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Abstract: The divergent reactivity of D-A cyclopropane, under PTC conditions, is herein reported.

Thus, a ring-opening or a decyanation reaction can be achieved by reacting 2-arylcyclopropane-

1,1-dicarbonitriles 1 with thioacetic acid in different reaction conditions. The use of solid Cs2CO3

leads unexpectedly to the synthesis of new D-A cyclopropane derivatives via a decyanation reaction,

followed by diastereoselective acetylation, whereas the use of an aqueous solution of Cs2CO3 results

in a typical ring-opening reaction with the formation of S-thiolate products. Therefore, the use of

tailored reaction conditions allows one to obtain either cyclic or open-chain products in moderate to

good yields.
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1. Introduction

Cyclopropane is the smallest possible saturated cyclic structure with a ring strain
(Baeyer strain energy) of about 110–115 kJ mol−1 [1]. At the same time, the C-C bonds
of an unsubstituted cyclopropane are rather kinetically inert and, despite the strain, the
molecule does not tend to give up on its cyclic structure. This energy barrier, however,
descends significantly in activated cyclopropanes where donor (D) and acceptor (A) groups
are installed vicinally in a three-membered ring system. The relatively weak chemical bond
between the donor- and acceptor-substituted carbon atoms of the cyclopropane may be
rationalized by a zwitterionic relationship (a 1,3-dipole) in which the negative and positive
charges are stabilized by the acceptor and donor substituent(s), respectively (Scheme 1). The
acceptor groups are often carbonyl derivatives, such as esters, ketones, and nitriles, whereas
electron-rich aryls, alkenyl and heteroatoms are typically used as donor groups. Generally,
two acceptor groups in a geminal position, which guarantee better activation, are employed.
Reissig suggested referring to them as “donor–acceptor-substituted cyclopropanes” [2,3],
which was later reduced to donor-acceptor D-A cyclopropanes.

The synergistic “push–pull” effect of vicinal charge-stabilizing groups boosts the high
polarization of the C-C bond, allowing ring rupture under mild conditions. It also favours
a multitude of different reactions with both nucleophiles and electrophiles, including
moderately active ones, as well as diverse ambiphilic reagents. Nucleophilic attack occurs
at the donor end, leading to homoconjugated products, while the electrophilic one occurs
at the acceptor end to afford cation equivalents for further transformations. The ring-
opening reaction of D-A cyclopropanes has evolved into an effective strategy to assemble
functionalized carbon scaffolds. Moreover, with suitable reacting partners containing
both nucleophilic and electrophilic sites, cascade reactions may also proceed through
ring-opening and annulative ring-closure in what is a formal cycloaddition [3–5].
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Cycloadditions of activated D-A cyclopropanes with dipolarophiles, 1,3-dipoles, or 
dienes represent a valuable tool for accessing highly functionalized five-, six-, or seven-
membered-ring systems [6–8] (Scheme 1). Rearrangements that result in ring enlargement 
with the insertion of the acceptor in a cyclic structure are also possible [9].

 

Scheme 1. Reactivity of D-A cyclopropanes.

Early synthetic applications of activated cyclopropanes were published in the 1960s 
and 1970s, and the first “golden age” for D-A cyclopropanes was entered in the 1980s, 
when all the fundamental reaction types were reported [10,11]. In 2014, Werz [12] and 
France [13] reviewed the 2000s as the second “golden age” of D–A cyclopropanes. Studies 
of their reactivity and catalytic asymmetric reactions of D–A cyclopropanes were next 
summarized in several reviews [5,14–20].

D-A cyclopropanes may be activated by (i) thermal activation [21,22], (ii) Lewis or 
Brønsted acid/base-mediated activation [23,24], and (iii) low-valent transition metal catal-
ysis [25–28]. Recently, few reports regarding organocatalytic activation have been re-
ported [23,29–31]. However, to the best of our knowledge, the reactivity of D-A cyclopro-
panes has never been studied under phase-transfer catalysis (PTC) [32–35]. Having mat-
urated a broad expertise in the use of PTC in recent years [36–43], and inspired by the 
versatility of DA-cyclopropanes, we decided to study their reactivity with nucleophiles 
under PTC conditions.

2. Results
We started our investigation using 2-phenylcyclopropane-1,1-dicarbonitrile 1a as a 

model of D-A cyclopropane compounds, tetra-n-butylammonium bromide (TBABr) as a 
PTC catalyst, and a 10% w/w Cs2CO3 aqueous solution as the base. After some disappoint-
ing results using indole, diphenylphosphite, thiols, ene-carbamates, and sulfoxonium 
ylides as nucleophiles, which did not lead to the formation of the expected products, we 
observed reactivity when using thioacetic acid 2a as a reaction partner.

Surprisingly, besides product 3aa, derived from the expected ring-opening of the D-
A cyclopropane, we observed the formation of compound 4aa as a single trans-diastereo-
isomer [44], obtained by the formal replacement of one of the cyano groups with an acetyl 
moiety, in a 5:1 ratio favouring 3aa (Scheme 2).

Scheme 1. Reactivity of D-A cyclopropanes.

Cycloadditions of activated D-A cyclopropanes with dipolarophiles, 1,3-dipoles, or
dienes represent a valuable tool for accessing highly functionalized five-, six-, or seven-
membered-ring systems [6–8] (Scheme 1). Rearrangements that result in ring enlargement
with the insertion of the acceptor in a cyclic structure are also possible [9].

Early synthetic applications of activated cyclopropanes were published in the 1960s
and 1970s, and the first “golden age” for D-A cyclopropanes was entered in the 1980s, when
all the fundamental reaction types were reported [10,11]. In 2014, Werz [12] and France [13]
reviewed the 2000s as the second “golden age” of D–A cyclopropanes. Studies of their
reactivity and catalytic asymmetric reactions of D–A cyclopropanes were next summarized
in several reviews [5,14–20].

D-A cyclopropanes may be activated by (i) thermal activation [21,22], (ii) Lewis
or Brønsted acid/base-mediated activation [23,24], and (iii) low-valent transition metal
catalysis [25–28]. Recently, few reports regarding organocatalytic activation have been
reported [23,29–31]. However, to the best of our knowledge, the reactivity of D-A cyclo-
propanes has never been studied under phase-transfer catalysis (PTC) [32–35]. Having
maturated a broad expertise in the use of PTC in recent years [36–43], and inspired by the
versatility of DA-cyclopropanes, we decided to study their reactivity with nucleophiles
under PTC conditions.

2. Results

We started our investigation using 2-phenylcyclopropane-1,1-dicarbonitrile 1a as
a model of D-A cyclopropane compounds, tetra-n-butylammonium bromide (TBABr) as
a PTC catalyst, and a 10% w/w Cs2CO3 aqueous solution as the base. After some disap-
pointing results using indole, diphenylphosphite, thiols, ene-carbamates, and sulfoxonium
ylides as nucleophiles, which did not lead to the formation of the expected products, we
observed reactivity when using thioacetic acid 2a as a reaction partner.

Surprisingly, besides product 3aa, derived from the expected ring-opening of the D-A cy-
clopropane, we observed the formation of compound 4aa as a single trans-diastereoisomer [44],
obtained by the formal replacement of one of the cyano groups with an acetyl moiety, in
a 5:1 ratio favouring 3aa (Scheme 2).

We next started an optimization process of the reaction conditions in order to selec-
tively direct the reaction to the formation of the new cyclopropane derivative 4aa, derived
by a non-reductive decyanation reaction, or towards the open-chain product 3aa, indeed
achieved by the conventional reactivity of D-A cyclopropanes.
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Scheme 2. Reaction conditions: 1a 0.1 mmol, thioacetic acid; 2a 0.15 mmol, 1 mL 10% w/w Cs2CO3, 
TBABr (10 mol%), PhMe 1 mL (0.1 M).

We next started an optimization process of the reaction conditions in order to selec-
tively direct the reaction to the formation of the new cyclopropane derivative 4aa, derived 
by a non-reductive decyanation reaction, or towards the open-chain product 3aa, indeed 
achieved by the conventional reactivity of D-A cyclopropanes.

It was immediately understood that performing the reaction in the same reaction 
conditions but using solid Cs2CO3 instead of the corresponding aqueous solution, the ratio 
between the two compounds 3aa and 4aa could be reversed in favour the new cyclopro-
pane derivative 4aa (Table 1, entry 1). We next evaluated different ammonium salts, as 
reported in Table 1: tetramethylammonium hydroxide hydrate (TMAOH × 5H2O) af-
forded only traces of product 4aa and 3aa, whereas promising results were obtained by 
performing the reaction with tetra-n-butylammonium iodide (TBAI), trimethyloctade-
cylammonium bromide (TMODABr), or timethylbenzylammonium chloride (TMBACl), 
(entries 3–5). TMODABr gave a slightly lower degree of selection between products 3aa 
and 4aa (entry 4) but a higher yield value. No products were obtained in the absence of 
an ammonium salt (entry 6). An increase or decrease in the concentration of the reaction 
mixture resulted in lower yield values (entries 7 and 8). Interestingly, when performing 
the reaction with a slight excess of substrate 1a (entry 9) a yield increase and a better se-
lectivity were obtained (compare entries 3 and 9). Lastly, a prolonged reaction time (entry 
10) achieved slightly increased conversion, but meanwhile eroding the selectivity.

Table 1. Ammonium salt screening 1.

Entry Ammonium Salt
(10 mol%)

Solvent (M) T
(° C)

t (h) NMR Yield
of 4aa (%) 2

Ratio
4aa/3aa 3

1 TBABr PhMe (500 µL, 0.2M) r.t. 2.5 32 11/1
2 TMAOH × 5H2O PhMe (500 µL, 0.2M) r.t. 2.5 trace 14/1
3 TBAI PhMe (500 µL, 0.2M) r.t. 2.5 34 17/1
4 TMODABr PhMe (500 µL, 0.2M) r.t. 2.5 46 14/1
5 TMBACl PhMe (500 µL, 0.2M) r.t. 2.5 10 >20/1
6 // PhMe (500 µL, 0.2M) r.t. 2.5
7 TMODABr PhMe (250 µL, 0.4M) r.t. 2.5 19 10/1
8 TMODABr PhMe (1000 µL, 0.1M) r.t. 2.5 31 >20/1

9 4 TMODABr PhMe (500 µL, 0.2M) r.t. 2.5 52 >20/1
10 4 TMODABr PhMe (500 µL, 0.2M) r.t. 18 45 7/1

1 Reaction conditions: 1a (0.1 mmol), thioacetic acid (0.15 mmol), cat. (10 mol%), solid Cs2CO3 (0.12 
mmol) in PhMe, rt, 2.5 h; 2 determined by 1H-NMR using m-dinitrobenzene as internal standard; 3 
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It was immediately understood that performing the reaction in the same reaction
conditions but using solid Cs2CO3 instead of the corresponding aqueous solution, the ratio
between the two compounds 3aa and 4aa could be reversed in favour the new cyclopropane
derivative 4aa (Table 1, entry 1). We next evaluated different ammonium salts, as reported
in Table 1: tetramethylammonium hydroxide hydrate (TMAOH × 5H2O) afforded only
traces of product 4aa and 3aa, whereas promising results were obtained by performing
the reaction with tetra-n-butylammonium iodide (TBAI), trimethyloctadecylammonium
bromide (TMODABr), or timethylbenzylammonium chloride (TMBACl), (entries 3–5).
TMODABr gave a slightly lower degree of selection between products 3aa and 4aa (entry 4)
but a higher yield value. No products were obtained in the absence of an ammonium salt
(entry 6). An increase or decrease in the concentration of the reaction mixture resulted
in lower yield values (entries 7 and 8). Interestingly, when performing the reaction with
a slight excess of substrate 1a (entry 9) a yield increase and a better selectivity were obtained
(compare entries 3 and 9). Lastly, a prolonged reaction time (entry 10) achieved slightly
increased conversion, but meanwhile eroding the selectivity.

Table 1. Ammonium salt screening 1.

Scheme 2. Reaction conditions: 1a 0.1 mmol, thioacetic acid; 2a 0.15 mmol, 1 mL 10% w/w Cs2CO3, 
TBABr (10 mol%), PhMe 1 mL (0.1 M).

We next started an optimization process of the reaction conditions in order to selec-
tively direct the reaction to the formation of the new cyclopropane derivative 4aa, derived 
by a non-reductive decyanation reaction, or towards the open-chain product 3aa, indeed 
achieved by the conventional reactivity of D-A cyclopropanes.

It was immediately understood that performing the reaction in the same reaction 
conditions but using solid Cs2CO3 instead of the corresponding aqueous solution, the ratio 
between the two compounds 3aa and 4aa could be reversed in favour the new cyclopro-
pane derivative 4aa (Table 1, entry 1). We next evaluated different ammonium salts, as 
reported in Table 1: tetramethylammonium hydroxide hydrate (TMAOH × 5H2O) af-
forded only traces of product 4aa and 3aa, whereas promising results were obtained by 
performing the reaction with tetra-n-butylammonium iodide (TBAI), trimethyloctade-
cylammonium bromide (TMODABr), or timethylbenzylammonium chloride (TMBACl), 
(entries 3–5). TMODABr gave a slightly lower degree of selection between products 3aa 
and 4aa (entry 4) but a higher yield value. No products were obtained in the absence of 
an ammonium salt (entry 6). An increase or decrease in the concentration of the reaction 
mixture resulted in lower yield values (entries 7 and 8). Interestingly, when performing 
the reaction with a slight excess of substrate 1a (entry 9) a yield increase and a better se-
lectivity were obtained (compare entries 3 and 9). Lastly, a prolonged reaction time (entry 
10) achieved slightly increased conversion, but meanwhile eroding the selectivity.

Table 1. Ammonium salt screening 1.

