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Abstract: Selective serotonin reuptake inhibitors (SSRIs) are the most commonly used psychophar-
maceutical treatment for major depressive disorder (MDD), but individual responses to SSRIs vary
greatly. CYP2C19 is a key enzyme involved in the metabolism of several drugs, including SSRIs. Vari-
ations in the CYP2C19 gene are associated with differential metabolic activity, and thus differential
SSRI exposure; accordingly, the CYP2C19 genotype may affect the therapeutic response and clinical
outcomes, though existing evidence of this link is not entirely consistent. Therefore, we analysed
data from the UK Biobank, a large, deeply phenotyped prospective study, to investigate the effects of
CYP2C19 metaboliser phenotypes on several clinical outcomes derived from primary care records,
including multiple measures of antidepressant switching, discontinuation, duration, and side effects.
In this dataset, 24,729 individuals were prescribed citalopram, 3012 individuals were prescribed
escitalopram, and 12,544 individuals were prescribed sertraline. Consistent with pharmacological
expectations, CYP2C19 poor metabolisers on escitalopram were more likely to switch antidepressants,
have side effects following first prescription, and be on escitalopram for a shorter duration compared
to normal metabolisers. CYP2C19 poor and intermediate metabolisers on citalopram also exhibited
increased odds of discontinuation and shorter durations relative to normal metabolisers. Generally,
no associations were found between metabolic phenotypes and proxies of response to sertraline.
Sensitivity analyses in a depression subgroup and metabolic activity scores corroborated results from
the primary analysis. In summary, our findings suggest that CYP2C19 genotypes, and thus metabolic
phenotypes, may have utility in determining clinical responses to SSRIs, particularly escitalopram
and citalopram, though further investigation of such a relationship is warranted.
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1. Introduction

Major depressive disorder (MDD) is a mood disorder that affects an estimated 246 million
people globally [1], imposing significant societal burden, hindering daily living, straining
the healthcare system, and reducing work productivity [2,3]. While numerous forms of
treatment are available to address MDD, pharmacotherapy with antidepressants remains
the most frequently administered option for moderate to severe forms of depression [4,5].
Among the classes of antidepressants available, selective serotonin reuptake inhibitors
(SSRIs) have been a standard treatment option for several decades, a status attributable to
the substantial evidence base that supports their effectiveness and safety [6,7].

However, despite the widespread use of antidepressants, among them SSRIs, indi-
vidual responses to this pharmacotherapy vary significantly, with a large proportion of
antidepressant-treated individuals experiencing therapeutic failure [8,9]; these cases are
characterised by a lack of response to medication or adverse side effects. Several factors
contribute to the variability in response to antidepressants. For example, the diagnostic
heterogeneity of affective disorders [10] means that individuals with a range of comor-
bidities are often grouped into the same category, such that differences in response are
inevitable. Genetic variations have also been shown to mediate differential antidepressant
responses [11,12], with variations in the genes that encode for the Cytochrome P450 (CYP)
superfamily of proteins linked to the response to medication [13].

The CYP2C19 enzyme in particular is responsible for the metabolism of many com-
pounds, including the SSRIs citalopram, escitalopram, and sertraline, among other drugs [14].
The metabolic capacity of CYP2C19 is determined by its corresponding allelic makeup, with
patients classified into different metaboliser status categories according to their genotypes
and enzymatic capacity [15,16]. There is strong clinical evidence corroborating associa-
tions between the CYP2C19 metaboliser status and antidepressant exposure, particularly
for citalopram, escitalopram, and sertraline [17–19]. Poor and intermediate metabolisers
exhibit higher drug exposure, as they metabolise slower, while ultrarapid metabolisers
exhibit lower drug exposure, as they metabolise much faster. Accordingly, the Dutch
Pharmacogenetics Working Group (DPWG) guidelines have suggested that CYP2C19 geno-
typing may be beneficial before the start of administering citalopram, escitalopram, and
sertraline for predicting their therapeutic efficacy [20–22]. The Clinical Pharmacogenetics
Implementation Consortium (CPIC) further supports these recommendations, suggesting
dose adjustments corresponding to the metaboliser status for these medications [23].

While the effects of genetic variation in CYP2C19 on SSRI metabolism are well-
established, there remains inconsistency across studies exploring associations between
CYP2C19 genotypes and clinical indications of the response to SSRIs. Some studies have
reported associations between CYP2C19 variants and endpoints that reflect antidepres-
sant response efficacy [18,24], while other studies have found no such relationship [25,26].
The divergency in these reports is likely due to several factors, including the relatively
small sample sizes used in certain studies, different study designs, and the difficulty of
measuring the treatment response in clinical settings—the outcomes range from switching
the antidepressant medication to self-reported measures of tolerability and side effects.
As such, additional research is clearly necessary to elucidate the putative relationships
between the CYP2C19 genotype and SSRI response.

