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Position and Orientation Error Bounds
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Francesco Guidi, Member, IEEE, and Mohamed-Slim Alouini, Fellow, IEEE,

Abstract—Next-generation cellular networks will witness the
creation of smart radio environments (SREs), where walls and
objects can be coated with reconfigurable intelligent surfaces
(RISs) to strengthen the communication and localization per-
formance. In fact, RISs have been recently introduced not only
to overcome communication blockages due to obstacles but also
for high-precision localization of mobile users in GPS denied
environments, e.g., indoors. Towards this vision, this paper
presents the localization performance limits for communication
scenarios where a single next generation NodeB base station
(gNB), equipped with multiple-antennas, infers the position and
the orientation of a user equipment (UE) in a RIS-assisted SRE.
We consider a signal model that is valid also for near-field prop-
agation conditions, as the usually adopted far-field assumption
does not always hold, especially for large RISs. For the considered
scenario, we derive the Cramér-Rao lower bound (CRLB) for
assessing the ultimate localization and orientation performance
of synchronous and asynchronous signalling schemes. In addition,
we propose a closed-form RIS phase profile that well suits
joint communication and localization, and we perform extensive
numerical results to assess the performance of our scheme for
various localization scenarios and for various RIS phase design.
Numerical results show that the proposed scheme can achieve
remarkable performance, even in asynchronous signalling, and
that the proposed phase design, based on signal-to-noise ratio
(SNR), approaches the numerical optimal phase design that
minimizes the CRLB.

Index Terms—Reconfigurable intelligent surfaces, smart radio
environment, single-anchor localization, attitude estimation, near-
field localization, Cramér-Rao lower bound.

I. INTRODUCTION

Recently, smart radio environments (SREs) have been con-

ceived as a new paradigm where the traditional radio envi-

ronment is turned into a smart reconfigurable space that plays

an active role in transferring and processing the information

[1], [2]. Indeed, key performance indicators (KPIs) for the

next sixth generation mobile networks (6G) promote contin-

uous connection availability, strong reliability, huge device

density (107 devices per km2) and air interface latency of

sub-milliseconds (e.g., 10µs), etc. [3], [4]. To meet these

requirements, reconfigurable intelligent surfaces (RISs) might
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represent a key solution, allowing to enhance not only wire-

less communications but also imaging- and localization-based

applications thanks to the augmented ambient awareness [4]–

[6]. In this regard, RISs can aid in establishing a line-of-sight

(LOS) link between the transmitter and the receiver even in

the presence of obstructions or when the received power from

the direct path does not enable a robust connection [7].

In analogy with software defined radios, RISs are often

referred to as software defined surfaces (SDSs), where the

electromagnetic response to the incident wave can be con-

trolled by a software [8]. The realization of such a technol-

ogy can be enabled by metamaterials, which are a class of

artificial materials whose physical properties, such as permit-

tivity and permeability, can be engineered to exhibit some

desired characteristics [9]–[13]. When such metamaterials are

deployed in metasurfaces, their effective parameters can be

tailored to realize a desired transformation on the transmitted,

received, or impinging waves [14]–[17]. With the availability

of new degrees of freedom useful to improve the network

performance, the environment will be no more perceived as a

passive entity, but as a meaningful support for wireless com-

munications based applications [18]–[23], e.g., energy transfer

[24], vehicular networks [25], unmanned aerial vehicle (UAV)

communications [26], physical layer security [24], cognitive

radio [27], electromagnetic fields (EMF)-aware beamforming

[28]–[30], and many others [31]. In this context, wireless

localization with RISs [32], [33] has not yet received a large

attention, albeit they represent a promising candidate for en-

hancing positioning and orientation estimation capabilities in

next-generation cellular networks for various 6G applications,

e.g., augmented reality and self-driving cars [25], [34]–[36].

This is of great help in GPS-denied environments, and it allows

to avoid the use of a dedicated infrastructure, usually made

of multiple anchors. Indeed, the possibility to localize with a

single antenna array is not new, and has been investigated

in the last few years [37]–[42]. In fact, the move-up in

the frequency spectrum towards millimeter-waves (mm-wave)

enables the integration of large number of antennas into

small areas. By enabling such an array architecture, namely

massive array, capable to realize near-pencil beam antennas,

it becomes feasible not only to boost communication but

also single-anchor localization capabilities at an unprecedented

scale [43]–[48].

Current state-of-the-art for intelligent surfaces-based local-

ization considers studies employing RIS either in receive mode

[49] or in reflection mode [33], [50]. When exploited in receive

mode, a large intelligent surface is used to localize a user in
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front of it, both in near-field and far-field [49], [51]. When

instead operating in reflection mode, an approach exploiting

the modification of the RIS reflection coefficient is proposed

such that the experienced received signal strength (RSS) at

different points is enlarged and the localization accuracy is

improved [52]. Differently, in [33], authors exploit a RIS for

supporting the positioning and communication in the mm-

wave frequency bands, assuming that the mobile is in far-

field with respect to the RIS [33]. Such an approximation is

not always valid, especially when large surfaces and arrays

are considered with respect to the distance. Consequently, the

entailed models are no more accurate, as the mobile is not

in the Fraunhofer region but in the Fresnel region, where

the wavefront has a considerable curvature, and it cannot

be approximated as a plane wave. Additionally, ignoring the

spherical wavefront discards essential information regarding

the location and orientation of the mobile [53]–[55].

To the best of authors’ knowledge, no paper has considered

a general model accounting for 3D RIS-assisted localization

and orientation estimation in near-field, as current papers for

near-field positioning only refer to the adoption of a large

intelligent surface in receive mode and not as a mean for

controlling the multipath.

To this purpose, in this paper we consider the localization

scenario depicted in Fig. 1, where we propose a localization

scheme that makes use of infrastructures envisioned for next

generation communication systems. Our model accounts for

the incident spherical wavefront. Note that the user equipment

(UE) can operate in the near–field region even for large

distances provided that a large number of antennas is employed

(e.g., with electrically large RIS) and the system operates at

high frequency (e.g., millimeter-waves). Indeed, in SRE, the

next generation NodeB base station (gNB) augments its envi-

ronment awareness, as it allows also to achieve a knowledge

of the environment in terms of inferring the location in the

3D space and the orientation (i.e., roll, pitch, and yaw) of the

UE. In this context, we derive the Cramér-Rao lower bound

(CRLB) to investigate the ultimate positioning and orientation

estimation performance in the presence of the RIS. Then, we

analyze the geometric dilution of precision (GDOP) to evaluate

the impact of the geometry on the UE localization. Finally, we

derive a suboptimal phase design for the RIS in closed-form to

enhance both the localization and communication performance

by maximizing the signal-to-noise ratio (SNR).

The main contributions can be summarized as follows.

• We propose an architecture where the RIS is used to assist

mobile localization (position and orientation estimation)

at the gNB, which can provide surveillance solutions or

assist the communication process.

• We consider that the gNB, RIS, and the UE are equipped

with multiple-antennas with arbitrary array configura-

tions and geometries including planar arrays that will be

adopted for beyond fifth generation mobile networks (5G)

systems, especially the RIS, allowing 3D beamforming in

both the azimuth and elevation, while most of the liter-

ature considers linear arrays with 2D beamforming that

significantly simplifies the analysis to the conventional

steering vectors.

RIS (Ω)

gNB/AP (Receiver)

UE (Transmitter)

HBM

HRM

HBR

Fig. 1: Considered RIS-aided positioning scenario.

• We consider a general model valid for both near- and far-

field localization and attitude (i.e., orientation) estimation

in 3D space, unlike the literature that either imposes the

far-field assumption or considers simplified 2D geometry.

• Differently from the state-of-the-art that analyzes syn-

chronous systems, we consider two general signalling

schemes (i.e., synchronous and asynchronous) and com-

pare their localization error performance.

• We derive the ultimate bound on the localization perfor-

mance in terms of the CRLB. Furthermore, to get more

insights on the effect of the geometry (e.g., locations and

orientations of the gNB, RIS, and UE) on the localization

performance, we consider the GDOP metric.

• We propose a closed-form RIS phase design, that ac-

counts for the spherical wavefront, and we compare it to

other strategies along with various transmit beamforming

techniques;

• We perform extensive simulations and numerical results

that provide insights into the problem and shed light on

the benefits offered by the adoption of the RIS in terms

of localization performance.

