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Abstract
By gluing some copies of a polytope of Kerckhoff and
Storm’s, we build the smallest known orientable hyper-
bolic 4-manifold that is not commensurable with the
ideal 24-cell or the ideal rectified simplex. It is cusped
and arithmetic, and has twice the minimal volume.
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INTRODUCTION

There is a natural interest in hyperbolic manifolds of low volume, and this note addresses
dimension four; see the survey [17].
Hyperbolic manifolds in the paper are understood to be complete and of finite volume. Two

manifolds (or orbifolds) are commensurable if they are both finitely covered by a third mani-
fold (or orbifold). Recall also that the generalised Gauss–Bonnet formula relates the volume of
a hyperbolic 4-manifold𝑀 to its Euler characteristic 𝜒(𝑀) as follows:

Vol(𝑀) =
4𝜋2

3
𝜒(𝑀).

The smallest known closed hyperbolic 4-manifolds are non-orientable and have 𝜒 = 8 [3, 13].
These and the few other explicit examples of closed manifolds that we could find in the liter-
ature [4, 6, 14] are tessellated by 2𝜋∕𝑘-angled 120-cells for 𝑘 = 3, 4, 5, and are arithmetic and
commensurable [9].
Concerning cusped manifolds, we found instead four commensurability classes: (we cite here

the papers containing the smallest known manifolds in each class)

(1) 𝜒 = 1 both orientable and not, arithmetic [5, 12, 21, 22, 25];
(2) 𝜒 = 1 both orientable and not, arithmetic [2, 11, 24, 26];
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(3) 𝜒 = 2 non-orientable (so also 𝜒 = 4 orientable), arithmetic [18, 24];
(4) 𝜒 = 3 non-orientable and 𝜒 = 5 orientable, non-arithmetic [24].

Each of these classes is represented by a hyperbolic Coxeter 4-polytope, for instance, (1) by the
nine non-compact simplices, ℍ4∕PO(4, 1; ℤ) and the ideal 24-cell, and (2) by the ideal rectified
simplex .
We find here another commensurability class of low-volume hyperbolic 4-manifolds:

Theorem. There exists an orientable, cusped, arithmetic, hyperbolic 4-manifold𝑀 with 𝜒(𝑀) = 2,
not belonging to any of the commensurability classes above.

Themanifold𝑀 is commensurable with a Coxeter polytope𝑄 belonging to a continuous family
of hyperbolic 4-polytopes discovered in 2010 by Kerckhoff and Storm [10]. Notably, classes (1) and
(3) are represented by other Coxeter polytopes of the family, and the examples in (4) are hybrids
of manifolds in (3) and (2). Our method applies to two additional Coxeter polytopes of the family,
but giving less interesting examples from the viewpoint of this paper (see Subsection 2.4).
We build𝑀 explicitly, by gluing together some copies of a bigger polytope 𝑃 of Kerckhoff and

Storm’s (𝑄 is a quotient of 𝑃). The results in [18, 23, 24] are obtained in the same spirit, by gluing
polytopes of the Kerckhoff–Storm family as well.
The polytope 𝑃 has volume (2∕5) ⋅ (4𝜋2∕3) and octahedral symmetry. It has a few 2-faces with

dihedral angle 2𝜋∕3, while the remaining ones are right angled. These are the main features of 𝑃
that will be exploited.
As a first step, we ‘kill’ in a natural way the 2𝜋∕3 angles by gluing in pairs some facets of

five copies of 𝑃, to get a particularly symmetric hyperbolic manifold 𝑋 with right-angled corners.
These objects have been fruitfully used in four-dimensional hyperbolic geometry in the very last
years [1, 16, 19, 20].
A study of𝑋 and its symmetries then allows us to build𝑀 as follows. The facets of𝑋 are hyper-

bolic 3-manifoldswith geodesic boundary (the corners), and are divided in two types. The corners,
some punctured surfaces, are always the intersection of two facets of different type. We then close
𝑋 up via two commuting, fixed-point free, isometric involutions of 𝜕𝑋 as gluing maps: one for
each type of facet.
By construction, 𝑀 is commensurable with the orbifold 𝑄. Being 𝑄 arithmetic, Maclach-

lan’s work [15] allows us to distinguish its commensurability class. One similarly gets a few
non-orientable manifolds with 𝜒 = 2 in the same class (Remark 2.4).

