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Abstract—The Internet of Things has brought digitalization
to intensive domains through the automation of their real-
world processes. However, the criticality of these processes is
reflected in high Quality of Service (QoS) requirements for
the application to work properly. Moreover, business-level QoS,
such as the operational cost, are also key to the feasibility of
these applications. This QoS depends on three, closely-related
dimensions: the application software, the computing devices and
the communication network, which provide high flexibility to
obtain different performances at different costs. Thus, to achieve
optimal QoS in these scenarios, the application, computing and
networking dimensions must be optimized, considering their
crucial interplay in a joint effort. Furthermore, this solution must
allow multi-objective optimization, finding the optimal trade-off
between operational cost and application performance. In this
paper, we present Multi-Objective SDN Fog Optimization (MO-
SFO), a holistic framework that allows for the optimization of
both the response time and the deployment cost. MO-SFO is
evaluated over an emulated smart city case study, showing the
cost and performance trade-off achieved in different topologies.

I. INTRODUCTION

The advent of the Internet of Things (IoT) paradigm has
enabled for the bridging of computing applications and net-
works with real-world processes [1]. The potential of such
computerization has attracted the interest of the research com-
munity in intensive domains, such as smart cities [1], industry
or healthcare [2]. Nonetheless, the criticality of these domains
is translated to strict Quality of Service (QoS) requirements
for their IoT applications, such as low response times [1], [2].
Therefore, the integration of IoT-based systems in intensive
domains is contingent on their ability to provide a high enough
QoS, such as smart surveillance systems whose performance
depends on the QoS [1], [2]. There are three dimensions that
affect the QoS of IoT applications: application, computing, and
networking [3]. All of them need to be considered in order to
meet the strict QoS requirements of these intensive domains.

Regarding the application dimension, modern IoT applic-
ations require to be highly evolvable and interoperable, as
well as allowing distributed deployments [4]. Thus, these
applications are often designed following the Service-Oriented
Computing paradigm, and, more concretely, the Microservices
Architecture (MSA) design pattern [4]. In MSAs, applications
are divided into small and loosely-coupled microservices,
which perform simple tasks individually and collaborate to
support more complex functionalities. Moreover, each of

these microservices can be deployed individually, allowing
the application to be deployed in a distributed manner and
providing higher flexibility. Nonetheless, this is not a simplistic
decision, as the application’s QoS is affected by where each
microservice is deployed. On the one hand, devices with higher
computational power are able to provide lower execution
times and, thus, lower response times. On the other hand,
powerful devices tend to be further away from the data source,
therefore having higher latencies, raising the response times.
The problem of optimally deploying a set of microservices
is labelled in literature as the Decentralized Computation
Distribution Problem (DCDP) [5].

In the computer dimension, the QoS requirements, as well
as the aforementioned focus on distribution, also motivate the
used paradigms. Traditionally, cloud computing was used to
deploy IoT applications [6]. Nonetheless, due to the com-
plexity of guaranteeing a suitable QoS using cloud servers
exclusively, which tend to be far away from IoT devices,
intensive domains tend to move towards fog computing infra-
structures [1]. In these infrastructures, servers that are closer
to users (fog nodes, FNs) are used alongside with cloud
servers [6]. Fog infrastructures generally enhance the QoS of
the applications deployed in them due to their lower latencies.
Nonetheless, the microservices running on both the cloud and
FNs need to communicate between themselves, and therefore,
the placement of these FNs is crucial in the QoS enhancement
experienced by the application [2], [3]. In order to place
them optimally in the infrastructure, the Fog Node Placement
Problem (FNPP) [2] needs to be solved.

