SUPPLEMENTARY INFORMATION

Novel strategies for recycling poly(butylene adipate-co-terephthalate)starch-based plastics: selective solubilization and depolymerizationrepolymerization process

Adriano Parodi, *^a Vincenzo Arpaia, ^a Chiara Samorì, ^a Laura Mazzocchetti, ^b Paola Galletti ^a

^a Dipartimento di Chimica "Giacomo Ciamician", University of Bologna, via Sant'Alberto 163, Ravenna, Italy
 ^b Dipartimento di Chimica Industriale "Toso Montanari", University of Bologna, viale del Risorgimento 4, Bologna, Italy

Contents

S1. Screening condition for selective solubilization experiment

- **S2.** Screening conditions for depoly-repoly technique
- **S3.** Screening catalysts conditions for monomer recovery
- **S4.** Reagents and solvents recovery yields for E-factor quantification
- **S5.** DMTA spectra recorded in the 0 70°C range, showing E' for the analyzed polymers
- S6. GC-MS analysis of sorbitol

S7.¹H NMR and ¹³C NMR of monomers recovered through PBAT selective depolymerization: DMT, DMA and 1,4-BD

Number of pages: 8 Number of tables: 4 Number of figures: 5

S1. Screening condition for selective solubilization experiment

Entry			Conditi	Yield (%)ª				
	Temp (°C)	n° extr.	time (min)	Solvent	Concentration (wt %)	Starch	PBAT	Total recovery ^ь
1	rt	1	30	CH_2Cl_2	4%	30	62	97.5
2	rt	1	120	EtOAc	3%	No separation observed		
3	rt	1	120	γ-VL	3%	No separation observed		
4	rt	1	120	acetone	3%	No separation observed		
5	rt	1	120	2-MeTHF	3%	No separation observed		
6	rt	1	120	Et-lactate	3%	No separation observed		
7	rt	1	120	DMC	3%	No separation observed		
8	50	1	120	DMC	3%	No separation observed		
9	90	1	120	γ-VL	3%	27	50	82.5
10	90	1	120	DMC	3%	33	43	81.8
11	90	2	25	DMC	5%	13.6	80.9	-
12	90	2	25	acetone	5%	52.4	40	-
13	90	2	25	2-MeTHF	5%	18.2	76.5	-
14	90	2	25	Et-lactate	5%	No separation observed		

Table S1. Selective solubilization of PBAT screening: solvents temperature and time

^a on total input material

^b considering sorbitol (≈5.5%)

S2. Screening conditions for depoly-repoly technique

Table S2 Depoly-repoly technique and monomers screening of catalysts, time and temperature

		Depo	ly Conditions ^a		Yield (%) ^b			
Entry	Temp (°C)	time (h)	Cat.	Cat. loading (mol%)	Starch fraction	РВАТ	Total recovery ^c	
1	140	5	-	-	91	-	-	
2	140	5	H_2SO_4	3	4	-	-	
3	140	5	K ₂ CO ₃	3	37	0	37	
4	140	7	K_2CO_3	3	30.1	0	30	
5	140	5	NaOH	3	45	0	45	
6	140	7	NaOH	3	37	0	37	
7	140	7	NaOH	4	30	0	30	
8	140	7	DBU	3	40	0	40	
9	140	7	DBU	5	31	0	31	

^a conc. (wt%) of SBP in MeOH was 20% for all entries

^b on total input material

^c considering sorbitol (≈5.5%)

S3. Screening catalysts conditions for monomer recovery

Entry		Methanolysis Conditio	N A	
	Cat.	Cat. loading (mol%)	Conc. (wt %)	Monomers conversion (%) ^b
1	DBU	10	20	95.2
2	NaOH	4	10	91.1
3	K ₂ CO ₃	3	10	93.5
4	Zn(OAc) ₂	3	10	95.1
5	(But)₂SnO	0.5	20	94.2
6	Sn(But) ₂ (OAc) ₂	0.5	20	95.8

