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Abstract— In the perspective of long and dense time-series
analyses for environmental monitoring applications, this article
discusses a cross-comparison analysis between the different
instruments of Landsat and Sentinel missions [thematic mapper
(TM), enhanced thematic mapper plus (ETM+), operational land
imager (OLI), and multispectral instrument (MSI)]. The level-2
surface reflectance (SR) products were considered (in particular,
the reprocessed Collection-2 for Landsat). The calibration coeffi-
cients for four of the most popular vegetation indexes [normalized
difference vegetation index (NDVI), enhanced vegetation index
(EVI), soil adjusted vegetation index (SAVI), and normalized
difference moisture index (NDMI)] were estimated, with the
aim of harmonizing and minimizing radiometric differences for
the combined use of these sensors. For this purpose, more
than 20 000 pairs of images almost simultaneously acquired (±1-
day tolerance window) were selected over a period of several
years (depending on the lifespan overlap of every sensor pair).
Vegetation indices (VIs) were computed for each image, and for
each cross comparison, 100 random extractions of 300 000 sample
pixels were performed all over the European continent. Linear
transformation functions for each VI and between each sensor
couple were computed by regression analyses, also assessing the
repeatability of the estimation. Furthermore, the stability over
time of the obtained coefficients was assessed when enough years
of corresponding observations are available.

Index Terms— Cross-sensor transformation function, enhanced
vegetation index (EVI) harmonization, Landsat, NDMI, normal-
ized difference vegetation index (NDVI), Sentinel, soil adjusted
vegetation index (SAVI).

I. INTRODUCTION

EARTH observation (EO) represents the most efficient
approach to detect and monitor Earth surface dynamics

and changes [1], [2], [3]. Nowadays, the available open-access
remote sensing datasets represent a massive source of infor-
mation that has not been completely exploited yet to its
full potential and requires new methodologies, supported by
technological advances [4]. Among these, long time-series
analysis (TSA) is undoubtedly promising to better understand
Earth’s surface change processes, making possible to study
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not only drastic changes, but also long-term or more subtle
phenomena, crucial in climate change studies. In this context,
multispectral missions, such as Landsat and Sentinel, that
capture images of our planet since the early 1970s, represent
a precious data source that deserves deeper examination.

The Landsat program, started officially in 1967 from a part-
nership between the National Aeronautics and Space Admin-
istration (NASA) and the U.S. Geological Survey (USGS),
is the longest running and the first medium-resolution EO
mission. Its programmatic development focuses on program
continuity providing high-quality data without interruptions
because of continuous turnover and updating of satellites [5],
[6]. One major turning point for the program and for the EO
industry was in 2008, when the Landsat archive policy turned
into open access, delivering data with different processing
and complexity levels [7]. The same programmatic path has
been followed in the design and maintenance of the open-
access Sentinel-2 mission, managed by the European Space
Agency (ESA) in the framework of the European EO program
“Copernicus.” Some improvements with respect to the Landsat
program are in the spatial and temporal resolution [8].

In this context, the development of new technologies in the
era of big EO data is crucial to enable the full exploitation of
the data potentiality [9]. This demand has been successfully
accomplished with the development of cloud-computing tech-
nologies, such as Google Earth engine (GEE), which was used
in this study [10]. GEE is a platform for geospatial analysis
consisting in a multipetabyte analysis-ready data (ARD) cat-
alog colocated with a high-performance, intrinsically parallel
computation service powered by Google [11].

Because of this great amount of free data accessible through
cloud computing platforms, traditional remote sensing applica-
tions, such as change detection, have successfully moved from
standard approaches involving image pairs to TSA of remotely
sensed data [12], [13]. The pixel-based TSA for monitoring
pixel trajectories over time represents, nowadays, a well-
established methodological trend [14]. An overview regarding
potentiality, methodologies, and challenges of remote sensing
time series can be found in [15].

Moreover, this approach to the analysis of multispectral data
is rapidly becoming a standard practice in vegetation-related
studies, including monitoring of both forest and agricultural
environments [16], [17]. The reviews by Bégué et al. [18]
and Gómez et al. [19] cover a variety of examples where
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this methodology proved to be effective in identifying sea-
sonal phenological variation, allowing, for example, a better
classification of crop types. In this context, information on
the biophysical characteristics of vegetation collected by mul-
tispectral cameras can be successfully synthesized because
of vegetation indices (VIs), which are obtained through the
combination of spectral bands [20], [21]. Four of the most
widely used VIs are considered in this study: normalized
difference vegetation index (NDVI), soil adjusted vegetation
index (SAVI), enhanced vegetation index (EVI), and normal-
ized difference moisture index (NDWI). In the last years, these
VIs has been successfully implemented in a large variety of
applications for their simplicity and effectiveness [22], [23],
[24], [25], [26].

However, multispectral derived datasets have some known
limits that need to be overcome to improve TSA applica-
tions. For example, a recent study conducted by USGS [5],
investigating user needs for future Landsat missions, raised
attention on desired cloud-free observation frequency: the
survey showed that in the 71% of cases, subject matter experts
believe that a weekly cloud-free observation frequency is a
breakthrough requirement. Having cloud-free data information
on a weekly basis would actually lead to a significant improve-
ment in data effectiveness for their applications. One possible
answer to this need is the harmonization of several sensors,
which would allow to increase the number of acquisitions.
Furthermore, since the main limitation of passive optical sen-
sors is the dependence on weather conditions, harmonization
would increase the probability of collecting cloud-free images.
Looking at the present, as demonstrated by the analysis of
Li and Chen [27], the harmonization of Sentinel-2 MSI and
Landsat OLI/OLI+ (equipped on Landsat-8 and Landsat-9)
would highly increase the revisit time, up to a 2.3-day global
average, giving satellite remote sensing a new perspective for
land surface monitoring.