 

Entry Ammonium Salt
(10 mol%)

Solvent (M) T
(° C)

t (h) NMR Yield
of 4aa (%) 2

Ratio
4aa/3aa 3

1 TBABr PhMe (500 µL, 0.2M) r.t. 2.5 32 11/1
2 TMAOH × 5H2O PhMe (500 µL, 0.2M) r.t. 2.5 trace 14/1
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10 4 TMODABr PhMe (500 µL, 0.2M) r.t. 18 45 7/1

1 Reaction conditions: 1a (0.1 mmol), thioacetic acid (0.15 mmol), cat. (10 mol%), solid Cs2CO3 (0.12 
mmol) in PhMe, rt, 2.5 h; 2 determined by 1H-NMR using m-dinitrobenzene as internal standard; 3 

Entry
Ammonium Salt

(10 mol%)
Solvent (M)

T
(◦ C)

t (h)
NMR Yield
of 4aa (%) 2

Ratio
4aa/3aa 3

1 TBABr PhMe (500 µL, 0.2 M) r.t. 2.5 32 11/1

2 TMAOH × 5H2O PhMe (500 µL, 0.2 M) r.t. 2.5 trace 14/1

3 TBAI PhMe (500 µL, 0.2 M) r.t. 2.5 34 17/1

4 TMODABr PhMe (500 µL, 0.2 M) r.t. 2.5 46 14/1

5 TMBACl PhMe (500 µL, 0.2 M) r.t. 2.5 10 >20/1

6 // PhMe (500 µL, 0.2 M) r.t. 2.5

7 TMODABr PhMe (250 µL, 0.4 M) r.t. 2.5 19 10/1

8 TMODABr PhMe (1000 µL, 0.1 M) r.t. 2.5 31 >20/1

9 4 TMODABr PhMe (500 µL, 0.2 M) r.t. 2.5 52 >20/1

10 4 TMODABr PhMe (500 µL, 0.2 M) r.t. 18 45 7/1

1 Reaction conditions: 1a (0.1 mmol), thioacetic acid (0.15 mmol), cat. (10 mol%), solid Cs2CO3 (0.12 mmol) in
PhMe, rt, 2.5 h; 2 determined by 1H-NMR using m-dinitrobenzene as internal standard; 3 determined by 1 H NMR
on the crude reaction mixture; 4 1a (0.15 mmol), thioacetic acid (0.1 mmol), cat. (10 mol%), Cs2CO3 (0.12 mmol) in
PhMe (500 µL), rt, 2.5 h.
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Subsequently, the screening of different bases (Table 2, entries 1–4), solvents (entries 5–10),
and temperatures (entries 11, 12) was carried out. Cs2CO3 was confirmed as the best base,
whereas better results were obtained using THF as a solvent (entry 9). Increasing the
temperature to 60 ◦C (entry 11) resulted in a lower yield, while conducting the reaction at
0 ◦C (entry 12) for 18 h afforded product 4aa in a comparable yield.

Table 2. Reaction condition screening 1.

determined by 1 H NMR on the crude reaction mixture; 4 1a (0.15 mmol), thioacetic acid (0.1 mmol), 
cat. (10 mol%), Cs2CO3 (0.12 mmol) in PhMe (500 µL), rt, 2.5 h.

Subsequently, the screening of different bases (Table 2, entries 1–4), solvents (entries 
5–10), and temperatures (entries 11, 12) was carried out. Cs2CO3 was confirmed as the best 
base, whereas better results were obtained using THF as a solvent (entry 9). Increasing the 
temperature to 60 °C (entry 11) resulted in a lower yield, while conducting the reaction at 
0 °C (entry 12) for 18 h afforded product 4aa in a comparable yield.

Table 2. Reaction condition screening 1.

 

Entry Base Solvent T
(° C)

t (h) NMR Yield (%) 2 Ratio 4aa/3aa 3

1 Cs2CO3(s) PhMe r.t. 2.5 52 >20/1
2 K2CO3(s) PhMe r.t. 2.5 19 >20/1
3 KHCO3(s) PhMe r.t. 2.5 7 >20/1
4 K3PO4(s) PhMe r.t. 2.5 29 >20/1
5 Cs2CO3(s) CH2Cl2 r.t. 2.5 50 >20/1
6 Cs2CO3(s) EtOAc r.t. 2.5 39 >20/1
7 Cs2CO3(s) Et2O r.t. 2.5 28 >20/1
8 Cs2CO3(s) MTBE r.t. 2.5 43 >20/1
9 Cs2CO3(s) THF r.t. 2.5 69 >20/1

10 Cs2CO3(s) 2-Me-THF r.t. 2.5 46 >20/1
11 Cs2CO3(s) THF 60 2.5 23 >20/1
12 Cs2CO3(s) THF 0 18 60 >20/1

1 1a (0.15 mmol), thioacetic acid (0.1 mmol), TMODABr (10 mol%), base (0.12 mmol) in solvent (500 
µL), 2.5 h; 2 determined by 1H NMR using m-dinitrobenzene as internal standard; 3 determined by 
1H NMR on the crude reaction mixture.

Having chosen the optimal reaction conditions for the selective obtainment of the 
decyaneted product 4 (Table 2, entry 9), we then moved to evaluate the generality of the 
reaction. As reported in Scheme 3, moderate to good yields and very good selectivity (ratio 
4/3 >20:1) could be obtained for all the D-A cyclopropane derivatives 1b–h employed re-
gardless of the presence of electron-withdrawing or electron-donating substituents on the 
para-position of the aromatic ring (55–81%). The presence of orho-substituents on the aro-
matic ring was detrimental for the obtainable yields, while variable results were obtained 
with meta-substituted substrates. All new D-A cyclopropane derivatives 4 were obtained 
as single trans-diastereoisomers. Unfortunately, when thiobenzoic acid 2b was used in 
place of thioacetic acid, the corresponding decyanated cyclopropane derivatives were not 
obtained.

In addition, a screening of the reaction conditions for the selective obtainment of the 
ring-opening of D-A cyclopropanes 1 was performed. We restarted an optimization pro-
cess of the reaction conditions in order to selectively direct the reaction towards the for-
mation of the ring-opening product 3aa derived by a nucleophilic attack at the donor end 
of D-A cyclopropane 1a.

As previously mentioned, the use of an aqueous solution favoured the formation of 
product 3aa (scheme 2). Moving from TBABr to TBAI (Table 3, entries 1 and 3), both se-
lectivity and conversion improved. Better results were obtained working at 0 °C overnight 

Entry Base Solvent
T

(◦ C)
t (h) NMR Yield (%) 2 Ratio 4aa/3aa 3

1 Cs2CO3(s) PhMe r.t. 2.5 52 >20/1

2 K2CO3(s) PhMe r.t. 2.5 19 >20/1

3 KHCO3(s) PhMe r.t. 2.5 7 >20/1

4 K3PO4(s) PhMe r.t. 2.5 29 >20/1

5 Cs2CO3(s) CH2Cl2 r.t. 2.5 50 >20/1

6 Cs2CO3(s) EtOAc r.t. 2.5 39 >20/1

7 Cs2CO3(s) Et2O r.t. 2.5 28 >20/1

8 Cs2CO3(s) MTBE r.t. 2.5 43 >20/1

9 Cs2CO3(s) THF r.t. 2.5 69 >20/1

10 Cs2CO3(s) 2-Me-THF r.t. 2.5 46 >20/1

11 Cs2CO3(s) THF 60 2.5 23 >20/1

12 Cs2CO3(s) THF 0 18 60 >20/1
1 1a (0.15 mmol), thioacetic acid (0.1 mmol), TMODABr (10 mol%), base (0.12 mmol) in solvent (500 µL), 2.5 h;
2 determined by 1H NMR using m-dinitrobenzene as internal standard; 3 determined by 1H NMR on the crude
reaction mixture.

Having chosen the optimal reaction conditions for the selective obtainment of the
decyaneted product 4 (Table 2, entry 9), we then moved to evaluate the generality of the
reaction. As reported in Scheme 3, moderate to good yields and very good selectivity
(ratio 4/3 > 20:1) could be obtained for all the D-A cyclopropane derivatives 1b–h em-
ployed regardless of the presence of electron-withdrawing or electron-donating substituents
on the para-position of the aromatic ring (55–81%). The presence of orho-substituents on
the aromatic ring was detrimental for the obtainable yields, while variable results were
obtained with meta-substituted substrates. All new D-A cyclopropane derivatives 4 were
obtained as single trans-diastereoisomers. Unfortunately, when thiobenzoic acid 2b was
used in place of thioacetic acid, the corresponding decyanated cyclopropane derivatives
were not obtained.

In addition, a screening of the reaction conditions for the selective obtainment of the
ring-opening of D-A cyclopropanes 1 was performed. We restarted an optimization process
of the reaction conditions in order to selectively direct the reaction towards the formation
of the ring-opening product 3aa derived by a nucleophilic attack at the donor end of D-A
cyclopropane 1a.
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(entries 4 and 5); a further improvement was also achieved using EtOAc as a solvent (entry 
6). On the contrary, different ammonium salts besides TMODABr, different aqueous bases 
(K2CO3, Na2CO3, and NaHCO3), and other solvents (THF, CH2Cl2, Et2O, and TBME) tested 
were not conducive to any further improvements.

 

Scheme 3. Substrate scope of product 4.Scheme 3. Substrate scope of product 4.

As previously mentioned, the use of an aqueous solution favoured the formation
of product 3aa (Scheme 2). Moving from TBABr to TBAI (Table 3, entries 1 and 3), both
selectivity and conversion improved. Better results were obtained working at 0 ◦C overnight
(entries 4 and 5); a further improvement was also achieved using EtOAc as a solvent
(entry 6). On the contrary, different ammonium salts besides TMODABr, different aqueous
bases (K2CO3, Na2CO3, and NaHCO3), and other solvents (THF, CH2Cl2, Et2O, and TBME)
tested were not conducive to any further improvements.
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Table 3. Reaction condition screening 1.Table 3. Reaction condition screening 1.

 

Entry Ammonium Salt
Solvent

(M)
T

(° C) t (h)
NMR Yield 

3aa (%) 2
Ratio 3aa/4aa 3

2 TBABr PhMe (500 µL, 0.1M) r.t. 2.5 20 11/1
3 TBAI PhMe (500 µL, 0.2M) r.t. 2.5 23 >20:1
4 TBABr PhMe (500 µL, 0.2M) 0 48 43 >20:1
5 TBAI PhMe (500 µL, 0.2M) 0 48 46 >20:1
6 TBAI EtOAc (500 µL, 0.2M) 0 48 64 >20:1

1 1a (0.1 mmol), thioacetic acid (0.1.5 mmol), ammonium salt (10 mol%), Cs2CO3 (1 mL 10% w/w) in 
solvent (x µL), 2.5 h; 2 determined by 1H NMR using m-dinitrobenzene as internal standard; 3 deter-
mined by 1H NMR on the crude reaction mixture.

Having selected the optimal reaction conditions as the ones reported in Table 3 entry 
6, we moved on to test the generality of the reaction.

As reported in Scheme 4, moderate to good yields and very good selectivity (ratio 3/4 
>20:1) could be obtained for the D-A cyclopropane derivatives 1a, 1b, 1d, 1f, 1g–j, regard-
less of the presence of electron-withdrawing or electron-donating substituents on the ar-
omatic ring. Thus, the presence of an EWG on para-position (1b, 1f) considerably lowered 
the yield, whereas the presence of an EDG on para-position (1h, 1i and 1j) led to compa-
rable results with respect to 1a. No reactivity was observed in these reaction conditions, 
with D-A cyclopropanes 1c and 1e bearing a halogen in the ortho-position of the aromatic 
ring, probably due to a too-high steric constraint nearby the C2 of the cyclopropane ring 
where the nucleophilic attack had to occur.

The same reaction protocol was successfully employed with thiobenzoic acid 2b, ob-
taining products 3ab, 3fb, and 3jb in good or moderate yields.

Entry Ammonium Salt
Solvent

(M)
T

(◦ C)
t (h)

NMR Yield
3aa (%) 2 Ratio 3aa/4aa 3

1 TBABr PhMe (1000 µL, 0.1 M) r.t. 2.5 20 5/1

2 TBABr PhMe (500 µL, 0.1 M) r.t. 2.5 20 11/1

3 TBAI PhMe (500 µL, 0.2 M) r.t. 2.5 23 >20:1

4 TBABr PhMe (500 µL, 0.2 M) 0 48 43 >20:1

5 TBAI PhMe (500 µL, 0.2 M) 0 48 46 >20:1

6 TBAI EtOAc (500 µL, 0.2 M) 0 48 64 >20:1

1 1a (0.1 mmol), thioacetic acid (0.1.5 mmol), ammonium salt (10 mol%), Cs2CO3 (1 mL 10% w/w) in solvent
(x µL), 2.5 h; 2 determined by 1H NMR using m-dinitrobenzene as internal standard; 3 determined by 1H NMR on
the crude reaction mixture.

Having selected the optimal reaction conditions as the ones reported in Table 3 entry 6,
we moved on to test the generality of the reaction.

As reported in Scheme 4, moderate to good yields and very good selectivity
(ratio 3/4 >20:1) could be obtained for the D-A cyclopropane derivatives 1a, 1b, 1d, 1f,

1g–j, regardless of the presence of electron-withdrawing or electron-donating substituents
on the aromatic ring. Thus, the presence of an EWG on para-position (1b, 1f) considerably
lowered the yield, whereas the presence of an EDG on para-position (1h, 1i and 1j) led
to comparable results with respect to 1a. No reactivity was observed in these reaction
conditions, with D-A cyclopropanes 1c and 1e bearing a halogen in the ortho-position
of the aromatic ring, probably due to a too-high steric constraint nearby the C2 of the
cyclopropane ring where the nucleophilic attack had to occur.

The same reaction protocol was successfully employed with thiobenzoic acid 2b,
obtaining products 3ab, 3fb, and 3jb in good or moderate yields.

It is interesting to observe that the use of an organic base such as Et3N or DBU,
although allowing the reaction, led to the formation of a mixture of product 3aa and 4aa

without the selectivity obtainable in PTC conditions (Scheme 5).
To shed some light on this intriguing and unusual divergent behaviour of D-A cy-

clopropanes 1, product 3aa was reacted with TMODABr in THF in the presence of solid
Cs2CO3. This experiment afforded product 4aa via a retro-addition reaction and the subse-
quent decyanation of the restored D-A cyclopropane 1a (Scheme 6a). On the contrary, it
was not possible to react 4aa in the standard reaction conditions to obtain the ring-opening
product 3aa (Scheme 6b), indicating that the decyanation pathway is irreversible.

It is noteworthy that, using the first set of reaction conditions, namely solid Cs2CO3

and TMODABr, 4ka was obtained in 57% yield, in addition to product 5ka (12% yield)
derived from the ring-opening of 4ka itself (Scheme 7); no selectivity could be ob-
tained using aqueous Cs2CO3 and TBAI, since a mixture of products 3ka, 4ka, and 5ka

was obtained.
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The divergent behaviour of D-A cyclopropane 1 appeared to be strictly related to the
typology of the base used, since the presence of solid Cs2CO3 allowed the unprecedented
decyanation pathway to be activated in favour of the new cyclopropane derivative 4,
whereas an aqueous solution of the same base pushed the reaction towards the ring-opening
product 3. The extraction of water molecules into the organic phase in liquid–liquid systems
probably decreases the reactivity of the thiolate by solvating it. On the other hand, in the
solid–liquid mode, the anions are naked, and their reactivity is higher [45].
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Moreover, the presence of a long aliphatic chain in the ammonium salt structure
increased the selectivity between products 4 and 3, possibly due to the onset of considerable
steric hindrance nearby the C2 of the cyclopropane ring, or to an increase in the reactivity
of the thiolate.