Structure of the paper

The polytopes 𝑄 and 𝑃 are introduced in Section 1, while the manifolds 𝑋 and 𝑀 are built in
Section 2.

1 THE POLYTOPES

We introduce here two polytopes from [10]: the Coxeter polytope 𝑄 in Subsection 1.1, and
the bigger polytope 𝑃 in Subsection 1.2. The commensurability class of 𝑄 is distinguished in
Proposition 1.1.
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178 RIOLO

F IGURE 1 The Coxeter diagram of the reflection group Γ of 𝑄. If two nodes are joined by a thin, thick, or
dashed edge, then the two corresponding bounding hyperplanes meet with angle 𝜋∕3, are tangent at infinity, are
ultraparallel, respectively. There is no edge joining two nodes if the corresponding hyperplanes are orthogonal.

We refer the reader to the book [27] for the general theory of hyperbolic Coxeter polytopes and
reflection groups, including arithmeticity.

1.1 The Coxeter polytope

The Coxeter diagram in Figure 1 represents a non-compact hyperbolic Coxeter 4-polytope𝑄 ⊂ ℍ4
of finite volume [10, Proposition 13.1], called 𝑄𝑡3 in [10].
The associated reflection group

Γ = ⟨ 𝑡, 𝑏, 𝑢, 𝓁, 𝑐, 𝑖0, 𝑖1, 𝑖2 ⟩ < Isom(ℍ4)
is arithmetic [10, Theorem 13.2].
The symbols 𝑡, 𝑏, 𝑢, 𝓁, 𝑐 and 𝑖 are chosen to remind the words ‘top’, ‘bottom’, ‘upper’, ‘lower’,

‘central’ and ‘internal’, respectively. This may help later.
Recall that the path graph with 𝑛 − 1 vertices is a Coxeter diagram for the symmetric group𝔖𝑛

[27, table 1]. In the following sections, we will be interested in the edge 𝐼 of 𝑄 corresponding to
the reflection subgroup

𝐺𝐼 = ⟨𝑖0, 𝑖1, 𝑖2⟩ ≅ 𝔖4, (1)

and its vertices 𝑉,𝑉′ ∈ 𝐼, called top and bottom vertices, corresponding to the reflection groups

𝐺𝑉 = ⟨𝑖0, 𝑖1, 𝑖2, 𝑡⟩ ≅ 𝔖5, 𝐺𝑉′ = ⟨𝑖0, 𝑖1, 𝑖2, 𝑏⟩ ≅ 𝔖5. (2)

We conclude the section distinguishing the commensurability class of 𝑄.

Proposition 1.1. The arithmetic orbifold𝑄 = ℍ4∕Γ does not belong to any of the commensurability
classes (1), (2), (3), (4) mentioned in the introduction.

Proof. By Maclachlan’s work [15], the ramification set of the quadratic form associated to Γ is a
commensurability invariant of arithmetic reflection groups. We compute this set as explained in
[8]. For a quick description of the computation without proofs, one may consult [18, section 4.5].
Up to isometry ofℍ4 in its hyperboloidmodel, the bounding hyperplanes of the polytope𝑄 ⊂ ℍ4

(coherently oriented) are dually represented by these spacelike vectors of ℝ1,4:
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A SMALL CUSPED HYPERBOLIC 4-MANIFOLD 179

𝑡 =
(√
2, 1, 1, 1,

√
7
)
, 𝑏 =

(√
2, 1, 1, −1, −

√
7
)
,

𝑢 =
(√
2, 1, 1, 1, −

√
7∕7

)
, 𝓁 =

(√
2, 1, 1, −1,

√
7∕7

)
,

𝑐 =
(
1,
√
2, 0, 0, 0

)
, 𝑖0 = (0, −1, 1, 0, 0),

𝑖1 = (0, 0, −1, −1, 0), 𝑖2 = (0, 0, −1, 1, 0)

(see [10, section 4] for 𝑖0, 𝑖1, 𝑖2 and [10, table 3] with 𝑡 = 𝑡3 =
√
7∕7 for the remaining vectors). The

Gram matrix of the corresponding vectors of unit Minkowski norm is:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 0 0 0 0 −1
2

−1 1 0 0 0 0 −1
2

0

0 0 1 −1 0 0 0 −
√
7

2

0 0 −1 1 0 0 −
√
7

2
0

0 0 0 0 1 −1 0 0

0 0 0 0 −1 1 −1
2

−1
2

0 −1
2

0 −
√
7

2
0 −1

2
1 0

−1
2

0 −
√
7

2
0 0 −1

2
0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For some basis, a matrix representing the associated quadratic form over ℚ is:

⎛⎜⎜⎜⎜⎜⎜⎜⎝

7 0 0 7

2
0

0 1 −1 0 0

0 −1 1 −1
2
−1
2

7

2
0 −1

2
1 0

0 0 −1
2

0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

.

