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Simple Summary: The endocannabinoid system (ECS) plays a crucial role in various processes
in animals, including pain, inflammation, and immune function. In this study, the presence and
distribution of specific ECS receptors (CB1R, CB2R, and GPR55) in the joints of middle-aged dogs
was investigated. By analysing the synovial tissues from the hip and the stifle joints, it was found
that both CB2R and GPR55 were more prominently expressed by the synoviocytes as compared to
CB1R. In addition, immune cells, such as macrophages and neutrophils, also exhibited some of these
receptors. This intriguing finding suggested that the receptors in the ECS, particularly CB2R and
GPR55, could be promising targets for therapeutic interventions, such as using Cannabis sativa extract,
to address arthropathies in dogs.

Abstract: The endocannabinoid system (ECS) has emerged as a potential therapeutic target in
veterinary medicine due to its involvement in a wide range of physiological processes including
pain, inflammation, immune function, and neurological function. Modulation of the ECS receptors
has been shown to have anti-inflammatory, analgesic, and immunomodulatory effects in various
animal models of disease, including dogs with osteoarthritis. The goal of this study was to identify
and compare the cellular expression and distribution of cannabinoid receptor type 1 (CB1R) and
type 2 (CB2R) and the cannabinoid-related G protein-coupled receptor 55 (GPR55) on the synovial
cells of hip and stifle joints of seven dogs of different breeds without overt signs of osteoarthritis
(OA). The synovial membranes of seven hips and seven stifle joints were harvested post mortem.
The expression of the CB1R, CB2R, and GPR55 present in the synovial tissues was investigated using
qualitative and quantitative immunofluorescence and Western blot (Wb) analysis. Synoviocytes of
the stifle and hip joints expressed CB1R, CB2R, and GPR55 immunoreactivity (IR); no significant
differences were observed for each different joint. Cannabinoid receptor 2- and GPR55-IR were also
expressed by macrophages, neutrophils, and vascular cells. The ECS receptors were widely expressed
by the synovial elements of dogs without overt signs of OA. It suggests that the ECS could be a target
for the therapeutic use of Cannabis sativa extract in canine arthropathies.

Keywords: cannabinoids; cannabinoid receptor type 1; cannabinoid receptor type 2; G protein-coupled
receptor 55

1. Introduction

In recent years, the endocannabinoid system (ECS) has materialised as a possible
therapeutic target in veterinary medicine owing to its complicity in a plethora of phys-
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iological processes including pain, inflammation, immune function, neurological func-
tion, and body homeostasis [1,2]. The ECS consists of the endogenous cannabinoids
N-arachidonylethanolamine (anandamide; AEA) and 2-arachidonylglycerol (2-AG), re-
ceptors, and enzymes which regulate the synthesis and degradation of endocannabinoids.
Cannabinoid receptors, namely, cannabinoid receptor 1 (CB1R) and cannabinoid receptor
2 (CB2R), are widely distributed throughout the body, including the central nervous system,
immune cells, and other peripheral tissues [3–5]. In addition, cannabinoids (exogenous
and endogenous) and other Cannabis sativa compounds (terpenes and flavonoids) interact
with a diversity of other receptors such as the G protein-coupled receptor 55 (GPR55), G
protein-coupled receptor 119 (GPR119), transient receptor potential vanilloid 1 (TRPV1),
transient potential receptor vanilloid 4 (TPRV4), and peroximase proliferator receptor alpha
(PPARA) and gamma (PPAR
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endocannabinoids which are produced by the cells “on demand” and play a role in a wide
range of physiological and pathophysiological processes [9].

Endocannabinoids and phytocannabinoids, binding to the cannabinoid receptors of
the membranes of the neurons, can modulate and inhibit the hyperactivity of primary
afferent fibres and decrease the release of neurotransmitters [10].

Both AEA and 2-AG were found in the synovial fluid of osteoarthritic joints of dogs
and their contralateral nonaffected joints; as a matter in fact, an increase in 2-AG levels was
noted in the stifle joints of arthritic knees when compared to the contralateral joints [11];
the higher concentrations of 2AG in the affected joints may indicate that it plays a role in
the pathophysiological process of joint diseases.