 Table S3 Monomers recovery: screening of catalysts, time and temperature

^a all reactions have been conducted at 140 °C; 7h

^b obtained by GC-MS analysis

S4. Reagents and solvents recovery yields for E-factor quantification

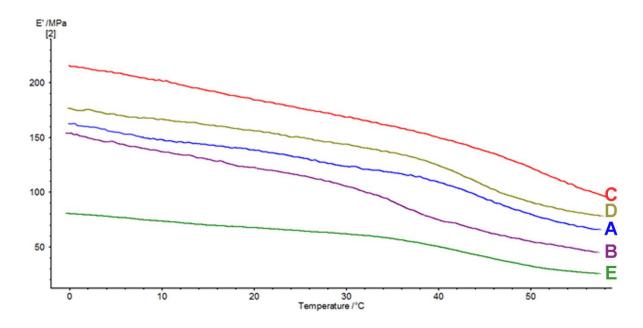
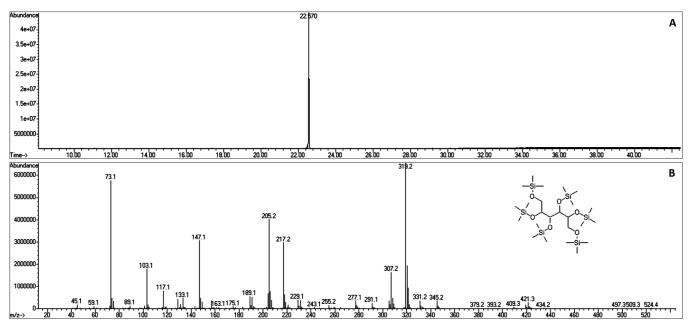

Drosses	Recovery yield (%) ^a						
Process	Overall product	EtOAc	MeOH	Су	H₂O		
Sorbitol removal ^b	-	Not used	99	Not used	Not used		
Selective solubilization	98.6	99	Not used	Not used	Not used		
Depoly-Repoly process	95	Not used	98	Not used	Not used		
Monomer recovery	93.5	Not used	93°	98	99		

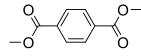
Table S4 Materials used in the three processes recovery yield

^a solvents comprise also the fraction used for the washing step and were recovered through distillation under ambient pressure; catalysts used for depoly-repoly and monomer recovery processes accounts for the 0.02-0.03 wt% respect all the materials in input and they were not recovered

^b sorbitol removal is the pretreatment step, common for all the following processes


^c 4% is of the not recovered MeOH is actually lost, 3% is incorporated in the final products DMT and DMA

S5. DMTA spectra recorded in the 0 - 70°C range, showing E' for the analyzed polymers: A) E1 (-), B) E2 (-), C) E3 (-), D) E4 (-), E) R3 (-).


Figure S5 DMTA spectra recorded in the 0 - 70°C range, showing E' for the analyzed polymers: A) E1 (-), B) E2 (-), C) E3 (-), D) E4 (-), E) R3 (-).

S6. GC-MS analysis of recovered sorbitol

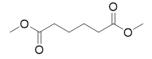
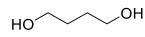


Figure S6 Analysis of the extracted fraction of PBAT with MeOH: A) chromatograph with retention time; B) mass spectrum of the peak at retention time of 22.57, corresponding to silylated sorbitol.


S7. ¹H NMR and ¹³C NMR of monomers recovered through selective depolymerization

DMT: White solid (f.p.:140-142 °C). ¹**H NMR** (400 MHz, CDCl₃) δ 8.08 (s, 4H), 3.93 (s, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 166.24, 133.87, 129.51, 52.39.

DMA: Colorless liquid. ¹**H NMR** (400 MHz, CDCl₃) δ 3.65 (s, 6H), 2.37 – 2.25 (m, 4H), 1.69 – 1.60 (m, 4H). ¹³**C NMR** (101 MHz, CDCl₃) δ 173.71, 51.50, 33.64, 24.34.

1,4-BD: Colorless liquid. ¹**H NMR** (400 MHz, D₂O) δ 3.53 – 3.40 (m, 4H), 1.49 – 1.37 (m, 4H). ¹³**C NMR** (100 MHz, D₂O) δ 61.41, 27.74.