The QoS of the communications between microservices and,
therefore, between devices, depends on the networking dimen-
sion. The network needs to be scalable and flexible, meeting
the required QoS [1], [3]. Furthermore, in fog infrastructures,
microservices are often replicated and deployed in different
FNs [3]. Before consuming a certain microservice, the IoT
device needs to learn where the nearest replica is deployed
(service discovery) [7]. In order to perform this task separately
from the IoT application’s concerns, it would be desirable for
the network to automatically route requests to the nearest rep-
lica. It is possible to perform service discovery at the network
level while providing scalability and flexibility, by exploiting
the Software-Defined Networking (SDN) paradigm [7],

A foundation of the SDN paradigm is to decouple the data



plane, embodied in SDN switches, from the control plane,
which is managed at the SDN controller. Therefore, the SDN
switches and the SDN controller need to communicate. The
communication QoS between them is crucial, as every time
these planes need to interact, they will be subject to such
QoS [8]. In order to optimize this QoS, the SDN Controller
Placement Problem (CPP) [8] can be solved, placing the SDN
controller wherever the QoS from the switches is best.

These three dimensions are inherently coupled, as each
decision taken in a dimension affects the rest. Changing the
placement of the controller affects the overall network QoS [8],
which dictates the QoS between FNs and, consequently, the
QoS between the microservices deployed in them [3]. Chan-
ging the placement of a FN affects the flow of traffic through
the network, as a node that is the source and destination of
communications is moved [2]. The flow of traffic is key to
the optimal placement of the SDN controller [8], and thus, the
network QoS will be affected, therefore also affecting the QoS
of the microservices that are either deployed in the moved FN
or communicating with microservices deployed in the moved
FN [3].

However, companies usually have limited resources that
limit the optimal deployment configurations that they can
feasibly deploy [9]. In these cases, there are two QoS ob-
jectives in conflict: performance QoS, namely response time,
and business QoS, in the form of deployment cost [9]. These
two QoS objectives need to be traded off, performing a multi-
objective optimization that suggests high-performance, low-
cost deployment configurations that can be feasibly deployed.

In this work, we present Multi-Objective SDN Fog Optimiz-
ation (MO-SFO), a multi-objective framework for the holistic
solution of the CPP, the DCDP and the FNPP, optimizing
response time and cost. In [3], some of the authors of this
work proposed Umizatou, a framework able to optimize the
response time by solving these three problems in a single
effort. However, Umizatou only allows for the optimization
of response time. This shortcoming complicates the use of
Umizatou in scenarios in which the deployment cost is a
QoS objective, as well as those in which cost and response
time need to be traded off. MO-SFO extends Umizatou by
considering multiple metrics, as well as multi-objective op-
timization. Furthermore, MO-SFO has been evaluated over
an emulated SDN-fog testbed, whereas Umizatou’s evaluation
was not performed in an emulated environment [3]. The main
contributions of this work are:

• The formalization of a problem that combines CPP,
DCDP and FNPP for intensive IoT environments, aimed
at optimizing the response time, the deployment cost, or
both at the same time.

• The formulation of a multi-objective, Mixed Integer Lin-
ear Programming (MILP) optimization solution.

• The evaluation of MO-SFO over a realistic, emulated
smart city case study.

The remainder of this paper is structured as follows. Sec. II
explains the system model of MO-SFO. Sec. III details the
multi-objective optimization formulation of MO-SFO making

use of MILP. Sec. IV presents the evaluation of MO-SFO using
an emulated smart city case study. Finally, Sec. V concludes
the paper and highlights future challenges.

II. SYSTEM MODEL

To make it easier to understand the MO-SFO model, the
problem is explained through a smart city case study. This
case study is based on Intel’s OpenVINO toolkit, an industrial
framework for the execution of deep learning video and audio
analysis models, designed for its use in fog environments and
tailored towards smart cities [10]. Nonetheless, the MO-SFO
framework is not exclusive to smart city scenarios, and could
be used in other intensive IoT domains as well.

In the case study, the smart city has a set of cameras
and microphones, which act as IoT devices and continuously
send their information to a surveillance IoT application. This
application allows for five different functionalities: detection
of presence of people and vehicles, visual tracking of such
people and vehicles, classification of the vehicles based in their
attributes (e.g., the type of vehicle, their colors or their sizes),
detection of the zone vehicles and people are on (e.g., whether
they are on the sidewalk or on the road, on which lane of the
road they are on), and environmental audio recognition (e.g.,
detection of car horns or car crashes through their sound) [10].
Each of these functionalities is implemented as a microservice.
Based on their role (e.g., security surveillance cameras, traffic
control cameras, emergency detection microphones), they can
request these functionalities to be carried out with their video
or audio inputs. This application is depicted in Fig. 1.