Diagonalising the form, we get thematrix diag(7∕2, 1∕2, 1∕6, −3∕8, 1∕8). From this datum, with
the help of [8, Propositions 4.8, 4.13, 4.15], it is straightforward to compute the ramification set of
the form (as done in [18, Proposition 4.25]), which is {2, 7}.
The ramification sets of the arithmetic commensurability classes (1), (2) and (3) are instead ∅,

{3,∞} and {2, 5}, respectively (see [24, Proposition 2.5], and the references therein), while (4) is
non-arithmetic. So, the five classes are distinct. □

1.2 The bigger polytope

Recall Formula (1). By reflecting theCoxeter polytope𝑄 around its edge 𝐼, we get a bigger polytope

𝑃 =
⋃
g∈𝐺𝐼

g(𝑄) ⊂ ℍ4

tessellated by 4! = 24 copies of 𝑄 ≅ 𝑃∕𝐺𝐼 .
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180 RIOLO

We resume here all the needed information on 𝑃 , referring to [10, 18] for proofs and further
details (see, especially, [18, Proposition 3.16]).
A remarkable property of 𝑃 is its antipodal symmetry. We call antipodal map the inversion

𝑎 ∈ Isom(𝑃) through the centre of 𝑃 (the midpoint of the edge 𝐼 of 𝑄).
The polytope 𝑃 has 22 facets, partitioned up to symmetry of 𝑃 into three sets:†

(E) the extremal facets, divided into top and bottom facets

𝐸1, 𝐸2, 𝐸3, 𝐸4 and 𝐸′1, 𝐸
′
2, 𝐸

′
3, 𝐸

′
4,

tessellated by the copies of the facet 𝑡, resp. 𝑏, of 𝑄, where 𝐸′
𝑖
= 𝑎(𝐸𝑖);

(H) the half-height facets, divided into upper and lower facets

𝐻1,𝐻2,𝐻3,𝐻4 and 𝐻′1,𝐻
′
2, 𝐻

′
3, 𝐻

′
4,

tessellated by the copies of the facet 𝑢, resp. 𝓁, of 𝑄, where𝐻′
𝑖
= 𝑎(𝐻𝑖);

(C) the central facets

𝐶12, 𝐶13, 𝐶14, 𝐶23, 𝐶24, 𝐶34,

tessellated by the copies of the facet 𝑒 of 𝑄, where 𝐶𝑖𝑗 is the unique such facet of 𝑃 that
intersects the top facets 𝐸𝑖 and 𝐸𝑗 .

The ideal vertices of 𝑃 all lie in the ideal boundary of a hyperplane 𝐻3 ⊂ ℍ4 [18, Proposition
3.19]. By definition, the names of the facets agree on whether they are contained in one of the
two half-spaces bounded by 𝐻3 (‘top/bottom’ and ‘upper/lower’) or not (‘central’). The group 𝐺𝐼
preserves the two half-spaces, while 𝑎 exchanges them.
With this conventions, all is well defined up to co-orientation of 𝐻3 (‘top/bottom’ and

‘upper/lower’) and permutation of the facet indices, thanks to the following lemma. Let𝔄𝑛 < 𝔖𝑛
denote the alternating subgroup.

Lemma 1.2. The action of𝔖4 on the facet indices is induced by an isomorphism

Isom(𝑃) ≅ ℤ∕2ℤ ×𝔖4,

which restricts to

⟨𝑎⟩ ≅ ℤ∕2ℤ × {id}, 𝐺𝐼 ≅ {0} × 𝔖4, and Isom+(𝑃) ≅ ℤ∕2ℤ × 𝔄4.

Moreover, the quotient 𝑃∕Isom(𝑃) is isometric to the orbifold 𝑄∕Isom(𝑄).