Therefore, our study aims to evaluate associations between CYP2C19 genotypes
(and concomitant metaboliser phenotypes) and several proxies of the treatment response
for citalopram, escitalopram, and sertraline. We conducted these analyses using the UK
Biobank [27], a large, deeply phenotyped, health study of 500,000 individuals. This resource
includes genetic data that enable us to determine the CYP2C19 metaboliser status, as well as
primary care records for a subset of 222,054 participants. These records contain information
on clinical events and prescriptions at the primary care level, allowing us to monitor
prescription patterns for our SSRIs of interest. Consequently, we investigated proxies
of SSRI response using outcomes derived from these records, including antidepressant
switching, discontinuation, duration, and side effects.
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2. Results
2.1. Study Demographics and CYP2C19 Metaboliser Phenotype Prevalence

In total, there were 33,094 individuals in our dataset that had been prescribed any
of escitalopram, citalopram, or sertraline at least once, and had a known metaboliser
status. The average age across this dataset was 55.2 years (S.D. = 8.1), and 66.2% of the
sample was female (n = 21,890). The majority of participants were classified as CYP2C19
normal metabolisers based on their called genotypes (n = 13,098, 39.6%), while the least
common metaboliser classification was the poor metaboliser phenotype (n = 905, 2.7%). The
remainder of the sample comprised fast metabolisers (n = 10,444, 31.6%) and intermediate
metabolisers (n = 8619, 26.0%). In this sample, the prevalences of rapid and ultrarapid
metabolisers, which comprised our “fast” metaboliser phenotype were 26.9% and 4.7%
respectively, which was consistent with prior prevalence estimates [28]. Among our three
SSRIs of interest, citalopram was the most prescribed (n = 24,729), followed by sertraline
(n = 12,544), and then escitalopram (n = 3012). The distribution of metaboliser status and
SSRI prescription, as well as basic demographic information, are presented in Table 1.

Table 1. Study demographic information and distribution of CYP2C19 metaboliser phenotypes and
SSRI prescriptions.

Citalopram Escitalopram Sertraline Total Sample

Metaboliser phenotype

Poor, N (%) 675 (2.7%) 75 (2.5%) 349 (2.8%) 905 (2.7%)

Intermediate, N (%) 6468 (26.2%) 793 (26.3%) 3306 (26.4%) 8619 (26.0%)

Normal, N (%) 9731 (39.3%) 1197 (39.7%) 4965 (39.6%) 13,098 (39.6%)

Fast, N (%) 7855 (31.7%) 947 (31.4%) 3924 (31.3%) 10,444 (31.6%)

Total number of individuals prescribed SSRI

N 24,729 3012 12,544 33,094

Demographics

Age (mean ± SD) 55.0 (8.1) 55.2 (7.9) 55.4 (8.2) 55.2 ± 8.1

Sex (% Female) 66.9% 68.1% 65.6% 66.2%

2.2. Associations between Metaboliser Phenotype and Antidepressant Switching

We assessed whether there were any associations between the CYP2C19 metaboliser
status and early antidepressant switching at 30 days, 60 days, and 90 days (Figure 1).
Poor metabolisers on escitalopram were more likely to switch to another antidepressant,
relative to normal metabolisers, at 60 days (OR = 2.311, 95% CI = 1.034–5.163, p = 0.041).
However, fast metabolisers on escitalopram were less likely to switch, compared to normal
metabolisers, at 30 days (OR = 0.601, CI = 0.374–0.966, p = 0.036). The effect size of these
associations at other timepoints were similar, but did not reach statistical significance (see
Supplementary Table S1). There were no significant associations pertinent to switching for
citalopram and sertraline.

2.3. Associations between Metaboliser Phenotype and Antidepressant Discontinuation

We also tested the effect of CYP2C19 metaboliser status on antidepressant discontinua-
tion (Figure 2). Compared to normal metabolisers, poor metabolisers who were prescribed
citalopram were more likely to discontinue antidepressant usage, as defined by a stop-
page following a brief prescription period (OR = 1.366, CI = 1.090–1.712, p = 0.007). No
other significant associations between the metaboliser phenotypes and our two defini-
tions of antidepressant discontinuation were identified across all three SSRIs of interest
(Supplementary Table S2).
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(green), 60 days (red), and 90 days (blue), with normal metabolisers as the reference group. Models 
were adjusted for age at first prescription, sex, genotype batch, and binary overlap with an antipsy-
chotic prescription. Associations are shown for switching from (A) citalopram, (B) escitalopram, and 
(C) sertraline to another antidepressant. 
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page following a prescription window lasting less than 8 weeks. Models were adjusted for age at 

Figure 1. Forest plots that highlight odds ratios and 95% confidence intervals for regression models
evaluating associations between CYP2C19 metaboliser status and SSRI switching within 30 days (red),
60 days (green), and 90 days (blue), with normal metabolisers as the reference group. Models were
adjusted for age at first prescription, sex, genotype batch, and binary overlap with an antipsychotic
prescription. Associations are shown for switching from (A) citalopram, (B) escitalopram, and
(C) sertraline to another antidepressant.
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Figure 2. Forest plots that highlight odds ratios and 95% confidence intervals for regression models
evaluating associations between CYP2C19 metaboliser status and SSRI discontinuation defined in
two ways, with normal metabolisers as the reference group. Definition 1 (red) entails abrupt stoppage
of prescriptions following a single prescription, while definition 2 (blue) entails abrupt stoppage
following a prescription window lasting less than 8 weeks. Models were adjusted for age at first
prescription, sex, genotype batch, and binary overlap with an antipsychotic prescription. Associations
are shown for discontinuation of (A) citalopram, (B) escitalopram, and (C) sertraline.