The rest of the manuscript is organized as follows. Sec. II

describes the signal model for both synchronous and asyn-

chronous cases. Sec. III investigates the position and orienta-

tion performance limits and the impact of the system geometry

on localization, whereas Sec. IV discusses a possible design

for the RIS phase profile. In Sec. V simulation results are

reported and final conclusions are drawn in Sec. VI.

Scalars (e.g., x) are denoted in italic, vectors (e.g., x) in

bold, and matrices (e.g., X) in bold capital letters. ∇x(a) =
∂a/∂x is the partial derivative of a with respect to the scalar

x. ∇x(·) is the gradient operator with respect to the vector x.

Transpose and Hermitian operators are represented as ·T and

·H, respectively. The N × N matrix with all elements being

zeros and the N × N identity matrix are denoted by 0N×N

and IN×N , respectively. The operator tr (X) denotes the trace

of a matrix X, while diag (x) denotes a diagonal matrix

with diagonal elements identified by x. A probability density

function is denoted by p (·), and E {x} is the expectation of a

random vector x with respect to its distribution. j =
√
−1 is

the imaginary unit. The operator ‖·‖ℓ is the ℓ-norm, and ‖·‖
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Fig. 2: 3D geometry of the considered localization scenario.

is the ℓ2-norm.

II. SYSTEM MODEL

A. Localization Scenario

In this paper, we consider a localization scenario as in

Fig. 1 where a gNB, equipped with an antenna array with

center located in position pB = [xB, yB, zB]
T

, performs the

position and orientation estimation of a UE with center in

pM = [xM, yM, zM]
T

and rotated by φM = [αM, βM, γM]
T

.

The geometry is reported in Fig. 2. The localization is aided

by the presence of a RIS, with center located at a known

position pR = [xR, yR, zR]
T

, considered as a passive reflector

that supports the gNB also for communicating with the UE.

According to Fig. 2 and considering the gNB as the center

of the coordinate system, the UE and RIS centers’ coordinates

can be expressed as pS , [xS, yS, zS]
T

with S ∈ {M,R} being

the label for a generic station and where the coordinates are

xS = xB + dBS cos (θBS) cos (φBS) , (1)

yS = yB + dBS cos (θBS) sin (φBS) , (2)

zS = zB + dBS sin (θBS) . (3)

Notably, the spherical coordinates can be easily retrieved

from the equations above. Further, for each S ∈ {B,R,M}
and for each corresponding antenna index s ∈ {b, r, m},

we can indicate the antenna coordinates of each array as

pS,s = ps = [xs, ys, zs]
T

where ∀s ∈ {1, 2, · · · , NS},

xs = ds cos (θs) cos (φs) , (4)

ys = ds cos (θs) sin (φs) , (5)

zs = ds sin (θs) , (6)

where NS is the number of antennas at the considered array,

and φs and θs are the azimuth and elevation angles of

the s-th antenna element measured from the array centroid,

respectively. In addition, we consider arrays that can be rotated

around the axes, that is ∀s ∈ {1, 2, · · · , NS}, we have

pS,s = [xS,s, yS,s, zS,s]
T = R (αS, βS, γS) p

(0)
S,s, (7)

with p
(0)
S,s being the initial array deployment, and

R (αS, βS, γS) is the rotation matrix given by the

multiplication of the rotation matrices for each axis where

(αS, βS, γS) are the yaw, pitch, and roll angles. The yaw

corresponds to the azimuth, as it is the rotation around the

z-axis and it is here indicated with αS. βS is the pitch, around

the y-axis, whereas γS is the roll entailing a rotation around

the x-axis. By considering counterclockwise rotations, the

rotation matrix, R (α, β, γ), is given in [56, (3.42)].

B. Signal Model for Incident Spherical Wavefronts

We now describe a model which accounts for spherical

wavefront, and it is valid also for near-field propagation

conditions. In the uplink, the UE transmits N orthogonal

frequency-division multiplexing (OFDM) subcarriers, i.e., for

the n-th subcarrier with n ∈ Ns , {1, 2, · · · , N}, we have

x[n] = [x1, x2, . . . , xNM
]
T
, w[n] p[n], (8)

where NM is the number of antennas at the UE, p[n] is

the data symbol corresponding to the n-th subcarrier with

E {p[n]p∗[n]} = 1, and w[n] ∈ CNM is the beamforming

vector with ‖w[n]‖2 = 1, which can be written as

w[n] = [a1 e
jβ1 , a2 e

jβ2 , · · · , am ejβm , · · · , aNM
ejβNM ]T,

where am and βm represent the m-th amplitude and phase of

the transmit–beamformer. Let Θ , {θ1, θ2, · · · , θNR
} be the

vector containing the designed phase shifts induced at the RIS,

and NR is the number of RIS elements. Then, we indicate with

Ω = diag
(
ejΘ

)
, diag

(
ejθ1 , ejθ2 , . . . , ejθNR

)
, (9)

the NR ×NR diagonal matrix containing the RIS phases.

Differently from the RIS literature, the gNB estimates the

UE position, pM, and its orientation, φM, by exploiting the

spherical waveform model. The received signal at the gNB

for the n-th subcarrier can be written as [57]

y[n]=
√
P HBM[n]x[n]+

√
PHBR[n]ΩHRM[n]x[n]+ω[n]

, µ[n] + ω[n] , ∀n ∈ Ns (10)
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where P is the signal power, x[n] is the transmitted vector for

the n-th carrier frequency, ω[n] is an additive thermal noise.

The channel matrices are HBM[n], HRM[n], and HBR[n] for

the gNB-UE, RIS-UE, and gNB-RIS links of sizes NB×NM,

NR × NM, and NB × NR, respectively. In the following, we

discriminate whether the gNB and the UE have been syn-

chronized or not. For non-synchronous systems, the position

information can still be gathered from the spherical wavefront,

even if no information can be retrieved from the time-of-arrival

(TOA).

1) Synchronous System: We here consider that a synchro-

nization procedure has been performed between the gNB and

the UE prior the localization step. Once synchronized, the

positioning information can be retrieved by jointly processing

temporal and angular information of the received signal. By

extending (10) to its scalar notation, the general model of the

received signal can be rewritten as

yb[n] =µb[n] + w[n] , ∀ b ∈ {1, 2, · · · , NB}, (11)

with NB being the number of antennas at the gNB and w[n]
being the circularly symmetric zero-mean Gaussian noise with

power spectral density σ2. The useful part of the signal,

without the noise, is

µb[n] ,
√
P

NM∑

m=1

xm[n] e−j2πfnξBM

(
ρBMe

−j2πfn (τbm+ηm)

+ ρBRM

NR∑

r=1

ej θr e−j2 πfn(τbr+τrm+ηr+ηm)
)
, (12)

where fn = fc + n∆f − B/2 is the frequency of the n-th

subcarrier, fc is the carrier frequency, ∆f is the subcarrier

spacing, B = N∆f is the signal bandwidth, and τbm, τbr,

τrm are the delays for each couple of antenna (e.g., τbm
is the delay between the b-th antenna at the gNB and the

m-th antenna at the UE), ξBM is a synchronization residual

(negligible after accurate synchronization procedures), and

ηm and ηr are array non-idealities. The signal attenuation

coefficients due to propagation are indicated with ρBM and

ρBRM for the direct and the relayed path, respectively.1 Since

the plane–wave approximation is not always valid, a spherical

model is considered where the following relations hold

τbm(dBM, θBM, φBM) = dbm/c, (13)

τbr(dBR, θBR, φBR) = dbr/c, (14)

τrm(dRM, θRM, φRM) = drm/c, (15)

ρBM =
λ

4 π

1

dBM
, (16)

ρBRM =
λ

4 π

1

dRM + dBR
, (17)

where c is the speed of light, (dBM, θBM, φBM),
(dBR, θBR, φBR) and (dRM, θRM, φRM) are the distances

1According to the considered system geometry, the signal amplitude is
about the same at each antenna as its variations are negligible.

and angles between the gNB-UE, gNB-RIS, RIS-UE

centroids, respectively, and where

dbm =

√
d2m + d2b + d2BM − 2

(
G
(1)
bm + dBM G

(2)
bm

)
, (18)

with G
(1)
bm and G

(2)
bm containing the information of the geometry

at the transmitter and at the receiver, that is

G
(1)
bm = xb xm + yb ym + zb zm , (19)

G
(2)
bm = (xm − xb) cos θBM cosφBM + (ym − yb)

× cos θBM sinφBM + (zm − zb) sin θBM. (20)

The distances of arrival between the b-th gNB antenna and the

r-th RIS antenna and between the rth RIS antenna and the m-

th UE antenna, namely dbr and drm, can be found using (18)

with appropriate substitutions, as done in (1) and (4).