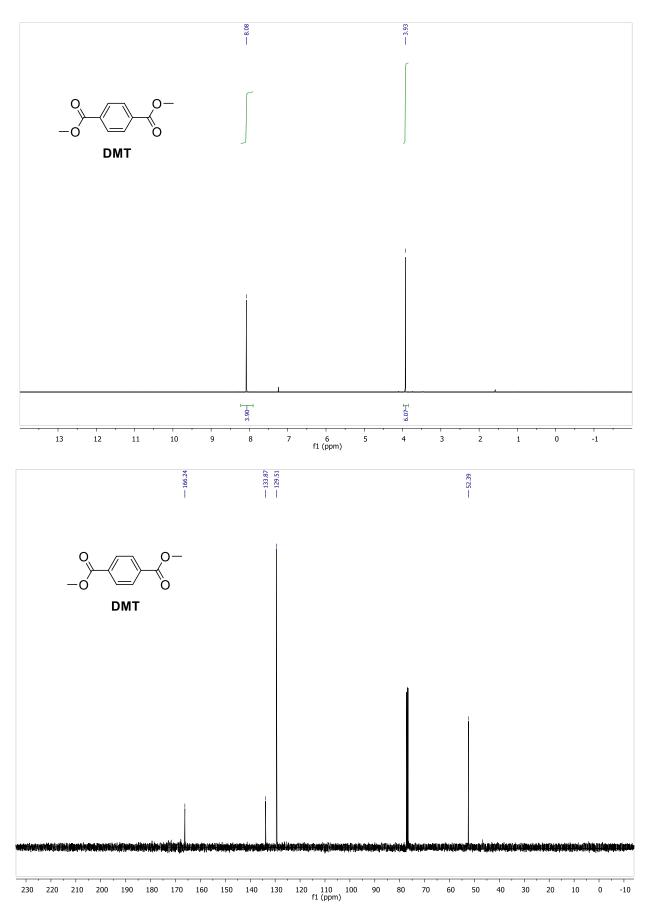
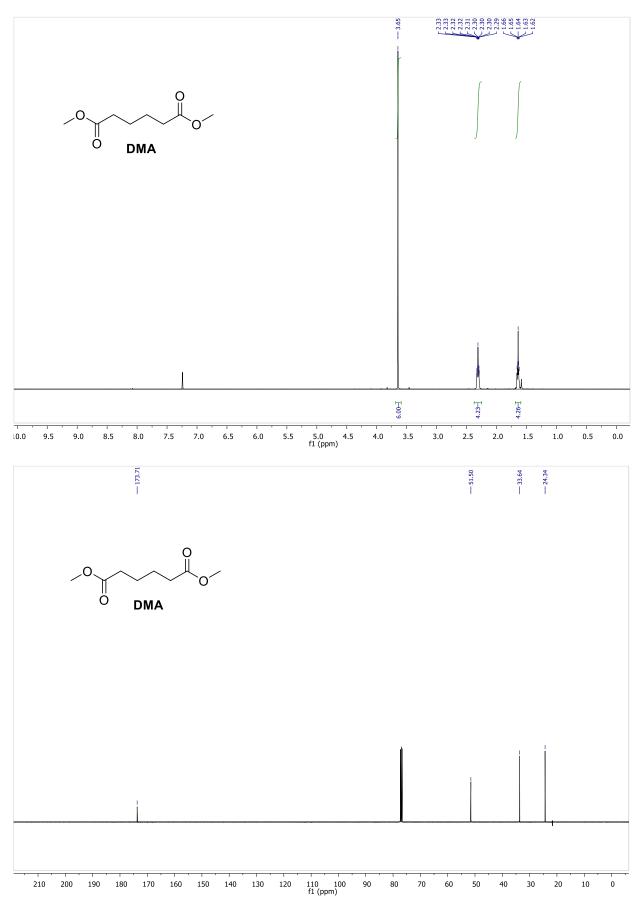
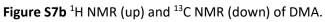




Figure S7a ¹H NMR (up) and ¹³C NMR (down) of DMT.

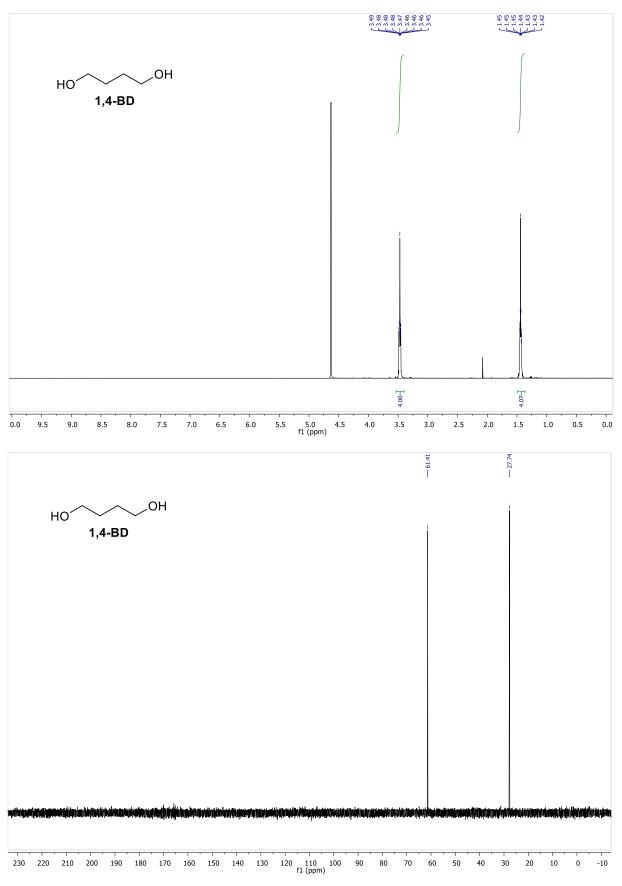


Figure S7c ¹H NMR (up) and ¹³C NMR (down) of 1,4-BD.