In order to achieve these purposes, some authors proposed
statistical calibration parameters to adjust spectral reflectance
values across similar instruments and build synthetic multi-
satellite constellation. Mandanici and Bitelli [28] analyzed the
correlation between the corresponding bands of Sentinel-2A
and Landsat-8 on selected but limited sites, also evaluat-
ing the effects of spatial heterogeneity. Chastain et al. [29]
proposed a cross-sensors comparison of Sentinel-2A and 2B
MSI, Landsat-8 OLI, and Landsat-7 ETM+ top of atmosphere
(TOA) spectral bands, providing the regression coefficients
that allow to integrate MSI data with ETM+ and OLI over the
conterminous United States (CONUS). Denaro and Lin [30]
proposed the use of nonlinear models for the cross-sensor
normalization of Landsat-7 and Landsat-8 imagery. More
recently, Xie et al. [31] estimated cross-sensors linear trans-
formations between Landsat-8 and Sentinel-2 based on only
76 image pairs spread all over the world. Cao et al. [32]
proposed a similar analysis including Landsat-7 and deriving
the transformations from a larger dataset but limited to the
Chinese territory.

Other authors explicitly addressed the problem of vegetation
index comparison. Li et al. [33] conducted a cross comparison
of four VIs derived from six pairs of Landsat-7 and Landsat-8

images over Myanmar. Roy et al. [34] compared Landsat-
7 ETM+ and Landsat-8 OLI and computed transformation
coefficients for the integration of their spectral bands and the
NDVI obtained from them. Chen et al. [35] proposed transfor-
mations to harmonize the NDVI computed from Landsat-4-5
multispectral scanner and thematic mapper (TM), elaborat-
ing on simulated data derived from Hyperion hyperspectral
images. Mancino et al. [36] presented a specific case study in
Italy comparing six VIs between Landsat-7 and Landsat-8 and
finding statistically significant differences among four different
land-cover classes.

In the last years, NASA and USGS developed the harmo-
nized Landsat-8 and Sentinel-2 (HLS) surface reflectance (SR)
dataset currently at version 2.0, which provides harmonized
multispectral bands with global coverage [37]. However, at the
time of the writing, there are no “ARD” for vegetation index
TSA including the full Landsat constellation and Sentinel
data. Such datasets would further expand and facilitate the
use of EO by even technicians who are not experts in remote
sensing.

Therefore, this study aims to propose a set of cross-sensor
transformation coefficients, which are valid on a continen-
tal scale and easy to implement for end-users, in order
to create harmonized vegetation index time series. Starting
from the approach implemented by Chastain et al. [29] and
Roy et al. [34], this work introduces four major novelties.
First, from a methodological point of view, sampling strategy
was improved to provide an estimation of the repeatabil-
ity of the computed coefficients. Second, the analysis was
performed using the recently released Landsat Collection-2
dataset, replacing the Collection-1 used in previous study.
Moreover, the cross comparison was performed on vegetation
indexes and not on the single bands. Third, the paired observa-
tions samples were gathered for the first time from the entire
European continent. Finally, this study encompasses data from
Landsat-5 (L5), Landsat-7 (L7), Landsat-8 (L8), and Sentinel-
2 (S2) altogether, allowing the extraction of VIs time series
starting from 1984.

In the following sections, we provide a summary of
L5, L7, L8, and S2 characteristics and their products
(Section II); a description of the methodology include pre-
processing, data gathering, sampling, and statistical analysis
(Section III), and finally, the results and the transformation
coefficients are presented (Section IV).

II. MATERIALS

A. Landsat

Landsat program has been collecting Earth surface mul-
tispectral images since 1972, and it represents the longest
living remote sensing mission in the world. It is a joint project
between NASA, responsible for the satellite construction and
launch, and USGS, which manages the archive and the distri-
bution of data. The mission was designed to achieve efficient
multispectral monitoring of land surface, with 30-m pixel
average resolution and a revisit cycle of 16 days on every point
on Earth. Every new Landsat satellite has been designed to
create a pair constellation with the previous one still operating,
resulting in an eight-day revisit coverage [6].
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This study included datasets acquired by three different
Landsat instruments: L5 TM, L7 enhanced TM Plus (ETM+),
and L8 operational land imager (OLI).

After its launch in March 1984, L5 was operated by USGS
until January 2013. For more than 29 years, it acquired
over 2.5 million images of the Earth, largely exceeding its
original three-year designed life. Its TM sensor captured
the Earth surface spectral reflectance in six bands at 30-m
spatial resolution and 120-m spatial resolution for the thermal
band [38].

The L7 was launched in April 1999 and carried the
ETM+ instrument. The ETM+ represents an improvement
with respect to the TM sensors, with the addition of the
panchromatic 15-m resolution band. From June 2003, when
the scan line corrector (SLC) failed, L7 images were acquired
and delivered with gaps, producing a loss of information up to
the 22% [39]. The decommissioning of L7 began in mid-2021,
leaving its orbit to the new Landsat-9.