We then tried to devise a sound mechanistic hypothesis accounting for the formation of
the unusual product 4aa in the reaction. In the literature, only one example of non-reductive
decyanation reactions, of cyclic and acyclic disubstituted malononitriles, has been reported
so far (Scheme 8) by Tanino [46] and co-workers, using sodium bis(trimethylsilyl)amide
(NaHMDS) followed by methanol. The authors reported that the anionic intermediate
A decomposes into α-cyano anion B and bis(trimethylsilyl)cyanamide, which readily
undergoes an inter-molecular transfer of a silyl group. The reactive anion B is immediately
captured by a silyl group to give C. The silyl group of C is then removed in the same pot
simply by adding methanol to the reaction mixture.
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On this basis, we envisioned that the thiolate, formed by the deprotonation of thioacetic
acid by the inorganic base, attacks the electrophilic carbon of one of the two cyano groups,
with the subsequent formation of a cyano anion I that evolves to ketimine anion II by the
elimination of acetyl thiocyanate. The anion II is then captured by an acetyl group to form
cyclopropane 4 with the concomitant formation of thiocyanate. The acetyl group enters at
the less hindered side of the α-cyano carbanion, that is, trans to the phenyl ring (Scheme 10).
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On this basis, we envisioned that the thiolate, formed by the deprotonation of thio-
acetic acid by the inorganic base, attacks the electrophilic carbon of one of the two cyano 
groups, with the subsequent formation of a cyano anion I that evolves to ketimine anion 
II by the elimination of acetyl thiocyanate. The anion II is then captured by an acetyl group 
to form cyclopropane 4 with the concomitant formation of thiocyanate. The acetyl group 
enters at the less hindered side of the α-cyano carbanion, that is, trans to the phenyl ring 
(Scheme 10). 

 

Scheme 10. Mechanistic hypothesis

A few controlling experiments were performed in order to verify the proposed mech-
anism. First of all, an FeCl3 1M aqueous solution was added to the reaction mixture con-
ducted in the reaction condition to obtain product 4, resulting in the development of an 
intense reddish-brown coloration, indicative of the formation of an iron complex with the 
thiocyanate ions present at the end of the reaction (Figure 1) [48].

Figure 1. Visualization of thiocyanate by complexation with FeCl3.
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3. Materials and Methods

3.1. General Methods

The 1H and 13C NMR spectra were recorded on a Varian Mercury 400 spectrometer.
Chemical shifts (δ) are reported in ppm relative to residual solvents signals [49] for 1H and
13C NMR. Signal patterns are indicated as follows: bs, broad singlet; s, singlet; d, doublet;
t, triplet; q, quartet; m, multiplet. Coupling constants (J) are given in Hertz (Hz). The
13C NMR were acquired with the 1H broad-band decoupled mode. Mass spectra were
recorded using micromass LCT spectrometer using electrospray (ES) ionization techniques
or FOCUS/DSQ using electron impact (EI) ionization techniques (relative intensities are
given in brackets). The purification of reaction products was carried out by flash chro-
matography (FC) on silica gel (230–400 mesh) or by gravimetric chromatography using
70–230 mesh silica.
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3.2. Materials

Analytical-grade solvents and commercially available reagents were used as received,
unless otherwise noted.

Cyclopropane 1 was obtained from the corresponding styrene derivatives and malonon-
itrile following a literature procedure using bisacetoxyiodobenzene (BAIB) and K2CO3 [50],
as reported in Scheme 12a, or using iodine, LiCl, and tert-butyl hydroperoxide (TBHP) [51],
as reported in Scheme 12b.

or FOCUS/DSQ using electron impact (EI) ionization techniques (relative intensities are 
given in brackets). The purification of reaction products was carried out by flash chroma-
tography (FC) on silica gel (230–400 mesh) or by gravimetric chromatography using 70–
230 mesh silica.
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The corresponding styrene derivatives, if not commercially available, were obtained 
by Wittig reactions from aldehydes.
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In a 4 mL vial equipped with a magnetic stirring bar, D-A cyclopropane 1 (1.5 equiv.,

0.3 mmol) was dissolved in 1000 µL of THF. TMODABr (10 mol% 0.02 mmol, 7.8 mg),
thioacetic acid (1.0 equiv, 0.2 mmol, 14.3 µL), and Cs2CO3 (1.2 equiv., 0.24 mmol, 78.2 mg) 
were added in this order. The resulting suspension was stirred for 2.5 h at room tempera-
ture and then directly pre-purified by a short plug on silica gel using DCM and Et2O as 
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4 as single diastereoisomers.
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Following the general procedure and using cyclopropane 1a (50 mg), product 4aa was
obtained in 61% yield (23 mg) after chromatographic purification on silica gel (3:1 = DCM:
n-hexane as eluent) as a pale-yellow oil. 1H NMR (400 MHz, CDCl3) δ = 7.44–7.31 (m,
3H), 7.30–7.18 (m, 2H), 3.12 (t, J = 9.1 Hz, 1H), 2.58 (s, 3H), 2.21 (dd, J = 9.1, 4.9 Hz, 1H),
2.11 (dd, J = 8.4, 4.9 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ = 198.6, 133.1, 128.8 (2C),
128.6, 128.2 (2C), 118.3, 38.4, 30.3, 29.4, 24.7. MS (ESI) m/z: 208 [M + Na]+ The trans-
relative configuration of compound 4aa was determined by a comparison with data in the
literature [44] and by NOE experiments (see supplementary material). [44].
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1-acetyl-2-(4-bromophenyl)cyclopropane-1-carbonitrile 4ba

configuration of compound 4aa was determined by a comparison with data in the litera-
ture [44] and by NOE experiments (see supplementary materials). [44].

1-acetyl-2-(4-bromophenyl)cyclopropane-1-carbonitrile 4ba

 

Following the general procedure and using cyclopropane 1b (74 mg), product 4ba 
was obtained in 81% yield (43 mg) after chromatographic purification on silica gel (2:1 = 
DCM: n-hexane as eluent) as a yellow oil. 1H NMR (600 MHz, CDCl3) δ = 7.50 (d, J = 8.3 
Hz, 2H), 7.11 (d, J = 8.3 Hz, 2H), 3.05 (t, J = 8.7 Hz, 1H), 2.56 (s, 3H), 2.17 (dd, J = 9.1, 5.0 Hz, 
1H), 2.03 (dd, J = 9.1, 5.0 Hz, 1H). 13C NMR (151 MHz, CDCl3) δ = 198.2, 132.2, 131.9 (2C), 
129.8 (2C), 122.7, 118.1, 37.4, 30.1, 29.4, 24.7. MS (ESI) m/z: 286, 288 [M + Na]+.

1-acetyl-2-(2-bromophenyl)cyclopropane-1-carbonitrile 4ca

Following the general procedure and using cyclopropane 1c (74 mg), product 4ca was 
obtained in 36% yield (19 mg) after chromatographic purification on silica gel (3:1 = DCM: 
n-hexane as eluent) as a yellow oil. 1H NMR (600 MHz, CDCl3) δ = 7.65 (dd, J = 8.0, 1.2 Hz, 
1H), 7.33 (td, J = 7.5, 1.2 Hz, 1H), 7.27–7.22 (m, 1H), 7.17 (dt, J = 7.6, 1.3 Hz, 1H), 3.08 (t, J = 
8.6 Hz, 1H), 2.63 (s, 3H), 2.26 (dd, J = 8.8, 4.9 Hz, 1H), 2.10 (dd, J = 8.5, 5.0 Hz, 1H). 13C 
NMR (151 MHz, CDCl3) δ = 198.6, 133.5, 133.0, 130.3, 129.2, 127.8, 126.9, 117.9, 39.4, 29.3, 
29.3, 24.3. MS (ESI) m/z: 286, 288 [M + Na]+.

1-acetyl-2-(3-chlorophenyl)cyclopropane-1-carbonitrile 4da

Following the general procedure and using s cyclopropane 1d (60 mg), product 4da 
was obtained in 65% yield (28 mg) after chromatographic purification on silica gel (3:1 = 
DCM: n-hexane as eluent) as a pale-yellow oil. 1H NMR (600 MHz, CDCl3) δ = 7.47 (dd, J 
= 7.7, 1.5 Hz, 1H), 7.32 (td, J = 7.6, 1.8 Hz, 1H), 7.28 (td, J = 7.5,1.5, 1H), 7.18 (dd, J = 7.4, 1.8 
Hz, 1H), 3.10 (t, J = 8.6 Hz, 1H), 2.62 (s, 3H), 2.26 (dd, J = 8.9, 4.9 Hz, 1H), 2.09 (dd, J = 8.4, 
4.9 Hz, 1H). 13C NMR (151 MHz, CDCl3) δ 198.5, 136.4, 131.9, 130.0, 129.75, 129.0, 127.2, 
118.0, 36.9, 29.2, 29.0, 23.8. MS (ESI) m/z: 242 [M + Na]+.

1-acetyl-2-(2-chlorophenyl)cyclopropane-1-carbonitrile 4ea

Following the general procedure and using cyclopropane 1e (60 mg), product 4ea 
was obtained in 32% yield (14 mg) after chromatographic purification on silica gel (3:1 = 
DCM:n-hexane as eluent) as a pale-yellow oil. 1H NMR (600 MHz, CDCl3) δ = 7.33–7.30 
(m, 2H), 7.26–7.23 (bs, 1H), 7.13–7.10 (m, 1H), 3.07 (t, J = 8.7 Hz, 1H), 2.58 (s, 3H), 2.17 (dd, 
J = 9.1, 5.0 Hz, 1H), 2.06 (dd, J = 8.3, 5.0 Hz, 1H). 13C NMR (151 MHz, CDCl3) δ 198.2, 135.2, 
134.7, 130.05, 128.8, 128.7, 126.2, 117.95, 37.2, 30.0, 29.5, 24.6. MS (ESI) m/z: 242 [M + Na]+.

Following the general procedure and using cyclopropane 1b (74 mg), product 4ba was
obtained in 81% yield (43 mg) after chromatographic purification on silica gel (2:1 = DCM:
n-hexane as eluent) as a yellow oil. 1H NMR (600 MHz, CDCl3) δ = 7.50 (d, J = 8.3 Hz,
2H), 7.11 (d, J = 8.3 Hz, 2H), 3.05 (t, J = 8.7 Hz, 1H), 2.56 (s, 3H), 2.17 (dd, J = 9.1, 5.0 Hz,
1H), 2.03 (dd, J = 9.1, 5.0 Hz, 1H). 13C NMR (151 MHz, CDCl3) δ = 198.2, 132.2, 131.9 (2C),
129.8 (2C), 122.7, 118.1, 37.4, 30.1, 29.4, 24.7. MS (ESI) m/z: 286, 288 [M + Na]+.

1-acetyl-2-(2-bromophenyl)cyclopropane-1-carbonitrile 4ca

configuration of compound 4aa was determined by a comparison with data in the litera-
ture [44] and by NOE experiments (see supplementary materials). [44].
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Hz, 2H), 7.11 (d, J = 8.3 Hz, 2H), 3.05 (t, J = 8.7 Hz, 1H), 2.56 (s, 3H), 2.17 (dd, J = 9.1, 5.0 Hz, 
1H), 2.03 (dd, J = 9.1, 5.0 Hz, 1H). 13C NMR (151 MHz, CDCl3) δ = 198.2, 132.2, 131.9 (2C), 
129.8 (2C), 122.7, 118.1, 37.4, 30.1, 29.4, 24.7. MS (ESI) m/z: 286, 288 [M + Na]+.

1-acetyl-2-(2-bromophenyl)cyclopropane-1-carbonitrile 4ca
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8.6 Hz, 1H), 2.63 (s, 3H), 2.26 (dd, J = 8.8, 4.9 Hz, 1H), 2.10 (dd, J = 8.5, 5.0 Hz, 1H). 13C 
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DCM: n-hexane as eluent) as a pale-yellow oil. 1H NMR (600 MHz, CDCl3) δ = 7.47 (dd, J 
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1-acetyl-2-(2-chlorophenyl)cyclopropane-1-carbonitrile 4ea
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configuration of compound 4aa was determined by a comparison with data in the litera-
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was obtained in 81% yield (43 mg) after chromatographic purification on silica gel (2:1 = 
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Hz, 2H), 7.11 (d, J = 8.3 Hz, 2H), 3.05 (t, J = 8.7 Hz, 1H), 2.56 (s, 3H), 2.17 (dd, J = 9.1, 5.0 Hz, 
1H), 2.03 (dd, J = 9.1, 5.0 Hz, 1H). 13C NMR (151 MHz, CDCl3) δ = 198.2, 132.2, 131.9 (2C), 
129.8 (2C), 122.7, 118.1, 37.4, 30.1, 29.4, 24.7. MS (ESI) m/z: 286, 288 [M + Na]+.

1-acetyl-2-(2-bromophenyl)cyclopropane-1-carbonitrile 4ca

Following the general procedure and using cyclopropane 1c (74 mg), product 4ca was 
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29.3, 24.3. MS (ESI) m/z: 286, 288 [M + Na]+.

1-acetyl-2-(3-chlorophenyl)cyclopropane-1-carbonitrile 4da

 

Following the general procedure and using s cyclopropane 1d (60 mg), product 4da 
was obtained in 65% yield (28 mg) after chromatographic purification on silica gel (3:1 = 
DCM: n-hexane as eluent) as a pale-yellow oil. 1H NMR (600 MHz, CDCl3) δ = 7.47 (dd, J 
= 7.7, 1.5 Hz, 1H), 7.32 (td, J = 7.6, 1.8 Hz, 1H), 7.28 (td, J = 7.5,1.5, 1H), 7.18 (dd, J = 7.4, 1.8 
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4.9 Hz, 1H). 13C NMR (151 MHz, CDCl3) δ 198.5, 136.4, 131.9, 130.0, 129.75, 129.0, 127.2, 
118.0, 36.9, 29.2, 29.0, 23.8. MS (ESI) m/z: 242 [M + Na]+.

1-acetyl-2-(2-chlorophenyl)cyclopropane-1-carbonitrile 4ea

Following the general procedure and using cyclopropane 1e (60 mg), product 4ea 
was obtained in 32% yield (14 mg) after chromatographic purification on silica gel (3:1 = 
DCM:n-hexane as eluent) as a pale-yellow oil. 1H NMR (600 MHz, CDCl3) δ = 7.33–7.30 
(m, 2H), 7.26–7.23 (bs, 1H), 7.13–7.10 (m, 1H), 3.07 (t, J = 8.7 Hz, 1H), 2.58 (s, 3H), 2.17 (dd, 
J = 9.1, 5.0 Hz, 1H), 2.06 (dd, J = 8.3, 5.0 Hz, 1H). 13C NMR (151 MHz, CDCl3) δ 198.2, 135.2, 
134.7, 130.05, 128.8, 128.7, 126.2, 117.95, 37.2, 30.0, 29.5, 24.6. MS (ESI) m/z: 242 [M + Na]+.