2.4. Associations between Metaboliser Phenotype and Antidepressant Duration

Next, we evaluated associations between the metaboliser status and the natural loga-
rithmic transformation of antidepressant duration, as defined on the basis of the number
of prescriptions (“count-based definition”) and total weeks of prescription (“weeks-based
definition”); the results are presented in Table 2. Among the individuals prescribed esci-
talopram, poor metabolisers used escitalopram for a shorter duration compared to normal
metabolisers, for both our count-based definition (β = −0.351, SE = 0.174, p = 0.043) and
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our total weeks definition (β = −0.369, SE = 0.185, p = 0.046). Within the cohort of indi-
viduals prescribed citalopram, the intermediate metabolisers had a shorter duration of
citalopram use compared to normal metabolisers, demonstrated using both the count-based
(β = −0.048, SE = 0.024, p = 0.045) and total weeks (β = −0.051, SE = 0.025, p = 0.043) defini-
tions. Among the individuals prescribed sertraline, fast metabolisers were on sertraline for
a shorter duration than normal metabolisers, though associations were only significant for
our total weeks definition (β = −0.071, SE = 0.032, p = 0.029).

Table 2. Associations between CYP2C19 metaboliser status and antidepressant duration, defined
using a count-based definition and a weeks-based definition. The count-based definition corresponds
to the total number of prescriptions an individual had across primary care records for a given
SSRI. The weeks-based definition corresponds to the total number of weeks an individual was
prescribed a given SSRI across all prescription windows in their primary care records. The mean and
standard deviation of antidepressant duration is also presented according to metaboliser status for
each antidepressant.

Citalopram

Metaboliser Phenotype
Count-Based Definition Weeks-Based Definition

Mean (SD) β (SE) p Mean (SD) β (SE) p

Poor metaboliser 21.3 (33.4) −0.068 (0.060) 0.255 99.8 (146.1) −0.082 (0.063) 0.191

Intermediate metaboliser 21.4 (34.0) −0.048 (0.024) 0.045 98.7 (143.3) −0.051 (0.025) 0.043

Normal metaboliser 22.0 (34.1) - - 101.8 (143.7) - -

Fast metaboliser 21.6 (33.3) −0.014 (0.023) 0.531 99.7 (141.6) −0.015 (0.024) 0.525

Escitalopram

Metaboliser phenotype
Count-based definition Weeks-based definition

Mean (SD) β (SE) p Mean (SD) β (SE) p

Poor metaboliser 10.5 (17.6) −0.351 (0.174) 0.043 53.3 (90.1) −0.369 (0.185) 0.046

Intermediate metaboliser 17.1 (28.4) −0.073 (0.067) 0.274 81.9 (130.2) −0.079 (0.071) 0.265

Normal metaboliser 18.6 (36.3) - - 87.8 (134.5) - -

Fast metaboliser 19.1 (32.0) 0.074 (0.063) 0.244 89.1 (136.8) 0.066 (0.068) 0.326

Sertraline

Metaboliser phenotype
Count-based definition Weeks-based definition

Mean (SD) β (SE) p Mean (SD) β (SE) p

Poor metaboliser 18.7 (35.7) −0.123 (0.081) 0.128 82.4 (138.6) −0.148 (0.084) 0.079

Intermediate metaboliser 18.2 (33.0) −0.050 (0.033) 0.126 84.7 (141.9) −0.057 (0.034) 0.095

Normal metaboliser 19.2 (37.6) - - 81.0 (137.9) - -

Fast metaboliser 17.9 (32.4) −0.060 (0.031) 0.056 78.3 (130.5) −0.071 (0.032) 0.029

2.5. Associations between Metaboliser Phenotype and Side Effects

Finally, we investigated associations between the metaboliser status and a measure
of psychotropic side effects, derived using primary care clinical event records (Figure 3).
For individuals prescribed escitalopram, poor metabolisers were more likely to have side
effects within 30 days of the first prescription, relative to normal metabolisers (OR = 3.179,
CI = 1.420–7.121, p = 0.005), which was consistent with poorer metabolic capacity. This
effect reduced substantially when extending the side effect window to 60 days, and
was not statistically significant (OR = 1.748, CI = 0.836–3.656, p = 0.138). For individ-
uals prescribed citalopram, fast metabolisers (that metabolise quicker) were less likely
to have side effects within 60 days of the first prescription versus normal metabolisers
(OR = 0.892, CI = 0.801–0.995, p = 0.040), though this relationship was not significant at
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30 days (OR = 0.917, CI = 0.803–1.046, p = 0.198). There were no other significant associa-
tions; the results from all of the regression tests are presented in Supplementary Table S3.
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Figure 3. Forest plots depicting odds ratios and 95% confidence intervals for regression models
evaluating associations between CYP2C19 metaboliser phenotype and the presence of side effects
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with an antipsychotic prescription. Associations are shown for side effects following (A) citalopram,
(B) escitalopram, and (C) sertraline prescription.

2.6. Sensitivity Analyses

We also conducted two sensitivity analyses to assess the robustness of our findings.
In the first analysis, we repeated our regression tests in a subset of participants that were
ascertained to have a “broad depression” phenotype. Overall, 78.5% of the individuals
prescribed citalopram, 89.1% of individuals prescribed escitalopram, and 79.0% of indi-
viduals prescribed sertraline were categorised as having broad depression. The results of
association testing in this subgroup are presented in Supplementary Tables S4–S7.