For the deployment of this surveillance application in the
smart city, a SDN network, with the topology shown in Fig. 1,
is envisioned. While this network connects the IoT devices,
the placement of the SDN controller, as well as the fog
nodes, is not yet decided. Moreover, both the application’s
response time and its deployment cost are considered crucial
QoS metrics that need to be optimized [1]. Thus, the CPP, the
FNPP, and the DCDP need to be solved to optimize the QoS
of this application. The application operator defines the two
QoS metrics to be optimized in order to find the best trade-off
between response time and cost.

In this scenario, the objective of MO-SFO is to deploy SDN
controllers, FNs and microservice instances within the FNs, in
a manner that minimizes both the cost of the deployment and
the application’s response time. To do so, MO-SFO decides
to use the deployment shown in Fig. 1: 2 FNs are deployed,
one on the top side, with microservices for video processing,
and one in the bottom, including audio recognition, and an
SDN controller is deployed in the middle. MO-SFO deems
this deployment optimal in terms of both objectives. While
it would be possible to deploy more microservice replicas in
each FN to further decrease response time, doing so would
increase the energy consumption, and thus, the operational
expenditures (OPEX) of the system. Similarly, deploying more
FNs or SDN controllers would also decrease the response
time, at the cost of higher capital expenditures (CAPEX). On
the other hand, it would be possible to deploy a single FN,



Figure 1: MO-SFO in the smart city case study.

running a replica of each microservice, to reduce the CAPEX
and OPEX of the system. However, doing so would provoke
an increase in the response time.

The decisions of MO-SFO are possible due to its multi-
objective joint approach: in order to assess if deploying
additional FNs is more cost-effective than deploying addi-
tional SDN controllers, MO-SFO needs control over both the
computing and networking dimension. Furthermore, the cost-
effectiveness of the equipment depends on the application
dimension’s communication patterns, computational workload
and microservice placement. This sort of analysis can only
be performed if both objectives are optimized with an holistic
perspective that covers all three dimensions.

III. PROBLEM FORMULATION

In this section, the mathematical abstraction of the model
of the joint CPP, DCDP and FNPP is presented as an MILP
formulation. This formulation allows for the problem to be
solved through the use of automatic MILP software solvers.

In this formulation, the infrastructure is represented by a
directed graph G = {V,L}, where L represents the links and
V represents the infrastructure’s vertices. A link denoted as lij
links together vertices i and j, with a propagation latency δij
and a maximum capacity θij . The vertices of the infrastructure
can be divided into two subsets: V = H ∪S;S ∩H = ∅, with
H containing the vertices that are hosts, and S containing
those that are SDN switches. Furthermore, every switch s ∈ S
has a certain processing latency δs. To simplify the understand-
ing of the formulation, let SW (v)∀v ∈ V be a binary function,
whose value is 1 if v ∈ S and 0 otherwise. Moreover, each
switch in the infrastructure has a given CAPEX (CAPEXs)
and OPEX per second due to energy consumption (OPEXs).

Continuing with fog nodes, let r be the total RAM memory
of an FN, which determines the number and kind of mi-
croservice replicas that can be deployed in it. In terms of cost,
placing the FN has a certain CAPEX, defined as CAPEXFN ,
and consumes an amount of energy, i.e., it has a certain
OPEX. The energy consumption depends on the usage of
the FN, as more intensive usage consumes more energy, and
thus, we define OPEXFN as the OPEX per second for the
corresponding FN. With respect to the SDN controller, we
need to consider the size of control packets, which we label σ,
to support multiple SDN protocols. Nonetheless, in this work,
this size is taken from the OpenFlow 1.3 specification [11].
Similarly to the switches, each controller has a certain CAPEX

(CAPEXC) and OPEX per second due to energy consump-
tion (OPEXC).