Differently from traditional schemes that make the assump-

tion of incident planar wavefront, in (18) we infer jointly the

ranging and bearing information from the spherical waveform

curvature. Notably, it is possible to write (12) only when the

clocks of the gNB, RIS and UE have been synchronized.

The accurate synchronization might entail several and long

procedures. In the following, we consider an asynchronous

alternative where it is still possible to retrieve the UE position

from the relative phases.

2) Asynchronous System: As evidenced in (11), from the

received signal it is possible to infer the TOA estimate, which

is possible in all those situations where a synchronization

procedure has been performed. In this case, the system is no

more able to directly estimate the information of the distance

from the TOA. Instead, the incident waveform curvature, i.e.,

∆dbm = dbm − dBM = c∆τbm, (21)

∆dbr = dbr − dBR = c∆τbr, (22)

can be exploited for UE localization.

yb[n] =
√
P

NM∑

m=1

xm[n]
(
ρBM e−jχBM e−j2πfn (∆τbm+ηm)

+ ρBRM e−jχBRM

NR∑

r=1

ejθr e−j2 πfn(∆τbr+∆τrm+ηr+ηm)
)

+ w[n], (23)

where χBM and χBRM are uniformly distributed random vari-

able from 0 to 2 π representing the phase offsets between the

gNB, the UE and the RIS due to the lack of synchronization.

Given the proposed models for synchronous and asyn-

chronous systems, in the following we derive the attainable

fundamental performance limits.

III. RIS-AIDED POSITION AND ORIENTATION ERROR

BOUNDS

In this section, we derive the performance limits for the

considered localization scenario in the free-space LOS direct

and reflective RIS scenario, where the ultimate localization

limits can be rigorously derived. To this end, the CRLB is

a useful metric that represents the minimum variance of the
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estimation error from any unbiased estimator, and it can be

represented with the inverse of the Fisher information matrix

(FIM) [58], [59]. Then, we investigate the impact of the

geometry on the error through the GDOP metric analysis.

A. The CRLB on UE Position and Orientation

Given the signal models in (11) and (23), we distinguish two

possible estimation approaches: (i) the first one exploits a di-

rect localization approach, and it is used for the asynchronous

case; (ii) the second one is a two-stage approach that considers

that the location and orientation are estimated from a set of

features extracted from the signal, e.g., TOAs, angle-of-arrivals

(AOAs), and received signal strength indicators (RSSIs) [60].

In both cases, the parameter vector to be estimated is

s = [pM, φM]
T
, (24)

where pM∈ R3, and φM∈ [0, 2 π]
3

contain the UE position

and orientation parameters, as indicated in Section II-A. On

the other hand, the measurement vector can be written as

Γ = s, (25)

Γ=[ρBM, θBM, φBM, τBM, ρBRM, θRM, φRM, τRM,φM]
T
, (26)

for the Synchronous and Asynchronous signalling, respectively,

where τBM and τRM, ρBM and ρBRM, and θBM, φBM, θRM
φRM are the TOAs, RSSI, and AOAs, respectively. All the

main parameters that are required to infer the location and

orientation of the UE are included in (26).2

The first approach with the measurement parameter vector

expressed in (25) will be also referred to as “Direct” because

it directly estimates the state. On the other side, the second

approach in (26) will be also named “Two-stage” because

it uses intermediate parameters to infer the UE position and

orientation. Note that the two approaches are the same from a

CRLB perspective. Still, we distinguish between the two pa-

rameter vectors for synchronous and asynchronous signalling.

This can be ascribed to a twofold reason: (i) The vector of

measurements in the synchronous case allows to emphasize

the parameters of the received signal which depend on the

position and orientation and to quantify the error in estimating

these parameters; (ii) On the contrary, if a two-stage approach

is used in the asynchronous case, where only difference of

TOAs are present in (21), then the measurement vector would

consist of all the TOA pairs between the gNB-UE and RIS-

UE, leading to a dimensional issue for the FIM. Thus, a direct

approach is adopted in which the position is directly inferred

from the signals received at each antenna of the gNB, allowing

the measurement vector to be written in a more compact way.

Starting from (25)-(26), the CRLB on the UE state vector

can be written from [58, (178)] as

Λ (s) ,

[
N∑

n=1

In (s)

]−1

, (27)

2If the localization is only based on TOA and AOAs, then the parameters
related to RSSI (i.e., ρBM and ρBRM) can be neglected in (26). Nevertheless,
the resulting bound will be an upper bound on the CRLB derived directly
from the signal.

where In (s) is the FIM of the state vector relative to the

n-th subcarrier. Hence, the position error bound (PEB) and

orientation error bound (OEB) can be written as

PEB =

√
tr
(
[Λ (s)]1:3,1:3

)
, OEB =

√
tr
(
[Λ (s)]4:6,4:6

)
,

(28)

where [·]a:b,c:d indicates the sub-matrix located between rows

(a, b) and columns (c, d).
The FIM can be obtained by the chain rule as [61]

In (s) = (∇sΓ) In (Γ) (∇sΓ)
T
, (29)

where In (Γ) is the FIM of the parameter vector in (25), i.e.,

In (Γ)=E

{
(∇Γ log p(y[n];Γ))

H∇Γ log p(y[n];Γ)
}
, (30)

with J , ∇s Γ being the Jacobian matrix and log p(y[n];Γ) is

the log-likelihood function of the received signal vector [58].

The log-likelihood function is computed from (11) as

log p(y[n];Γ) = − (y[n] − µ[n])
H
Σ−1 (y[n]− µ[n])

−NB log(πσ
2) , (31)

where Σ = σ2 INB×NB
is the covariance matrix of the noise.

The Jacobian matrix can be written as

J = I6×6, Synchronous case (32)

J =

[
JpM

03×3

03×3 I3×3 ,

]
, Asynchronous case (33)

with JpM
indicating the term relative to the UE position, and

it is given in the Appendix A.

The elements of the FIM in (30) can be written as [61]

[In (Γ)]i,j =
2

σ2
Re

{
NB∑

b=1

∂µ∗
b [n]

∂Γi

∂µb[n]

∂Γj

}
, (34)

and their derivations are in Appendix B.

Since we are considering the curvature of the wavefront

in (18), the bound is valid also for the near-field localization

that is essential when the size of arrays are sufficiently large,

within the Fraunhofer distance [62]. Also, the CRLB in (27)

accounts for the errors due to the receiver noise (i.e., in σ2)

and the geometry of the localization scenario.

B. Localization Algorithm

One possible solution for estimating the location and orien-

tation of the UE is through the maximum likelihood estimator

(MLE). The UE location and orientation, s, that maximize the

log-likelihood function in (31) can be estimated as

ŝ , argmax
pM∈R3,φM∈[0,2π]3

log p(y[n]; s). (35)

The previous optimization problem can be solved by a grid

search or by iterative methods such as Newton-Raphson and

expectation-maximization algorithms. However, the conver-

gence of iterative methods to the global maximum is not

guaranteed.

The MLE is known to approach the CRLB derived in

Section III-A for asymptotically high SNRs. Indeed, if there
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exists an efficient estimator with a variance that coincides

with the CRLB, it will be the MLE, which can be found by

simultaneously solving the following equations [61]

∇s p(y[n]; s) = 06×1. (36)

For asymptotically large number of measurements, i.e., snap-

shots y in (10), or high SNR, the error in estimating the

location and orientation tends in distribution to a zero mean

Gaussian distribution (indicated with “d”) with covariance

matrix Λ (s) expressed in (27), i.e.,

ŝ− s
d−→ N (06×1,Λ (s)) , (37)

where ŝ is a random vector representing the estimated param-

eters through the MLE [61].

Alternatively, the two-stage approach can be adopted, where

the signal attenuation coefficients can be estimated from the

RSSI. The direction of arrival (i.e., AOAs) can be infered

through variations of MUSIC algorithms or compressive sens-

ing for both on- and off-grid methods with guaranteed recovery

under some mild conditions. The compressive sensing based

estimators have the advantage that the angles can be recovered

even from a single snapshot of y, while the performance

can be further enhanced by considering multiple measurement

vectors (i.e., several snapshots) [63]–[66]. For TOA estimation,

two possible schemes can be considered based on correlators

(i.e., matched filters) or on energy-based solutions (i.e., energy

detectors) [67]–[70]. The second is more practical as it can

operate at sub-Nyquist rate.