Nearly all effect sizes identified during sensitivity analysis with the broad depression
subgroup were consistent with those from the primary analysis: poor metabolisers on
escitalopram remained more likely to switch antidepressants at 60 days (OR = 2.371,
CI = 1.017–5.530, p = 0.046), and stayed on escitalopram for a shorter duration than normal
metabolisers, while poor metabolisers on citalopram remained more likely to discontinue
usage (OR = 1.426, CI = 1.073–1.896, p = 0.015); in this instance, an association between poor
metaboliser status and citalopram discontinuation was also present for our other definition,
which was predicated on number of prescriptions (OR = 1.446, CI = 1.054–1.983, p = 0.022).
The associations between intermediate metaboliser status and citalopram duration (count-
based definition, β = −0.055, SE = 0.027, p = 0.043), as well as between fast metaboliser status
and sertraline duration (weeks-based definition, β = −0.082, SE = 0.037, p = 0.026), also
remained statistically significant, with effect sizes similar to those derived in the primary
analysis, as did the relationship between fast metaboliser status and reduced likelihood
of side effects following citalopram prescription (OR = 0.881, CI = 0.780–0.995, p = 0.041).
Furthermore, new associations were identified in the broad depression subgroup, with
fast metabolisers on escitalopram more likely to discontinue usage compared to normal
metabolisers (OR = 0.655, CI = 0.441–0.973, p = 0.036).

However, certain effect sizes attenuated when we limited the analysis to individuals
with broad depression. Fast metabolisers on escitalopram were no longer less likely to
switch than normal metabolisers (OR = 0.890, CI = 0.775–1.022, p = 0.097). Moreover,
poor metabolisers prescribed escitalopram were no longer more likely to have side effects
following the first prescription (OR = 1.737, CI = 0.629–4.798, p = 0.287).
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In our second sensitivity analysis, we repeated association testing using the CYP2C19
activity score as a predictor in lieu of categorical metaboliser phenotypes. For individuals
prescribed escitalopram, a higher CYP2C19 activity score was associated with reduced odds
of switching to another antidepressant within 30 days (β = −0.311, SE = 0.110, p = 0.005),
60 days (β = −0.337, SE = 0.096, p < 0.001), and 90 days (β = −0.249, SE = 0.079, p = 0.002).
Furthermore, a higher activity score was linked to a longer duration on escitalopram for
both the count-based definition (β = 0.072, SE = 0.031, p = 0.021) and the weeks-based
definition (β = 0.068, SE = 0.031, p = 0.030). Among the individuals prescribed citalopram,
a higher activity score was associated with decreased odds of discontinuation for the
definition based on the prescription period (β = −0.051, SE = 0.023, p = 0.029). There were
no significant associations between the CYP2C19 activity score and the likelihood of side
effects following the first SSRI prescription; the full association testing results are presented
in Supplementary Tables S8–S11.

3. Discussion

In this study, we used the large UK Biobank resource to link CYP2C19 metabolic
capacity with several proxy measures of antidepressant response. Our findings showed
several associations between CYP2C19 metaboliser phenotypes and differential response
to SSRIs, particularly for escitalopram and citalopram (es/citalopram); these relationships
were demonstrated in several multiple regression models where either the metaboliser
status or the metabolic activity score were used as predictors. This strengthens the argument
that early CYP2C19 genotyping prior to prescription may have value in improving the
therapeutic efficacy of SSRIs, an important implication for pharmacogenetics.

Our findings were generally consistent with the pharmacological rationale outlined in
the dosing recommendation guidelines from the CPIC [23] and DWPG [20], as well as the
Dutch guideline on the implementation of pharmacogenetics for psychiatrists [22]. Both
guidelines advise a reduction in the starting dose for CYP2C19 poor metabolisers prescribed
escitalopram, a recommendation rooted in the wealth of evidence reporting a link between
poor metaboliser status (i.e., the absence of CYP2C19 enzymatic activity) and significantly
higher escitalopram plasma concentrations [18,29,30]. Thus, our findings can be explained
by this well-established genotype effect on exposure, with poor metabolisers having higher
odds of escitalopram switching and side effects, as well as a shorter average duration on
the antidepressant, compared to normal metabolisers. In addition, the correlation between
decreasing metabolic capacity and increased citalopram serum exposure [31,32], as reflected
in the DPWG recommendation, supports the increased odds of discontinuation and a
shortened duration on citalopram that poor metabolisers and intermediate metabolisers
demonstrated in our study, respectively. As expected, given the rapid clearance that is
concomitant with higher metabolic capacity, citalopram fast metabolisers were less likely
to display side effects following the first prescription.