To represent the application, we use a model based in the
MSA pattern, i.e., the application is divided into a set of
microservices we label M . Each microservice m consumes
an amount of RAM rm, and its input and output data have
a size of Im and Om, respectively. Furthermore, in MSA-
based applications, each client (i.e., IoT device) requests for
functionalities in the form of workflows [4]. Each workflow
can involve one or multiple collaborating microservices, which
are executed in order, pipelining the output of a microservice
to the input of the next one [9]. We represent the total set
of workflows requested as W , and each workflow as an
ordered set of microservices w = {c1, c2, ..., c|w|} ⊆ M . It is
important to note that each element is a microservice ci ∈ M ,
and elements from different workflows can refer to the same
microservice. For simplicity, we also define the binary function
WR(w, h)∀w ∈ W,h ∈ H , which takes the value of 1 if
workflow w is requested by host h and 0 otherwise.

Finally, we introduce the parameter α ∈ [0, 1] as a means for
the user of MO-SFO to select the objective or objectives of the
optimization, as well as to decide the priority of each objective.
If α = 0, MO-SFO will only consider the deployment cost as
the QoS objective, useful for scenarios with very stringent
budgets and not very time critical. Conversely, α = 1 only
enforces the response time objective, which may be used
whenever the budget is not a constraint. A value of α = 0.5
indicates MO-SFO should find a trade-off between deploy-
ment cost and response time, which is meant for problems
where the budget constrains an application that requires high
performance.

After defining the parameters for the problem, the decision
variables need to be defined as well. To solve the FNPP,
FNs must be placed, replacing SDN switches: let ns∀s ∈ S
be a binary variable that will take a value of 1 if a FN is
placed in switch s. Continuing the joint approach, to solve
the DCDP, microservice replicas need to be deployed to
FNs. We define zwsca∀w ∈ W, s ∈ S, a ∈ [1, |w|] a binary
variable, representing whether the replica of microservice ca
in workflow w is deployed to the FN in switch s or not.
Moreover, the communication between microservices gener-
ates traffic flows, which are represented by the binary variables
fvwca
ij ∀lij ∈ L, v ∈ V,w ∈ W,a ∈ [1, |w|]. These variables

take a value of 1 if the traffic generated by vertex v as a
consequence of requesting microservice ca of workflow w is
routed through the link lij . It is important to note that the
response from the last microservice in each workflow to the
requesting IoT device must also be considered: let the binary
variables f ′vw

ij ∀lij ∈ L, v ∈ V,w ∈ W represent them with
a value of 1 if the traffic generated by vertex v due to the
response of workflow w is routed through the link lij .

Finally, the CPP needs to be solved as well. SDN controllers
are also placed in switches, and thus, xs∀s ∈ S is defined as a
binary variable whose value is 1 if an SDN controller is placed
on SDN switch s. Moreover, if multiple controllers are placed,
each switch needs to know which controller they should



communicate with: let yss′∀s, s′ ∈ S be a binary variable
that will be 1 if the SDN switch s is assigned to communicate
with the controller from switch s′. These communications also
generate traffic flows, which are represented through the binary
variables cfs

ij∀lij ∈ L, s ∈ S. These variables take the value
of 1 if the flow of control communications for SDN switch
s is routed through the link lij . Then, the problem can be
formalized as follows:

minαRT + (1− α)(CAPEX +OPEX) (1)

subject to:

RT =
1

|W |
∑
w∈W

∑
s∈S

∑
lij∈L

(

|w|∑
a=1

(fswca
ij ) + f ′sw

ij )(δij + SW (j)δi)

+ SW (j)
∑

lkm∈L

cf j
km(δkm + SW (m)δk)

(2)

CAPEX =
∑
s∈S

(CAPEXFNns +CAPEXCxs +CAPEXsus)

(3)