Recent studies have shown that the activation of CB1R by minor phytocannabinoids
exerts anti-arthritis activity in murine models, highlighting its potential for the treatment
of chronic inflammatory diseases such as rheumatoid arthritis (RA) [12]. Similarly, CB2R
pharmacological activation in a mouse model of osteoarthritis (OA) showed a protective
effect, indicating the potential role of CB2R in the pathogenesis of the disease [13].

G protein-coupled receptor 55, which is currently thought of as the third cannabinoid
receptor (CB3R) [14], is a member of the endocannabinoid receptor family; in fact, one of its
endogenous ligands is the endocannabinoid neurotransmitter lysophosphatidylinositol [15].
G protein-coupled receptor 55 is implicated in various physiological processes, including
bone metabolism and inflammation [16], the regulation of osteoclast and osteoblast func-
tions [17], and the reduction of pain in joint inflammation, indicating a potential therapeutic
role for GPR55 in the treatment of joint diseases such as osteoarthritis and RA [18,19]. While
the exact role of GPR55 in joint health is still being elucidated, current evidence suggests
that it is a promising target for the development of novel therapeutics for joint disorders.

Modulation of the ECS receptors has been shown to have anti-inflammatory, analgesic,
and immunomodulatory effects in various animal models of disease, including dogs with
OA [20–23]. As such, targeting the ECS might represent a promising approach for the
development of safe and effective therapies for a range of veterinary conditions. The
ECS plays a crucial role in maintaining joint health and bone metabolism by modulating
the activity of immune cells and reducing inflammation in both tissues, with evidence
suggesting that it can regulate bone formation and resorption [24,25]. The mRNA and
the immunoreactivity for the CB1R, CB2R, and GPR55 have already been described in the
synovial membrane of the metacarpophalangeal joints of horses [1].

Understanding and correctly managing musculoskeletal diseases and arthropathies in
veterinary patients is of great importance, since articulations can be affected by a diversity
of pathologies such as arthritis, osteoarthritis (OA), septic arthritis, synovitis, capsulitis,
and ligament rupture [26]. Studies have shown that approximately 20% of dogs will
develop some form of joint disease during their lifetime, with an increasing incidence in
older dogs; it has been found that in dogs older than 7 years, about 80% of them showed
radiographic evidence of osteoarthritis (OA) in at least one joint [27–31]. In addition, a
study on a population of dogs aged 10 years or older found that more than 40% of them
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had radiographic evidence of hip dysplasia, a common joint disease in dogs [32,33]. Canine
hip OA shares anatomical/pathological characteristics with developmental dysplasia of
the hip in humans, and therefore, canines have been proposed as the best spontaneous
animal model for joint problems [34,35].

These findings emphasised the elevated prevalence of joint diseases in dogs, especially
in older dogs [36], and highlighted the importance not only of an early diagnosis, but also
effective management in order to improve their quality of life. It is vital to understand
the underlying mechanisms of homeostasis of an organism if one wants to develop new
drugs and properly use substances already available to manage and treat joint disorders
and support healthy joints, thereby delaying the development of arthropathies. Knowledge
of the species-specific distribution of the ECS receptors, known by its regulatory function
of tissue homeostasis, represents the basic pillar for later clinical trials and novel therapies
for each veterinary category of patients.

While there are few and contradictory publications regarding the therapeutic use of
cannabinoid molecules [11,21,22] in osteoarthritic dogs, to the best of the authors’ knowl-
edge, no literature is available regarding the expression and cellular distribution of cannabi-
noid receptors at the levels of the joints of canines.

The author’s hypothesis is that, similar to other mammalian species, middle-aged
dogs will present different cellular distribution of the cannabinoid receptors in the synovial
membrane and its adjacent structures, depending on the role each receptor plays in main-
taining organic homeostasis. Therefore, the objective of the present study was to identify
the expression and distribution of the CB1R, CB2R, and GPR55 at the synovial cells of the
hip and stifle joints of dogs without overt signs of OA using qualitative and quantitative
immunofluorescence and qualitative Western Blot (Wb) analysis.

2. Materials and Methods
2.1. Animals

The inclusion criteria for the selection of the animals were: animals from 2–15 years
of age, male or female of any breed, and no clinical history of joint-related lameness or
OA related to the hip and stifle joints. Synovial membrane tissues from the hip and stifle
joints were collected post mortem from 7 dogs (3 males and 4 females, from 2 to 15 years of
age (10 ± 4 years; average ± St. Dev.). A dog died from postoperative complications and
6 were euthanised for humane reasons due to different diseases (not involving OA); the
patient which suffered from osteosarcoma had pain related to the cancer; the tissues were
collected after owner consent was obtained (Table 1).