L8 was launched in February 2013 equipped with the OLI
and the thermal infrared sensor (TIRS). OLI measures the
visible, NIR, and SWIR part of the electromagnetic spectrum,
while TIRS operates in the thermal region. Following the
spectral improvements achieved with ETM+ instrument, OLI
was designed with a panchromatic 15-m band and eight 30-m
spectral bands. In OLI, the new ultrablue band (Band 1)
and the Band 9 (1.36–1.38 µm) are useful in coastal/aerosol
studies and cirrus cloud detection, respectively. Table I gives
a summary of L5, L7, and L8 spectral characteristics.

In order to improve Landsat data consistency and interop-
erability across sensors, the archive was reprocessed twice.
After the first global Landsat-1 to Landsat-8 reprocessing into
Collection-1 data [40], the second major reprocessing of the
archive, performed in 2021, led to the release of Collection-
2 data, which replaced Collection-1 starting from January
2022. Collection-2 major improvement regards geometry accu-
racy: for a better exploitation of archive interoperability, the L8
Ground Control Points were rebaselined to the ESA S2 Global
Reference Image. In addition, the digital elevation model
sources were updated, and the accessibility from commercial
cloud-based environment was improved [41].

Since the release of the Collection-1 data in 2016, the
Landsat products are structured in a three-level hierarchical
quality inventory to grant consistency in Landsat data pro-
cessing and traceability of data quality records [42]. The
highest data quality products with high geolocation accuracy
(root mean square error (RMSE) ≤ 12 m) are included
in Tier-1.

In addition, three different product levels are delivered: the
global Level-1 data [top-of-atmosphere (TOA)], Level-2 data
(SR), and the U.S. ARD. Level-2 data products are obtained
applying atmospheric correction to Level-1 products (standard
Landsat products) with a Solar Zenith Angle lower than 76◦

[43]. In particular, the following algorithms are used: the land
SR code (LaSRC) algorithm (version 1.5.0) [44] was applied
to L8 OLI scenes, while L5 TM and L7 ETM+ SR products
are generated using the Landsat ecosystem disturbance adap-
tive processing system (LEDAPS) algorithm (version 3.4.0)
[45].

Fig. 1. Timeline of operational periods of Landsat and Sentinel satellites.

In this study, the SR Collection-2 Tier-1 datasets were used
for all the Landsat instruments considered.

B. Sentinel-2

S2 mission by ESA is a twin polar-orbiting satellite phased
at 180◦ to each other: Sentinel-2A and Sentinel-2B were
launched in 2015 and 2017, respectively. Their orbit is angled
of 98.62◦ and acquires images over land and coastal areas with
a 290-km width swath, covering the Earth surface between the
latitudes 56◦ South and 83◦ North. The mean local solar time
at the descending node is 10:30 A.M. [46].

The two satellites are equipped with the multispectral
instrument (MSI), a sensor that measures the Earth’s reflected
radiance in 13 spectral bands, from VNIR to SWIR, providing
imagery at different spatial resolution, ranging between 10 and
60 m, as summarized in Table I.

Users can freely download two different product lev-
els. Level-1C products provide TOA reflectance data. The
atmospheric correction of Level-1C scenes, by means of
the Sen2Cor processor, produces the bottom-of-atmosphere
(BOA) Level-2A products, i.e., the SR image [47], [48]. For
the study, the SR Level-2A dataset was used.

Fig. 1 shows the operational timeline of the satellites con-
sidered in the study and gives a comparison of main mission
characteristics.

C. Vegetation Indices

Four VIs were considered in this study: NDVI, EVI, SAVI,
and NDMI. These VIs are obtained from the following bands:
green, red, and red-edge bands (highly correlated with chloro-
phyll and other pigments contents); NIR band (sensitive to leaf
structure), and the SWIR band (sensitive to water content)
[20], [21]. NDVI is the most widespread index sensitive to
chlorophyll computed from NIR and red bands [49], [50].
Being one of the most stable indexes, NDVI allows com-
parisons of seasonal and interannual changes in vegetation
growth. Some improvements to NDVI were implemented to
reduce the environmental effects to index variations. SAVI
proposed by Huete [51] minimizes background soil brightness
influences of NDVI. On the other hand, the EVI is used to
reduce atmospheric effects that could lead to high biomass
saturation [52]. Finally, NDMI consists in the normalized
difference between NIR and SWIR, and it helps in vege-
tation water content assessment, useful, for example, when
dealing with irrigations systems [53], [54]. In this study, these
VIs were calculated according to (1)–(4), using the Landsat
Collection-2 and Sentinel Level-2A SR datasets; the bands
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TABLE I
SPECTRAL BANDS CHARACTERISTICS OF TM, ETM+, L8, AND MSI SENSORS. IN BOLD, THE BANDS CONSIDERED FOR THE VIS COMPUTATION

used are those highlighted in bold in Table I, which are the
most similar across sensors. The coefficients in the formulas
for EVI and SAVI are those suggested by USGS for the
computation of on-demand vegetation indexes [44], [45], [55]

NDVI =
NIR − Red
NIR + Red

(1)

EVI = 2.5 ·
NIR − Red

NIR + 6 · Red − 7.5 · Blue + 1
(2)

SAVI = 1.5 ·
NIR − Red

NIR + Red + 0.5
(3)

NDMI =
NIR − SWIR
NIR + SWIR

. (4)

The coefficients in the formulas for EVI and SAVI are
those suggested by USGS for the computation of on-demand
vegetation indexes. Indeed, these were selected in this study
to ensure, as much as possible, a generalized analysis able to
accommodate most land-cover types. For example, in (3), the
L soil correction factor parameter, which varies with vegeta-
tion amount between 0 and 1, was set to 0.5, an intermediate
value that is documented to work well in most conditions [20],
[23], [56].