C. Geometry Impact on Direct RIS-aided Localization

The CRLB derived in Sec. III-A does not explicitly quantify

the impact of the system geometry on the performance,

because it includes also the effect of the input noise [71].

Hence, we now investigate the solely impact of the geometry

on the localization performance using a GDOP analysis. In

particular, as a GDOP metric, we consider the ratio between

the root mean square error (RMSE) of position and the RMSE

of measurement (ranging) error, i.e., [72]

GDOP =

√
σ2
x + σ2

y + σ2
z

σM

,
RMSE (p)

σM

, (38)

where σM is the RMSE of the measurements, e.g., in GPS po-

sitioning it is the standard deviation of ranging measurements.

Since the RMSE is lower bounded by the CRLB, the GDOP

can be also defined as a function of the PEB as

σM ·GDOP = RMSE (p) ≥
√
tr (CRB (p)) = PEB. (39)

Differently from the parameter vector in (25), in direct

localization, position and orientation are directly estimated

from the received signals at the receiver, with Γ = s as in

(26). In this specific case, the measurement noise standard

deviation is the same for all the antennas and corresponds to

the thermal noise, i.e. σM = σ.

Given such signal-related measurements, the GDOP can be

computed from the CRLB expression in (27) where the generic

element in the FIM is given by

[In (s)]i,j =
2

σ2
Re

{
NB∑

b=1

∂µ∗
b [n]

∂ℓi

∂µb[n]

∂ℓj

}
, (40)

where ℓi ∈ s is either related to the position or to the

orientation of the UE. Therefore, we can write the GDOP for

position and orientation as [72]

GDOPpM
=

1

σ κpM

√√√√√tr



[

N∑

n=1

In (s)

]−1

1:3,1:3


=

PEB

σ κpM

, (41)

GDOPφM
=

1

σ κφM

√√√√√tr



[

N∑

n=1

In (s)

]−1

4:6,4:6


= OEB

σ κφM

, (42)

where κpM
[m/

√
Watt] and κφM

[radians/
√

Watt] are the nor-

malization factors for the GDOP to become dimensionless. For

example, in our settings the normalization factors κpM
and

κφM
can be designed as dBM/

√
P and 1/

√
P , respectively.

With this definition, the position and orientation errors are

proportional to the GDOP, i.e., PEB ∝ σGDOPpM
and

OEB ∝ σGDOPφM
[72].

IV. RIS PHASE DESIGN

In order to enhance the performance of the proposed

architecture and to exploit as much as possible the RIS

potentialities, a proper joint design of the RIS phase profile and

of the beamformer is essential. Unfortunately, the literature

usually entails planar wavefronts incident to the RIS [36].

Thus, in the following we consider possible alternatives for

the design of the RIS phase profile and transmit–beamformers

accounting for spherical wavefronts.

1) Optimal RIS Phase Design: The first possibility consid-

ers the optimal phase shifts induced at the RIS and beamform-

ers that minimize the position or orientation error bounds, i.e.,

we solve the following optimization programs

Minimize
Θ∈ [0,2π]NR ,W∈CNM×N

PEB(Θ,W) ,

Subject to ‖w[n]‖2 = 1, ∀n ∈ Ns

(43)

Minimize
Θ∈ [0,2π]NR ,W∈CNM×N

OEB(Θ,W) ,

Subject to ‖w[n]‖2 = 1, ∀n ∈ Ns,
(44)

where W is a matrix whose n-th column is w[n]. Unfor-

tunately, the optimization of the phase design and of the

beamforming vectors is quite complex for two main reasons:

(i) the number of real optimization variables, i.e, NR+2NMN ,

is large; (ii) the joint optimization of coupled optimization

variables, i.e., RIS phases and beamformers, usually entails

non-convexity [73].

Concerning the first point (i), we can consider the same

beamforming vector for all subcarriers so that the number of

optimization variables is reduced to NR +2NM, under the as-

sumption that fc ≫ B, which is generally valid for mm-waves.
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We can further halve the number of beamforming optimization

variables by optimizing only the phases of the beamformer, at

the expense of some degradation in performance.

Concerning the second point (ii), alternate optimization

(AO) can be considered to decouple the beamformer and

the phase profile [73]. In this method, the phase profile is

optimized for a fixed beamforming vector and vice versa until

the convergence is reached.

Notably, if from one side this approach is complex as it

involves the minimization of the inverse of the FIM, from the

other side it represents the optimal solution in the sense of

minimizing the position or orientation error bounds.

2) Proposed RIS Phase Design: Another possibility is to

consider an ad-hoc approach that maximizes the sum of the

SNRs for the central subcarrier at each gNB antenna as

Maximize
Θ∈[0,2π]NR ,w∈CNM×1

SNR(Θ,w) ,

Subject to ‖w‖2 = 1,
(45)

where

SNR(Θ) =
P

σ2
‖HBMw +HBRΩ(Θ)HRM w‖2

≤ P

σ2

(
‖HBMw‖2+‖HBRΩ(Θ)HRM w‖2

+2 ‖HBMw⊙HBRΩ(Θ)HRM w‖1) , (46)

with ⊙ being the Hadamard element-wise product. Note that

(46) results from the Cauchy-Schwarz inequality, where the

equality holds only if the phase of the direct path coincides

with the phase of the reflected path.

In order to design the RIS phase profile, we operate as

follows: (i) first, we maximize the upper bound on the SNR

in (46); (ii) then, we design an additional constant phase

shift for the RIS phase profile such that the Cauchy–Schwartz

inequality is tight, that is, the direct and the reflective link are

almost coherently summed up at each antenna.

According to the aforementioned considerations, for a fixed

beamforming vector w, the RIS phase profile can be designed

to maximize the upper bound on the SNR in (46). Never-

theless, the coupling between the direct and the reflective

channels complicates the optimization. In this regard, we

relax the optimization problem by ignoring the coupling and

maximizing only the sum of the SNRs for the direct and RIS

reflected links, i.e.,

Maximize
Θ∈ [0,2π]NR

P

σ2

(
‖HBMw‖2+‖HBRΩ(Θ)HRM w‖2

)
. (47)

The optimization can be further simplified by ignoring terms

that does not depend on Θ, then we have

Maximize
Θ∈ [0,2π]NR

‖HBRΩ(Θ)HRM w‖2, (48)

that gives

Maximize
Θ∈ [0,2π]NR

NB∑

b=1

∣∣∣∣∣

NR∑

r=1

NM∑

m=1

amejβm ejθr e−j2 π fc(τbr+τrm)

∣∣∣∣∣

2

.

(49)

Unfortunately, the number of degrees of freedoms, i.e., the

number of controllable phase shifts at the RIS, is not enough

to perfectly adjust the phase of the signals at the gNB. To

combat such an issue, we relax the problem by minimizing

the sum of square distance of the phases from their related

centroid φ̄(Θ), inspired by the K-means algorithm [74]. Thus,

we write

Minimize
Θ∈ [0,2π]NR

γ(Θ) ,

NR∑

r=1

NB∑

b=1

NM∑

m=1

[θr + βm

−2 π fc (τbr + τrm)− φ̄(Θ)
]2

, (50)

where γ(Θ) is the objective function of interest, and the

centroid φ̄(Θ) is given by

φ̄(Θ) =
1

NRNMNB

NR∑

r=1

NB∑

b=1

NM∑

m=1

[θr+βm−2πfc (τbr+τrm)]

=
1

NR

θk+
1

NR

NR∑

r=1,r 6=k

θr+
1

NMNBNR

NR∑

r=1

NB∑

b=1

NM∑

m=1

Cbrm , (51)

where Cbrm = βm−2 π fc (τbr + τrm). It can be verified that

γ(Θ) is a convex function. More precisely, γ(Θ) is convex, as

the composition of a convex function with an affine mapping

is convex, and the positive weighted sum of convex functions

preserves the function convexity [75, 3.2.2] and [75, 3.2.1].