Following the general procedure and using s cyclopropane 1d (60 mg), product
4da was obtained in 65% yield (28 mg) after chromatographic purification on silica gel
(3:1 = DCM: n-hexane as eluent) as a pale-yellow oil. 1H NMR (600 MHz, CDCl3) δ = 7.47
(dd, J = 7.7, 1.5 Hz, 1H), 7.32 (td, J = 7.6, 1.8 Hz, 1H), 7.28 (td, J = 7.5,1.5, 1H), 7.18 (dd,
J = 7.4, 1.8 Hz, 1H), 3.10 (t, J = 8.6 Hz, 1H), 2.62 (s, 3H), 2.26 (dd, J = 8.9, 4.9 Hz, 1H), 2.09 (dd,
J = 8.4, 4.9 Hz, 1H). 13C NMR (151 MHz, CDCl3) δ 198.5, 136.4, 131.9, 130.0, 129.75, 129.0,
127.2, 118.0, 36.9, 29.2, 29.0, 23.8. MS (ESI) m/z: 242 [M + Na]+.

1-acetyl-2-(2-chlorophenyl)cyclopropane-1-carbonitrile 4ea

configuration of compound 4aa was determined by a comparison with data in the litera-
ture [44] and by NOE experiments (see supplementary materials). [44].

1-acetyl-2-(4-bromophenyl)cyclopropane-1-carbonitrile 4ba

Following the general procedure and using cyclopropane 1b (74 mg), product 4ba 
was obtained in 81% yield (43 mg) after chromatographic purification on silica gel (2:1 = 
DCM: n-hexane as eluent) as a yellow oil. 1H NMR (600 MHz, CDCl3) δ = 7.50 (d, J = 8.3 
Hz, 2H), 7.11 (d, J = 8.3 Hz, 2H), 3.05 (t, J = 8.7 Hz, 1H), 2.56 (s, 3H), 2.17 (dd, J = 9.1, 5.0 Hz, 
1H), 2.03 (dd, J = 9.1, 5.0 Hz, 1H). 13C NMR (151 MHz, CDCl3) δ = 198.2, 132.2, 131.9 (2C), 
129.8 (2C), 122.7, 118.1, 37.4, 30.1, 29.4, 24.7. MS (ESI) m/z: 286, 288 [M + Na]+.

1-acetyl-2-(2-bromophenyl)cyclopropane-1-carbonitrile 4ca

Following the general procedure and using cyclopropane 1c (74 mg), product 4ca was 
obtained in 36% yield (19 mg) after chromatographic purification on silica gel (3:1 = DCM: 
n-hexane as eluent) as a yellow oil. 1H NMR (600 MHz, CDCl3) δ = 7.65 (dd, J = 8.0, 1.2 Hz, 
1H), 7.33 (td, J = 7.5, 1.2 Hz, 1H), 7.27–7.22 (m, 1H), 7.17 (dt, J = 7.6, 1.3 Hz, 1H), 3.08 (t, J = 
8.6 Hz, 1H), 2.63 (s, 3H), 2.26 (dd, J = 8.8, 4.9 Hz, 1H), 2.10 (dd, J = 8.5, 5.0 Hz, 1H). 13C 
NMR (151 MHz, CDCl3) δ = 198.6, 133.5, 133.0, 130.3, 129.2, 127.8, 126.9, 117.9, 39.4, 29.3, 
29.3, 24.3. MS (ESI) m/z: 286, 288 [M + Na]+.

1-acetyl-2-(3-chlorophenyl)cyclopropane-1-carbonitrile 4da

Following the general procedure and using s cyclopropane 1d (60 mg), product 4da 
was obtained in 65% yield (28 mg) after chromatographic purification on silica gel (3:1 = 
DCM: n-hexane as eluent) as a pale-yellow oil. 1H NMR (600 MHz, CDCl3) δ = 7.47 (dd, J 
= 7.7, 1.5 Hz, 1H), 7.32 (td, J = 7.6, 1.8 Hz, 1H), 7.28 (td, J = 7.5,1.5, 1H), 7.18 (dd, J = 7.4, 1.8 
Hz, 1H), 3.10 (t, J = 8.6 Hz, 1H), 2.62 (s, 3H), 2.26 (dd, J = 8.9, 4.9 Hz, 1H), 2.09 (dd, J = 8.4, 
4.9 Hz, 1H). 13C NMR (151 MHz, CDCl3) δ 198.5, 136.4, 131.9, 130.0, 129.75, 129.0, 127.2, 
118.0, 36.9, 29.2, 29.0, 23.8. MS (ESI) m/z: 242 [M + Na]+.

1-acetyl-2-(2-chlorophenyl)cyclopropane-1-carbonitrile 4ea

 

Following the general procedure and using cyclopropane 1e (60 mg), product 4ea 
was obtained in 32% yield (14 mg) after chromatographic purification on silica gel (3:1 = 
DCM:n-hexane as eluent) as a pale-yellow oil. 1H NMR (600 MHz, CDCl3) δ = 7.33–7.30 
(m, 2H), 7.26–7.23 (bs, 1H), 7.13–7.10 (m, 1H), 3.07 (t, J = 8.7 Hz, 1H), 2.58 (s, 3H), 2.17 (dd, 
J = 9.1, 5.0 Hz, 1H), 2.06 (dd, J = 8.3, 5.0 Hz, 1H). 13C NMR (151 MHz, CDCl3) δ 198.2, 135.2, 
134.7, 130.05, 128.8, 128.7, 126.2, 117.95, 37.2, 30.0, 29.5, 24.6. MS (ESI) m/z: 242 [M + Na]+.
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Following the general procedure and using cyclopropane 1e (60 mg), product 4ea was
obtained in 32% yield (14 mg) after chromatographic purification on silica gel (3:1 = DCM:
n-hexane as eluent) as a pale-yellow oil. 1H NMR (600 MHz, CDCl3) δ = 7.33–7.30 (m, 2H),
7.26–7.23 (bs, 1H), 7.13–7.10 (m, 1H), 3.07 (t, J = 8.7 Hz, 1H), 2.58 (s, 3H), 2.17 (dd, J = 9.1,
5.0 Hz, 1H), 2.06 (dd, J = 8.3, 5.0 Hz, 1H). 13C NMR (151 MHz, CDCl3) δ 198.2, 135.2, 134.7,
130.05, 128.8, 128.7, 126.2, 117.95, 37.2, 30.0, 29.5, 24.6. MS (ESI) m/z: 242 [M + Na]+.

1-acetyl-2-(4-chlorophenyl)cyclopropane-1-carbonitrile 4fa

1-acetyl-2-(4-chlorophenyl)cyclopropane-1-carbonitrile 4fa

 

Following the general procedure and using cyclopropane 1f (60 mg), product 4fa was 
obtained in 68% yield (30 mg) after chromatographic purification on silica gel (3:1 = DCM: 
n-hexane as eluent) as a pale-yellow oil. 1H NMR (600 MHz, CDCl3) δ = 7.38–7.33 (m, 2H), 
7.21–7.17 (m, 2H), 3.09 (t, J = 8.75 Hz, 1H), 2.58 (s, 3H), 2.20 (dd, J = 9.2, 5.0 Hz, 1H), 2.06 
(dd, J = 8.3, 5.0 Hz, 1H). 13C NMR (151 MHz, CDCl3) δ 198.3, 134.6, 131.7, 129.5, 129.05, 
118.1, 37.3, 30.1, 29.5, 24.8. MS (ESI) m/z: 242 [M + Na]+.

1-acetyl-2-(3-nitrophenyl)cyclopropane-1-carbonitrile 4ga

Following the general procedure and using cyclopropane 1g (64 mg), product 4ga 
was obtained in 36% (17 mg) yield after chromatographic purification on silica gel (4:1 = 
n-hexane: EtOAc as eluent) as a yellow oil. 1H NMR (400 MHz, CDCl3) δ = 8.26–8.20 (m, 
1H), 8.17–8.13 (m, 1H), 7.62–7.57 (m, 2H), 3.22 (t, J = 8.7 Hz, 1H), 2.62 (s, 3H), 2.25 (dd, J = 
9.1, 5.2 Hz, 1H), 2.16 (dd, J = 8.2, 5.2 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ = 197.8, 148.4, 
135.5, 134.0, 129.9, 123.6, 123.5, 117.6, 36.4, 29.9, 29.5, 24.6. MS (ESI) m/z: 253 [M + Na]+.

1-acetyl-2-(p-tolyl)cyclopropane-1-carbonitrile 4ha

Following the general procedure and using cyclopropane 1h (55 mg), product 4ha 
was obtained in 62% (25 mg) yield after chromatographic purification on silica gel (4:1 = 
n-hexane: EtOAc as eluent) as a pale-yellow oil. 1H NMR (400 MHz, CDCl3) δ = 7.22–7.10 
(m, 4H), 3.09 (t, J = 8.8 Hz, 1H), 2.57 (s, 3H), 2.35 (s, 3H), 2.19 (dd, J = 9.2, 4.9 Hz, 1H), 2.08 
(dd, J = 8.4, 4.9 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ = 198.6, 138.5, 130.05, 129.5, 128.0, 
118.5, 38.5, 30.4, 29.4, 24.7, 21.2. MS (ESI) m/z: 222 [M + Na]+.

1-acetyl-2-(4-isopropylphenyl)cyclopropane-1-carbonitrile 4ia

Following the general procedure and using cyclopropane 1i (63 mg), product 4ia was 
obtained in 55% yield (25 mg) after chromatographic purification on silica gel (4:1 = n-
hexane: EtOAc as eluent) as a yellow oil. 1H NMR (400 MHz, CDCl3) δ = 7.26–7.22 (m, 2H), 
7.19–7.15 (m, 2H), 3.08 (t, J = 8.8 Hz, 1H), 2.91 (hept, J = 6.9 Hz, 1H), 2.57 (s, 3H), 2.20 (dd, 
J = 9.2, 4.8 Hz, 1H), 2.08 (dd, J = 8.4, 4.8 Hz, 1H), 1.24 (d, J = 6.9 Hz, 6H). 13C NMR (101 
MHz, CDCl3) δ = 198.6, 149.4, 130.4, 128.1, 126.9, 118.5, 38.5, 33.8, 30.3, 29.4, 24.9, 23.8, MS 
(ESI) m/z: 250 [M + Na]+.

1-acetyl-2-(4-methoxyphenyl)cyclopropane-1-carbonitrile 4ja

Following the general procedure and using cyclopropane 1f (60 mg), product 4fa was
obtained in 68% yield (30 mg) after chromatographic purification on silica gel (3:1 = DCM:
n-hexane as eluent) as a pale-yellow oil. 1H NMR (600 MHz, CDCl3) δ = 7.38–7.33 (m, 2H),
7.21–7.17 (m, 2H), 3.09 (t, J = 8.75 Hz, 1H), 2.58 (s, 3H), 2.20 (dd, J = 9.2, 5.0 Hz, 1H), 2.06 (dd,
J = 8.3, 5.0 Hz, 1H). 13C NMR (151 MHz, CDCl3) δ 198.3, 134.6, 131.7, 129.5, 129.05, 118.1,
37.3, 30.1, 29.5, 24.8. MS (ESI) m/z: 242 [M + Na]+.

1-acetyl-2-(3-nitrophenyl)cyclopropane-1-carbonitrile 4ga

1-acetyl-2-(4-chlorophenyl)cyclopropane-1-carbonitrile 4fa

Following the general procedure and using cyclopropane 1f (60 mg), product 4fa was 
obtained in 68% yield (30 mg) after chromatographic purification on silica gel (3:1 = DCM: 
n-hexane as eluent) as a pale-yellow oil. 1H NMR (600 MHz, CDCl3) δ = 7.38–7.33 (m, 2H), 
7.21–7.17 (m, 2H), 3.09 (t, J = 8.75 Hz, 1H), 2.58 (s, 3H), 2.20 (dd, J = 9.2, 5.0 Hz, 1H), 2.06 
(dd, J = 8.3, 5.0 Hz, 1H). 13C NMR (151 MHz, CDCl3) δ 198.3, 134.6, 131.7, 129.5, 129.05, 
118.1, 37.3, 30.1, 29.5, 24.8. MS (ESI) m/z: 242 [M + Na]+.

1-acetyl-2-(3-nitrophenyl)cyclopropane-1-carbonitrile 4ga

 

Following the general procedure and using cyclopropane 1g (64 mg), product 4ga 
was obtained in 36% (17 mg) yield after chromatographic purification on silica gel (4:1 = 
n-hexane: EtOAc as eluent) as a yellow oil. 1H NMR (400 MHz, CDCl3) δ = 8.26–8.20 (m, 
1H), 8.17–8.13 (m, 1H), 7.62–7.57 (m, 2H), 3.22 (t, J = 8.7 Hz, 1H), 2.62 (s, 3H), 2.25 (dd, J = 
9.1, 5.2 Hz, 1H), 2.16 (dd, J = 8.2, 5.2 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ = 197.8, 148.4, 
135.5, 134.0, 129.9, 123.6, 123.5, 117.6, 36.4, 29.9, 29.5, 24.6. MS (ESI) m/z: 253 [M + Na]+.

1-acetyl-2-(p-tolyl)cyclopropane-1-carbonitrile 4ha

Following the general procedure and using cyclopropane 1h (55 mg), product 4ha 
was obtained in 62% (25 mg) yield after chromatographic purification on silica gel (4:1 = 
n-hexane: EtOAc as eluent) as a pale-yellow oil. 1H NMR (400 MHz, CDCl3) δ = 7.22–7.10 
(m, 4H), 3.09 (t, J = 8.8 Hz, 1H), 2.57 (s, 3H), 2.35 (s, 3H), 2.19 (dd, J = 9.2, 4.9 Hz, 1H), 2.08 
(dd, J = 8.4, 4.9 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ = 198.6, 138.5, 130.05, 129.5, 128.0, 
118.5, 38.5, 30.4, 29.4, 24.7, 21.2. MS (ESI) m/z: 222 [M + Na]+.