III. METHODOLOGY

The vegetation indexes derived from the spectral bands
of the TM, ETM+, OLI, and MSI sensors were compared.
The sensors were compared in pairs, by randomly sampling
the indexes values from overlapping images acquired with
a maximum delay of one day, as detailed in the following
sections. As a consequence, to ensure statistically robust
samples of data, the comparison was possible just between
those sensors, which were actively operating for a common
period of time of at least two years (at the time of the writing).
For this reason, the newer Landsat-9 sensor is not included in
this study.

A. Study Area

The study area covers the entire European continent (Fig. 2),
which was tiled in 100 subregions for computational reasons.
This area comprehends a wide spectrum of land-cover types

Fig. 2. AOI covered by the analysis including continental Europe. The base
map shows the different land-cover classes as of 2018 [57].

and ecosystems, encompassing cultivated land (25%), natural
vegetation (up to 65%), water bodies and wetland (6%), and
urban area (2%) according to the Copernicus Global Land
Cover 2018 [57]; thus, it provides an exhaustive and varied
set of data.

B. Data Gathering

The data sampling was completely performed in GEE
accessing the Landsat (Collection-2) and Sentinel-2 SR
datasets available in its catalog.

First of all, the image collections were filtered based on
time, space, and cloud cover. Specifically, at least two common
years of acquisition were selected between the two missions;
the search area was limited to Europe, and the maximum
image cloud-cover percentage was set to 1% for Landsat data
and to 0.1% for S2 data. This difference in percentages was
derived empirically after several tests, and it is intended to
compensate for the higher revisit time of S2, resulting in
higher data availability and for the lower effectiveness of
the cloud masking algorithm of S2 [58]. In order to obtain
balanced datasets concerning images acquired in different
seasons and, thus, in different vegetative states, the dataset
was split into two different time spans: one from October to
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March (autumn-wintertime) and one from April to September
(spring-summertime). Because of cloud-free images short-
age during wintertime and to balance the datasets between
autumn-wintertime images and spring-summertime images,
the search time span for the autumn-wintertime images was
doubled. In addition, the search time span was carefully
adjusted to ensure a similar population of valid pixels for
each sensors couple, considering also the operational period
of each sensor and some specific peculiarities, such as the
SLC issues of L7. Table II provides specific information about
the metadata filters applied to produce the dataset used for
the analysis. In particular, time span, covering summer and
winter period separately, and cloud-cover percentage are the
filters applied to a single satellite collection. The total record
(Tot records) is the number images, satisfying those filters for
each satellite. The Joined collection is the number of pairs
of images satisfying clouds and time span filters, which were
acquired over the same area almost in the same date (±1 day)
by the two satellites considered in the cross-sensor analysis
(the maps of the footprint intersections of these acquisitions
are provided in the Supplementary Materials).

C. Pixel Masking

At this point, the selected images were pixelwise masked on
the basis of the pixel quality assessment (QA) bitmask band.
For Landsat products, it was generated from the C function
of mask (CFMask) algorithm. The CFMask derives from the
function of mask (FMask), which is able to label the scene
pixels as cloud, cloud shadow, cirrus, snow/ice, or water, and
provides a bit-mapped values output [59], [60]. This product
was used to remove high- and medium-confidence clouds,
dilated clouds, cloud shadows, snow/ice, and water pixels,
in order to include in the analysis only clear land pixels. Only
for L8 products, it was possible to mask also pixel marked as
high confidence cirrus.

The same process was performed for the S2 images by
means of the scene classification map (SCL) QA band, which,
likewise the one for the Landsat products, labels the pixels
on the basis of a classification process and, thus, allows the
user to easily perform pixelwise masking. High- and medium-
probability clouds, cloud shadows, cirrus, water, and snow/ice
pixels were removed, accordingly with the masking process
done for the Landsat products [61].

Furthermore, saturated and out-of-range pixels were masked
using the radiometric saturation QA bands and valid value
range. This means that all the saturated pixels and the pixels
with a value of the vegetation index outside the range of
interest, which is [0, 1] for NDVI, EVI and SAVI, and [−1, 1]
for NDMI, were discarded.

D. Image Coupling, Coregistration, and Reprojection

The images, or portion of images, of two different sensors,
filtered and masked as described above, which are spatially
overlapping and acquired within 24 h, were paired, finely
co-registered with each other, reprojected, to make sure the
images shared the same coordinate reference system, and
resampled at the coarsest resolution (30 m). This was done to

avoid differences in the VI values due to land-cover changes,
bad spatial overlap, or differences in pixel size.

Despite the maximum time difference of 24 h between the
two images of each pair, which should ensure no land-cover
changes occurred, there are still some pixels showing huge
reflectance differences. Therefore, the paired images were
further masked following the methodology proposed by Roy et
al. [34], which is based on the pixelwise difference in the blue
band values. However, using here images already corrected
at SR, pixels with a difference greater than the 50% of the
average were discarded.

