point of which we get real analyticity.

Thus it seems that the Treves stratification completely describes all possible situations in

two dimensions. The problem of the non analytic hypoellipticity of P in case (b) as well

that about its Gevrey regularity are open. In this setting, we refer to [23] for the study

of a meaningful model.

We explicitly note that proving that in case (b) there is no analytic hypoellipticity

amounts to proving that the Treves conjecture holds in dimension two.

5.2. The 3 dimensional case. There are no known counterexamples to the Treves con-

jecture in dimension 3. However in [18] some examples have been proposed that should

violate the conjecture. We briefly describe those model in this section.
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Let x ∈ R2, y ∈ R, a, p, q, r be positive integers. We shall specify later the relation

among these integers. Define

(5.3) Q(x, y,Dx, Dy) = D2
1 +D2

2 + x
2(r−1)
2 D2

y + x
2(q−1)
1 D2

y + x
2(p−1)
1 y2aD2

y.

If we assume that 1 < p < q < r, the Lie algebra is generated with brackets of length

m = q. The characteristic manifold is {(0, 0, y; 0, 0, η) | η ̸= 0}.

If we look at the powers of the monomials in x, we can draw a (convex) Newton polygon

in the x-plane. When the powers of x having a possibly degenerate coefficient are added

to the picture we obtain

T region

non T region

p− 1 q − 1

r − 1

Figure 2. The Newton polygon for Q in (5.3) when 1 < p < q < r

where the dashed line has slope −1 and starts from the vertex closest to the origin, the

triangle underneath the dashed line has points corresponding to monomials where the

Treves stratification identifies a non symplectic stratum (T region).

In [18] it is proved that
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Theorem 5.2. The operator Q in (5.3) is Gevrey s hypoelliptic for

s ≥
(
1− 1

a

p− 1

q

)−1

.

There is no proof of the optimality of the above index; we believe that it is optimal,

due to the fact that Theorem 5.2 is a particular case of a result proved in [18], which, in

the known cases, gives optimal values.

Let us now consider the operator Q in (5.3) when 1 < r < p < q. An important tool in

the analysis of Q is the associated Newton polygon (see also [14] in case of one dimensional

case). If we draw the Newton polygon for Q and add to the picture the dots corresponding

to degenerate monomials (i.e. monomials having coefficients containing powers of y) we

obtain

T region

non T region

p− 1 q − 1

r − 1

Figure 3. The Newton polygon for Q when 1 < r < p < q

In [18] it is proved that, in the latter case, Q is Gevrey s hypoelliptic for

(5.4) s ≥
(
1− 1

a
· q − p

q − 1
· r − 1

r

)−1

.

On the other hand Q has a symplectic characteristic manifold: Char(Q) = {x = ξ = 0, η ̸=

0} and no strata are found using the Poisson brackets of the fields, so that according to
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the conjecture it should be analytic hypoelliptic. We believe that the Gevrey regularity

in (5.4) is optimal, based on the striking similarity of Q with the operator discussed in [3]

which violates the conjecture. Actually the main difference between Q and the operator

in [3] consists in the fact that the putative stratum is a non symplectic “stratum” whose

Hamilton leaf lies on the fiber of the cotangent bundle.

At the moment we have no optimality proof for the Gevrey regularity (5.4) of Q both

in the case of Figure 2 and of Figure 3. We also remark that the optimality of (5.4) would

imply that the Treves conjecture does not hold in dimension 3.

Even though for the case considered in [18] the Newton polygon helps in identifying a

(non symplectic) stratum in the three variables case, we would like to point out that this

is not the case when the vector fields are not monomials. Here are two examples:

(5.5) Q1 = D2
1 +D2

2 + (x1 − x2
2)

2D2
y + (y2x3

1 + x4
2)

2D2
y

and

(5.6) Q2 = D2
1 +D2

2 + (x1 − x2
2)

2D2
y + (x3

1 + y2x4
2)

2D2
y.

It is easy to show that

Char(Qj) = {(0, 0, y; 0, 0, η) | η ̸= 0},

i.e. a symplectic manifold.

One can prove, using the L2 estimate , that Q1 is analytic hypoelliptic. Unfortunately

the same proof does not work for Q2. We believe that Q2 has a non symplectic non Treves

stratum, and hence is not analytic hypoelliptic. No proof is known.
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[42] O. A. Olĕınik and E. V. Radkevič, The analyticity of the solutions of linear partial differential

equations, (Russian) Mat. Sb. (N.S.), 90(132) (1973), 592–606.

[43] C. Parenti, A. Parmeggiani, On the hypoellipticity with a big loss of derivatives, Kyushu J. Math.

59 (2005), 155-230.

[44] L. Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math.

137 (3 - 4) (1976), 247–320.

[45] D.S. Tartakoff, On the Local Real Analyticity of Solutions to □b and the ∂̄-Neumann Problem, Acta

Math. 145 (1980), 117–204.

[46] F. Trèves, Analytic hypo-ellipticity of a class of pseudodifferential operators with double character-

istics and applications to the ∂̄-Neumann problem, Comm. Partial Differential Equations 3 (1978),

no. 6-7, 475–642.

[47] F. Treves, Symplectic geometry and analytic hypo-ellipticity, in Differential equations, La Pietra

1996 (Florence), Proc. Sympos. Pure Math. 65, Amer. Math. Soc., Providence, RI, 1999, 201-219.

[48] F. Treves, On the analyticity of solutions of sums of squares of vector fields, Phase space analy-

sis of partial differential equations, Bove, Colombini, Del Santo ed.’s, 315-329, Progr. Nonlinear

Differential Equations Appl., 69, Birkhäuser Boston, Boston, MA, 2006.

[49] F. Treves, Analytic partial differential equations, Grundlehren Math. Wiss., 359 Springer, Cham,

2022, xiii+1228 pp.

Dipartimento di Matematica, Università di Bologna, Piazza di Porta San Donato 5,

Bologna Italy

Email address: marco.mughetti@unibo.it


	1. Introduction: the  C  hypoellipticity
	2. The real analytic case
	3. Geometry of the characteristic variety: stratifications and the Treves conjecture
	3.1. The analytic stratification
	3.2. The symplectic stratification
	3.3. The Poisson stratification

	4. Examples and counterexamples
	4.1. The Oleĭnik and Radkevič example
	4.2. Counterexamples

	5. Open problems
	5.1. The 2 dimensional case
	5.2. The 3 dimensional case

	References