In addition to the aforementioned research focused on plasma SSRI concentration,
there is a substantial body of literature reporting on the putative relationship between the
CYP2C19 metaboliser status and SSRI therapeutic response, though the evidence is more
ambiguous with conflicting reports. Nonetheless, our findings are supported by several
of these studies across different measures of treatment efficacy. In the only other study
that investigated antidepressant switching as a proxy of therapeutic failure, Jukic et al.
reported that poor metabolisers switched from escitalopram 3.3 times more frequently
than did normal metabolisers [18], a finding that our results directly support, despite
the differences in our time window for switching (we used 30, 60, and 90 days instead
of 1 year). In a cohort of adolescents from the Cincinnati Children’s Hospital Medical
Center, poor metabolisers and intermediate metabolisers were more likely to discontinue
es/citalopram treatment than normal metabolisers [33]. We found the same relationship
between poor metabolisers and citalopram discontinuation in our sample, as well as in
the direct association we identified between the CYP2C19 activity score and escitalopram
duration. Several studies also explored CYP2C19 genotypes in the context of changes in the
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Hamilton Depression Rating (HAMD) Scale [34] as a measure of therapeutic efficacy. In one
small study, intermediate metabolisers on citalopram exhibited significantly higher HAMD
scale scores 8 weeks after baseline, which was indicative of lower therapeutic efficacy [35].
Jokovic et al. reinforced this finding, demonstrating that “slow metabolisers” (a composite
of poor and intermediate metabolisers) had a significantly lower reduction in their HAMD
scores during their study [36]. Our findings that linked intermediate metabolisers to
shorter citalopram durations are in line with these reports, though our outcomes were
only proxies for efficacy rather than direct measures of self-reported efficacy, as used in
aforementioned studies (self-report efficacy responses were not available for our analysis).
A putative relationship between the CYP2C19 genotypes and SSRI response efficacy is
further supported by several clinical trials [37–42], where the use of pharmacogenetic
testing in guiding treatment improved patient antidepressant response, as assessed on a
range of different scales.

Several studies have also previously investigated the effects of CYP2C19 variations on
side effects, measured in a variety of ways. For example, in the study from Jokovic et al. [36],
slow metabolisers had a higher average intensity score on the Toronto Side Effects Scale,
which is indicative of lower tolerability in this group, relative to normal metabolisers. A
meta-analysis from Fabbri et al. [24] summarises the evidence well: poor metabolisers
showed an increased risk of gastro-intestinal, sexual, and central nervous side effects at
weeks 2–4 following baseline. We corroborate this conclusion, demonstrating that poor
metabolisers are more likely to have side effects within 4 weeks, where our definition of side
effects based on the UKU-SERS encompassed all subclasses mentioned above. While these
results are concordant, it is worth highlighting that we used a different definition of side
effects, leveraging primary care clinical records rather than any rating scale covered in the
meta-analysis. Our approach exhibits greater similarity to the methods Aldrich et al. used
in the Cincinnati children cohort [33], where natural language processing was applied to
analyse electronic medical records. They identified that poor metabolisers had the highest
number of side effects experienced, while ultrarapid metabolisers had the lowest total
side effects, following es/citalopram prescription; this directly parallels our own analyses.
While the use of electronic records to derive adverse drug reactions has certain limitations,
this approach has been previously adopted and shown to be rigorous [43–45].

While our results largely support existing evidence in this domain, it is also important
to acknowledge where our findings were not consistent within the context of our study,
and in the context of other reports. For example, while we identified an association
between escitalopram poor metabolisers and early switching at 60 days, this was not
strictly replicated at 30 days or 90 days. While these associations did not reach statistical
significance, this can be attributed to an underpowered analysis due to the small number
of poor metabolisers on escitalopram, as well as the consistently high effect sizes across
all timepoints. In addition, discrepancies between the specific outcome definitions were
sporadically identified; for example, citalopram poor metabolisers were linked to one
definition of discontinuation but not another. Notably, however, the association with
the other discontinuation definition was close to the significance threshold (p = 0.072).
Beyond some degree of inconsistency between the outcome definitions, our findings also
conflict with some prior observations. Jukic et al. [18] reported an association between
ultrarapid metaboliser status and increased odds of switching, as a proxy of therapeutic
failure, consistent with the rationale that quicker clearance would mean poorer efficacy,
and thus higher odds of switching. However, we uncovered the opposite relationship in
our study, with fast metabolisers on escitalopram switching less than normal metabolisers.
These differences could have arisen from the subtle differences in the switch definition,
the different switch time windows employed (1–3 months versus 1 year), or the relatively
small sample sizes in both studies, possibly underpowering our analyses. Two studies in
the Sequenced Treatment Alternatives to Relieve Depression sample (STAR*D) also failed
to identify any consistent associations between CYP2C19 genetic variations and clinical
response or tolerance [25,26], which contradicts our findings to an extent. This disparity
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is possibly due to the different nature of outcome measures for response, with the use
of self-report and study adherence data in STAR*D compared to our use of primary care
records to identify prescription patterns. Campos et al. [46] also reported a link between
intermediate metabolisers on sertraline and the likelihood of side effects; we uncovered
no such association, though once again, there was variation in how we defined the side
effect variable.