E. Sampling

For computational limit reasons, cross-sensors comparisons
were not performed on the entire pixel population but on statis-
tical samples randomly extracted from the population of valid
pixels (after masking) belonging to the paired images. For each
couple of sensors, samples were independently selected on a
purely random basis. A statistical analysis was performed to
assess the optimal sample size looking for a trade-off between
computational complexity and statistical significance.

Different sample sizes (in the range between
1000 and 500 000 pixels) were tested by repeating the
extraction 100 times and evaluating the variance of the
cross-sensors parameters (described in Section III-F).

Fig. 3 shows the analysis performed on the L7 and L8 NDVI
pair, here presented as an example. As it can be seen from
these plots, the decrease of the variance with the increase of
the sample size is asymptotic, and higher number of pixels
would result only in an unfruitful increase of the compu-
tational burden. The optimal sample size was, therefore, set
to 300 000 pixels, which corresponds—for the NDVI index—
to a standard deviation of the linear regression coefficients
lower than 0.0004 (i.e., intercept equal to 0.0002 and slope
equal to 0.0003).

The case of the comparison between L5 and L7 is singular
because of the exceptionally long period in which both the
satellites were contemporary operational. This circumstance
offers the opportunity to further analyze the linear relation-
ships, in particular to investigate possible fluctuations of the
estimated coefficients during time. For this purpose, further
samples of the same size were extracted, one for each year in
the period 1999–2011.

F. Cross-Sensor Analysis

For each couple of sensors, two ordinary least square (OLS)
regressions and a reduced major axis (RMA) regression were
computed. The OLS regression allows to find a transformation
function from a sensor to the other: the slope and intercept
parameters change depending on which variable (i.e., which
sensor) is defined as dependent or independent; thus, the OLS
regression was performed twice, inverting dependent and inde-
pendent variable each time, in order to provide transformation
functions from a sensor to the other and vice versa [34].
On the contrary, the RMA regression is performed only once,
since the relationship between the interchanged variables can
be obtained with a simple algebraic operation [62]. In any
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TABLE II
SENTINEL AND LANDSAT DATA FILTERING. (a) L5–L7. (b) L8–S2. (c) L7–S2. (d) L7–L8

Fig. 3. Variation of RMA coefficients for L7 and L8 NDVI image pairs. (a) RMA intercept, slope, and R2 coefficients values are plotted against the sample
size; the color ramp is defined by values frequency (points represented in yellow are those with the most frequent values). (b) Standard deviation of RMA
intercept, slope, and R2 coefficients for the 100 random extractions for each sample size.

case, it is assumed that both the dependent and independent
variables are subject to errors, which is appropriate because
of the possible residual errors that the data may have, such
as atmospheric correction and sensor calibration errors [29],
[34].

The goodness of the fit of the regressions was evaluated with
the coefficient of determination (R2), while the significance
of the regressions was defined by the overall F-statistic p
value [34].

In order to provide an overall measure of similarity between
the datasets, three different difference metrics were derived as
follows:

MD =

n∑
i

vA
i − vB

i

n
(5)

RMSD =

√∑n
i

(
vA

i − vB
i

)2

n
(6)
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Fig. 4. Landsat standard full scene footprints. The ones randomly selected
as validation areas are highlighted in yellow.

MRD =

∑n
i

vA
i − vB

i

0.5
(
vA

i + vB
i

)
n

100 (7)

where MD, RMSD, and MRD are the mean difference (MD),
the root-mean-square deviation (RMSD), and the mean relative
difference (MRD) between corresponding values of the generic
sensor A and sensor B for n pixels, respectively [29], [34].

G. Validation

The effectiveness of the suggested linear transformations
was checked by evaluating the differences in the VIs values
between every couple of sensors before and after the harmo-
nization. These differences are computed on fully independent
samples, obtained as follows. Exploiting the Landsat World-
wide Reference System, the 30% of the nominal scene centers
over Europe were randomly selected. The areas belonging
to these Landsat standard full scenes (tiles defined by their
paths and rows) were excluded from the extraction process
of the samples used for the cross-sensor analyses described
in Section III-F (Fig. 4). This 30% of the tiles was used for
the extraction of the independent samples for validation. For
each couple of sensors, one validation sample was created,
consisting of at least two million random points. These are the
points used to statistically analyze the differences in the VIs
values. The balance between the validation and training tiles,
in terms of land-cover classes, was verified (average difference
around 1% and in any case lower than 6%).

IV. RESULTS

The results obtained from the comparison of the vegetation
indexes derived from different sensors are reported in Table III
and Figs. 5–11, and they are organized by couple of sensors:
OLI and MSI, ETM+ and MSI, ETM+ and OLI, and TM
and ETM+. As explained above, for every sensor couple,
the results are obtained through 100 independent extractions
of 300 000 paired observations. These analyses highlighted
both differences and similarities between these products and
allowed to derive transformation coefficients to be used for a
harmonized integration of the different datasets.

A. OLI and MSI

In Table III(a) and Fig. 5, the results of the analysis
involving the OLI and MSI sensors are presented. Consider-

ing the paired observations collected between 2016 and 2020,
the lowest MD between corresponding indices was found in
the NDVI, equal to −0.0004, while the highest in NDMI,
equal to 0.0248. The RMSD values are quite similar for all
the VIs, ranging from 0.0455 (SAVI) to 0.0586 (NDMI). All
the regression models are highly significant, all showing R2

values higher than 0.90 (p values < 0.0001). In this case,
the highest deviation from the slope identity is given by the
EVI, with an RMA slope value equal to 1.0835. As expected,
the computed coefficients of the regression are quite stable
in the 100 independent sample extractions, as can be observed
by the standard deviations reported in Table III(a). Indeed, the
slope coefficients of EVI show the highest standard deviation
for the regression, having OLI as the independent variable
(0.0007 for both the OLS the RMA).