For k ∈ K , {1, 2, · · · , NR}, the objective function can be

expressed as

γ(Θ) =

NB∑

b=1

NM∑

m=1

[
θk + Cbkm − φ̄(Θ)

]2

+

NR∑

r=1,r 6=k

NB∑

b=1

NM∑

m=1

[
θr + Cbrm − φ̄(Θ)

]2
. (52)

Since the objective function is convex, the optimal solution

can be found by solving the following equations in θk [75],

∂γ(Θ)

∂θk
=

NB∑

b=1

NM∑

m=1

2

(
1− 1

NR

) [
θk + Cbkm − φ̄(Θ)

]

−
NR∑

r=1,r 6=k

NB∑

b=1

NM∑

m=1

2

NR

[
θr + Cbrm − φ̄(Θ)

]
= 0, (53)

for each k ∈ K. After some manipulations, we get

(
1− 1

NR

)
θk −

1

NR

NR∑

r=1,r 6=k

θr +
1

NMNB

×
(

NB∑

b=1

NM∑

m=1

Cbkm − 1

NR

NR∑

r=1

NB∑

b=1

NM∑

m=1

Cbrm

)
= 0. (54)

Operating like this, the NR linear equations in NR unknowns

(i.e., the RIS phases) can be simultaneously solved to obtain

the phase shifts optimized for this specific problem. An

optimal, albeit not unique, phase profile that minimizes the

convexified objective function in (50) can be written in closed-

form as

θ̂k =
2 π fc
NM NB

NB∑

b=1

NM∑

m=1

[
τbk + τkm − 1

NR

NR∑

r=1

(τbr + τrm)

]
.

(55)
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Notably, the solution Θ̂ ,

[
θ̂1, θ̂2, · · · , θ̂NR

]
is not unique,

since adding a constant phase shift φc to the RIS phases yields

to the same value for the objective function in (50), as it will

be accounted for also in the centroid φ̄(Θ). Indeed, even the

objective function in (49) will not be changed by adding a

constant phase shift because of the absolute operator. Having

maximized the upper bound on the SNR, now we derive the

constant phase φc such that the Cauchy-Schwarz inequality is

tight, i.e, the phase difference between the direct and reflected

links is minimal at the gNB; hence, the SNR is maximized.

More precisely, substituting the optimal phases from (55) in

(45) and maximizing it with respect to φc we get

Maximize
φc∈ [0,2π)

P

σ2
‖HBMw + ejφc HBRΩ(Θ̂)HRM w‖2 . (56)

Again, the number of degrees of freedom is not sufficient for

adjusting the phase of the direct and reflected links for all the

receiving antennas at the gNB. Hence, the Cauchy-Schwarz

inequality can not be satisfied with equality, but can be made

rather tight. In this regard, φc can be designed to minimize

the difference between the phases of the direct and reflected

links, i.e.,

Minimize
φc∈ [0,2π]

γd(φc) ,

NR∑

r=1

NB∑

b=1

NM∑

m=1

[(
βm − 2π fc τbm

)

−
(
φc + θ̂r + βm − 2 πfc (τbr + τrm)

)]2
. (57)

The optimal φc can be found by solving the following equation

∂γd(φc)

∂φc

=

NR∑

r=1

NB∑

b=1

NM∑

m=1

−2 [−2πfcτbm + βm

−
(
φc + θ̂r + βm − 2 π fc (τbr + τrm)

)]
= 0 , (58)

leading to

φ̂c =
2πfc

NRNMNB

NB∑

b=1

NM∑

m=1

NR∑

r=1

(−τbm + τbr + τrm) , (59)

obtained by substituting the derived RIS phases in (55) and

distribute the summations.

Finally, by combining (55) and (59), the designed phases

for the RIS that accounts for the direct and reflected paths can

be written, for each k ∈ K, as

θ∗k = θ̂k + φ̂c =
2πfc

NMNB

NB∑

b=1

NM∑

m=1

(τbk + τkm − τbm) . (60)

Since the proposed RIS phases do not depend on the beam-

forming vector, we can select any appropriate beamformer

that maximizes the SNR, e.g., eigen-beamforming, albeit it

is not always optimal from the positioning and orientation

detection perspective. Note also that the previous analysis

considers τkm and τbm to be a-priori known to provide the

fundamental attainable limits. In practice, sub-optimal phases

can be obtained by substituting the channel parameters, e.g.,

the TOAs and bearing angles, in (43), (44), or (60) with their

estimates rather than their true values [76], [77]. For instance,

a localization algorithm can start with a random RIS phase

design; then, obtain an estimate for the TOAs, update the phase

design, and repeat these steps till convergence [78].

gNB
UE

RIS

pR

pB

pM

X ′

Y ′

Z ′X ′′

Y ′′

X

Y

Z

Z ′′ X ′′′

Y ′′′

Z ′′′

NB/2

NR/2

NM/2

dant

p
(0)
M,m

p
(0)
R,r

p
(0)
B,b

Fig. 3: Considered 3D localization scenario. An example of

rotated UE is depicted in red.

V. NUMERICAL RESULTS

A. Simulation Parameters

According to the previous analysis, we now evaluate the

attainable localization and orientation performance limits for

different scenarios. More specifically, we here focus on planar

antenna array configuration,3 as they allow compact deploy-

ment of massive arrays in gNBs and UE, as well as 3D beam-

focusing capabilities [79], [80]. Moreover, in the perspective

to place RIS on walls, planar geometry represents a practical

solution [1], [36].

The gNB is assumed to be located at the origin, i.e., at pB ,

[xB, yB, zB]
T
= (0, 0, 0) (m), if not otherwise indicated and

the initial positions of the antennas (in absence of rotations)

can be represented as in Fig. 3 where the gNB, RIS, and UE

are lying on the XZ- and Y Z-, XY - planes, respectively, and

the coordinates of the array elements are given by

p
(0)
B,i = dant

[⌊
i√
NB

⌋
, 0,
(
i mod

√
NB

)]T
, i ∈ {1, . . . , NB} ,

p
(0)
R,i = dant

[
0,

⌊
i√
NR

⌋
,
(
i mod

√
NR

)]T
, i ∈ {1, . . . , NR} ,

p
(0)
M,i=dant

[⌊
i√
NM

⌋
,
(
i mod

√
NM

)
, 0

]T
, i ∈ {1, . . . , NM},

(61)

where mod is the modulo operator, dant = λ/2 is the inter-

antenna spacing, and the rotated antenna elements for a given

roll, pitch and yaw angles can be defined as in (7). In partic-

ular, while the gNB and the RIS are fixed on the XZ- and

Y Z- planes (i.e., αB = βB = γB = 0, αR = βR = γR = 0),

respectively, the UE can freely rotate around x−, y−, and z−
axis with angles γM, βM, and αM, respectively, according to

Fig. 2.

At the transmitter, we considered OFDM signalling with

N = 12 subcarriers, transmitted power per subcarrier P =
−10 dBm, subcarrier spacing ∆f = 240 kHz, and carrier fre-

quency fc = 28GHz [81]. At the receiver, the noise variance

per subcarrier is set as σ2 = K FT0 ∆f = −117.17 dBm,

3Note that the previous analysis is valid for any geometric configuration,
i.e., any spatial deployment and orientation for the antenna arrays.
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Fig. 4: (a) PEB in meters and (b) OEB in degrees for different

mobile locations in an area of 20× 20 m2 on the XY -plane.

The orientation of the UE is set to φM = (π/6, π/6, π/6).

where K is the Boltzmann constant, T0 = 290 K is the receiver

temperature and F = 3 dB is the noise figure.

Concerning the RIS phase profile in (9), in the next, we

use the following labels according to the type of design: (i)

Mirror, when the RIS does not induce any phase shift, that

is Θ = 01×NR
; (ii) Random, when the RIS phase shifts are

uniformly distributed between 0 and 2 π;4 (iii) SNR-based,

according to the analysis of Sec. IV-2 maximizing the SNR;

(iv) Optimized CRLB–based, according to the minimization

of the CRLB reported in Sec. IV-1, and; (v) Quantized, that

accounts for 4 quantization levels in the representation of

the optimized CRLB. We consider the beamforming vector

as w = [1, 1, · · · , 1]T/√NM in all the next numerical re-

sults, except for Table I, where we also account for Eigen-

Beamforming and a numerically optimized beamformer.

4For obtaining this result, we simulated 100 random phase configuration
and average the theoretical PEB/OEB over them.
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Fig. 5: PEB and OEB vs. number of RIS elements, namely

NR, for different RIS phase design strategies.