Table 1. Animals.

Dogs Breed Sex Age (Years) Cause of Death

#1 Golden retriever Male, not neutered 9 Euthanasia/osteosarcoma left tibia
#2 Mixed breed Male, not neutered 15 Euthanasia/mastocytoma
#3 Golden retriever Female, spayed 9 Euthanasia/leukaemia
#4 English setter Female, spayed 12 Euthanasia/mastocytoma

#5 Mixed breed Female, spayed 2 Emergency/amputation of the
right hind leg

#6 Mixed breed Female, spayed 8 Euthanasia
#7 Pit bull terrier Male, neutered 14 Euthanasia

2.2. Tissue Collection

The synovial membranes of the hip and the stifle joints were analysed for the presence
of OA. Macroscopically, the synovial fluid appeared normal in all the patients, and no signs
of ischemia, cartilage disease, or bone disease were observed. Samples (~1 cm × 0.5 cm) of
the lateral portion of the synovial membrane and synovial capsule from the hip and the
stifle joints were harvested using a scalpel post mortem within 1 h of death.
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Regarding the immunofluorescence, the tissues were gently pinned on balsa wood
with entomological pins (with the synovial membrane face-up), fixed for 24 h at 4 ◦C in 4%
paraformaldehyde in phosphate buffer (0.1 M, pH 7.2), and were subsequently processed
to obtain cryosections (14 µm thick) which were later processed for immunofluorescence,
as previously described [1]. For the Wb analysis, the tissues were placed in sterilised
Eppendorf tubes which were immersed in liquid nitrogen and then stored at −80 ◦C.

2.3. Immunofluorescence

Hydration of the cryosections in phosphate-buffered saline (PBS) was carried out
for immunostaining. The sections were incubated in a solution of 20% normal donkey
serum (Colorado Serum Co., Denver, CO, USA), 0.5% Triton X-100 (Sigma-Aldrich, Milan,
Italy, Europe), and bovine serum albumin (1%) in PBS for 1 h at room temperature (RT)
to block nonspecific binding. The cryosections were incubated overnight in a humid
chamber at RT with a mixture of primary antibodies (Table 2) diluted in 1.8% NaCl in
0.01 M PBS of 0.1% sodium azide. Following a wash in PBS (3 × 10 min), the sections were
incubated for 1 h at RT in a humid chamber which contained the secondary antibodies
(Table 3) diluted in PBS. The cryosections were again washed in PBS (3 × 10 min) and
were subsequently mounted in buffered glycerol at pH 8.6 with the fluorescent stain
4′,6-diamidino-2-phenylindole—DAPI (Santa Cruz Biotechnology, Santa Cruz, CA, USA),
which strongly binds to the adenine–thymine-rich regions of DNA.

Table 2. Primary antibodies used in the study.

Primary Antibody Host Code Dilution Source

CB1R Rabbit Orb10430 1:200 Byorbit
CB2R Mouse sc-293188 1:50 Santa Cruz
CB2R Rabbit PA1-744 1:250 Thermo Fisher

Calprotectin Mouse M0747 Clone MAC387 1:400 Dako
CD31 Mouse M0823 Clone JC70A 1:30 Dako

GPR55 Rabbit NB110-55498 1:200 Novus Biol.
IBA1 Goat NB100-1028 1:80 Novus Biol.

Vimentin Mouse IS630 Clone V9 1:600 Dako

Primary antibody suppliers: Alomone, Jerusalem, Israel; Dako Cytomation, Golstrup, Denmark; Biorbyt Ltd.,
Cambridge, UK; Novus Biologicals, Littleton, CO, USA; Santa Cruz Biotechnology, Dallas, TX, USA; Thermo
Fisher Scientific, Waltham, MA, USA.

Table 3. Secondary antibodies used in the study.