To evaluate the effectiveness of the transformations, the
RMA coefficients were applied to the sampled OLI pixels
belonging to the validation set, to compute the harmonized
hOLI values that are expected to compare with MSI better. The
hOLI values were obtained using OLI as independent variable
and applying the coefficient in Table III(a). The differences
between the hOLI VI values and the original values from the
paired MSI are then computed (hDiff), and their histograms
are shown in Fig. 6. The harmonization decreased the residuals
for every index: NDMI has the highest improvement with
a decrease of the MD of 0.0247 because of harmonization
followed by the EVI with a decrease of 0.0109. Overall, the
means of the harmonized residuals are very low, between
−0.0008 (NDMI) and 0.0002 (SAVI).

B. ETM+ and MSI

The comparison between ETM+ and MSI instruments
acquisition is showed in Table III(b) and Fig. 7. The
MD of the sampled values ranges from −0.0286 (EVI)
to 0.0059 (NDMI). The RMSD ranges from 0.0470 (SAVI)
to 0.0600 (NDVI). The MRD values are all quite low, ranging
from 0.2335 (NDMI) to −7.6555 (EVI). The R2 values and
p values indicate a high significance of the regression models
(R2 > 0.92 and p values < 0.0001). The index with the highest
deviation from slope identity is the EVI, with a slope value
of 1.1083.

Also, in this case, the RMA transformation coefficients were
applied to the samples belonging to the validation set, using
ETM+ observations as independent variable, to produce the
harmonized hETM+ VIs. The hETM+ and corresponding
MSI residuals (hDiff) distribution and mean values are pre-
sented in Fig. 8. Also here, the harmonization decreased the
residuals for every index: EVI has the highest improvement
with a decrease of the MD of 0.0331. Overall, the means of
the harmonized residuals are low, between 0.0033 (NDMI)
and 0.0069 (NDVI).

C. ETM+ and OLI

The MDs of the sampled ETM+ and OLI paired obser-
vations range from a minimum of 0.0147, for the EVI, to a
maximum of 0.0347, for the NDVI. The RMSD values go
from 0.0416 (SAVI) and 0.0657 (NDVI), while the MRD
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TABLE III

VEGETATION INDEXES SENSOR TRANSFORMATION FUNCTIONS: SLOPE AND INTERCEPT WITH THEIR STANDARD DEVIATIONS IN BRACKETS, R2

COEFFICIENT, MD, RMSD, AND MRD. (a) OLI TO MSI. (b) ETM+ TO MSI. (c) ETM+ TO OLI. (d) TM TO ETM+

is lower than 9 for all the vegetation indexes [Table III(c)].
The R2 values are very high for all the regressions, with
values higher than 0.93. The significance of the regression
is confirmed also by the very low values of the F-statistic
p value (p value < 0.0001). The highest deviation from
the slope identity is given by the NDVI, with a slope value
equal to 1.0218. In this case, the standard deviations on the
coefficients are small (for the slope lower than 0.0005 and for
the intercept lower than 0.0002).

Over all the validation samples, the harmonized hOLI was
computed by means of the RMA using OLI observations as
independent variable. The residuals distributions and mean
values of the paired hOLI and ETM+ difference (hDiff) are
presented in Fig. 10. Again, the harmonization decreased the
residuals for every index: in this case, NDVI has the highest
improvement with a decrease of the MD of 0.0342. Overall,
the means of the harmonized residuals are very low, between
−0.0007 (NDMI) and −0.0002 (EVI).
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Fig. 5. Scatterplots of the VIs for S2 MSI (vertical axis) against L8 OLI
(horizontal axis). (a) NDVI. (b) EVI. (c) SAVI. (d) NDMI. The plot colors
illustrate the probability density of VIs values with logarithmic scale. The
solid lines show the three regression fits.

Fig. 6. Residuals distribution of MSI and OLI applying the RMA coefficients
(OLI independent variable) for (a) NDVI, (b) EVI, (c) SAVI, and (d) NDMI.
Red dashed lines represent the mean values.

D. TM and ETM+

The results of the comparison between TM and ETM+

are summarized in Table III(d) and graphically displayed in
Fig. 11. The MD ranges from 0.0003 (EVI) to −0.0189
(NDVI), and the RMSD from 0.0604 (NDVI) to 0.0388
(SAVI). The MRD is lower than 4, in absolute value, for all the
indexes. All the regression models show a high significance
(R2 values > 0.918 and p value < 0.0001), and the model
parameters are very small in magnitude. The NDVI is the one
showing the highest deviation from the slope identity, with a
slope value equal to 1.0377.

Again, for all the validation samples, the harmonized hTM
VIs were computed by the RMA using TM derived indexes as
independent variables. The residuals distribution and mean val-
ues of the difference between hTM and ETM+ are presented
in Fig. 12. Similar to the previous cases, the harmoniza-
tion decreased the residuals for every index: NDVI has the
highest improvement with a decrease of the MD of 0.0195.
Overall, the means of the harmonized residuals are very low,
between 0.0001 (NDMI) and 0.0013 (NDVI).