B. Numerical Results

a) PEB and OEB for Different Mobile Positions: Fig. 4

shows the position and orientation errors in RIS-assisted

architecture by varying the UE location in different points

of the area. In particular, the location of the RIS is pR ,

[xR, yR, zR]
T
= (10, 10,−1) (m), whereas the gNB is placed

in pB = (0, 0, 0), if not otherwise indicated. The gNB,

RIS, and UE are equipped with planar antenna arrays with

NB = 36, NR = 100, NM = 4 antennas, respectively.

The UE altitude is set to zM = −3m, the UE orientation

to φM , [αM, βM, γM]
T

= (π/6, π/6, π/6) (rad), and the

proposed SNR-based phase design is adopted for the RIS.

As it can be seen in Fig. 4a and Fig. 4b, the PEB and the

OEB are lower in proximity of the gNB and of the RIS, with an

error of about 8×10−4 m for the position and of 10.7◦ for the

orientation when the UE is placed at pM , [xM, yM, zM]
T
=

(4, 4,−3) (m). Notably, the achieved errors depend not only

on the distance from the gNB and from the RIS, but also on

the relative UE location with respect to them, e.g., the UE

location has an effect on the actual bearing angles φRM and
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Fig. 6: OEB contours as a function of the orientation angles

βM and γM in degrees for a fixed αM = 30◦.

φBM and, in turns, on the localization.

b) PEB and OEB for Different RIS Configurations:

Fig. 5 reports the localization and orientation error bounds,

derived in (28), for different number of antennas at the RIS

and different phase design strategies. We set the number of

gNB antennas to NB = 16, the number of UE antennas to

NM = 4, the RIS and UE centroids to pR = (4, 3, 1) (m) and

pM = (5, 2,−1) (m), respectively. The UE orientation is set

to φM = (π/6, π/6, π/6) (rad).

As previously discussed, the Optimized CRLB phase design

strategy is obtained by numerically minimizing the PEB and

OEB. Because the CRLB optimization problem is non-convex,

the algorithm could converge to a local minimum if the initial

point is far from the true solution. Therefore, we included

the proposed closed-form phase design in (60) as a possible

initialization for the optimization algorithm in the Optimized

CRLB phase design. Moreover, for each Monte Carlo iteration,

we have generated a different Random phase profile for the

RIS. For the PEB in Fig. 5a, we can see that the proposed

SNR-based design almost coincides with the Optimized CRLB,

and that the quantization does not significantly decrease the

performance. This is also due to the fact that the Cauchy-

Schwartz inequality is satisfied with almost equality with the

proposed RIS phase design, as verified numerically.

Regarding the OEB in Fig. 5b, the optimized CRLB-based

and its quantized version allow to outperform the proposed

SNR-based scheme. Another interesting aspect is that the error

tends to slowly decrease for NR ≥ 100, thus permitting to

relax the number of antennas at the RIS side while obtaining

the good localization performance. Also, all RIS-assisted sce-

narios outperform the No RIS case, regardless of the phase

design.

c) Analysis of the UE Orientation: We now analyze the

impact of the mobile orientation angle on the OEB when the

location of the mobile and its orientation with respect to the

z-axis are fixed, i.e., pM = (15, 5,−3) (m) and αM = π/6,

respectively, while the orientation of the UE around both x-

and y- axis (i.e., βM and γM) are varied from 0 to π/2. The
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Fig. 7: PEB for synchronous and asynchronous signal models,

for UE orientation fixed to φM = (π/4, π/2, 0) for pB =
(5, 0, 1.5) and pR = (0, 5, 2).

number of antennas at the gNB, UE and RIS are NB = 36,

NM = 4, and NR = 256, respectively. The RIS position is

pR = (10, 10,−1) (m). In this sense, according to the results

reported in Fig.6, we can observe that the OEB increases when

the mobile is parallel and/or perpendicular to the RIS and the

gNB. On the other hand, the OEB decreases when γM and βM

are close to 30◦.

d) Synchronous vs. Asynchronous signalling: We now

compare the achievable performance of synchronous and asyn-

chronous systems in an environment with and without RIS.

More specifically, we evaluated the PEB as a function of the

x/y-coordinates of the mobile for a fixed UE orientation, i.e.,

φM = (π/4, π/2, 0) (see Fig.7), and for averaged orientations,

i.e., for 36 configurations where both αM and βM are varied

between 0◦ and 90◦ degrees with a step of 15◦ degree (see

Fig.8). In both configurations, the gNB and the RIS are located

at pB = (5, 0, 1.5) and pR = (0, 5, 2), respectively. The

number of antennas are NB = 36, NR = 64, and NM = 4.

In particular, Fig. 7-(a) and Fig. 8-(a) are obtained by fixing

yM = 5 m, with xM spanning from 0 to 20 m, whereas in

Fig.7-(b) and in Fig.8-(b) we set xM = 5 m and yM is changed
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Fig. 8: PEB for synchronous and asynchronous signal models,

averaged for different UE orientation for pB = (5, 0, 1.5) and

pR = (0, 5, 2).

from 0 to 20 m. We can see that the PEB performance, for the

synchronous case always outperforms the asynchronous one

(even of few order of magnitudes), thanks to the availability

of a larger set of information. Moreover, the PEB is strongly

affected by the geometry, and it generally keeps the lowest

values in the area between the gNB and the RIS.

The orientation of the mobile impacts the localization per-

formance, as it can be seen in Fig.8. Hence, we averaged over

several mobile orientations to study the effect of the distance

on the localization, regardless of the mobile orientation. As

expected, when increasing the UE distance from the gNB, e.g.,

by varying the y-coordinate, the localization error increases

faster to what happens by moving along the x-axis (i.e., far

from the RIS). Note also that, when the UE moves far from

the gNB, the geometry is such that the contribution of the RIS

is more beneficial for positioning.

e) Two-stage Localization: In Fig. 9, the localization

accuracy is investigated for the case that the system can

estimate only a subset of the parameters in (26).

In particular, we differentiate between two cases: (i) the

RSSI and AOA are estimated; (ii) the TOAs and the AOA

0 2 4 6 8 10
10

−3

10
−2

10
−1

10
0

xM (m)

P
E
B

(m
)

RSSIs & AOAs

TOAs & AOAs

All parameters
(RSSIs & TOAs & AOAs)

Fig. 9: PEB for different x-coordinates of a UE located in

pM = (xM, 2,−3). The RIS is located at pR = (4, 4,−1).

are estimated. Then, the two scenarios are compared with the

benchmark, where the system can estimate all the parameters

in (26), and the corresponding PEB is calculated as in (28).

The PEB for the three cases is depicted in Fig. 9 for various

values of mobile locations, along the x-axis. In the consid-

ered scenario, we set pM = (xM, 2,−3), pR = (4, 4,−1),
NB = 16, NR = 36, and NM = 4. We can see that discarding

the RSSIs from the parameter vector (i.e., not relying on

measuring the RSSIs for positioning purposes) has negligible

impact on the PEB. On the contrary, if the system is able

only to estimate the RSSI and not the TOAs, the localization

error increases up to two orders of magnitude. Therefore, in

our considered setting, localization systems with accurate TOA

estimation can achieve higher performance compared to those

relying on RSSIs.

For the two-stage approach in estimating the location, it

is beneficial to quantify the minimum possible error for

estimating the parameters in (26). To this purpose, the error

bound on the parameters can be written as

σΓj
,

√√√√√
[

N∑

n=1

In (Γ)

]−1

j,j

, ∀j ∈ {1, 2, · · · , |Γ|}, (62)

where In (Γ) is the FIM of the parameters for a given

subcarrier n as expressed in (30) and |Γ| is the number of

parameters in Γ. In this regard, we depict in Fig. 10 the error

for estimating the parameters θBM, φBM, τBM, θRM, φRM, τRM.

In particular, the errors in estimating the time, i.e., στBM and

στRM , are shown in Fig. 10a, while the standard deviation of

the estimation errors of the angles, i.e., σθBM , σφBM
and σθRM ,

σφRM
, are presented in Fig.10b. We can see that the parameters

that depend on the gNB, i.e., στBM , σθBM , σφBM
, have minimum

estimation errors near the gNB location. On the other hand,

the parameters where the RIS is involved increase as UE gets

far from the RIS.

f) Impact of the Beamforming Technique: In Table I, we

compare the PEB performance for various transmit beamform-

ing techniques along with several RIS phase designs using AO.