1-acetyl-2-(4-isopropylphenyl)cyclopropane-1-carbonitrile 4ia

Following the general procedure and using cyclopropane 1i (63 mg), product 4ia was 
obtained in 55% yield (25 mg) after chromatographic purification on silica gel (4:1 = n-
hexane: EtOAc as eluent) as a yellow oil. 1H NMR (400 MHz, CDCl3) δ = 7.26–7.22 (m, 2H), 
7.19–7.15 (m, 2H), 3.08 (t, J = 8.8 Hz, 1H), 2.91 (hept, J = 6.9 Hz, 1H), 2.57 (s, 3H), 2.20 (dd, 
J = 9.2, 4.8 Hz, 1H), 2.08 (dd, J = 8.4, 4.8 Hz, 1H), 1.24 (d, J = 6.9 Hz, 6H). 13C NMR (101 
MHz, CDCl3) δ = 198.6, 149.4, 130.4, 128.1, 126.9, 118.5, 38.5, 33.8, 30.3, 29.4, 24.9, 23.8, MS 
(ESI) m/z: 250 [M + Na]+.

1-acetyl-2-(4-methoxyphenyl)cyclopropane-1-carbonitrile 4ja

Following the general procedure and using cyclopropane 1g (64 mg), product 4ga was
obtained in 36% (17 mg) yield after chromatographic purification on silica gel (4:1 = n-hexane:
EtOAc as eluent) as a yellow oil. 1H NMR (400 MHz, CDCl3) δ = 8.26–8.20 (m, 1H),
8.17–8.13 (m, 1H), 7.62–7.57 (m, 2H), 3.22 (t, J = 8.7 Hz, 1H), 2.62 (s, 3H), 2.25 (dd, J = 9.1,
5.2 Hz, 1H), 2.16 (dd, J = 8.2, 5.2 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ = 197.8, 148.4,
135.5, 134.0, 129.9, 123.6, 123.5, 117.6, 36.4, 29.9, 29.5, 24.6. MS (ESI) m/z: 253 [M + Na]+.

1-acetyl-2-(p-tolyl)cyclopropane-1-carbonitrile 4ha

1-acetyl-2-(4-chlorophenyl)cyclopropane-1-carbonitrile 4fa

Following the general procedure and using cyclopropane 1f (60 mg), product 4fa was 
obtained in 68% yield (30 mg) after chromatographic purification on silica gel (3:1 = DCM: 
n-hexane as eluent) as a pale-yellow oil. 1H NMR (600 MHz, CDCl3) δ = 7.38–7.33 (m, 2H), 
7.21–7.17 (m, 2H), 3.09 (t, J = 8.75 Hz, 1H), 2.58 (s, 3H), 2.20 (dd, J = 9.2, 5.0 Hz, 1H), 2.06 
(dd, J = 8.3, 5.0 Hz, 1H). 13C NMR (151 MHz, CDCl3) δ 198.3, 134.6, 131.7, 129.5, 129.05, 
118.1, 37.3, 30.1, 29.5, 24.8. MS (ESI) m/z: 242 [M + Na]+.

1-acetyl-2-(3-nitrophenyl)cyclopropane-1-carbonitrile 4ga

Following the general procedure and using cyclopropane 1g (64 mg), product 4ga 
was obtained in 36% (17 mg) yield after chromatographic purification on silica gel (4:1 = 
n-hexane: EtOAc as eluent) as a yellow oil. 1H NMR (400 MHz, CDCl3) δ = 8.26–8.20 (m, 
1H), 8.17–8.13 (m, 1H), 7.62–7.57 (m, 2H), 3.22 (t, J = 8.7 Hz, 1H), 2.62 (s, 3H), 2.25 (dd, J = 
9.1, 5.2 Hz, 1H), 2.16 (dd, J = 8.2, 5.2 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ = 197.8, 148.4, 
135.5, 134.0, 129.9, 123.6, 123.5, 117.6, 36.4, 29.9, 29.5, 24.6. MS (ESI) m/z: 253 [M + Na]+.

1-acetyl-2-(p-tolyl)cyclopropane-1-carbonitrile 4ha

 

Following the general procedure and using cyclopropane 1h (55 mg), product 4ha 
was obtained in 62% (25 mg) yield after chromatographic purification on silica gel (4:1 = 
n-hexane: EtOAc as eluent) as a pale-yellow oil. 1H NMR (400 MHz, CDCl3) δ = 7.22–7.10 
(m, 4H), 3.09 (t, J = 8.8 Hz, 1H), 2.57 (s, 3H), 2.35 (s, 3H), 2.19 (dd, J = 9.2, 4.9 Hz, 1H), 2.08 
(dd, J = 8.4, 4.9 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ = 198.6, 138.5, 130.05, 129.5, 128.0, 
118.5, 38.5, 30.4, 29.4, 24.7, 21.2. MS (ESI) m/z: 222 [M + Na]+.

1-acetyl-2-(4-isopropylphenyl)cyclopropane-1-carbonitrile 4ia

Following the general procedure and using cyclopropane 1i (63 mg), product 4ia was 
obtained in 55% yield (25 mg) after chromatographic purification on silica gel (4:1 = n-
hexane: EtOAc as eluent) as a yellow oil. 1H NMR (400 MHz, CDCl3) δ = 7.26–7.22 (m, 2H), 
7.19–7.15 (m, 2H), 3.08 (t, J = 8.8 Hz, 1H), 2.91 (hept, J = 6.9 Hz, 1H), 2.57 (s, 3H), 2.20 (dd, 
J = 9.2, 4.8 Hz, 1H), 2.08 (dd, J = 8.4, 4.8 Hz, 1H), 1.24 (d, J = 6.9 Hz, 6H). 13C NMR (101 
MHz, CDCl3) δ = 198.6, 149.4, 130.4, 128.1, 126.9, 118.5, 38.5, 33.8, 30.3, 29.4, 24.9, 23.8, MS 
(ESI) m/z: 250 [M + Na]+.

1-acetyl-2-(4-methoxyphenyl)cyclopropane-1-carbonitrile 4ja

Following the general procedure and using cyclopropane 1h (55 mg), product 4ha was
obtained in 62% (25 mg) yield after chromatographic purification on silica gel (4:1 = n-hexane:
EtOAc as eluent) as a pale-yellow oil. 1H NMR (400 MHz, CDCl3) δ = 7.22–7.10 (m, 4H),
3.09 (t, J = 8.8 Hz, 1H), 2.57 (s, 3H), 2.35 (s, 3H), 2.19 (dd, J = 9.2, 4.9 Hz, 1H), 2.08 (dd,
J = 8.4, 4.9 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ = 198.6, 138.5, 130.05, 129.5, 128.0, 118.5,
38.5, 30.4, 29.4, 24.7, 21.2. MS (ESI) m/z: 222 [M + Na]+.

1-acetyl-2-(4-isopropylphenyl)cyclopropane-1-carbonitrile 4ia

1-acetyl-2-(4-chlorophenyl)cyclopropane-1-carbonitrile 4fa

Following the general procedure and using cyclopropane 1f (60 mg), product 4fa was 
obtained in 68% yield (30 mg) after chromatographic purification on silica gel (3:1 = DCM: 
n-hexane as eluent) as a pale-yellow oil. 1H NMR (600 MHz, CDCl3) δ = 7.38–7.33 (m, 2H), 
7.21–7.17 (m, 2H), 3.09 (t, J = 8.75 Hz, 1H), 2.58 (s, 3H), 2.20 (dd, J = 9.2, 5.0 Hz, 1H), 2.06 
(dd, J = 8.3, 5.0 Hz, 1H). 13C NMR (151 MHz, CDCl3) δ 198.3, 134.6, 131.7, 129.5, 129.05, 
118.1, 37.3, 30.1, 29.5, 24.8. MS (ESI) m/z: 242 [M + Na]+.

1-acetyl-2-(3-nitrophenyl)cyclopropane-1-carbonitrile 4ga

Following the general procedure and using cyclopropane 1g (64 mg), product 4ga 
was obtained in 36% (17 mg) yield after chromatographic purification on silica gel (4:1 = 
n-hexane: EtOAc as eluent) as a yellow oil. 1H NMR (400 MHz, CDCl3) δ = 8.26–8.20 (m, 
1H), 8.17–8.13 (m, 1H), 7.62–7.57 (m, 2H), 3.22 (t, J = 8.7 Hz, 1H), 2.62 (s, 3H), 2.25 (dd, J = 
9.1, 5.2 Hz, 1H), 2.16 (dd, J = 8.2, 5.2 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ = 197.8, 148.4, 
135.5, 134.0, 129.9, 123.6, 123.5, 117.6, 36.4, 29.9, 29.5, 24.6. MS (ESI) m/z: 253 [M + Na]+.

1-acetyl-2-(p-tolyl)cyclopropane-1-carbonitrile 4ha

Following the general procedure and using cyclopropane 1h (55 mg), product 4ha 
was obtained in 62% (25 mg) yield after chromatographic purification on silica gel (4:1 = 
n-hexane: EtOAc as eluent) as a pale-yellow oil. 1H NMR (400 MHz, CDCl3) δ = 7.22–7.10 
(m, 4H), 3.09 (t, J = 8.8 Hz, 1H), 2.57 (s, 3H), 2.35 (s, 3H), 2.19 (dd, J = 9.2, 4.9 Hz, 1H), 2.08 
(dd, J = 8.4, 4.9 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ = 198.6, 138.5, 130.05, 129.5, 128.0, 
118.5, 38.5, 30.4, 29.4, 24.7, 21.2. MS (ESI) m/z: 222 [M + Na]+.

1-acetyl-2-(4-isopropylphenyl)cyclopropane-1-carbonitrile 4ia

 

Following the general procedure and using cyclopropane 1i (63 mg), product 4ia was 
obtained in 55% yield (25 mg) after chromatographic purification on silica gel (4:1 = n-
hexane: EtOAc as eluent) as a yellow oil. 1H NMR (400 MHz, CDCl3) δ = 7.26–7.22 (m, 2H), 
7.19–7.15 (m, 2H), 3.08 (t, J = 8.8 Hz, 1H), 2.91 (hept, J = 6.9 Hz, 1H), 2.57 (s, 3H), 2.20 (dd, 
J = 9.2, 4.8 Hz, 1H), 2.08 (dd, J = 8.4, 4.8 Hz, 1H), 1.24 (d, J = 6.9 Hz, 6H). 13C NMR (101 
MHz, CDCl3) δ = 198.6, 149.4, 130.4, 128.1, 126.9, 118.5, 38.5, 33.8, 30.3, 29.4, 24.9, 23.8, MS 
(ESI) m/z: 250 [M + Na]+.

1-acetyl-2-(4-methoxyphenyl)cyclopropane-1-carbonitrile 4ja
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Following the general procedure and using cyclopropane 1i (63 mg), product 4ia was
obtained in 55% yield (25 mg) after chromatographic purification on silica gel (4:1 = n-hexane:
EtOAc as eluent) as a yellow oil. 1H NMR (400 MHz, CDCl3) δ = 7.26–7.22 (m, 2H),
7.19–7.15 (m, 2H), 3.08 (t, J = 8.8 Hz, 1H), 2.91 (hept, J = 6.9 Hz, 1H), 2.57 (s, 3H), 2.20 (dd,
J = 9.2, 4.8 Hz, 1H), 2.08 (dd, J = 8.4, 4.8 Hz, 1H), 1.24 (d, J = 6.9 Hz, 6H). 13C NMR (101 MHz,
CDCl3) δ = 198.6, 149.4, 130.4, 128.1, 126.9, 118.5, 38.5, 33.8, 30.3, 29.4, 24.9, 23.8, MS (ESI)
m/z: 250 [M + Na]+.

1-acetyl-2-(4-methoxyphenyl)cyclopropane-1-carbonitrile 4ja

 

Following the general procedure and using cyclopropane 1j (59 mg), product 4ja was 
obtained in 56% yield (24 mg) after chromatographic purification on silica gel (3:1 = n-
hexane: EtOAc as eluent) as a yellow oil. 1H NMR (400 MHz, CDCl3) δ = 7.21–7.15 (m, 2H), 
6.94–6.87 (m, 2H), 3.81 (s, 3H), 3.08 (dd, J = 9.1, 8.4 Hz, 1H), 2.57 (s, 3H), 2.20 (dd, J = 9.2, 
4.9 Hz, 1H), 2.09–2.02 (m, 1H). 13C NMR (151 MHz, CDCl3) δ 198.6, 160.0, 129.4, 125.0, 
118.6, 114.2, 55.3, 38.5, 30.4, 29.4, 24.9. MS (ESI) m/z: 238 [M + Na]+.

1-acetyl-2-(naphthalen-2-yl)cyclopropane-1-carbonitrile 4ka

Following the general procedure and using cyclopropane 1k (65 mg), product 4ka 
was obtained in 57% yield (27 mg) after chromatographic purification on silica gel (3:1 = 
DCM: n-hexane as eluent) as an off-white solid. 1H NMR (400 MHz, CDCl3) δ = 7.93–7.76 
(m, 3H), 7.76–7.69 (m, 1H), 7.57–7.44 (m, 2H), 7.36 (dd, J = 8.5, 1.9 Hz, 1H), 3.29 (t, J = 8.7 
Hz, 1H), 2.61 (s, 3H), 2.33–2.22 (m, 2H). 13C NMR (151 MHz, CDCl3) δ 198.55, 133.2, 133.1, 
128.7, 127.9, 127.75, 127.5, 126.6, 126.55, 125.6, 118.4, 38.6, 30.3, 29.5, 24.8. MS (ESI) m/z: 
258 [M + Na]+.

3.4. General Procedure for the Synthesis of Products 3
In a 4 mL vial equipped with a magnetic stirring bar, D-A cyclopropane 1 (1.0 equiv., 

0.2 mmol) was dissolved in 1000 µL of EtOAc. TBAI (10 mol%, 0.02 mmol, 7.4 mg), thio-
acetic acid (1.5 equiv, 0.3 mmol, 21.4 µL), or thiobenzoic acid 2b (1.5 equiv, 0.3 mmol, 36 
µL) and Cs2CO3 (aq, 10% w/w, 500 µL) were added in this order. The resulting suspension 
was stirred for 48 h at 0 °C and then directly pre-purified by a short plug on silica gel 
using DCM and Et2O as eluents. After the evaporation of the solvent, the crude product 
was analysed by 1H-NMR and then purified through chromatography on silica gel to af-
ford the desired compounds 3 as oils.