Nonetheless, we consider our results to be relatively robust, particularly as our sen-
sitivity analyses reinforced our primary conclusions. In both our subgroup analysis and
our analyses using the activity score, most associations identified in the main analyses
remained significant, suggesting that any effects of CYP2C19 genotypes on the responses
to citalopram, escitalopram, and sertraline are linked to metabolic capacity and are inde-
pendent of depression status. However, it is also important that our results are interpreted
with caution. We presented results in this study without adopting any corrections for
multiple testing burden, as we intended to capture all possible associations, and as there is
no clear consensus on the appropriate method to use in this context [47,48], particularly
given the multiple measures of a broad treatment response outcome; however, without
any corrections for multiplicity, it is difficult to rule out false positives. For example, if a
Bonferroni correction was applied for the four outcomes [49], only some of the associations
(particularly for citalopram duration and discontinuation, and escitalopram side effects)
would remain statistically significant against the adjusted threshold. Nevertheless, the
large effect sizes and consistency across results suggest the presence of some association
between CYP2C19 phenotypes and SSRI response, though we are cognisant to emphasise
care and context when interpreting these results.

Our study yields insights into clinical guidelines and personalized treatment ap-
proaches in the context of SSRIs. The DWPG and CPIC advise against prescribing escitalo-
pram to ultrarapid metabolisers [20,50]; however, our data indicate that fast metabolisers,
characterised by their heightened metabolic capacity, exhibit a reduced likelihood of switch-
ing medications while on escitalopram compared to normal metabolisers. While our
findings offer a valuable contradictory perspective, they should be considered within the
broader clinical context. We were unable to ascertain whether the escitalopram dosages
in our sample differed from those in previous studies, and the heterogeneity in the body
of evidence on the link between ultrarapid metabolisers and escitalopram therapeutic
response underscores the complexity of this relationship. With regards to CYP2C19 poor
metabolisers, our study reinforces existing evidence [18] that has informed the development
of the DPWG and CPIC guidelines: our results suggest that adjusting the initial dose of
escitalopram represents a viable clinical strategy for individuals in this category. In terms
of practical implications for real-world prescription practices, our findings lend credence
to the potential value of preemptive pharmacogenetic testing. However, it is crucial to
recognize that the clinical integration of preemptive testing faces multifaceted challenges
extending beyond established scientific evidence. Notably, our study could not account
for the complexities of medication combinations and comorbid conditions in real-world
settings. Additionally, the cost-effectiveness of preemptive testing remains a matter of
ongoing investigation, particularly given the heterogeneity of existing pharmacogenomic
testing panels [21]. Nonetheless, our findings support a broader shift towards personalised
treatments, a paradigm shift where patients may benefit from reduced susceptibility to side
effects and active participation in shared decision-making with healthcare providers for
the optimal treatment course. While the practical integration of pharmacogenetic testing
into routine patient care continues to evolve, our findings solidify the scientific foundation
underlying this shift.

This study has several strengths that support its reliability. Firstly, this study was rela-
tively well-powered compared to several previous investigations, with a fairly large number
of participants and longitudinal prescription information. In addition, we employed a com-
prehensive approach to defining the outcomes, deriving these fields in multiple ways and at
multiple timepoints to better capture the complexity of the clinical antidepressant response.
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Given the constraints with UK Biobank phenotyping, we utilised primary care records in
this study, avoiding the use of self-reported scales and questionnaires in determining treat-
ment response. Consequently, this study circumvented some of the biases (e.g., response
and rater bias) that are inherent to these measurements [51,52]. Finally, we conducted two
sensitivity analyses, which yielded results that supported the associations identified in
the primary analyses, thereby strengthening the study’s robustness and ensuring greater
confidence in the accuracy of our conclusions.

There were, however, also several limitations in this study worth highlighting. First,
our outcome measures were derived based on prescription patterns from primary care
records, such that they do not directly reflect SSRI response or tolerance; moreover, there
was no way to verify that a prescription implied consumption of a given antidepressant.
The retrospective nature of this analysis placed constraints on deriving relevant outcomes
to the SSRI response, and hence on our usage of several prescription-based outcomes
and definitions to capture overall response. Another limitation was the relatively small
number of escitalopram users in the UK Biobank, though this sample size was comparable
with other investigations to date [18,46]. Moreover, the broad depression phenotype used
in our subgroup analyses was relatively lenient and based on self-reported information
rather than a structured diagnostic assessment [53]; as such, this phenotype is likely to
capture a wider range of individuals than classic definitions of depression. In addition, this
definition was derived from data recorded at baseline assessment such that it could not
be synchronised with the prescription timeframes, further limiting interpretation of this
phenotype. However, other stringent definitions previously used in the UK Biobank were
only available for a subset of participants who completed an online follow-up question-
naire [54], which would heavily reduce our sample size, rendering the broad phenotype
most suitable for a sensitivity analysis. In addition, it was not within the scope of this study
to analyse the possible complex confounding drug–drug interactions with SSRIs [55,56],
such that we were not able to capture the effects that any concomitant drugs may have on
the metabolism or proxy outcomes of our SSRIs of interest. In a similar vein, we did not
explore the presence of adjunct or augmentation therapy with other medications, inferring
that this potential proxy of response from prescription records also fell beyond the scope of
this investigation. Finally, the SSRI dosage information could provide additional contexts
to aid the interpretation of our analyses, particularly for attenuated effect sizes in some of
our sensitivity analyses; however, the dosages were not readily available in the UK Biobank,
and it was beyond the study’s scope to derive this information.