Proof. The same argument of [24, Proposition 2.4] applies, replacing the words ‘upper tetrahedral
facet’ with ‘link of the top vertex 𝑉’ (see also [18, Lemma 4.15]). The key point is that the unique
non-trivial symmetry of 𝑄 (an order-two rotation corresponding to the reflection along the edge
{𝑖0, 𝑐} of the diagram in Figure 1) writes as the composition of 𝑎 with an element of 𝐺𝐼 . □

† In [10, 18], these are called: the ‘odd’ and ‘even’ ‘positive walls’, the ‘even’ and ‘odd’ ‘negative walls’ and the ‘letter
walls’, respectively.
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A SMALL CUSPED HYPERBOLIC 4-MANIFOLD 181

F IGURE 2 The top, upper and central facets 𝐸4,𝐻4 and 𝐶12 of 𝑃. The ideal vertices are drawn as white dots,
while the top vertex 𝑉 and the type-2 and type-3 vertices are in blue, green and black, respectively. The black, red
and yellow edges have dihedral angle 𝜋∕2, 2𝜋∕3 and arcos(−1∕3), respectively. The red pentagons are
2𝜋∕3-angled ridges of 𝑃, while the other 2-faces in the picture are right angled.

F IGURE 3 The vertex links of 𝑃 up to symmetry: three spherical tetrahedra for the finite vertices (from left
to right, of type 1, 2 and 3) and a Euclidean parallelepiped for the ideal vertices. The black edges are right angled,
while the red ones are 2𝜋∕3 angled.

Some facets of 𝑃 are drawn in Figure 2, and some vertex links in Figure 3. From these two
pictures and the respective captions, one recovers the whole combinatorics and geometry of 𝑃
(like, for instance, the adjacency graph of the facets) by means of Lemma 1.2. We record here a
few consequences that will be relevant for us.
First, the top (resp., bottom) facets intersect each other with angle 2𝜋∕3, and share the top

(resp., bottom) vertex𝑉 = 𝐸1 ∩ … ∩ 𝐸4 (resp.,𝑉′ = 𝑎(𝑉) = 𝐸′1 ∩ … ∩ 𝐸
′
4
). Second, the central, resp.

half-height, facets are pairwise disjoint. Third, if two non-isometric facets intersect, then they are
orthogonal. Fourth, the antipodal map acts on the central facets as follows:

𝑎(𝐶ij) = 𝐶kl for all distinct 𝑖, 𝑗, 𝑘, 𝑙. (3)

2 THE CONSTRUCTION

In this section, we build themanifold𝑀 by gluing some copies of 𝑃. Recall that the top and bottom
vertices of 𝑃 have as link the spherical tetrahedron with dihedral angles 2𝜋∕3. The latter tiles 𝑆3
in the regular honeycomb combinatorially equivalent to the triangulation of the boundary of the
4-simplex. Therefore, we need at least five copies of 𝑃 to build a manifold, and we will see that
five is enough.
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182 RIOLO

We proceed as follows. In Subsection 2.1, we build a manifold with corners 𝑋 by gluing in pairs
the extremal facets of five copies of 𝑃. In Subsection 2.2, we study 𝑋 and its symmetries. In Sub-
section 2.3, we close 𝑋 up by pairing the remaining facets via two symmetries of 𝑋, and conclude
our proof. Finally, in Subsection 2.4, we give some additional information on how to apply the
construction to two more polytopes of Kerckhoff and Storm’s.
Before beginning with the construction, let us introduce here some terminology. A hyperbolic

𝑛-manifoldwith ‘pure’ right-angled corners is a hyperbolicmanifold𝑋with boundary, locallymod-
elled on the intersection in ℍ𝑛 of two closed half-spaces bounded by orthogonal hyperplanes. The
boundary 𝜕𝑋 is naturally stratified into maximal connected, totally geodesic, submanifolds: the
(𝑛 − 1)-dimensional facets have (possibly empty) totally geodesic boundary, while the (𝑛 − 2)-
dimensional corners have no boundary. We say that 𝜕𝑋 is bicolourable if there are two unions
of facets 𝐴 and 𝐵 such that 𝜕𝑋 = 𝐴 ∪ 𝐵 and the corners of 𝑋 are the connected components of
𝐴 ∩ 𝐵. This implies that each corner is contained in exactly two facets: one in 𝐴, and one in 𝐵. In
particular, the facets of 𝑋 are isometrically embedded hyperbolic manifolds with totally geodesic
boundary (made of the corners of 𝑋).