Secondary Antibody Host Code Dilution Source

Anti-goat 594 Donkey ab150132 1:500 Abcam
Anti-mouse 594 Donkey A-21203 1:500 Thermo Fisher
Anti-rabbit 488 Donkey A-21206 1:1000 Thermo Fisher
Anti-rat 594 Donkey A-21209 1:500 Thermo Fisher

Secondary antibody suppliers: Abcam, Cambridge, UK; Thermo Fisher Scientific, Waltham, MA, USA.

As the receptors studied could have been expressed by different cellular types of
the synovial membrane (synoviocytes and immune/inflammatory cells), different pri-
mary antibodies were applied in order to identify the intimal fibroblast-like (FLSs) and
macrophage-like (MLSs) synoviocytes, subintimal macrophages and neutrophils, and
vascular endothelial cells.

To identify the FLS and MLS, the antibodies directed against the fibroblast marker
Vimentin and the macrophage/dendritic cell marker ionized calcium binding adapter
molecule 1 (IBA1) were used, respectively.

To identify neutrophils, the antibody against calprotectin (MAC387) was used [37,38].
The endothelial cells were identified using the anti-endothelial marker CD31 antibody [39].



Animals 2023, 13, 2833 5 of 19

2.4. Specificity of the Primary Antibodies

The provider of the anti-CB1R antibody, raised in rabbit against the human CB1R,
predicted cross-reactivity with the mouse, rat, and dog antigens. The sequence of canine
CB1 protein is homologous (98.3%) to the sequence of human CB1 protein (https://www.
uniprot.org/, accessed on 30 June 2018) [40]. In addition, the same antibody has been tested
by Wb analysis on dog intestinal tissues [4].

In total, 2 anti-CB2 receptor antibodies directed against human CB2R were used in
this study. The sequence of canine CB2R is the same (98.3%) as that of the sequence of the
human CB2 protein (https://www.uniprot.org/). Dog tissues had already been utilised
to test the specificity of the mouse anti-CB2 antibody (sc-293188) [37]. Dog tissues had
not been used to test the specificity of the rabbit anti-CB2R antibody (PA1-744) using Wb
analysis; however, in the current study, a double-staining method was used to colocalise
the rabbit anti-CB2R antibody with the mouse anti-CB2R antibody.

The antibody anti-GPR55 receptor was raised against a 17 amino acid synthetic peptide
of human GPR55 receptor. The sequence of canine GPR55 protein is homologous (83.5%) to
the sequence of human GPR55 protein (https://www.uniprot.org/). The antibody provider
indicated more (94%) cross-reactivity of this antibody with the canine GPR55 protein. In
addition, dog nervous tissues were utilised to test the specificity of this antibody using Wb
analysis [39].

In the present study, the specificities of the anti-CB1R, CB2R, and GPR55 antibodies
were also tested on canine synovial tissues using Wb analysis (see below).

The anti-IBA1 antibody, which should recognise microglia in the central nervous
system and macrophages/dendritic cells in the peripheral tissues [41], was raised in goats
and is used against porcine IBA1. The dog IBA1 molecule has a 91.2% identity with the
porcine molecule (https://www.uniprot.org/).

To identify the neutrophils, an antibody anti-calretinin (clone MAC387) was used [37].
It has recently been shown that this antibody does not recognise macrophages in canine
tissues; however, it recognises neutrophils rather exclusively [37,38].

The antibody directed against the endothelial marker CD31 had already been used in
dog tissues [39]. The antibody against vimentin had already been tested on canine tissues
using Wb analysis [42].

2.5. Specificity of the Secondary Antibodies

The specificity of the secondary antibodies was tested by applying them after omission
of the primary antibodies. No stained cells or protein bands were detected after omitting
the primary antibodies.

2.6. Quantitative Analysis

Quantitative analysis of the intensity of the expression of CB1R, CB2R, and GPR55 in
the synovial intimal layer was carried out on 7 dogs. For each animal, and each receptor,
3 randomly selected images of the synovial membrane (50 µm-thick and 100 µm wide;
5000 µm2 area) were acquired at high magnification (×40) using the same exposure time
for all the images. ImageJ software (Image J, version 1.52t, National Institutes of Health,
Bethesda, MD, USA) was used to analyse the signal intensity of each image; standardised
thresholds were calculated empirically for brightness and contrast and were then applied to
all images. The Color Histogram (gMEAN or rMEAN) tool of the software ImageJ (Image J,
version 1.52t, National Institutes of Health, Bethesda, MD, USA) was then used to obtain
the signal intensity.