S-(3,3-dicyano-1-phenylpropyl) ethanethioate 3aa

Following the general procedure and using cyclopropane 1a (33.6 mg) and thioacetic 
acid 2a (21.4 µL), product 3aa was obtained in 57% yield (28 mg) after chromatographic 
purification on silica gel (3:1 = DCM: n-hexane as eluent) as a pale-yellow oil. 1H NMR 
(600 MHz, CDCl3) δ = 7.42–7.32 (m, 3H), 7.31–7.27 (m, 2H), 4.73 (dd, J = 9.3, 6.6 Hz, 1H), 
3.53 (dd, J = 9.0, 6.4 Hz, 1H), 2.71 (ddd, J = 13.8, 9.0, 6.6 Hz, 1H), 2.58 (ddd, J = 13.8, 9.4, 6.4 
Hz, 1H), 2.35 (s, 3H). 13C NMR (151 MHz, CDCl3) δ = 193.5, 136.9, 129.5, 128.9, 127.6, 111.9, 
111.6, 44.8, 37.1, 30.4, 20.9. MS (ESI) m/z: 267 [M + Na]+.

S-(1-(4-bromophenyl)-3,3-dicyanopropyl) ethanethioate 3ba

Following the general procedure and using cyclopropane 1j (59 mg), product 4ja was
obtained in 56% yield (24 mg) after chromatographic purification on silica gel (3:1 = n-hexane:
EtOAc as eluent) as a yellow oil. 1H NMR (400 MHz, CDCl3) δ = 7.21–7.15 (m, 2H),
6.94–6.87 (m, 2H), 3.81 (s, 3H), 3.08 (dd, J = 9.1, 8.4 Hz, 1H), 2.57 (s, 3H), 2.20 (dd, J = 9.2,
4.9 Hz, 1H), 2.09–2.02 (m, 1H). 13C NMR (151 MHz, CDCl3) δ 198.6, 160.0, 129.4, 125.0,
118.6, 114.2, 55.3, 38.5, 30.4, 29.4, 24.9. MS (ESI) m/z: 238 [M + Na]+.

1-acetyl-2-(naphthalen-2-yl)cyclopropane-1-carbonitrile 4ka

Following the general procedure and using cyclopropane 1j (59 mg), product 4ja was 
obtained in 56% yield (24 mg) after chromatographic purification on silica gel (3:1 = n-
hexane: EtOAc as eluent) as a yellow oil. 1H NMR (400 MHz, CDCl3) δ = 7.21–7.15 (m, 2H), 
6.94–6.87 (m, 2H), 3.81 (s, 3H), 3.08 (dd, J = 9.1, 8.4 Hz, 1H), 2.57 (s, 3H), 2.20 (dd, J = 9.2, 
4.9 Hz, 1H), 2.09–2.02 (m, 1H). 13C NMR (151 MHz, CDCl3) δ 198.6, 160.0, 129.4, 125.0, 
118.6, 114.2, 55.3, 38.5, 30.4, 29.4, 24.9. MS (ESI) m/z: 238 [M + Na]+.

1-acetyl-2-(naphthalen-2-yl)cyclopropane-1-carbonitrile 4ka

 

Following the general procedure and using cyclopropane 1k (65 mg), product 4ka 
was obtained in 57% yield (27 mg) after chromatographic purification on silica gel (3:1 = 
DCM: n-hexane as eluent) as an off-white solid. 1H NMR (400 MHz, CDCl3) δ = 7.93–7.76 
(m, 3H), 7.76–7.69 (m, 1H), 7.57–7.44 (m, 2H), 7.36 (dd, J = 8.5, 1.9 Hz, 1H), 3.29 (t, J = 8.7 
Hz, 1H), 2.61 (s, 3H), 2.33–2.22 (m, 2H). 13C NMR (151 MHz, CDCl3) δ 198.55, 133.2, 133.1, 
128.7, 127.9, 127.75, 127.5, 126.6, 126.55, 125.6, 118.4, 38.6, 30.3, 29.5, 24.8. MS (ESI) m/z: 
258 [M + Na]+.

3.4. General Procedure for the Synthesis of Products 3
In a 4 mL vial equipped with a magnetic stirring bar, D-A cyclopropane 1 (1.0 equiv., 

0.2 mmol) was dissolved in 1000 µL of EtOAc. TBAI (10 mol%, 0.02 mmol, 7.4 mg), thio-
acetic acid (1.5 equiv, 0.3 mmol, 21.4 µL), or thiobenzoic acid 2b (1.5 equiv, 0.3 mmol, 36 
µL) and Cs2CO3 (aq, 10% w/w, 500 µL) were added in this order. The resulting suspension 
was stirred for 48 h at 0 °C and then directly pre-purified by a short plug on silica gel 
using DCM and Et2O as eluents. After the evaporation of the solvent, the crude product 
was analysed by 1H-NMR and then purified through chromatography on silica gel to af-
ford the desired compounds 3 as oils.

S-(3,3-dicyano-1-phenylpropyl) ethanethioate 3aa

Following the general procedure and using cyclopropane 1a (33.6 mg) and thioacetic 
acid 2a (21.4 µL), product 3aa was obtained in 57% yield (28 mg) after chromatographic 
purification on silica gel (3:1 = DCM: n-hexane as eluent) as a pale-yellow oil. 1H NMR 
(600 MHz, CDCl3) δ = 7.42–7.32 (m, 3H), 7.31–7.27 (m, 2H), 4.73 (dd, J = 9.3, 6.6 Hz, 1H), 
3.53 (dd, J = 9.0, 6.4 Hz, 1H), 2.71 (ddd, J = 13.8, 9.0, 6.6 Hz, 1H), 2.58 (ddd, J = 13.8, 9.4, 6.4 
Hz, 1H), 2.35 (s, 3H). 13C NMR (151 MHz, CDCl3) δ = 193.5, 136.9, 129.5, 128.9, 127.6, 111.9, 
111.6, 44.8, 37.1, 30.4, 20.9. MS (ESI) m/z: 267 [M + Na]+.

S-(1-(4-bromophenyl)-3,3-dicyanopropyl) ethanethioate 3ba

Following the general procedure and using cyclopropane 1k (65 mg), product 4ka was
obtained in 57% yield (27 mg) after chromatographic purification on silica gel (3:1 = DCM:
n-hexane as eluent) as an off-white solid. 1H NMR (400 MHz, CDCl3) δ = 7.93–7.76 (m, 3H),
7.76–7.69 (m, 1H), 7.57–7.44 (m, 2H), 7.36 (dd, J = 8.5, 1.9 Hz, 1H), 3.29 (t, J = 8.7 Hz, 1H),
2.61 (s, 3H), 2.33–2.22 (m, 2H). 13C NMR (151 MHz, CDCl3) δ 198.55, 133.2, 133.1, 128.7, 127.9,
127.75, 127.5, 126.6, 126.55, 125.6, 118.4, 38.6, 30.3, 29.5, 24.8. MS (ESI) m/z: 258 [M + Na]+.

3.4. General Procedure for the Synthesis of Products 3

In a 4 mL vial equipped with a magnetic stirring bar, D-A cyclopropane 1 (1.0 equiv.,
0.2 mmol) was dissolved in 1000 µL of EtOAc. TBAI (10 mol%, 0.02 mmol, 7.4 mg), thioacetic
acid (1.5 equiv, 0.3 mmol, 21.4 µL), or thiobenzoic acid 2b (1.5 equiv, 0.3 mmol, 36 µL) and
Cs2CO3 (aq, 10% w/w, 500 µL) were added in this order. The resulting suspension was
stirred for 48 h at 0 ◦C and then directly pre-purified by a short plug on silica gel using
DCM and Et2O as eluents. After the evaporation of the solvent, the crude product was
analysed by 1H-NMR and then purified through chromatography on silica gel to afford the
desired compounds 3 as oils.

S-(3,3-dicyano-1-phenylpropyl) ethanethioate 3aa

Following the general procedure and using cyclopropane 1j (59 mg), product 4ja was 
obtained in 56% yield (24 mg) after chromatographic purification on silica gel (3:1 = n-
hexane: EtOAc as eluent) as a yellow oil. 1H NMR (400 MHz, CDCl3) δ = 7.21–7.15 (m, 2H), 
6.94–6.87 (m, 2H), 3.81 (s, 3H), 3.08 (dd, J = 9.1, 8.4 Hz, 1H), 2.57 (s, 3H), 2.20 (dd, J = 9.2, 
4.9 Hz, 1H), 2.09–2.02 (m, 1H). 13C NMR (151 MHz, CDCl3) δ 198.6, 160.0, 129.4, 125.0, 
118.6, 114.2, 55.3, 38.5, 30.4, 29.4, 24.9. MS (ESI) m/z: 238 [M + Na]+.

1-acetyl-2-(naphthalen-2-yl)cyclopropane-1-carbonitrile 4ka

Following the general procedure and using cyclopropane 1k (65 mg), product 4ka 
was obtained in 57% yield (27 mg) after chromatographic purification on silica gel (3:1 = 
DCM: n-hexane as eluent) as an off-white solid. 1H NMR (400 MHz, CDCl3) δ = 7.93–7.76 
(m, 3H), 7.76–7.69 (m, 1H), 7.57–7.44 (m, 2H), 7.36 (dd, J = 8.5, 1.9 Hz, 1H), 3.29 (t, J = 8.7 
Hz, 1H), 2.61 (s, 3H), 2.33–2.22 (m, 2H). 13C NMR (151 MHz, CDCl3) δ 198.55, 133.2, 133.1, 
128.7, 127.9, 127.75, 127.5, 126.6, 126.55, 125.6, 118.4, 38.6, 30.3, 29.5, 24.8. MS (ESI) m/z: 
258 [M + Na]+.

3.4. General Procedure for the Synthesis of Products 3
In a 4 mL vial equipped with a magnetic stirring bar, D-A cyclopropane 1 (1.0 equiv., 

0.2 mmol) was dissolved in 1000 µL of EtOAc. TBAI (10 mol%, 0.02 mmol, 7.4 mg), thio-
acetic acid (1.5 equiv, 0.3 mmol, 21.4 µL), or thiobenzoic acid 2b (1.5 equiv, 0.3 mmol, 36 
µL) and Cs2CO3 (aq, 10% w/w, 500 µL) were added in this order. The resulting suspension 
was stirred for 48 h at 0 °C and then directly pre-purified by a short plug on silica gel 
using DCM and Et2O as eluents. After the evaporation of the solvent, the crude product 
was analysed by 1H-NMR and then purified through chromatography on silica gel to af-
ford the desired compounds 3 as oils.

S-(3,3-dicyano-1-phenylpropyl) ethanethioate 3aa

 

Following the general procedure and using cyclopropane 1a (33.6 mg) and thioacetic 
acid 2a (21.4 µL), product 3aa was obtained in 57% yield (28 mg) after chromatographic 
purification on silica gel (3:1 = DCM: n-hexane as eluent) as a pale-yellow oil. 1H NMR 
(600 MHz, CDCl3) δ = 7.42–7.32 (m, 3H), 7.31–7.27 (m, 2H), 4.73 (dd, J = 9.3, 6.6 Hz, 1H), 
3.53 (dd, J = 9.0, 6.4 Hz, 1H), 2.71 (ddd, J = 13.8, 9.0, 6.6 Hz, 1H), 2.58 (ddd, J = 13.8, 9.4, 6.4 
Hz, 1H), 2.35 (s, 3H). 13C NMR (151 MHz, CDCl3) δ = 193.5, 136.9, 129.5, 128.9, 127.6, 111.9, 
111.6, 44.8, 37.1, 30.4, 20.9. MS (ESI) m/z: 267 [M + Na]+.

S-(1-(4-bromophenyl)-3,3-dicyanopropyl) ethanethioate 3ba
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Following the general procedure and using cyclopropane 1a (33.6 mg) and thioacetic
acid 2a (21.4 µL), product 3aa was obtained in 57% yield (28 mg) after chromatographic
purification on silica gel (3:1 = DCM: n-hexane as eluent) as a pale-yellow oil. 1H NMR

(600 MHz, CDCl3) δ = 7.42–7.32 (m, 3H), 7.31–7.27 (m, 2H), 4.73 (dd, J = 9.3, 6.6 Hz, 1H),
3.53 (dd, J = 9.0, 6.4 Hz, 1H), 2.71 (ddd, J = 13.8, 9.0, 6.6 Hz, 1H), 2.58 (ddd, J = 13.8, 9.4,
6.4 Hz, 1H), 2.35 (s, 3H). 13C NMR (151 MHz, CDCl3) δ = 193.5, 136.9, 129.5, 128.9, 127.6,
111.9, 111.6, 44.8, 37.1, 30.4, 20.9. MS (ESI) m/z: 267 [M + Na]+.

S-(1-(4-bromophenyl)-3,3-dicyanopropyl) ethanethioate 3ba

Following the general procedure and using cyclopropane 1j (59 mg), product 4ja was 
obtained in 56% yield (24 mg) after chromatographic purification on silica gel (3:1 = n-
hexane: EtOAc as eluent) as a yellow oil. 1H NMR (400 MHz, CDCl3) δ = 7.21–7.15 (m, 2H), 
6.94–6.87 (m, 2H), 3.81 (s, 3H), 3.08 (dd, J = 9.1, 8.4 Hz, 1H), 2.57 (s, 3H), 2.20 (dd, J = 9.2, 
4.9 Hz, 1H), 2.09–2.02 (m, 1H). 13C NMR (151 MHz, CDCl3) δ 198.6, 160.0, 129.4, 125.0, 
118.6, 114.2, 55.3, 38.5, 30.4, 29.4, 24.9. MS (ESI) m/z: 238 [M + Na]+.

1-acetyl-2-(naphthalen-2-yl)cyclopropane-1-carbonitrile 4ka

Following the general procedure and using cyclopropane 1k (65 mg), product 4ka 
was obtained in 57% yield (27 mg) after chromatographic purification on silica gel (3:1 = 
DCM: n-hexane as eluent) as an off-white solid. 1H NMR (400 MHz, CDCl3) δ = 7.93–7.76 
(m, 3H), 7.76–7.69 (m, 1H), 7.57–7.44 (m, 2H), 7.36 (dd, J = 8.5, 1.9 Hz, 1H), 3.29 (t, J = 8.7 
Hz, 1H), 2.61 (s, 3H), 2.33–2.22 (m, 2H). 13C NMR (151 MHz, CDCl3) δ 198.55, 133.2, 133.1, 
128.7, 127.9, 127.75, 127.5, 126.6, 126.55, 125.6, 118.4, 38.6, 30.3, 29.5, 24.8. MS (ESI) m/z: 
258 [M + Na]+.

3.4. General Procedure for the Synthesis of Products 3
In a 4 mL vial equipped with a magnetic stirring bar, D-A cyclopropane 1 (1.0 equiv., 

0.2 mmol) was dissolved in 1000 µL of EtOAc. TBAI (10 mol%, 0.02 mmol, 7.4 mg), thio-
acetic acid (1.5 equiv, 0.3 mmol, 21.4 µL), or thiobenzoic acid 2b (1.5 equiv, 0.3 mmol, 36 
µL) and Cs2CO3 (aq, 10% w/w, 500 µL) were added in this order. The resulting suspension 
was stirred for 48 h at 0 °C and then directly pre-purified by a short plug on silica gel 
using DCM and Et2O as eluents. After the evaporation of the solvent, the crude product 
was analysed by 1H-NMR and then purified through chromatography on silica gel to af-
ford the desired compounds 3 as oils.