2.1 Extremal gluing

We build here 𝑋 by gluing isometrically in pairs all the extremal facets of five copies of 𝑃: the top
ones first and the bottom ones after. There is in fact a unique way to perform the first gluing, and
a preferred one for the second.
Recall Formula (2). By reflecting the smaller Coxeter polytope 𝑄 ⊂ 𝑃 around its top vertex 𝑉 =

𝐸1 ∩ … ∩ 𝐸4, we get a big polytope

�̃� =
⋃

g∈𝐺𝑉

g(𝑄) ⊂ ℍ4.

As 𝐺𝐼 < 𝐺𝑉 with index 5 = 5!∕4!, the polytope �̃� contains 𝑃 and is tessellated by five isomet-
ric copies of 𝑃 . These are glued altogether around 𝑉 (the centre of �̃�), in the pattern of the
triangulation of 𝑆3 induced by the boundary of the 4-simplex.
Note that we can alternatively think of �̃� as built by pairing isometrically all the top facets of

five abstract copies of 𝑃 as described in Figure 4. We now build𝑋 from �̃� by pairing all the bottom
facets of these five copies of 𝑃 as follows. Let 𝜑∶ 𝐹 → 𝐺 be a pairing map between two top facets
of two copies 𝑃𝑥 and 𝑃𝑦 of 𝑃 . Then we want to glue 𝑎𝑥(𝐹) to 𝑎𝑦(𝐺) via 𝑎𝑦◦𝜑◦𝑎𝑥, where 𝑎𝑧 denotes
the antipodal map of 𝑃𝑧. This is done in Figure 4.
More concretely, let 𝑟𝑖 be the reflection along the top face 𝐸𝑖 of 𝑃, and define 𝑃𝑖 = 𝑟𝑖(𝑃) ⊂ ℍ4

(so that 𝑎𝑖 = 𝑟𝑖◦𝑎◦𝑟𝑖). To build 𝑋 from

�̃� = 𝑃 ∪ 𝑃1 ∪ … ∪ 𝑃4 ⊂ ℍ
4,

we glue the facet 𝐸′
𝑖
of 𝑃 to the facet 𝑟𝑖(𝐸′𝑖 ) of 𝑃𝑖 via 𝑟𝑖 , and, for 𝑖 ≠ 𝑗, the facet 𝑟𝑖(𝐸

′
𝑗
) of 𝑃𝑖 to the

facet 𝑟𝑗(𝐸′𝑖 ) of 𝑃𝑗 via the reflection 𝑟𝑖𝑗 ∈ 𝐺𝐼 corresponding to (𝑖𝑗) ∈ 𝔖4 (recall Lemma 1.2 and see
Figure 5).
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A SMALL CUSPED HYPERBOLIC 4-MANIFOLD 183

F IGURE 4 The complete graph 𝐾5, with its nodes and half -edges labelled to remind the ‘more abstract’
construction of 𝑋 and �̃�, which follows here. To build 𝑋 (resp., �̃�), we glue the extremal (resp., top) facets of five
abstract copies 𝑃0, … , 𝑃4 of 𝑃 as follows. Consider the edge of 𝐾5 joining the nodes 𝑖 and 𝑗, where 𝑖 < 𝑗. If 𝑖 = 0
(blue edge), glue the facets 𝐸𝑗 and 𝐸′𝑗 (resp., the facet 𝐸𝑗) of 𝑃0 to the corresponding facets of 𝑃𝑗 via the map
induced by the identity of 𝑃. If instead 𝑖 ≠ 0 (black edge), glue the facets 𝐸𝑗 and 𝐸′𝑗 (resp., the facet 𝐸𝑗) of 𝑃𝑖 to the
facets 𝐸𝑖 and 𝐸′𝑖 (resp., the facet 𝐸𝑖) of 𝑃𝑗 via the map induced by the reflection (𝑖𝑗) ∈ 𝔖4 = 𝐺𝐼 of 𝑃.

F IGURE 5 A schematic picture of the ‘more concrete’ construction of 𝑋 from �̃� = 𝑃 ∪ 𝑃1 ∪ … ∪ 𝑃4 ⊂ ℍ4.

2.2 The manifold with corners

We study here the space 𝑋 just constructed.
Let 𝐻 and 𝐶 denote the union of the copies of the half-height and central facets of 𝑃 in 𝑋,

respectively. These facets are the unpaired ones.