Quantitative analysis of the number of cell layers of the synovial membrane and the
cell density was carried out on 3 randomly selected areas (50 µm-thick and 100 µm wide;
5000 µm2 area); they were acquired at high magnification (×40) on 3 randomly selected
images of the synovial membrane of the hip and of the stifle joint for each animal using a
DAPI signal to stain the cell nuclei.

https://www.uniprot.org/
https://www.uniprot.org/
https://www.uniprot.org/
https://www.uniprot.org/
https://www.uniprot.org/
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2.7. Statistical Methods

For each receptor, the mean of the 3 values/case of signal intensity in the 7 dogs
was evaluated and compared. Statistical analysis was carried out using GraphPad Prism
software (version 8.3, La Jolla, CA, USA). The normality distribution of the data was
assessed using the Shapiro–Wilk test.

Comparisons between groups (receptors) within the same joint were carried out
using the one-way ANOVA Tukey’s multiple comparisons test. A p-value ≤ 0.05 was
considered significant.

Comparisons between groups (receptors) within the same joint and the 2 different
joints were carried out using two-way ANOVA Tukey’s multiple comparisons test. A
p-value ≤ 0.05 was considered significant.

Comparisons between the mean of each receptor at the 2 different joints were carried out
using the Wilcoxon test and the paired t-test. A p-value ≤ 0.05 was considered significant.

Comparisons between the numbers of cell layers of the different joints were carried
out using the Wilcoxon Test (nonparametric) and the paired t-test (parametric). A p-value
≤ 0.05 was considered significant.

Comparisons between the cell density of the different joints were carried out using the
Wilcoxon Test (nonparametric) and the Paired t-test (parametric). A p-value ≤ 0.05 was
considered significant.

Correlations between the number of layers of the synovial membrane and the density
of the cells in the hip joint and stifle joint were carried out using the Pearson correlation
test. A p-value ≤ 0.05 was considered significant.

2.8. Fluorescence Microscopy

The preparations were examined using a Nikon Eclipse Ni microscope equipped with
the appropriate filter cubes to differentiate the fluorochromes utilised for differentiating
between Alexa 488 and Alexa 594 fluorescence. The filter was set at 10 for the Alexa 488
(450–490 nm excitation filter and 515–565 nm emission filter) and the filter was set at 00 for
Alexa 594 (530–585 nm excitation filter and 615 nm emission filter).

A Nikon DS-Qi1Nc digital camera and NIS Elements software Version 4.20.01 BR
(Nikon Instruments Europe BV, Amsterdam, The Netherlands) were used to record the im-
ages. The same fluorochrome label was used for the 3 receptors, allowing for quantification.
Corel Photo Paint was used to slightly adjust the contrast and brightness, whereas Corel
Draw (Corel Photo Paint and Corel Draw, Ottawa, ON, Canada) was used to prepare the
figure panels.

2.9. Western Blot

Tissue samples (hip and stifle synovial membranes) were collected from 3 dogs, frozen
in liquid nitrogen, and stored at −80 ◦C until sample processing. An amount of 50 mg
of tissue was fractioned into small pieces and homogenised in 500 µL of RIPA buffer
(50 mM TRIS-HCl, pH 7.4, 100 mM NaCl, 1 mM PMSF, 1 mM EDTA, 5 mM Iodacetamide
1% Triton X-100, 0.5% sodium dodecysulphate) supplemented with a protease inhibitor
cocktail (Sigma-Aldrich, Co, St. Louis, MO, USA). The extract was sonicated for 10 min
at 20 s intervals every 2 min and pelleted for 20 min at 14,000 rpm. Total protein con-
tent was determined by Bradford method. Proteins (10 µg) were separated by 10–12%
SDS–polyacrylamide gel and transferred to a PVDF membrane. After transfer, the mem-
brane was blocked by 5% milk powder in PBST (PBS 0.01 M, pH 7.4) with 0.05% Tween 20
(Sigma-Aldrich, St. Louis, MO, USA) for 1 h at room temperature (RT). The membranes
were incubated with primary antibodies (rabbit anti-CB1R, Orb10430; mouse anti-CB2R,
Santa Cruz #sc293188; rabbit anti-GPR55, NB11055498) overnight at 4 ◦C, diluted 1:1000 in
PBST 0.1% containing 1% milk. The following day, the membranes were rinsed 3 times with
PBST, each for 15 min, and IgG horseradish peroxidase-conjugated secondary antibodies
anti-rabbit (1:5000, Santa Cruz) and anti-mouse (1:5000, Sigma) were employed for incuba-
tion in 1% milk powder in PBST for 2 h at RT. After washout of secondary-HRP binding
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antibody, membrane was incubated with chemiluminescence substrate and developed
with the enhancing chemiluminescence detection system (Santa Cruz Biotechnology or
Cyanagen–Westar ηC ultra 2.0). Blots were visualised with the ChemiDocTM (Bio-Rad)
imaging system.