OPEX =
∑

s ∈ S((
∑
w∈W

∑
a = 1|w| rca

r
OPEXFNzwsca)

+OPEXCxs +OPEXsus)

(4)

us = max( max
lis∈L,v∈V,w∈W,a∈[0,|w|]

(max(fvwca
is , f ′vw

is ))

, max
lis∈L,s′∈S

(cfs′
is ))

(5)

∀w ∈ W,a ∈ [1, |w|] :
∑
s∈S

zwsca = 1 (6)

∀w ∈ W,a ∈ [1, |w|], s ∈ S : zwsca ≤ ns (7)

∀s ∈ S :
∑
w∈W

|w|∑
a=1

zwscarca ≤ r (8)

∀lij ∈ L :
∑
s∈S

[cfs
ijσ +

∑
w∈W

[(

|w|∑
a=1

fswca
ij Ica) + (f ′sw

ij Oc|w|)]]

≤ θij

(9)

∀i, v ∈ V,w ∈ W :

∑
j∈V

fvwc1
ij − fvwc1

ji =


WR(w, v) if i = v

−WR(w, v)zwic1 if v ∈ H

0 otherwise.

(10)

∀i, v ∈ V,w ∈ W :∑
j∈V

f ′vw
ij − f ′vw

ji =

{
zwvc|w| if i = v

−WR(w, i) otherwise.
(11)

∀i, v ∈ V,w ∈ W,a ∈ [0, |w|] : −zwvca−1
+ z′iwvca ≤ 0 (12)

∀i, v ∈ V,w ∈ W,a ∈ [0, |w|] : −1 + zwica + z′iwvca ≤ 0 (13)

∀i, v ∈ V,w ∈ W,a ∈ [0, |w|] : zwvca−1
+1− zwica − z′iwvca ≤ 1 (14)

∀i, v ∈ V,w ∈ W,a ∈ [0, |w|] : −zwica + z′′iwvca ≤ 0 (15)

∀i, v ∈ V,w ∈ W,a ∈ [0, |w|] : −zwvca−1
+ z′′iwvca ≤ 0 (16)

∀i, v ∈ V,w ∈ W,a ∈ [0, |w|] : zwvca−1
+ zwica − z′′iwvca ≤ 1 (17)

∀i, v ∈ V,w ∈ W,a ∈ [2, |w|] :

∑
j∈V

fvwca
ij − fvwca

ji =


z′iwvca if i = v

0 if v ∈ H

−z′′iwvca otherwise.

(18)

∀s ∈ S :
∑
s′∈S

yss′ = 1 (19)

∀s, s′ ∈ S : yss′ ≤ xs′ (20)

∀i ∈ V, s ∈ S :

∑
j∈V

fvwca
ij − fvwca

ji =


0 if i ∈ H

1− ysi if i = s

−ysi otherwise.

(21)

Eq. 1 expresses the optimization objective: to minimize
the weighted sum of the average response time of workflows
and the deployment cost, integrated by CAPEX and OPEX.
Starting with response time, since all FNs are equal, each
microservice has a constant execution time, and hence the
objective is to minimize workflow latency, as defined in Eq. 2.
Workflow latency includes both the latency of application
traffic flows (i.e., traffic generated by requesting microservice
execution) and the control latency of switches traversed by the
application flows related to the workflow. With respect to the
cost, CAPEX is defined in Eq. 3 as the sum of the CAPEX
of used switches, FNs and SDN controllers. OPEX, defined
at Eq. 4, integrates the energy consumption of used switches
and controllers as well, while the energy consumption of FNs
is integrated as dependent on the resource consumption of the
microservices deployed in it. Nonetheless, to define them both,
we need to know if a switch is being used or not, which is
defined in Eq. 5.

Moving to constraints, Eq. 6 states that each microservice
request in a workflow can only be fulfilled once. Eq. 7
ensures that only FNs that are actually placed can execute
microservices. Eq. 8 states that the total RAM consumed by
the microservices executed in an FN cannot be higher than
the available RAM of the FN. Eq. 9 enforces link capacity.
Eqs. 10-18 adapt the classic flow constraints to the traffic
flows generated by workflows. Eq. 19 makes sure only one
controller is assigned to each switch. Eq. 20 states that only
placed controllers can be assigned to switches. Finally, Eq. 21
adapts the flow constraints to control flows.