E. Time

Because of the longer period of contemporary acquisitions
of these two sensors, an additional analysis was performed
here to investigate the stability over time of the computed
parameters for the transformations. The intercepts and slopes
of the RMA transformations recomputed for all the VIs but
using 12 samples, each one composed of 300 000 points and
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Fig. 7. Scatterplots for all of the vegetation indexes for S2 MSI (vertical axis)
against L7 ETM+ (horizontal axis). (a) NDVI. (b) EVI. (c) SAVI. (d) NDMI.
The plot colors illustrate the probability density of VIs values with logarithmic
scale. The solid lines show the three regression fits.

Fig. 8. Residuals distribution of MSI and ETM+ applying the RMA
coefficients (ETM+ independent variable) for (a) NDVI, (b) EVI, (c) SAVI,
and (d) NDMI. Red dashed lines represent the mean value.

extracted in a different year between 1999 and 2011 (as stated
in Section III-E). Fig. 13 shows, for every examined VI, the
resulting 12 sets of intercept and slope parameters and how
their values change over years, compared with the suggested
ones presented in Table III(d). A sensible fluctuation can be
noted for both intercepts and slopes from year to year, even
though no apparent trends are detectable.

V. DISCUSSION

In general, the presented results confirmed the data conti-
nuity expected from Landsat Collection-2. Furthermore, the
calculated statistics validated its interoperability with the S2
mission. Indeed, the linear regression functions computed
for each sensor pair showed a good agreement between the
values of the indices, with R2 always greater than 0.9 and
the great majority of pairs falling close to the bisector of
the scatter plots. Nevertheless, the application of a trans-
formation seems advisable, when trying assessing changes
and detecting anomalies in multisensor time-series analyses.
Considering, for example, the NDVI computed on ETM+ and
OLI (Fig. 10), a sensible improvement is observed in the MD
(from −0.0337 to 0.0005 with the transformation). Despite
the very little variation in the numbers, this improvement
becomes sensible when dealing with applications that involve
the assessment of subtle changes over time. Such applications,
which are the target of this study, greatly benefit from a
reduction in the noise in the time series, because it allows
a clearer detection of the actual change [63]. This is the case
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Fig. 9. Scatterplots for all of the vegetation indexes for L7 ETM+

(vertical axis) against L8 OLI (horizontal axis). (a) NDVI. (b) EVI. (c) SAVI.
(d) NDMI. The plot colors illustrate the probability density of VIs values with
logarithmic scale. The solid lines show the three regression fits.

Fig. 10. Residuals distribution of ETM+ and OLI applying the RMA
coefficients (OLI independent variable) for (a) NDVI, (b) EVI, (c) SAVI,
and (d) NDMI. Red dashed lines represent the mean value.

of the study held by Gouveia et al. [64] where a change in the
NDVI of 0.025 was found out to be correlated with vegetation
stress due to drought.

Observing the graphs in Figs. 5, 7, 9, and 11, two con-
siderations can be made. First, NDVI observations are the
most disperse with respect to the linear function fits. Second,
EVI and SAVI sample densities are higher for lower values of
the indexes, while NDVI is more homogeneously distributed
along the entire range, showing a great concentration also for
very high values of the index. In addition, the NDVI scatter
is the most dispersed with respect to its linear regression
lines: this is especially true when L7 ETM+ is considered.
Specifically, in the comparison between ETM+ and OLI, some
points present sensibly higher values of NDVI from one sensor
compared with the other.

Likely, the explanation of the observed behaviors can be
found in a well-known limitation of the NDVI, i.e., the satura-
tion, which occurs especially in the areas of high biomass [52],
[65]. This would explain the higher point density for high
values of NDVI, if compared with those of the other indexes
[for example, compare Fig. 11(a) with 11(b) and (c)]. SAVI
and EVI are instead able to reduce noise and saturation; this
is confirmed by the values reported in Table III in which the
NDVI difference metrics are higher, compared with the other
indices, almost for every sensors pair. The signal-to-noise ratio
of SAVI, for example, is reported to be up to five times higher
than NDVI depending on the green cover percentage [66].
The peculiar dispersion observed in the NDVI scatter plot
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Fig. 11. Scatterplots for all of the vegetation indexes for L7 ETM+ (vertical
axis) against L5 TM (horizontal axis). (a) NDVI. (b) EVI. (c) SAVI. (d) NDMI.
The plot colors illustrate the probability density of VIs values with logarithmic
scale. The solid lines show the three regression fits.

Fig. 12. Residuals distribution of ETM+ and TM applying the RMA
coefficients (OLI independent variable) for (a) NDVI, (b) EVI, (c) SAVI,
and (d) NDMI. Red dashed lines represent the mean value.

between ETM+ and OLI suggests an influence of the spectral
response function on the saturation phenomenon. Indeed, some
outliers seem due to the saturation of the OLI (NDVI greater
than 0.75 for OLI and NDVI between 0.3 and 0.6 for ETM+),
while others show the opposite pattern even though with
lower saturation levels [Fig. 9(a)]. More details about spectral
response function comparison between L7 and L8 are provided
by Roy et al. [34]. In addition, as previously highlighted by
Irons et al. [67], the NIR band of OLI was designed nar-
rower to exclude the ETM+ water vapor absorption feature
at 0.825 µm in Band 4. This slight difference between OLI
and ETM+ NIR bands has been already highlighted by
Chastain et al. [29], where the NIR bands exhibited the most
variation in the L8–L7 cross-sensor comparison on Level-1
products, reaching the highest identity line deviation (slope
of 1.1406).