3. Results
3.1. Western Blot Analysis

To determine whether the canine synovial membrane expresses proteins for CB1R,
CB2R, and GPR55, Western blot analysis was performed. The present results showed that
the anti-CB1R antibody revealed a band of 70 kDa, while the anti-CB2R antibody revealed
a band of 55 kDa (Figure 1). The authors have recently demonstrated that anti-CB1R and
anti-CB2R in the canine small intestine recognised slightly different bands; however, it
should be emphasised that the present results in the canine synovial membrane were
aligned with previous reports regarding the detection of CB1R (molecular weight between
35 and ~70 kDa) and CB2R (molecular weight of ~35 and ~60 kDa) using Western blot
analysis [43–46]. The anti-GPR55 antibody recognised a major band around 35 kDa and its
dimer at 70 kDa, as previously described [4,39], in the canine gastrointestinal tract (Figure 1,
right panel). Negative controls, in which the primary antibodies were not involved in the
incubation with the membrane, did not show bands (left panel).
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Figure 1. Representative image of Western blot analysis showing the specificity of the primary
antibodies utilised (right panel): rabbit anti-cannabinoid receptor 1 (A), mouse anti-cannabinoid
receptor 2 (B), and rabbit anti-G protein-coupled receptor 55 (GPR55) (C). Negative controls, in which
the primary antibodies were not involved in the incubation with the membrane, did not show bands
(left panel).
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The expression of CB1R, CB2R, and GPR55 in the canine synovial membrane was also
confirmed on the protein level.

3.2. Immunofluorescence
Vimentin and IBA1 Immunoreactivity

A subset of cells lining the synovial membrane, i.e., FLSs, displayed prominent cyto-
plasmic vimentin immunoreactivity (vimentin-IR) in the hip and stifle joints (Figure 2a–c).
In both joints, the FLSs were characterised by fusiform rounded nuclei and elongated,
slender cytoplasmic processes. However, in the stifle, these cytoplasmic processes extended
vertically toward the joint cavity within the different layers of the FLSs whereas, in the hip,
the processes primarily extended horizontally.
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Figure 2. Photomicrographs of cryosections of the synovial membrane of the stifle joints of dogs
showing immunoreactivity for the fibroblast marker vimentin (b) and the macrophage marker IBA1
(e). (a–c) The synovial membrane of the stifle joint showed different layers of synoviocytes (arrows)
which expressed moderate-to-bright vimentin immunoreactivity (b). (d–f) Three macrophage-like
synoviocytes lining the joint cavity, expressing bright IBA1 immunoreactivity, are indicated by the
white arrows (e). The subintimal macrophages (open arrows) also expressed IBA1 immunoreactivity.
Abbreviations: I, intima; SI, subintima. Bar: 50 µm.

Macrophage-like synoviocytes and subintimal macrophages expressed IBA1-IR; MLSs
showed rounded nuclei and abundant cytoplasm (Figure 2d–f).