This formulation, along with a defined scenario, can be
used as an input to an software MILP solver to obtain a
solution with optimal placements for SDN controllers, FNs
and microservices, as well as optimal information routing,
according to the optimization objective or objectives selected.

IV. PERFORMANCE EVALUATION

The objective of this section is the evaluation of MO-SFO
over a smart city case study using different topologies.



A. Evaluation environment

The evaluation of MO-SFO has been performed over emu-
lated testbeds based on the case study presented in Sec. II.
These emulated environments have been created using the
Kathará emulation framework [12], which allows for the
creation of emulated SDN networks using Docker containers.
Regarding the networking dimension, the switches of the
emulated networks are based on OpenVSwitch [13], while
the SDN controller software is Faucet, a controller made
for enterprise usage [14]. Moreover, the network conditions
have been emulated using Linux’s traffic scheduler through
the tc command. The evaluation has been performed on
topologies created using the Erdös-Rényi model for graph
generation [15], transforming the nodes with a degree of one
into IoT devices, while the rest are left as SDN switches.
The tests have been performed over two topologies: the Small
topology (7 SDN switches, 6 IoT devices), and the Large
topology (20 SDN switches, 18 IoT devices), based on the
topology sizes from [3]. On the application dimension, all
the five microservices defined in the case study have been
emulated using the official OpenVINO Docker image from
Intel 1, which includes real implementations for all of them, re-
quiring approximately 1.25 GB of RAM each. IoT devices are
emulated through Alpine Linux-based containers that stream
the videos provided by Intel for their use with OpenVINO 2.
Each IoT device requested the execution of a single workflow
10 times, which are used on the Docker image to measure the
average response time. On the computing dimension, each FN
has the specifications of a PICO-TGU4, a device for intensive
domains with 32 GB of RAM. The emulated environments
have been executed in an AWS c1.xlarge instance.

The version of MO-SFO used for the evaluation applies the
formulation from Sec. III, through the use of the MILP solving
software Gurobi, to the smart city scenario. MO-SFO has been
executed in a computer with an Intel i7-8565U CPU and 16
GB of RAM. Three values of α were tested in each topology:
1, 0.5 and 0, which are labeled under the objective they
represent (Response time, Trade-off and Cost, respectively). In
these six scenarios, different analyses have been performed.
First, an analysis to evaluate the cost of the deployment
proposed by MO-SFO in each scenario is performed. In this
analysis, the overall cost of each scenario, including the cost of
each of the elements (e.g., SDN controllers, FNs) is evaluated,
including the CAPEX and the OPEX over 5 years, which is a
common amortization period [1]. Moreover, the distributions
of the response time obtained in the emulated environments
are also analyzed, assessing both the performance of MO-
SFO solutions and allowing for the evaluation of the cost-
effectiveness achieved by each objective.

B. Performance analysis

In the first analysis, depicted by Fig. 2, the cost of the
deployment during 5 years on each of the six scenarios is com-

1https://hub.docker.com/r/intel/video-analytics-serving
2https://github.com/intel-iot-devkit/sample-videos
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Figure 2: Deployment cost of each scenario, including CAPEX
and OPEX during 5 years.
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Figure 3: Distribution of response time in each scenario