Another aspect that can contribute to the different dis-
tribution of Vis values is calibration error propagation.
According to the study by Miura et al. [68], assessing the
impact of reflectance calibration uncertainties on VIs derived
by MODIS Terra mission, such uncertainties propagation is
index-dependent, and different patterns and magnitudes were
found for NDVI, EVI, and SAVI.

However, it is important to remark that the majority of the
pairwise values are concentrated around the regression lines,
and the model well fit the data as demonstrated by the high R2

values, indeed those which appears disperse have a very low
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Fig. 13. RMA (a), (c), (e), (g) intercept and (b), (d), (f), (h) slope coefficients computed for each VI on yearly samples of L5 TM and L7 TM+ paired
observations. The red lines represent the coefficients resulting from the RMA computed within the entire period [from Table III(d)].

probability density (lower than 0.1 on more than 10 million
points).

In general, the NDMI performs similar to the other indices,
despite the fact that the SWIR bands—which are the ones with
the lowest overlap in the spectral response function [29]—are
involved.

A direct comparison of the coefficients of the linear trans-
formations proposed here with analogous values published in
previous works is problematic, because in many cases, the
estimation is based on limited samples [28], [33], or using
different regression algorithms [32], or on a limited times-
pan [36]. On the one hand, the numerical values of the
coefficients may vary depending on the choice of the area
of interest (AOI), its land cover, and the considered time
span; on the other hand, the observed RMSEs are comparable.
The coefficient proposed here is averaged among 100 ran-
dom extractions of a very large number of pixels, and the
obtained standard deviations are relatively small, proving the
robustness of the solution. For example, a standard deviation
by 0.0003 for the slope coefficient of the NDVI in Table III(d)
means a variation of 0.00015 on the corrected index, when the
original value is 0.5. As a further test, it was verified that, when
repeating the whole process on the area of intersection among
all the four cross-sensor analyses (see the Supplementary
Materials), the difference in the results is negligible. Thus,
the proposed coefficients can be used and considered valid all
over Europe, at regional as well as continental scale.

More sensible fluctuations emerge instead from the analysis
performed year by year when comparing ETM+ with TM.
Indeed, their entity is one order of magnitude higher than
the standard deviations observed in the 100 extractions over
the full period considered as a unique population. Observing
the charts of Fig. 13, it seems not possible to ascertain a

common trend, nor a clear periodical oscillation. One possible
justification for these fluctuations may be sought in the orbit
drifting of L5. As pointed out by Roy et al. [24], L5 orbit
was not maintained consistently over years, and a temporal
pattern of increasing and then decreasing overpass times was
observed, as the orbit was adjusted by periodic station keeping
maneuvers. These resulted in changes in the illumination
geometry at the moment of acquisition in a place. Anyway,
further investigations are necessary to clarify this specific
issue. All things considered, from the point of view of an
end-user, it is recommended to use the average harmonization
coefficients given in Table III.

As a final remark, using all the considered sensors together
appears beneficial to two main scenarios: first, the creation
of a very long TS from 1984 to present (for example, for
climate change related studies) and, secondly, the generation
of a dramatically denser TS henceforth (for near real-time
monitoring applications). In both the cases, when assembling
the TS including all these sensors, the estimated linear trans-
formations can be used to produce a harmonized dataset. Due
to its operational timespan, the authors recommend using L7
as the common reference and harmonizing all the other sensors
with it.

VI. CONCLUSION

The goal of the study was to extract cross-sensors transfor-
mation coefficients for popular vegetation indexes computed
from Landsat-5 TM, Landsat-7 ETM+, Landsat-8 OLI, and
Sentinel-2 MSI. The aim was to enable long time series to
increase the frequency of data because of different sensors
harmonization. For each sensor pair, RMA and OLS lin-
ear regressions were computed on 300 000 pixels, randomly
sampled from couples of almost simultaneous acquisitions
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by different sensors, and the computations were repeated
100 times to check the repeatability. For the first time, a cross-
comparison analysis on vegetation indexes (NDVI, SAVI, EVI,
and NDMI) derived from Landsat Collection-2 and Sentinel
SR (L2A) products acquired all over the European continent
was performed. Furthermore, the study included data from
L5, L7, L8, and S2 altogether, allowing the extraction of
time series starting from 1984. This approach highly increases
the acquisition frequency, combining the 16-day L8 repeat
cycle with the five days of S2 and, thus, raising the chance
to collect cloud-free images that enables effective vegetation
monitoring. This study was able to compute coefficients that
allow to create a consistent time series starting from 1984 to
present, combining in a temporal sequence L5, L7, L8, and S2.
The tests on validation datasets proved that the application of
these coefficients reduces the average difference in VIs values
between sensors by at least an order of magnitude.

Future studies will consider the integration of the recently
launched Landsat-9 that can further increase data frequency.
In addition, despite the intense effort by calibration and
validation teams of both Landsat and Sentinel programs, only
few studies, including in situ measurement for data QA, can be
found in the literature about sensors harmonization. Collecting
spectral signature measurements on the ground would help
assessing data quality and comparing different products levels
offered by these missions.
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