3.3. CB1R Immunoreactivity

Faint CB1R-IR was detected by the cytoplasm of the hip and stifle FLSs and MLSs. The
CB1R-IR was detectable in seven of seven dogs (100%) and at both joints of the same dog
(Figure 3a–f). Colocalisation studies showed that synoviocytes at both joints coexpressed CB1R
and CB2R (Figure 3g–i). In some sections in which a small fragment of articular cartilage was
present, it was possible to observe that the chondrocytes expressed moderate CB1R-IR.
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Cannabinoid receptor 1 immunoreactivity was not expressed by the neutrophils or the
endothelial cells either in the hip or in the stifle joints.
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Figure 3. (a–f) Photomicrographs of cryosections of the synovial membrane of the hip (a–c) and stifle
(d–f) joints of dogs showing immunoreactivity for the cannabinoid receptor type 1 (CB1R). The arrows
indicate some synoviocytes showing faint CB1R immunoreactivity. (g–i) Photomicrographs of cryosections
of the synovial membrane of the stifle joint of dog showing colocalisation between two antibodies directed
against the cannabinoid receptor type 1 (CB1R) (h) and the cannabinoid receptor type 2 (CB2R) (i). The
white arrows indicate two synoviocytes coexpressing CB1R and CB2R immunoreactivity. The open arrows
indicate two synoviocytes which were immunoreactive only for the CB2R. Abbreviations: I, intima; SI,
subintima. Bar: 50 µm.

3.4. CB2R Immunoreactivity

A double-staining method was used to colocalise the rabbit anti-CB2R antibody with
the mouse anti-CB2R antibody; both anti-CB2R antibodies were colocalised in the same
synoviocytes and blood vessel cells (Figure 4a–d).

Moderate-to-bright CB2R-IR was detected by the cytoplasm of the hip and the stifle
synoviocytes in seven of seven dogs (100%) by using both the anti-CB2R antibodies (from
mouse and rabbit) (Figure 4a–e). Colocalisation studies showed that CB2R-IR was expressed by
vimentin immunoreactive FLSs and IBA1 immunoreactive MLSs in both joints (Figure 4e–l).
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Cannabinoid 2 receptor immunoreactivity was moderately expressed by MAC387-
positive neutrophils (Figure 4m–p), CD31-positive endothelial cells (Figure 4m–p), and
unidentified immune/inflammatory cells.
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Figure 4. (a–d) Photomicrographs of cryosections of the hip synovial membrane of a dog showing
colocalisation between two different antibodies directed against cannabinoid receptor 2 (CB2R). The
white arrows indicate synoviocytes identified with the mouse anti-CB2R (b) and the rabbit anti-CB2R
(c). The open arrows indicate two subintimal cells (likely inflammatory/immune cells) identified with
both the anti-CB2R antibodies. The small open arrows indicate a subintimal capillary showing CB2R
immunoreactivity. (e–l) Photomicrographs of cryosections of the synovial membrane of the hip (e–h)
and stifle (i–l) joints of dogs showing immunoreactivity for the fibroblast marker vimentin (e–h) and the
macrophage marker IBA1 (i–l). (e–h). The arrows indicate synoviocytes which showed bright cannabinoid
receptor type 2 (CB2R) (f) immunoreactivity and moderate vimentin immunoreactivity (g). (i–l) The
arrows indicate three macrophage-like synoviocytes which coexpressed bright CB2R immunoreactivity
(j) and moderate IBA1 immunoreactivity (k). (m–p) Photomicrographs of cryosections of the synovial
membrane of the stifle joint of a dog showing immunoreactivity for the cannabinoid receptor type 2
(CB2R) (n) and the neutrophils marker MAC387 (o). The open arrows indicate some endothelial cells
of a subintimal blood vessel expressing bright CB2R immunoreactivity. The white arrow indicates one
neutrophil inside the blood vessel coexpressing bright MAC387 and moderate CB2R immunoreactivity.
Abbreviations: I, intima; SI, subintima. Bar: 50 µm.
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3.5. GPR55 Immunoreactivity

Moderate-to-bright GPR55-IR was expressed by the cytoplasm of the hip and the stifle
synoviocytes in seven of seven dogs (100%). Colocalisation studies showed that the vimentin
immunoreactive FLSs and the IBA1 immunoreactive MLSs expressed GPR55-IR at both joints
(Figure 5a–l).
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Figure 5. Photomicrographs of cryosections of the synovial membrane of the hip (a–d) and stifle
(e–p) joints of dogs showing colocalisations of the antibody anti-G protein-coupled receptor 55 (GPR55)
with the antibodies directed against the fibroblast marker vimentin (a–h), the macrophage marker IBA1
(i–l), and the neutrophils marker MAC387 (m–p). (a–h) the arrows indicate some synoviocytes (fibroblast-
like synoviocytes) which were immunoreactive for GPR55 and vimentin. The different thicknesses of
the epithelium lining the joint cavity of the hip (a–d) and stifle (e–h) joints (stifle > hip) should be noted.
(i–l) The arrows indicate some macrophage-like synoviocytes which coexpressed GPR55 and IBA1
immunoreactivity. Given that the cut of the synovial membrane does not appear perfectly orthogonal,
it cannot, however, be excluded that some IBA1 immunoreactive R cells are subintimal macrophages.
(m–p) The white arrows indicate some synoviocytes expressing GPR55 immunoreactivity. The open
arrow indicates one subintimal neutrophil, with a dapi-labelled polilobated nuclei, coexpressing GPR55
and MAC387 immunoreactivity. Abbreviations: I, intima; SI, subintima. Bar: 50 µm.
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G-coupled protein receptor 55 was also brightly expressed by MAC387-positive
neutrophils (Figure 5m–p), CD31-positive endothelial cells (Figure S1), unidentified im-
mune/inflammatory cells, and chondroblasts.