S-(3,3-dicyano-1-phenylpropyl) ethanethioate 3aa

Following the general procedure and using cyclopropane 1a (33.6 mg) and thioacetic 
acid 2a (21.4 µL), product 3aa was obtained in 57% yield (28 mg) after chromatographic 
purification on silica gel (3:1 = DCM: n-hexane as eluent) as a pale-yellow oil. 1H NMR 
(600 MHz, CDCl3) δ = 7.42–7.32 (m, 3H), 7.31–7.27 (m, 2H), 4.73 (dd, J = 9.3, 6.6 Hz, 1H), 
3.53 (dd, J = 9.0, 6.4 Hz, 1H), 2.71 (ddd, J = 13.8, 9.0, 6.6 Hz, 1H), 2.58 (ddd, J = 13.8, 9.4, 6.4 
Hz, 1H), 2.35 (s, 3H). 13C NMR (151 MHz, CDCl3) δ = 193.5, 136.9, 129.5, 128.9, 127.6, 111.9, 
111.6, 44.8, 37.1, 30.4, 20.9. MS (ESI) m/z: 267 [M + Na]+.

S-(1-(4-bromophenyl)-3,3-dicyanopropyl) ethanethioate 3ba

 

Following the general procedure and using cyclopropane 1b (49.4 mg) and thioacetic
acid 2a (21.4 µL), product 3ba was obtained in 21% yield (14 mg) after chromatographic
purification on silica gel (3:1 = DCM: n-hexane as eluent) as a yellow oil. 1H NMR (400 MHz,
CDCl3) δ = 7.52 (d, J = 8.5 Hz, 2H), 7.19 (d, J = 8.5 Hz, 2H), 4.70 (dd, J = 8.9, 7.1 Hz, 1H),
3.59 (dd, J = 8.6, 6.9 Hz, 1H), 2.69 (ddd, J = 13.9, 8.6, 7.1 Hz, 1H), 2.56 (ddd, J = 13.9, 8.9,
6.9 Hz, 1H), 2.36 (s, 3H). 13C NMR (101 MHz, CDCl3) δ = 193.0, 136.4, 132.6, 129.3, 122.9,
111.7, 111.4, 44.2, 36.7, 30.4, 20.9. MS (ESI) m/z: 345, 347 [M + Na]+.

S-(1-(3-chlorophenyl)-3,3-dicyanopropyl) ethanethioate 3da

Following the general procedure and using cyclopropane 1b (49.4 mg) and thioacetic 
acid 2a (21.4 µL), product 3ba was obtained in 21% yield (14 mg) after chromatographic 
purification on silica gel (3:1 = DCM: n-hexane as eluent) as a yellow oil. 1H NMR (400 
MHz, CDCl3) δ = 7.52 (d, J = 8.5 Hz, 2H), 7.19 (d, J = 8.5 Hz, 2H), 4.70 (dd, J = 8.9, 7.1 Hz, 
1H), 3.59 (dd, J = 8.6, 6.9 Hz, 1H), 2.69 (ddd, J = 13.9, 8.6, 7.1 Hz, 1H), 2.56 (ddd, J = 13.9, 
8.9, 6.9 Hz, 1H), 2.36 (s, 3H). 13C NMR (101 MHz, CDCl3) δ = 193.0, 136.4, 132.6, 129.3, 
122.9, 111.7, 111.4, 44.2, 36.7, 30.4, 20.9. MS (ESI) m/z: 345, 347 [M + Na]+.

S-(1-(3-chlorophenyl)-3,3-dicyanopropyl) ethanethioate 3da

 

Following the general procedure and using cyclopropane 1d (40 mg) and thioacetic 
acid 2a (21.4 µL), product 3da was obtained in 65% yield (36 mg) after chromatographic 
purification on silica gel (3:1 = DCM: n-hexane as eluent) as a pale-yellow oil. 1H NMR 
(400 MHz, CDCl3) δ = 7.35–7.28 (m, 3H), 7.24–7.18 (m, 1H), 4.72 (dd, J = 8.69, 7.24 Hz, 1H) 
3.61 (dd, J = 8.43, 6.98 Hz, 1H), 2.69 (ddd, J = 13.9, 8.4, 7.3 Hz, 1H), 2.59 (ddd, J = 13.5, 8.7, 
7.0 Hz, 1H), 2.37 (s, 3H). 13C NMR (151 MHz, CDCl3) δ 193.0, 139.45, 135.4, 130.8, 129.2, 
127.7, 125.9, 111.7, 111.5, 44.32, 36.85, 30.46, 20.99. MS (ESI) m/z: 301 [M + Na]+.

S-(1-(4-chlorophenyl)-3,3-dicyanopropyl) ethanethioate 3fa

Following the general procedure and using cyclopropane 1f (40 mg) and thioacetic 
acid 2a (21.4 µL), product 3fa was obtained in 40% yield (22 mg) after chromatographic 
purification on silica gel (3:1 = DCM: n-hexane as eluent) as a pale-yellow oil. 1H NMR 
(400 MHz, CDCl3) δ = 7.38–7.33 (m, 2H), 7.27–7.23 (m, 2H), 4.72 (dd, J = 8.9, 7.1 Hz, 1H), 
3.58 (dd, J = 8.5, 6.85 Hz, 1H), 2.69 (ddd, J = 13.9, 8.6, 7.1 Hz, 1H), 2.56 (ddd, J = 13.9, 8.7, 
6.8 Hz, 1H), 2.36 (s, 3H). 13C NMR (151 MHz, CDCl3) δ 193.1, 135.9, 134.9, 129.7, 129.0, 
111.7, 111.4, 44.2, 36.85, 30.5, 21.0. MS (ESI) m/z: 301 [M + Na]+.

S-(3,3-dicyano-1-(3-nitrophenyl)propyl) ethanethioate 3ga

Following the general procedure using substrate 1g (43 mg) and thioacetic acid 2a 
(21.4 µL), product 3ga was obtained in 47% yield (25 mg) after chromatographic purifica-
tion on silica gel (4:1 = n-hexane: EtOAc as eluent) as a yellow oil. 1H NMR (400 MHz, 
CDCl3) δ = 8.26–8.18 (m, 2H), 7.73–7.68 (m, 1H), 7.63–7.57 (m, 1H), 4.87 (t, J = 8.0 Hz, 1H), 
3.76 (t, J = 7.5 Hz, 1H), 2.82–2.64 (m, 2H), 2.39 (s, 3H). 13C NMR (101 MHz, CDCl3) δ = 194.0, 
161.2, 142.5, 133.1, 130.05, 123.3, 122.3, 116.9, 69.7, 51.8, 42.1, 29,4. MS (ESI) m/z: 312 [M + 
Na]+.

S-(3,3-dicyano-1-(p-tolyl)propyl) ethanethioate 3ha

Following the general procedure and using cyclopropane 1d (40 mg) and thioacetic
acid 2a (21.4 µL), product 3da was obtained in 65% yield (36 mg) after chromatographic
purification on silica gel (3:1 = DCM: n-hexane as eluent) as a pale-yellow oil. 1H NMR

(400 MHz, CDCl3) δ = 7.35–7.28 (m, 3H), 7.24–7.18 (m, 1H), 4.72 (dd, J = 8.69, 7.24 Hz, 1H)
3.61 (dd, J = 8.43, 6.98 Hz, 1H), 2.69 (ddd, J = 13.9, 8.4, 7.3 Hz, 1H), 2.59 (ddd, J = 13.5, 8.7,
7.0 Hz, 1H), 2.37 (s, 3H). 13C NMR (151 MHz, CDCl3) δ 193.0, 139.45, 135.4, 130.8, 129.2,
127.7, 125.9, 111.7, 111.5, 44.32, 36.85, 30.46, 20.99. MS (ESI) m/z: 301 [M + Na]+.

S-(1-(4-chlorophenyl)-3,3-dicyanopropyl) ethanethioate 3fa

Following the general procedure and using cyclopropane 1b (49.4 mg) and thioacetic 
acid 2a (21.4 µL), product 3ba was obtained in 21% yield (14 mg) after chromatographic 
purification on silica gel (3:1 = DCM: n-hexane as eluent) as a yellow oil. 1H NMR (400 
MHz, CDCl3) δ = 7.52 (d, J = 8.5 Hz, 2H), 7.19 (d, J = 8.5 Hz, 2H), 4.70 (dd, J = 8.9, 7.1 Hz, 
1H), 3.59 (dd, J = 8.6, 6.9 Hz, 1H), 2.69 (ddd, J = 13.9, 8.6, 7.1 Hz, 1H), 2.56 (ddd, J = 13.9, 
8.9, 6.9 Hz, 1H), 2.36 (s, 3H). 13C NMR (101 MHz, CDCl3) δ = 193.0, 136.4, 132.6, 129.3, 
122.9, 111.7, 111.4, 44.2, 36.7, 30.4, 20.9. MS (ESI) m/z: 345, 347 [M + Na]+.

S-(1-(3-chlorophenyl)-3,3-dicyanopropyl) ethanethioate 3da

Following the general procedure and using cyclopropane 1d (40 mg) and thioacetic 
acid 2a (21.4 µL), product 3da was obtained in 65% yield (36 mg) after chromatographic 
purification on silica gel (3:1 = DCM: n-hexane as eluent) as a pale-yellow oil. 1H NMR 
(400 MHz, CDCl3) δ = 7.35–7.28 (m, 3H), 7.24–7.18 (m, 1H), 4.72 (dd, J = 8.69, 7.24 Hz, 1H) 
3.61 (dd, J = 8.43, 6.98 Hz, 1H), 2.69 (ddd, J = 13.9, 8.4, 7.3 Hz, 1H), 2.59 (ddd, J = 13.5, 8.7, 
7.0 Hz, 1H), 2.37 (s, 3H). 13C NMR (151 MHz, CDCl3) δ 193.0, 139.45, 135.4, 130.8, 129.2, 
127.7, 125.9, 111.7, 111.5, 44.32, 36.85, 30.46, 20.99. MS (ESI) m/z: 301 [M + Na]+.

S-(1-(4-chlorophenyl)-3,3-dicyanopropyl) ethanethioate 3fa

 

Following the general procedure and using cyclopropane 1f (40 mg) and thioacetic 
acid 2a (21.4 µL), product 3fa was obtained in 40% yield (22 mg) after chromatographic 
purification on silica gel (3:1 = DCM: n-hexane as eluent) as a pale-yellow oil. 1H NMR 
(400 MHz, CDCl3) δ = 7.38–7.33 (m, 2H), 7.27–7.23 (m, 2H), 4.72 (dd, J = 8.9, 7.1 Hz, 1H), 
3.58 (dd, J = 8.5, 6.85 Hz, 1H), 2.69 (ddd, J = 13.9, 8.6, 7.1 Hz, 1H), 2.56 (ddd, J = 13.9, 8.7, 
6.8 Hz, 1H), 2.36 (s, 3H). 13C NMR (151 MHz, CDCl3) δ 193.1, 135.9, 134.9, 129.7, 129.0, 
111.7, 111.4, 44.2, 36.85, 30.5, 21.0. MS (ESI) m/z: 301 [M + Na]+.

S-(3,3-dicyano-1-(3-nitrophenyl)propyl) ethanethioate 3ga

Following the general procedure using substrate 1g (43 mg) and thioacetic acid 2a 
(21.4 µL), product 3ga was obtained in 47% yield (25 mg) after chromatographic purifica-
tion on silica gel (4:1 = n-hexane: EtOAc as eluent) as a yellow oil. 1H NMR (400 MHz, 
CDCl3) δ = 8.26–8.18 (m, 2H), 7.73–7.68 (m, 1H), 7.63–7.57 (m, 1H), 4.87 (t, J = 8.0 Hz, 1H), 
3.76 (t, J = 7.5 Hz, 1H), 2.82–2.64 (m, 2H), 2.39 (s, 3H). 13C NMR (101 MHz, CDCl3) δ = 194.0, 
161.2, 142.5, 133.1, 130.05, 123.3, 122.3, 116.9, 69.7, 51.8, 42.1, 29,4. MS (ESI) m/z: 312 [M + 
Na]+.

S-(3,3-dicyano-1-(p-tolyl)propyl) ethanethioate 3ha

Following the general procedure and using cyclopropane 1f (40 mg) and thioacetic
acid 2a (21.4 µL), product 3fa was obtained in 40% yield (22 mg) after chromatographic
purification on silica gel (3:1 = DCM: n-hexane as eluent) as a pale-yellow oil. 1H NMR

(400 MHz, CDCl3) δ = 7.38–7.33 (m, 2H), 7.27–7.23 (m, 2H), 4.72 (dd, J = 8.9, 7.1 Hz, 1H),
3.58 (dd, J = 8.5, 6.85 Hz, 1H), 2.69 (ddd, J = 13.9, 8.6, 7.1 Hz, 1H), 2.56 (ddd, J = 13.9, 8.7,



Catalysts 2023, 13, 760 16 of 20

6.8 Hz, 1H), 2.36 (s, 3H). 13C NMR (151 MHz, CDCl3) δ 193.1, 135.9, 134.9, 129.7, 129.0,
111.7, 111.4, 44.2, 36.85, 30.5, 21.0. MS (ESI) m/z: 301 [M + Na]+.

S-(3,3-dicyano-1-(3-nitrophenyl)propyl) ethanethioate 3ga

Following the general procedure and using cyclopropane 1b (49.4 mg) and thioacetic 
acid 2a (21.4 µL), product 3ba was obtained in 21% yield (14 mg) after chromatographic 
purification on silica gel (3:1 = DCM: n-hexane as eluent) as a yellow oil. 1H NMR (400 
MHz, CDCl3) δ = 7.52 (d, J = 8.5 Hz, 2H), 7.19 (d, J = 8.5 Hz, 2H), 4.70 (dd, J = 8.9, 7.1 Hz, 
1H), 3.59 (dd, J = 8.6, 6.9 Hz, 1H), 2.69 (ddd, J = 13.9, 8.6, 7.1 Hz, 1H), 2.56 (ddd, J = 13.9, 
8.9, 6.9 Hz, 1H), 2.36 (s, 3H). 13C NMR (101 MHz, CDCl3) δ = 193.0, 136.4, 132.6, 129.3, 
122.9, 111.7, 111.4, 44.2, 36.7, 30.4, 20.9. MS (ESI) m/z: 345, 347 [M + Na]+.

