Supporting information of:

Characterization and modeling of CO₂ transport through fluorinated thermoplastics

V. Signorini¹, L. Ansaloni^{2*}, T.A. Peters², B. Alcock², M. Giacinti Baschetti,¹M.

*Minelli*¹

¹⁾ Department of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum – University of Bologna, Bologna, 40131, Italy

²⁾ SINTEF AS, Oslo, 0373, Norway

*Corresponding author (email: <u>luca.ansaloni@sintef.no</u>)

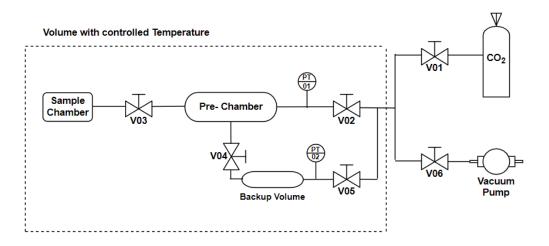


Figure S1: Layout of the Pressure Decay apparatus for CO₂ sorption tests.

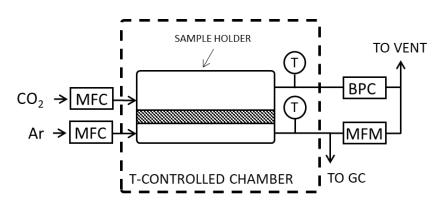
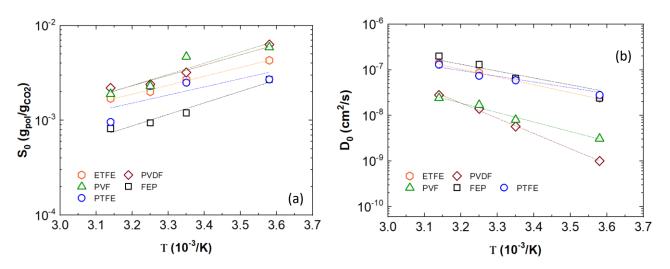


Figure S2: Layout of the permeation setup used in the characterization.

 $\label{eq:stable} \textbf{Table S1}: Sanchez-Lacombe and non-equilibrium SL equations of state.$


Pure component i

M_i	Molar mass of component <i>i</i>							
$ ho_i$	Density of component <i>i</i>							
v_i^*	Molar volume of a lattice cell of component <i>i</i>	$v_i^* = rac{RT_I^*}{p_i^*}$						
r_i^0	Number of lattice cells occupied by a molecule of pure component <i>i</i>	$r_i^0=rac{M_i}{ ho_i^* v_i^*}$						
ω_i	Mass fraction of i							
$arphi_i$	Volume fraction of component <i>i</i> at close packed conditions	$arphi_i = rac{\omega_i / ho_i^*}{\sum_i^N \omega_i / ho_i^*}$						
ε _i	Non-bonded interaction energy between two lattice cells occupied by component <i>i</i>							
L	Mobility coefficient							
L_0	Infinite dilution mobility coefficient							
β	Plasticization factor							
α	Thermodynamic factor	<i>т</i> .						
\tilde{T}_i	Reduced temperature of component <i>i</i>	$ ilde{T}_i = rac{T}{T_i^*}$						
\tilde{p}_i	Reduced pressure of component <i>i</i>	$\tilde{p}_i = \frac{p}{p_i^*}$						
$\tilde{ ho}_i$	Reduced density of component <i>i</i>	$\tilde{\rho}_i = \frac{\rho_i}{\rho_i^*}$						
	Multicomponent mixtures							
		•						
k _{ij}	Binary interaction parameter between components <i>i</i> and <i>j</i>							
k_{ij} $ ho^*$	Binary interaction parameter	$\frac{1}{\rho^*} = \sum_{i=1}^{N} \frac{\omega_i}{\rho_i^*}$						
-	Binary interaction parameter between components <i>i</i> and <i>j</i>							
$ ho^*$	Binary interaction parameter between components <i>i</i> and <i>j</i> Characteristic density of the mixture	$\frac{1}{\rho^*} = \sum_{i=1}^{N} \frac{\omega_i}{\rho_i^*}$						
$ ho^*$ p^*	Binary interaction parameter between components <i>i</i> and <i>j</i> Characteristic density of the mixture Characteristic pressure of the mixture	$\frac{1}{\rho^*} = \sum_{i}^{N} \frac{\omega_i}{\rho_i^*}$ $p^* = \sum_{i}^{N} \varphi_i p_i^* - \sum_{i}^{N-1} \sum_{j>i}^{N} \varphi_i \varphi_j \Delta p_{ij}^*$						
$ ho^*$ p^* Δp^*_{ij}	Binary interaction parameter between components i and jCharacteristic density of the mixtureCharacteristic pressure of the mixtureBinary parameterCharacteristic temperature of the	$\frac{1}{\rho^*} = \sum_{i}^{N} \frac{\omega_i}{\rho_i^*}$ $p^* = \sum_{i}^{N} \varphi_i p_i^* - \sum_{i}^{N-1} \sum_{j>i}^{N} \varphi_i \varphi_j \Delta p_{ij}^*$ $\Delta p_{ij}^* = p_i^* + p_j^* - 2(1 - k_{ij}) \sqrt{p_i^* p_j^*}$						
$ ho^*$ p^* Δp^*_{ij} T^*	Binary interaction parameter between components i and jCharacteristic density of the mixtureCharacteristic pressure of the mixtureBinary parameterCharacteristic temperature of the mixtureAverage close-packed molar volume	$\frac{1}{\rho^*} = \sum_{i}^{N} \frac{\omega_i}{\rho_i^*}$ $p^* = \sum_{i}^{N} \varphi_i p_i^* - \sum_{i}^{N-1} \sum_{j>i}^{N} \varphi_i \varphi_j \Delta p_{ij}^*$ $\Delta p_{ij}^* = p_i^* + p_j^* - 2(1 - k_{ij}) \sqrt{p_i^* p_j^*}$ $T^* = \frac{p^*}{r} \sum_{i}^{N} x_i r_i^0 \frac{T_i^*}{p_i^*}$ $v^* = \frac{T^* R}{p^*}$						
$ ho^*$ p^* Δp^*_{ij} T^* v^*	Binary interaction parameter between components i and jCharacteristic density of the mixtureCharacteristic pressure of the mixtureBinary parameterCharacteristic temperature of the mixtureAverage close-packed molar volume in the mixtureNumber of lattice cells occupied by a	$\frac{1}{\rho^*} = \sum_{i}^{N} \frac{\omega_i}{\rho_i^*}$ $p^* = \sum_{i}^{N} \varphi_i p_i^* - \sum_{i}^{N-1} \sum_{j>i}^{N} \varphi_i \varphi_j \Delta p_{ij}^*$ $\Delta p_{ij}^* = p_i^* + p_j^* - 2(1 - k_{ij}) \sqrt{p_i^* p_j^*}$ $T^* = \frac{p^*}{r} \sum_{i}^{N} x_i r_i^0 \frac{T_i^*}{p_i^*}$ $v^* = \frac{T^* R}{p^*}$ $r_i = \frac{r_i^0 v_i^*}{v^*}$ $\tilde{T} = \frac{T}{T^*}$						
$ ho^*$ p^* Δp_{ij}^* T^* v^* r_i	Binary interaction parameter between components i and jCharacteristic density of the mixtureCharacteristic pressure of the mixtureBinary parameterCharacteristic temperature of the mixtureAverage close-packed molar volume in the mixtureNumber of lattice cells occupied by a molecule in the mixture	$\frac{1}{\rho^*} = \sum_{i}^{N} \frac{\omega_i}{\rho_i^*}$ $p^* = \sum_{i}^{N} \varphi_i p_i^* - \sum_{i}^{N-1} \sum_{j>i}^{N} \varphi_i \varphi_j \Delta p_{ij}^*$ $\Delta p_{ij}^* = p_i^* + p_j^* - 2(1 - k_{ij}) \sqrt{p_i^* p_j^*}$ $T^* = \frac{p^*}{r} \sum_{i}^{N} x_i r_i^0 \frac{T_i^*}{p_i^*}$ $v^* = \frac{T^* R}{p^*}$						