In particular, we consider three possible beamforming tech-

niques: (i) No Beamforming, with w = [1, 1, .., 1]/
√
NM; (ii)
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Fig. 10: The error in estimating the quantities in the pa-

rameters vector vs the x-coordinates of the mobile location,

for pB = (5, 0, 1.5), pR = (0, 5, 2), φM = (π/4, π/2, 0),
pM = (xM, 3, 1), NB = 36, NR = 64, and NM = 4.

Eigen-Beamforming, with the power-normalized eigenvector

(corresponding to the maximum eigenvalue) of HHH, with

H , HBM + HBR Ω (Θ) HRM being the effective channel

between the UE and the gNB [82], computed with fn = fc;
(iii) Optimized, with numerically optimized beamformer to

minimize the PEB for a fixed RIS phase profile. Then, we

set NB = 16, NM = 4, NR = 36, pR = (5, 5, 1), and

pM = (10, 3,−1). We can see from Table I that optimizing

both the beamformer and the RIS phases through AO achieves

a significant gain, almost two orders of magnitude compared

to schemes where beamforming and/or RIS phases are not

optimized. A similar performance can be achieved for Eigen-

beamforming. Note that the proposed SNR-based RIS phase

design when combined with Eigen-Beamforming gives unsat-

isfactory results. This behavior can be attributed to the fact

that both schemes aim to maximize the SNR by aligning the

phases at the receiving antennas, regardless the location of

the users. Hence, we lost some degrees of diversity on the

information about the user locations resulting in higher errors.

TABLE I: The PEB (cm) for various RIS phase and beam-

forming designs.

RIS Phase
Beamformer

No Eigen-Beamformer Optimized CRLB-based

Mirror 0.615 0.25 0.20

SNR-based 0.077 0.738 0.037

Optimized CRLB-based 0.023 0.006 0.006
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(b) The GDOP for the orientation angles.

Fig. 11: The GDOP for various NR and φBM, for NB = 36,

NM = 16, pR = (4, 3, 1), dBM=3 m, αM = 30, and N=2400.

g) Geometric dilution of precision: In Fig.11, the impact

of the geometry on the localization and orientation estimation

errors is investigated as a function of the number of elements

in the RIS. The GDOP value can be considered as an amplifi-

cation of the estimation error due to the geometry. Therefore,

smaller values of the GDOP indicate a favorable geometry of

the mobile with respect to both the gNB and the RIS. The

GDOP for the position, GDOPpM
, is depicted in Fig. 11a as

a function of the number of RIS elements for various UE

locations with different azimuth angles between the gNB and

UE, φBM, while the corresponding distance and the elevation
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angle are fixed to dBM = 3 m and θBM = 30◦, respectively.

It can be noticed that increasing the number of RIS elements

tends to enhance the geometry of the problem and, thus, it can

reduce the positioning error. Also, the GDOP depends strongly

on the azimuth angle for small NR and, consequently, on the

UE orientation. The same behavior can be seen in Fig.11b for

the GDOP related to the orientation, i.e., GDOPφM
. The main

difference is that it is more harder to estimate the orientation

angle with a small number of RIS elements compared to the

position estimation. In fact, the GDOP can be interpreted

as a mapping from the standard deviation of the thermal

noise to the estimation error in terms of the PEB and OEB.

For example, with NR = 36 and φBM = 45◦, we have

PEB ≈ 3.8 (dBM /
√
P )σ, while OEB ≈ (3650/

√
P )σ, from

(41) and (42). We can see that, for a fixed number of RIS

elements, the position can be estimated with a higher precision

with respect to the orientation. Also, the GDOP for the

orientation decreases for RISs with larger number of elements.

The reason is that the orientation estimation relies on the

curvature of the wavefront in the near–field region. Hence,

for a larger number of elements, the effective size of the RIS

increases along with the Fraunhofer distance [62].

VI. CONCLUSIONS

In this paper, we proposed an architecture for joint com-

munication and UE localization and orientation estimation

in a RIS-assisted environment. We derived the ultimate per-

formance in terms of PEB and OEB, accounting for both

near- and far-field propagation conditions. The RIS phases

were designed to maximize the SNR towards the desired

UE for both communication and localization enhancement.

Indeed, we obtained that the RIS with the proposed SNR-

based phase design can significantly increase the localization

performance by focusing the incident spherical wavefront from

the UE toward the gNB. The proposed SNR-based scheme,

when compared to a conventional system without RIS, can

achieve up to two orders and one order of magnitude re-

duction in PEB and OEB, respectively. Also, the localization

accuracy strongly depends on the considered geometry and

the orientation of the UE. The achieved results open the

door towards the adoption of RISs as an effective mean for

supporting mobile wireless localization and, thus, boosting

the communication performance. A step forward will be the

analysis of the localization performance limits in multi-RISs

scenarios, or the design of ad-hoc localization algorithms in

the presence of multi-scatterers, accounting for proper channel

models [83]. In this sense, the provided bounds can serve as

a benchmark for comparing the attainable performance with

the new algorithms.
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APPENDIX A

THE JACOBIAN MATRIX

In this appendix, we report the elements of the Jacobian

matrix for the CRLB derivation in (27). The Jacobian matrix

of the mobile location is given by (63) in the top of next

page where for each aM ∈ {xM, yM, zM} and S ∈ {B,R}, the

following relationships hold

∇aM
τSM =

∇aM
dSM
c

=
1

c

aM − aS
dSM

, (64)

∇aM
φSM =

1

1 +
(

yM−yS

xM−xS

)2 ∇aM

(
yM − yS
xM − xS

)
, (65)

∇aM
θSM =

1√
1−

(
zM−zS
dSM

)2 ∇aM

(
zM − zS
dSM

)
, (66)

∇aM
ρBM = − λ

4 π

1

(dBM)
2

aM − aB
dBM

, (67)

∇aM
ρBRM = − λ

4 π

1

(dRM + dBR)2
aM − aR
dRM

. (68)

After some manipulation, (65)-(66) can be simplified as





∇xM
φSM = − 1

dSM

sinφSM

cos θSM

∇yM
φSM = 1

dSM

cosφSM

cos θSM

∇zM φSM = 0





∇xM
θSM = − sin(θSM) cos(φSM)

dSM

∇yM
θSM = − sin(θSM) sin(φSM)

dSM

∇zM θSM = cos(θSM)
dSM

.

(69)

APPENDIX B

FIM ELEMENTS

In order to derive the elements of the FIM in (34), the

derivatives of the mean received signal with respect to the

parameters, i.e., ∂µb[n]/∂Γj , should be derived for each Γj ∈
Γ. Let us first rewrite (12) as

µb[n] = µb,BM[n] + µb,BRM[n], (70)

with

µb,BM[n] ,
√
PρBM

NM∑

m=1

µbm[n], (71)

µb,BRM[n] ,
√
PρBRM

NM∑

m=1

NR∑

r=1

µbrm[n]. (72)

The signal inside the summation is

µbm[n] , xm[n] exp
(
−j2πfn

(
τ̃bm + ξ̃BM + ηm

))
, (73)

µbrm[n] , xm[n] exp (j θr)

× exp
(
−j2 πfn

(
τ̃br + τ̃rm + ηr + ξ̃BRM + ηm

))
, (74)

where we have the following definitions for the synchronous

signalling: ξ̃BM , ξBM, ξ̃BRM , ξBM, τ̃bm , τbm, τ̃rm , τrm,

and τ̃br , τbr; whereas for the asynchronous signalling it

is: ξ̃BM , χBM/2πfn, ξ̃BRM , χBRM/2πfn, τ̃bm , ∆τbm,

τ̃rm = ∆τrm, and τ̃br , ∆τbr .
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JpM
=




∇xM
ρBM ∇xM

θBM ∇xM
φBM ∇xM

τBM ∇xM
ρBRM ∇xM

θRM ∇xM
φRM ∇xM

τRM
∇yM

ρBM ∇yM
θBM ∇yM

φBM ∇yM
τBM ∇yM

ρBRM ∇yM
θRM ∇yM

φRM ∇yM
τRM

∇zMρBM ∇zMθBM ∇zMφBM ∇zMτBM ∇zMρBRM ∇zMθRM ∇zMφBM ∇zMτRM


 , (63)