In summary, while more research must be carried out to fully ascertain the relationship
between CYP2C19 metaboliser phenotypes and SSRI therapeutic efficacy, our findings
suggest that reduced metabolic capacity may be linked to an increased likelihood of
switching, discontinuation, and side effects, as well as shorter durations, particularly
for es/citalopram. These conclusions should be interpreted alongside a demonstrated
lack of associations between CYP2C19 genotypes and proxies of therapeutic response to
sertraline in the UK Biobank, contrasting with prior findings. Nonetheless, taken altogether,
these results imply that CYP2C19 genotyping should at least be considered in people
experiencing problems with es/citalopram, such as side effects or lack of efficacy. These
findings also suggest that pre-emptive genotyping may be useful in informing clinical
decision-making for these SSRIs.

4. Methods
4.1. Study Population

The study data were obtained from the UK Biobank, a health study comprising around
500,000 participants from different regions of the United Kingdom aged 40–70 years at
their baseline assessment [27]. The initial recruitment was finished in 2010, following over
9 million postal invitations to participate—subsets of participants completed repeated
measurements as well as new measurements in the ensuing years. Genotyping data were
available for the majority (approximately 488,000) of these individuals, with DNA samples
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extracted from whole blood and genotyped using either the Affymetrix UK Biobank Axiom
Array or the Affymetrix UK BiLEVE Axiom Array [57]. The two genotype arrays used
are very similar, with over 95% overlap in their SNP marker content [58], minimizing any
potential variability. Genotype imputation was subsequently performed using IMPUTE4
software and the Haplotype Reference Consortium (HRC) data as the primary reference
panel [59]. The UK Biobank also provides a wide range of phenotypic data, obtained from
physical assessments, biological samples, hospital inpatient records, and touchscreen ques-
tionnaires. In addition, the UK Biobank contains a comprehensive dataset of primary care
events from various healthcare providers across England, Wales, and Scotland, including
records on registrations, clinical events, and prescriptions [60], which are available for
approximately 230,000 participants. We used this extensive collection of data to create
several phenotype definitions, as described in more detail below.

4.2. CYP2C19 Genotyping and Metaboliser Phenotype

The CYP2C19 genotypes and metaboliser statuses were obtained using UK Biobank
return 3388 from McInnes et al. [61], which consists of called pharmacogenetic star alleles
and metaboliser phenotypes derived using a Python program named PGxPOP. In brief,
PGxPOP quickly identifies and reports pharmacogenetic star alleles (popular nomenclature
that corresponds to functional haplotype patterns which influence drug metabolism) and
haplotypes from phased multisample VCFs, based on PharmCAT allele definition files [62],
which comprehensively cover CYP2C19 genetic variants. PGxPOP then uses guidelines
from the DPWG and CPIC to match these haplotypes to predicted metabolic phenotypes.
Thus, the individuals in this study were grouped into 4 categories based on predicted
CYP2C19 phenotypes, which in increasing order of metabolic capacity are the following:
poor metabolisers, intermediate metabolisers, normal metabolisers, and fast metabolisers.
Certain groups specify separate rapid and ultrarapid metaboliser groups [46,63], corre-
sponding to individuals with one increased function allele and one normal function allele.
However, in this study, we combined the rapid and ultrarapid metaboliser phenotypes
returned by PGxPOP into a single category (“fast” metabolisers). Prior research has found
that the rapid and ultrarapid metaboliser phenotypes exhibited similar pharmacokinetic
properties, specifically with comparable escitalopram serum concentrations following in-
take [18,36]; consequently, we combined the two groups to bolster the statistical power in
uncovering any associations that were consistent with previous research with CYP2C19
and clinical outcomes [36]. Full information about the matching between allele, haplotype,
and phenotype can be found in previously published articles [43,61].

Individuals whose predicted metaboliser phenotype was classified as “indeterminate”
or “not available” were excluded from the analyses. These classifications correspond
to individuals with star alleles that have an unknown or uncertain function, and those
whose alleles did not align precisely with any star allele (preventing the assignment of a
phenotype), respectively.

4.3. Outcomes

Primary care records in the UK Biobank were collected through linkages with various
data suppliers, including EMIS and Vision and TPP SystmOne; they were organised
into three different tables: registration records, primary care clinical events (for example,
consultations, diagnoses, symptoms), and prescription data (coded using the read v2, BNF,
and dm+d coding systems). The linked primary care data were available only in a subset
of UK Biobank individuals (n = 222,054). These records were used to derive several study
outcomes that were used as proxies of the drug response for our SSRIs of interest. Outcomes
were created for each of citalopram, escitalopram, and sertraline, and included switching,
discontinuation, duration, and a measure of side effects.

Antidepressant switching was defined as a switch from a given SSRI (citalopram,
escitalopram, or sertraline) to another antidepressant within 30 days, 60 days, or 90 days
from the last prescription of said SSRI. At 30 days and 60 days, our definition of switching
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allowed for a maximum of 1 prescription before the switching date, and 1 prescription after
the switching date; at 90 days, our definition was less stringent, allowing for a maximum
of 2 prescriptions before and after the switching date. The controls for antidepressant
switching had to have at least 3 consecutive prescriptions of a given SSRI, with no record
of any previous switch from that SSRI.