pared, as well as the contribution of each element to the total
cost. Moreover, four elements are considered part of the costs:
the SDN controllers (including their CAPEX and OPEX), the
CAPEX of FNs, the OPEX due to the microservice execution,
and the SDN switches. The first conclusion that can be drawn
from the figure is that the main source of cost is the energy
consumption of the microservices, accounting for 11,845C
(65-77% of the total cost, 6.49C/day) in the small topology
and 34,123C (67-79%, 18.69C/day) in the large topology,
2.88× as much as in the small topology. Moreover, the cost
due to microservice execution is the same across all objectives,
due to the fact that the same number of microservice replicas
were deployed in all cases. The deployment of the network
infrastructure, i.e., SDN switches, is also a very important
element in terms of cost, representing a total of 16-30% of the
cost in the small topology, and a 13-35% of the large topology
costs. Furthermore, the large topology has an overall higher
cost than the small topology, and the response time objective
requires for more costly deployments. The cost and trade-off
objectives place a single controller in the small topology, while
the response time objective places two. Nonetheless, three
are placed in the large topology, regardless of the objective.
Finally, the optimal cost objective achieves the best cost, while
the multi-objective trade-off achieves a slightly (3-6%) higher
cost. The response time objective, however, has the highest
costs, 20-23% higher than the cost objective.

Fig. 3 details the distribution of the response time in each
of the scenarios using a box plot, in which the medians are
drawn as white lines in each box, and the means are depicted



by cyan triangles. These response times are the result of 10
requests of analysis over a 1-minute-long video, using the
multiple microservices of the application (e.g., audio recogni-
tion, vehicle classification), and thus, the response time cannot
be less than 60 seconds. Moreover, due to incompatibilities,
GPU acceleration was also disabled in the emulated testbed.
Starting with the small topology, the response time objective
achieves an average response time of 299 seconds, a median
response time of 304 seconds and a standard deviation of
163 seconds. These are the overall lowest response times for
the topology, as the trade-off and cost objectives have similar
mean response times, of 351 and 353 seconds (17% and 18%
higher), respectively. While the median response time in the
trade-off objective is slightly higher than in the cost objective,
it is important to note the interquartile range is lower in the
former (277 to 425 seconds) than in the latter (282 to 424
seconds), i.e., a normal IoT device experiences response times
1% lower if the trade-off multi-objective version is selected.
Moving to the large topology, the response time objective
exhibits the best response times again, with an average of 281
seconds, a median of 226 seconds, and a standard deviation of
224 seconds. Overall, the response times are lower than in the
small topology, albeit the higher standard deviation indicates
a larger spread. Similarly, the trade-off objective achieves an
average of 352 seconds (57% higher) and a standard deviation
of 276 (22% higher), whereas the cost objective exhibits an
average of 499 seconds (78% higher) and an standard deviation
of 413 (84% higher). On average, the trade-off multi-objective
version exhibits 11% lower response times than the single-
objective cost alternative, while they are a 37% higher than
the response time-focused alternative.

Finally, if the results in terms of both cost and response time
are considered, the multi-objective trade-off version is the most
cost-effective, as it achieves a very similar deployment cost as
the single-objective version, and lower response times. This
phenomenon is due to the fact that the cost objective does
not consider response time at all, and simply makes sure the
application is able to function, whereas the trade-off objective
arranges the application to optimize the response time while
constraining the deployment to minimize its cost.

V. CONCLUSIONS AND FUTURE WORK

The interactions between the physical and computing world
brought by IoT make it interesting to apply its potential
to intensive domains. However, the digitalization of critical
processes comes with the cost of high QoS requirements for
associated IoT applications. Furthermore, the QoS of intensive
IoT applications depends on the application, computing and
networking dimensions, as well as in the interplay between
them, and is often multi-objective in nature. Optimizing these
dimensions to achieve the required QoS calls for solutions
able to consider the coupling between all three dimensions and
trade off multiple QoS metrics to cater to specific IoT applica-
tions. In this paper, we presented MO-SFO, a multi-objective
solution able to optimally place SDN controllers, FNs and
microservices for intensive IoT environments. MO-SFO has

been evaluated in an emulated smart city case study, focusing
on the trade-off between the response time and deployment
cost objectives. In the future, we expect to allow MO-SFO to
use alternative multi-objective optimization algorithms, such
as genetic algorithms, to improve the optimization times and
provide a Pareto front. Finally, we also expect to integrate MO-
SFO with state-of-the-art orchestrators, such as Kubernetes.
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