Two-stage localization: The derivatives for the indirect

approach can be found now as

∇ρBM
µb[n] = µb,BM[n]/ρBM, ∇ρBRM

µb[n] = µb,BRM[n]/ρBRM,

∇θBM µb[n] = −j2πfn
√
P ρBM

NM∑

m=1

µbm[n]∇θBM τbm,

∇θRMµb[n] = −j2πfn
√
P ρBRM

NM∑

m=1

NR∑

r=1

µbrm[n]∇θRM τrm,

∇φBM
µb[n] = −j2πfn

√
P ρBM

NM∑

m=1

µbm[n]∇φBM
τbm,

∇φRM
µb[n] = −j2πfn

√
P ρBRM

NM∑

m=1

NR∑

r=1

µbrm[n]∇φRM
τrm,

∇τBMµb[n] = −j2πfn
√
P ρBM

NM∑

m=1

µbm[n]∇τBMτbm,

∇τRMµb[n] = −j2πfn
√
P ρBRM

NM∑

m=1

NR∑

r=1

µbrm[n]∇τRM τrm,

As regards the derivatives with respect to the rotational angles

of the mobile, we have ∀φM ∈ {αM, βM, γM}

∇φM
µb[n] = −j2πfn

√
P

(
ρBM

NM∑

m=1

µbm[n]∇φM
τ̃bm

+ ρBRM

NM∑

m=1

NR∑

r=1

µbrm[n]∇φM
τ̃rm

)
. (75)

The derivatives of the TOAs with respect to the parameters

can be written for each S ∈ {B,R} and the corresponding

antenna index s ∈ {b, r} as

∇θSMτsm =
dSM
c dsm

[(xm − xs) sin θSM cosφSM+

+(ym − ys) sin θSM sinφSM − (zm − zs) cos θSM] ,
(76)

∇φSM
τsm =

dSM
c dsm

[(xm − xs) cos θSM sinφSM+

− (ym − ys) cos θSM cosφSM] , (77)

∇φM
τsm =

1

c dsm
[xm ∇φM

xm + ym∇φM
ym + zm∇φM

zm

− (xs ∇φM
xm + ys ∇φM

ym + zs ∇φM
zm+

+dSM (∇φM
xm cos θBM cosφBM+

+∇φM
ym cos θBM sinφBM +∇φM

zm sin θBM))] , (78)

∇τSMτsm =
1

dsm

[
dSM −G(2)

sm

]
, (79)

∇φM
∆τsm = ∇φM

τsm, ∇θSM∆τsm = ∇θSMτsm, (80)

∇φSM
∆τsm = ∇φSM

τsm, ∇τSM∆τsm = ∇τSMτsm − 1, (81)

where, by letting cxM
, cos (xM) and sxM

, sin (xM), we get

∇αM
xm = −sαM

cβM
x(0)
m + [−sαM

sβM
sγM

− cαM
cγM

] y(0)m

+ [cαM
sγM

− sαM
sβM

cγM
] z(0)m ,

∇βM
xm = −cαM

sβM
x(0)
m + cαM

cβM
sγM

y(0)m + cαM
cβM

cγM
z(0)m ,

∇γM
xm = [cαM

sβM
cγM

+ sαM
sγM

] y(0)m +

+ [sαM
cγM

− cαM
sβM

sγM
] z(0)m ,

∇αM
ym = cαM

cβM
x(0)
m + [−cγM

sαM
+ cαM

sβM
sγM

] y(0)m +

+ [cγM
cαM

sβM
+ sαM

sγM
] z(0)m ,

∇βM
ym = −sαM

sβM
x(0)
m + sαM

cβM
sγM

y(0)m + cγM
sαM

cβM
z(0)m ,

∇γM
ym = [−sγM

cαM
+ sαM

sβM
cγM

] y(0)m +

− [sγM
sαM

sβM
+ cαM

cγM
] z(0)m ,

∇αM
zm = 0,

∇βM
zm = −cβM

x(0)
m − sβM

sγM
y(0)m − sβM

cγM
z(0)m ,

∇γM
zm = cβM

cγM
y(0)m − cβM

sγM
z(0)m .

Direct localization: When a direct localization approach

is used, the signal can be rewritten as

µb =

NM∑

m=1

(
fbm (ρBM, dbm) +

NR∑

r=1

gbrm (ρBRM, drm)

)
, (82)

where fbm and gbrm are two non-linear functions depending

on the parameters to be estimated,5 defined as6

fbm (ρBM, dbm),
√
Pxm[n]ρBM(pM) exp

(
−j 2π

fn
c

d̃bm

)
,

(83)

where d̃bm = d̃bm (pM,φM) , dbm and d̃bm , ∆dbm in

synchronous and asynchronous cases, respectively, and

gbrm (ρBRM, drm) ,
√
P xm[n]ρBRM(pM) exp (j θr) ·

× exp

(
−j 2 π

fn
c

(
d̃br + d̃rm

))
, (84)

where d̃rm , drm and d̃rm , ∆drm in synchronous scheme;

whereas d̃br = dbr and d̃br = ∆dbr in asynchronous scheme.

The gradient vector with respect to the position, pM, and

orientation, φM, can be written from (82) as

∇pM
(µb) =

NM∑

m=1

∇pM
fbm +

NR∑

r=1

∇pM
gbrm, (85)

∇φM
(µb) =

NM∑

m=1

∇φM
fbm +

NR∑

r=1

∇φM
gbrm, (86)

5Generally, the optimal design of RIS phases can depend on the UE location
and orientation. For convenience, such a dependence is neglected in (82).

6Here we have dropped the synchronization mismatches and array errors.
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where for the direct path we have

∇pM
fbm =

√
P xm [∇dBM

ρBM∇pM
dBM+

− j 2 π
fn
c
ρBM∇pM

d̃bm

]
e−j 2 π

fn
c

d̃bm ,

∇φM
fbm = −j 2 π

fn
c

√
P ρBM xm e−j 2π

fn
c

∇φM
d̃bm , (87)

while for the RIS-relayed path it is

∇pM
gbrm =

√
P xm exp (j θr) [∇drm

ρBRM∇pM
dRM+

− j 2 π
fn
c
ρBRM∇pM

d̃rm

]
e−j 2π

fn
c (d̃rm+d̃br),

∇φM
gbrm = − j 2 π fn

c

√
P ρBRM xm ej θr e−j 2π

fn
c (d̃rm+d̃br),

×∇φM
d̃rm, (88)

The derivatives of the path-loss amplitudes with respect to

the distances between array centers are

∇dBM
ρBM = − λ

4πd2BM
, ∇dRM

ρBRM = − λ

4π(dBR + dRM)2
.

(89)

By denoting with aM ∈ {xM, yM, zM}, S ∈ {B,R} and s ∈
{b, r}, we can obtain

∇aM
∆dsm = ∇aM

dsm −∇aM
dSM, (90)

∇aM
dsm =

dSM
dsm

(
∇aM

dSM − ∇aM
dSM

dSM
G
(2)
sm −∇aM

G
(2)
sm

)
,

(91)

where ∇aM
dSM(aM) =

aM−aS

dSM
and where

∇aM
G
(2)
sm = − (xm − xs) sin(θSM) cos(φSM)∇aM

θSM

− (xm − xs) cos(θSM) sin(φSM)∇aM
φSM

− (ym − ys) sin(θSM) sin(φSM)∇aM
θSM

+ (ym − ys) cos(θSM) cos(φSM)∇aM
φSM

+ (zm − zs) cos(θSM)∇aM
θSM, (92)

with ∇aM
φSM and ∇aM

θSM as in Appendix A. Thus, the

derivatives in (92) becomes

∇xM
G
(2)
sm =

xm − xs

dSM

[
sin2 θSM cos2 φSM + sin2 φSM

]

+
ym−ys
dSM

[
sin2 θSM cosφSM sinφSM − sinφSM cosφSM

]

− zm − zs
dSM

sin θSM cosφSM cos θSM, (93)

∇yM G
(2)
sm =

xm − xs

dSM

[
sin2 θSM sinφSM cosφSM

− sinφSM cosφSM] +
ym − ys
dSM

[
sin2 θSM sin2 φSM

+cos2 φSM

]
− zm − zs

dSM
[sin θSM cos θSM sinφSM] ,

(94)

∇zM G
(2)
sm = −xm − xs

dBM
sin θSM cos θSM cosφSM

+
ym − ys
dSM

[sin θSM cos θSM sinφSM]

+
zm − zs
dSM

cos2 θSM. (95)
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