Proposition 2.1. The resulting complex 𝑋 is an orientable hyperbolic 4-manifold with pure right-
angled corners and boundary 𝜕𝑋 = 𝐻 ∪ 𝐶 bicoloured by𝐻 and 𝐶.
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184 RIOLO

Proof. We analyse the effect of the gluing on the vertex links of the copies of 𝑃 along their
extremal facets.
We refer to Figures 3 and 4. By construction, the gluing graphs of the type-𝑘 vertex links corre-

spond to the subgraphs of 𝐾5 spanned by 6 − 𝑘 nodes (repeated twice to deal with the antipodal
vertices). Precisely, the type-1 links are glued so as to tessellate two copies of 𝑆3 (thus giving points
in the interior of 𝑋) like the boundary of the 4-simplex, the type-2 links tessellate some copies
of a half-sphere of 𝑆3 (giving internal points of the facets of 𝑋), and the type-3 links tessellate
some copies of a right-angled bigon of 𝑆3 (giving points of the corners of 𝑋). The links of the
ideal vertices are glued to form flat 3-manifolds with right-angled corners, stratum-preserving
homoeomorphic to [0, 1]2-bundles over 𝑆1 (giving the cusps of 𝑋).
We have shown that the vertex links glue to form spherical or flat 3-manifolds with pure right-

angled corners, so 𝑋 is a hyperbolic 4-manifold with pure right-angled corners. It is orientable,
being obtained from �̃� via orientation-reversing gluing maps.
By construction 𝜕𝑋 = 𝐻 ∪ 𝐶 and𝐻 and𝐶 are unions of facets. The previous analysis also shows

that the corners are contained in the intersection of copies of a half-height and a central facet of
𝑃 (see the gluing of the type-3 vertex links). Therefore, 𝐻 and 𝐶 define a bicolouring of 𝜕𝑋, and
this concludes the proof. □

It is not difficult to show that 𝐻 consists of two disjoint facets (an ‘upper’ one and a ‘lower’
one), while 𝐶 is a facet. We omit the proof because this fact is not needed.
Recall now Lemma 1.2 and Formulae (1) and (2). In the sequel, we shall think of 𝔖4 ⊂ 𝔖5 as

the stabiliser of 0 in the permutation group𝔖5 of {0, … , 4}.

Lemma 2.2. Every symmetry of 𝑃 is the restriction of an isometry of 𝑋.

Proof. This is true for 𝑎 thanks to the ‘𝑎-equivariance’ of the gluing maps producing 𝑋, and for
each 𝜎 ∈ 𝔖4 ⊂ 𝔖5 ≅ Aut(𝐾5) because it induces a permutation (𝜎 itself!) of the half-edge labels
of the graph 𝐾5 in Figure 4. □

As, moreover, 𝐺𝑉 ≅ 𝔖5 permutes the five copies of 𝑃 in 𝑋 , we can write:

Isom(𝑃) = ℤ∕2ℤ ×𝔖4 ⊂ ℤ∕2ℤ ×𝔖5 ⊂ Isom(𝑋).

In the following section, we will implicitly use Lemma 2.2 and adopt the above convention.

2.3 Half-height and central gluing

We are finally ready to build𝑀 from 𝑋.
Let 𝑟𝑖𝑗 ∈ Isom(𝑋) correspond to the reflection (𝑖𝑗) ∈ 𝔖4 ⊂ Isom(𝑃), and recall that 𝜕𝑋 = 𝐻 ∪

𝐶 . Now pick𝑋, glue𝐻 to itself via ℎ = 𝑎◦𝑟12 and𝐶 to itself via 𝑐 = 𝑎◦𝑟34, and call𝑀 the resulting
space.

Proposition 2.3. The resulting complex𝑀 is an orientable hyperbolic 4-manifold with 𝜒(𝑀) = 2,
commensurable with the orbifold 𝑄 = ℍ4∕Γ.
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A SMALL CUSPED HYPERBOLIC 4-MANIFOLD 185

Proof. Observe that ℎ, 𝑐 ∈ Isom(𝑃) are both the composition of an inversion through a point with
a reflection through a hyperplane containing the point, so their fixed-point set is a line. In both
cases, this line joins two ideal vertices of 𝑃:

𝐸1 ∩ 𝐸
′
2
∩ 𝐻2 ∩ 𝐻

′
1
∩ 𝐶13 ∩ 𝐶14 and 𝐸2 ∩ 𝐸

′
1
∩ 𝐻1 ∩ 𝐻

′
2
∩ 𝐶23 ∩ 𝐶24,

𝐸3 ∩ 𝐸
′
4
∩ 𝐻4 ∩ 𝐻

′
3
∩ 𝐶13 ∩ 𝐶23 and 𝐸4 ∩ 𝐸

′
3
∩ 𝐻3 ∩ 𝐻

′
4
∩ 𝐶14 ∩ 𝐶24,

respectively, as it is easily checked by Lemma 1.2 and Formula (3). Therefore, the fixed-point sets
of ℎ, 𝑐 ∈ Isom(𝑋) are contained in the interior of 𝑃 ⊂ 𝑋.
As 𝐻 and 𝐶 define a bicolouring of 𝜕𝑋 (Proposition 2.1) and the gluing maps ℎ and 𝑐 are two

distinct, commuting, fixed-point free, isometric involutions of 𝜕𝑋, it follows that𝑀 is a hyperbolic
manifold: near the points corresponding to the internal points of the facets of 𝑋 because ℎ and 𝑐
are fixed-point free isometric involutions of 𝜕𝑋, and near the points corresponding to the corners
of 𝑋 because moreover ℎ and 𝑐 are distinct and commute (so each corner cycle has length 4 and
trivial return map).
The manifold 𝑀 is orientable because ℎ and 𝑐 are orientation reversing by Lemma 1.2 (recall

that 𝑋 is orientable by Proposition 2.1).
The orbifold Euler characteristic of 𝑄 is 𝜒orb(𝑄) = 1∕60 (for a quick check one may use [7]),

and𝑀 is tessellated into 5! = 120 copies of 𝑄. Therefore, 𝜒(𝑀) = 120∕60 = 2.
Finally, note that the gluing maps used to build𝑀 from the copies of 𝑃 are induced by symme-

tries of 𝑃. Therefore𝑀 covers the orbifold 𝑃∕Isom(𝑃) ≅ 𝑄∕Isom(𝑄) (recall Lemma 1.2), and so𝑀
and 𝑄 are commensurable. □

We conclude the paper with some additional information.

Remark 2.4. One builds a few non-orientable manifolds with 𝜒 = 2 in the same commensurabil-
ity class, just by choosing as gluing maps ℎ and 𝑐 other pairs of distinct, commuting, isometric
involutions of 𝑋 with no fixed point on 𝜕𝑋, without requiring they both reverse the orientation.
Any two among 𝑎, 𝑎◦𝑟12, 𝑎◦𝑟34 and 𝑎◦𝑟12◦𝑟34 work.

2.4 More Kerckhoff–Storm polytopes

The method applies to two additional Coxeter polytopes of Kerckhoff and Storm’s with the same
combinatorics of 𝑄, called 𝑄𝑡4 and 𝑄𝑡5 in [10]. One lies in the commensurability class (1) and has
𝜒orb = 5∕192, while the other one is non-arithmetic and has 𝜒orb = 241∕7200 (see [10, Theorem
13.2] and [18, Propositions 3.22 and 4.25]).
Themain difference is that now the pentagonal faces of 𝑃 have dihedral angle𝜋∕2 (resp., 2𝜋∕5)

in place of 2𝜋∕3, therefore the link of the top vertex𝑉 tessellates 𝑆3 like the boundary of the regular
16-cell (resp., 600-cell) 𝑅 in place of the simplex Δ. So, to build 𝑋, one has to glue 16 (resp., 600)
copies of 𝑃 in place of 5. This time𝔖4 acts on 𝑃 ⊂ 𝑋 like a facet stabiliser in Isom(𝑅), in place of
Isom(Δ) ≅ 𝔖5.
The analogous construction gives an orientablemanifold𝑀 with𝜒 = 10 (resp., 482). Moreover,

in this case, 𝑀 has an orientation-preserving isometric involution 𝜄 without fixed points, so the
quotient𝑀∕⟨𝜄⟩ is a twice-smaller orientable manifold. One gets 𝜄 by composing the map induced
by 𝑎 with that induced by the antipodal map of 𝑅 (a symmetry that Δ does not enjoy!).
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186 RIOLO

In conclusion, one gets two more cusped, orientable, hyperbolic 4-manifolds: one in the class
(1) of ℍ4∕PO(4, 1; ℤ) with 𝜒 = 5, and one non-arithmetic with 𝜒 = 241.
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