S-(1-(3-chlorophenyl)-3,3-dicyanopropyl) ethanethioate 3da

Following the general procedure and using cyclopropane 1d (40 mg) and thioacetic 
acid 2a (21.4 µL), product 3da was obtained in 65% yield (36 mg) after chromatographic 
purification on silica gel (3:1 = DCM: n-hexane as eluent) as a pale-yellow oil. 1H NMR 
(400 MHz, CDCl3) δ = 7.35–7.28 (m, 3H), 7.24–7.18 (m, 1H), 4.72 (dd, J = 8.69, 7.24 Hz, 1H) 
3.61 (dd, J = 8.43, 6.98 Hz, 1H), 2.69 (ddd, J = 13.9, 8.4, 7.3 Hz, 1H), 2.59 (ddd, J = 13.5, 8.7, 
7.0 Hz, 1H), 2.37 (s, 3H). 13C NMR (151 MHz, CDCl3) δ 193.0, 139.45, 135.4, 130.8, 129.2, 
127.7, 125.9, 111.7, 111.5, 44.32, 36.85, 30.46, 20.99. MS (ESI) m/z: 301 [M + Na]+.

S-(1-(4-chlorophenyl)-3,3-dicyanopropyl) ethanethioate 3fa

Following the general procedure and using cyclopropane 1f (40 mg) and thioacetic 
acid 2a (21.4 µL), product 3fa was obtained in 40% yield (22 mg) after chromatographic 
purification on silica gel (3:1 = DCM: n-hexane as eluent) as a pale-yellow oil. 1H NMR 
(400 MHz, CDCl3) δ = 7.38–7.33 (m, 2H), 7.27–7.23 (m, 2H), 4.72 (dd, J = 8.9, 7.1 Hz, 1H), 
3.58 (dd, J = 8.5, 6.85 Hz, 1H), 2.69 (ddd, J = 13.9, 8.6, 7.1 Hz, 1H), 2.56 (ddd, J = 13.9, 8.7, 
6.8 Hz, 1H), 2.36 (s, 3H). 13C NMR (151 MHz, CDCl3) δ 193.1, 135.9, 134.9, 129.7, 129.0, 
111.7, 111.4, 44.2, 36.85, 30.5, 21.0. MS (ESI) m/z: 301 [M + Na]+.

S-(3,3-dicyano-1-(3-nitrophenyl)propyl) ethanethioate 3ga

 

Following the general procedure using substrate 1g (43 mg) and thioacetic acid 2a 
(21.4 µL), product 3ga was obtained in 47% yield (25 mg) after chromatographic purifica-
tion on silica gel (4:1 = n-hexane: EtOAc as eluent) as a yellow oil. 1H NMR (400 MHz, 
CDCl3) δ = 8.26–8.18 (m, 2H), 7.73–7.68 (m, 1H), 7.63–7.57 (m, 1H), 4.87 (t, J = 8.0 Hz, 1H), 
3.76 (t, J = 7.5 Hz, 1H), 2.82–2.64 (m, 2H), 2.39 (s, 3H). 13C NMR (101 MHz, CDCl3) δ = 194.0, 
161.2, 142.5, 133.1, 130.05, 123.3, 122.3, 116.9, 69.7, 51.8, 42.1, 29,4. MS (ESI) m/z: 312 [M + 
Na]+.

S-(3,3-dicyano-1-(p-tolyl)propyl) ethanethioate 3ha

Following the general procedure using substrate 1g (43 mg) and thioacetic acid
2a (21.4 µL), product 3ga was obtained in 47% yield (25 mg) after chromatographic pu-
rification on silica gel (4:1 = n-hexane: EtOAc as eluent) as a yellow oil. 1H NMR

(400 MHz, CDCl3) δ = 8.26–8.18 (m, 2H), 7.73–7.68 (m, 1H), 7.63–7.57 (m, 1H), 4.87 (t,
J = 8.0 Hz, 1H), 3.76 (t, J = 7.5 Hz, 1H), 2.82–2.64 (m, 2H), 2.39 (s, 3H). 13C NMR (101
MHz, CDCl3) δ = 194.0, 161.2, 142.5, 133.1, 130.05, 123.3, 122.3, 116.9, 69.7, 51.8, 42.1, 29,4.
MS (ESI) m/z: 312 [M + Na]+.

S-(3,3-dicyano-1-(p-tolyl)propyl) ethanethioate 3ha

 

Following the general procedure and using cyclopropane 1h (36 mg) and thioacetic 
acid 2a (21.4 µL), product 3ha was obtained in 52% yield (27 mg) after chromatographic 
purification on silica gel (4:1 = n-hexane: Et2O as eluent) as a pale-yellow oil. 1H NMR (400 
MHz, CDCl3) δ = 7.17 (br s, 4H), 4.70 (dd, J = 9.6, 6.5 Hz, 1H), 3.52 (dd, J = 9.2, 6.3 Hz, 1H) 
2.71 (ddd, J = 13.6, 9.3, 6.5 Hz, 1H), 2.56 (ddd, J = 13.8, 9.6, 6.4 Hz, 1H), 2.34 (s, 3H), 2.33 (s, 
3H). 13C NMR (101 MHz, CDCl3) δ = 193.6, 139.0, 133.8, 130.2, 127.5, 112.0, 111.6, 44.5, 
37.15, 35.1, 30.4, 20.9. MS (ESI) m/z: 312 [M + Na]+.

S-(3,3-dicyano-1-(4-isopropylphenyl)propyl) ethanethioate 3ia

Following the general procedure using substrate 1i (42 mg) and thioacetic acid 2a 
(21.4 µL), product 3ia was obtained in 47% yield (27 mg) after chromatographic purifica-
tion on silica gel (6:1 = n-hexane: EtOAc as eluent) as a pale-yellow oil. 1H NMR (400 MHz, 
CDCl3) δ = 7.25–7.19 (m, 4H), 4.72 (dd, J = 9.6, 6.5 Hz, 1H), 3.53 (dd, J = 9.3, 6.25 Hz, 1H), 
2.90 (hept, J = 6.9, 1H) 2.73 (ddd, J = 13.7, 9.3, 6.5 Hz, 1H), 2.60–2.51 (m, 1H) 2.36 (s, 3H), 
1.24 (d, J = 6.9 Hz, 6H). 13C NMR (101 MHz, CDCl3) δ = 193.6, 149.9, 134.05, 127.6, 127.5, 
112.0, 111.6, 44.5, 37.2, 33.8, 30.4, 23.8, 20.9. MS (ESI) m/z: 309 [M + Na]+.

S-(3,3-dicyano-1-(4-methoxyphenyl)propyl) ethanethioate 3ja

Following the general procedure using substrate 1j (40 mg) and thioacetic acid 2a 
(21.4 µL), product 3ja was obtained in 47% yield (51 mg) after chromatographic purifica-
tion on silica gel (4:1 = n-hexane: EtOAc as eluent) as a yellow oil. 1H NMR (400 MHz, 
CDCl3) δ = 7.24–7.20 (m, 2H), 6.92–6.87 (m, 2H), 4.72 (dd, J = 9.7, 6.4 Hz, 1H), 3.81 (s, 3H) 
3.53 (dd, J = 9.2, 6.2 Hz, 1H), 2.72 (ddd, J = 13.7, 9.2, 6.4 Hz, 1H), 2.54 (ddd, J = 13.7, 9.7, 6.25 
Hz, 1H) 2.35 (s, 3H). 13C NMR (101 MHz, CDCl3) δ = 193.7, 159.9, 128.8, 128.6, 114.9, 112.0, 
111.6, 55.35, 44.3, 37.2, 30.4, 20.9. MS (ESI) m/z: 297 [M + Na]+.

S-(3,3-dicyano-1-phenylpropyl) benzothioate 3ab

Following the general procedure using cyclopropane 1a (33.6 mg) and thiobenzoic 
acid 2b (36 µL), product 3ab was obtained in 72% yield (44 mg) after chromatographic 
purification on silica gel (2:1 = DCM: n-hexane as eluent) as a pale-yellow oil. 1H NMR 
(400 MHz, CDCl3) δ = 7.97–7.90 (m, 2H), 7.64–7.56 (m, 1H), 7.53–7.31 (m, 7H), 4.97 (dd, J = 
9.4, 6.5 Hz, 1H), 3.62 (dd, J = 9.0, 6.5 Hz, 1H), 2.86 (ddd, J = 13.8, 8.9, 6.5 Hz, 1H), 2.69 (ddd, 
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Following the general procedure and using cyclopropane 1h (36 mg) and thioacetic 
acid 2a (21.4 µL), product 3ha was obtained in 52% yield (27 mg) after chromatographic 
purification on silica gel (4:1 = n-hexane: Et2O as eluent) as a pale-yellow oil. 1H NMR (400 
MHz, CDCl3) δ = 7.17 (br s, 4H), 4.70 (dd, J = 9.6, 6.5 Hz, 1H), 3.52 (dd, J = 9.2, 6.3 Hz, 1H) 
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Following the general procedure and using cyclopropane 1h (36 mg) and thioacetic 
acid 2a (21.4 µL), product 3ha was obtained in 52% yield (27 mg) after chromatographic 
purification on silica gel (4:1 = n-hexane: Et2O as eluent) as a pale-yellow oil. 1H NMR (400 
MHz, CDCl3) δ = 7.17 (br s, 4H), 4.70 (dd, J = 9.6, 6.5 Hz, 1H), 3.52 (dd, J = 9.2, 6.3 Hz, 1H) 
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3H). 13C NMR (101 MHz, CDCl3) δ = 193.6, 139.0, 133.8, 130.2, 127.5, 112.0, 111.6, 44.5, 
37.15, 35.1, 30.4, 20.9. MS (ESI) m/z: 312 [M + Na]+.

S-(3,3-dicyano-1-(4-isopropylphenyl)propyl) ethanethioate 3ia

Following the general procedure using substrate 1i (42 mg) and thioacetic acid 2a 
(21.4 µL), product 3ia was obtained in 47% yield (27 mg) after chromatographic purifica-
tion on silica gel (6:1 = n-hexane: EtOAc as eluent) as a pale-yellow oil. 1H NMR (400 MHz, 
CDCl3) δ = 7.25–7.19 (m, 4H), 4.72 (dd, J = 9.6, 6.5 Hz, 1H), 3.53 (dd, J = 9.3, 6.25 Hz, 1H), 
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1.24 (d, J = 6.9 Hz, 6H). 13C NMR (101 MHz, CDCl3) δ = 193.6, 149.9, 134.05, 127.6, 127.5, 
112.0, 111.6, 44.5, 37.2, 33.8, 30.4, 23.8, 20.9. MS (ESI) m/z: 309 [M + Na]+.

S-(3,3-dicyano-1-(4-methoxyphenyl)propyl) ethanethioate 3ja
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Hz, 1H) 2.35 (s, 3H). 13C NMR (101 MHz, CDCl3) δ = 193.7, 159.9, 128.8, 128.6, 114.9, 112.0, 
111.6, 55.35, 44.3, 37.2, 30.4, 20.9. MS (ESI) m/z: 297 [M + Na]+.
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Following the general procedure using cyclopropane 1f (40 mg) and thiobenzoic acid 
2b (36 µL), product 3fb was obtained in 32% yield (22 mg) after chromatographic purifi-
cation on silica gel (1:1 = n-hexane: EtOAc as eluent) a yellow oil. 1H NMR (400 MHz, 
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4. Conclusions
In summary, the reactivity of some D-A cyclopropanes with thioacetic (and thioben-

zoic) acid under PTC conditions was explored. This study, which constitutes a rare exam-
ple of PTC reactions with cyclopropane substrates, led to the discovery of an unprece-
dented decyanation–acetylation reaction, affording 1-acetyl-1-cyano cyclopropanes 4. 
This process was found to compete with a typical cyclopropane ring-opening reaction 
leading to adducts 3. An investigation of the parameters affecting the two divergent path-
ways pointed to the nature of the inorganic base (solid vs. aqueous) as the key factor. With 
this insight, the screening of PT catalysts, solvents, and temperatures led to the creation 
of two complementary conditions, enabling excellent control over the product produced 
by the reaction. Thus, a series of cyclopropanes 4 were selectivity obtained in moderate to 
good yields using the first set of conditions, while the second set led to their ring-opened 
counterparts 3 with comparable results. Conversely, the low selectivity observed with 
common homogeneous organic bases in this reaction highlights the unique possibilities 
offered by the combination of PTC with D-A cyclopropanes.
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Following the general procedure using 1j (40 mg) and thiobenzoic acid 2b (36 µL),
product 3jb was obtained in 45% yield (30 mg) after chromatographic purification on
silica gel (2:1 = DCM: n-hexane as eluent) as a yellow oil. 1H NMR (400 MHz, CDCl3)
δ = 7.95–7.90 (m, 2H), 7.63–7.57 (m, 1H), 7.50–7.42 (m, 2H), 7.35–7.29 (m, 2H), 6.97–6.90 (m,
2H), 4.92 (dd, J = 9.7, 6.2 Hz, 1H), 3.82 (s, 3H), 3.61 (dd, J = 9.2, 6.2 Hz, 1H), 2.86 (ddd,
J = 13.7, 9.2, 6.2 Hz, 1H), 2.64 (ddd, J = 13.7, 9.7, 6.3 Hz, 1H). 13C NMR (101 MHz, CDCl3)
δ = 189.8, 160.0, 136.1, 134.0, 129.0, 128.8, 128.6, 127.4, 114.9, 112.0, 111.6, 55.4, 44.3, 37.4,
21.0. MS (ESI)m/z: 359 [M + Na]+.

4. Conclusions

In summary, the reactivity of some D-A cyclopropanes with thioacetic (and thioben-
zoic) acid under PTC conditions was explored. This study, which constitutes a rare example
of PTC reactions with cyclopropane substrates, led to the discovery of an unprecedented
decyanation–acetylation reaction, affording 1-acetyl-1-cyano cyclopropanes 4. This process
was found to compete with a typical cyclopropane ring-opening reaction leading to adducts
3. An investigation of the parameters affecting the two divergent pathways pointed to the
nature of the inorganic base (solid vs. aqueous) as the key factor. With this insight, the
screening of PT catalysts, solvents, and temperatures led to the creation of two complemen-
tary conditions, enabling excellent control over the product produced by the reaction. Thus,
a series of cyclopropanes 4 were selectivity obtained in moderate to good yields using the
first set of conditions, while the second set led to their ring-opened counterparts 3 with
comparable results. Conversely, the low selectivity observed with common homogeneous
organic bases in this reaction highlights the unique possibilities offered by the combination
of PTC with D-A cyclopropanes.
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