Antidepressant discontinuation was defined in two distinct ways, based on prescrip-
tion records in the UK Biobank. Our first definition required a complete stoppage of
antidepressant prescriptions following a single prescription of a given SSRI, precluding
cases where the given SSRI was prescribed multiple times. Our second definition required
an abrupt stoppage of antidepressant prescriptions following a prescription period lasting
less than 8 weeks for a given SSRI, irrespective of the number of prescriptions during the
8 weeks. The controls were defined in the same manner as they were with antidepressant
switching (at least 3 consecutive prescriptions of a given SSRI).

The antidepressant duration was measured in two ways. Our first definition for the
duration was a count of the total number of prescriptions an individual was prescribed
across their primary care records for a given SSRI. Our second definition for the duration
was based on the total number of weeks an individual was prescribed an SSRI of interest
across all prescription windows. The prescription windows were firstly defined as periods
with less than 90 days between consecutive prescriptions, after which the time elapsed
in weeks within each window was calculated. The total number of weeks across all of
the prescription windows was then calculated and used as a measure of the duration for
each SSRI.

Finally, we defined adverse side effects using both prescription records and primary
care clinical event records. Using the UK Biobank clinical coding lookup maps, we identi-
fied all primary care clinical event codes (read v2 and CTV3) that were pertinent to side
effects for psychotropic drugs, based on the UKU side effect rating scale (UKU-SERS), a
comprehensive rating scale [64]. A full list of the 1220 clinical event codes that are pertinent
to the UKU-SERS can be found in Supplementary Table S12. The dates of these clinical
events were then aligned with dates of prescription records, such that the presence of
a side effect was defined as the occurrence of a pertinent clinical event within a short
timeframe (30 days or 60 days) after first prescription for each SSRI of interest (citalopram,
escitalopram, or sertraline). In addition, any pertinent clinical event was only considered a
side effect if it did not also occur within the 30 days prior to the first prescription, in order
to ensure the clinical event was not simply a follow-up visit for a condition existing prior
to SSRI prescription.

4.4. Statistical Analyses

All statistical analyses were performed using R version 4.1.1 [65] in RStudio [66], on
the King’s Computational Research, Engineering and Technology Environment [67]. Our
code made use of the ukbkings [68,69], dplyr [70], stringr [71], and ggplot2 [72] R packages.

Logistic regressions were conducted to evaluate any associations between CYP2C19
metaboliser phenotypes (with normal metabolisers as a reference category) and binary
outcomes, including antidepressant switching, discontinuation, and incidences of any side
effects. We adjusted for age at the recorded first prescription (of a given SSRI), for sex, and
the genotyping batch. Linear regression models were used to assess associations between
CYP2C19 metaboliser phenotypes (with normal metabolisers again being the reference
category) and the natural logarithmic transformation of the antidepressant duration, ad-
justing similarly for the age at first prescription, sex, and genotyping batch. In order to
comprehensively capture all of the potential associations within the broad theme of SSRI
response, no correction for multiple testing was performed.

4.5. Sensitivity Analyses

We aimed to assess whether associations would change if the analyses were limited
to those individuals with depression. Consequently, all of the regression analyses were
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repeated in a subgroup of patients with “broad depression”, a tractable UK Biobank phe-
notype for depression that has previously been defined by Howard et al. [53]. In brief,
broad depression caseness was defined via touchscreen responses to questions that asked
participants about help-seeking behaviour with general practitioners and psychiatrists.
While depression has been defined in several ways in the UK Biobank, the broad depression
phenotype provides the greatest number of cases, and had the highest genetic correlation
with clinically defined MDD. In addition, we conducted a second set of sensitivity analyses
using CYP2C19 activity score as a predictor rather than the categorical metabolic pheno-
types in our regression models. The CYP2C19 activity value was calculated by assigning
each star allele a score between 0 and 2, based on its effect on metabolic activity, where the
activity score was doubled if alleles were duplicated [25,73,74]. The complete assignment
of star alleles to the activity score is presented in Supplementary Table S13.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ph16091277/s1, Table S1: Associations between CYP2C19 metabo-
liser phenotype and antidepressant switching; Table S2: Associations between CYP2C19 metaboliser
phenotype and antidepressant discontinuation; Table S3: Associations between CYP2C19 metaboliser
phenotype and side effects following first antidepressant prescription; Table S4: Associations between
CYP2C19 metaboliser phenotype and antidepressant switching in a subset of individuals that exhib-
ited a broad depression phenotype; Table S5: Associations between CYP2C19 metaboliser phenotype
and antidepressant discontinuation in a subset of individuals that exhibited a broad depression pheno-
type; Table S6: Associations between CYP2C19 metaboliser phenotype and antidepressant duration in
a subset of individuals that exhibited a broad depression phenotype; Table S7: Associations between
CYP2C19 metaboliser phenotype and side effects following initial antidepressant prescription in a
subset of individuals that exhibited a broad depression phenotype; Table S8: Associations between
CYP2C19 activity score and antidepressant switching; Table S9: Associations between CYP2C19
activity score and antidepressant discontinuation; Table S10: Associations between CYP2C19 activity
score and antidepressant duration; Table S11: Associations between CYP2C19 activity score and side
effects following initial antidepressant prescription; Table S12: Full list of read v2 and CTV3 clinical
event codes pertinent to side effects for psychotropic drugs, based on the UKU side effect rating
scale (UKU-SERS); Table S13: Calculation of CYP2C19 activity score based on all star alleles called in
this dataset.
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