Mat.	So			ΔH s (kJ/mol)	Do				E _D (kJ/mol)	
	6°C	25°C	35°C	45°C		6°C	25°C	35°C	45°C	
PVF	5.9E-03	4.7E-03	2.3E-03	1.9E-03	-22.8	3.1E-09	8.0E-09	1.7E-08	2.4E-08	40.1
PVDF	6.3E-03	3.2E-03	2.4E-03	2.2E-03	-20.7	1.0E-9	5.7E-09	1.4E-08	2.8E-08	62.8
PTFE	2.7E-03	2.5E-03	2.3E-03	9.6E-04	-20.4	2.8E-08	5.9E-08	7.4E-08	1.3E-07	27.5
FEP	2.7E-03	1.2E-03	9.4E-04	8.2E-04	-23.2	2.4E-08	6.5E-08	1.3E-07	2.0E-07	40.5
ETFE	4.3E-03	2.7E-03	2.0E-03	1.7E-03	-17.6	2.4E-08	6.2E-08	8.6E-08	1.4E-07	34.7

Table S2: Temperature dependence parameters of solubility and diffusion coefficients.

 $\tilde{\rho} = \frac{\rho}{\rho^*}$

Figure S3: Temperature dependence of solubility coefficient according to van't Hoff equation (a), and diffusion coefficient following Arrhenius equation (b).

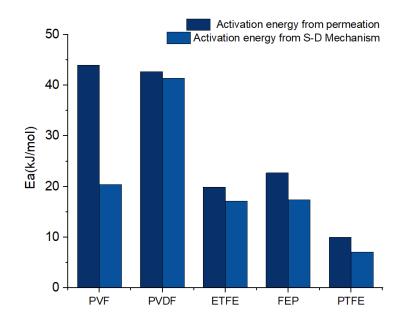


Figure S4: Comparison between activation energy of permeability from permeation experiments and from solution-diffusion mechanism.

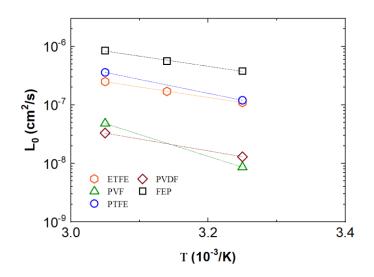


Figure S5: Mobility trend calculated from STM modelling as a function of the inverse of temperature.