There were no differences regarding the cellular distribution of the CB1R, CB2R, and
GPR55 immunofluorescence at the stifle and hip joint elements.

3.6. Quantitative and Comparative Analysis of CB1R, CB2R, and GPR55 Immunoreactivity by the
Synoviocytes

Quantitative analysis showed that there was less expression of CB1R, in comparison
with CB2R (~p values of 0.0014 and 0.0020 for the stifle joints and the hips, respectively) and
GPR55-IR (~p values of 0.00002 and 0.0001 for the stifle joints and the hips, respectively), in
both the hip and the stifle joints of dogs without overt signs of OA.

Quantitative analysis also showed that the expression of CB2R-IR was statistically
greater when compared with that of CB1R-IR (~p values of 0.0014 and 0.0020 for the stifle
joints and the hips, respectively), but not statistically different when compared with that of
GPR55-IR (~p values of 0.5655 and 0.2444 for the stifle joints and the hips, respectively).

Analogously, the analysis of the expression of GPR55-IR showed that it was statistically
greater when compared with CB1R (~p values of 0.0002 and 0.0001 for the stifle joints and
the hips, respectively), but not statistically different when compared with CB2R (~p values
of 0.5655 and 0.2444 for the stifle joints and the hips, respectively) (Figure 6).
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Figure 6. (A,B) Quantitative analysis of the hip (A) and stifle joint (B) using one-way ANOVA showed
that the expression of CB2R-IR (**) was statistically different when compared with that of CB1R-IR, but not
when compared with that of GPR55-IR. Analogously, the analysis of the expression of GPR55-IR showed
that it is statistically different when compared with CB1R (*), but not with CB2R, at both joint sites. (C)
To additionally examine the differences between the receptors, a Tukey’s multiple comparisons test was
carried out. The results showed that the mean difference in expression between CB1R and CB2R was
significant (mean diff =−16.19, p < 0.0001). Similarly, the mean difference between CB1R and the GPR55
was also significant (mean diff = −12.58, p < 0.0001). However, there was no significant difference in
expression between CB2R and GPR55 (mean diff = 3.603, p = 0.1413, at both joints). (D) The statistical
analysis carried out showed that there was no significant difference between the receptor expression of
the different joints. In both the hip and the stifle joints, the receptors followed the same pattern of cellular
distribution and expression (scatter dot plot with mean and SD).
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The cellular expression of CB1R, CB2R, and GPR55 in the synoviocytes of the hip
and the stifle joints of dogs was additionally analysed using other statistical tests which
indicated that there was no significant difference in the cellular expression of CB1R, CB2R,
and GPR55 between the stifle and hip joints of dogs (Figure 7).
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Figure 7. The Wilcoxon signed-rank test was carried out to assess the differences in expression
between the mean of hip and stifle joints mean of each receptor. The Wilcoxon test results showed
that the differences between joint were not statistically significant, with p-values of 0.2500 for both
receptors (scatter dot plot with mean and SD).

The expression levels of CB1R, CB2R, and GPR55 in the synoviocytes of the stifle and
the hip joints in dogs were analysed using two-way ANOVA. The significance level (alpha)
was set at 0.05. The ANOVA results indicated that neither the interaction between the row
factor (dogs) and the column factor (joints), nor the individual factors, had a significant ef-
fect on the expression levels of the receptors and was not statistically significant (p = 0.9015),
suggesting that the differences in expression across the dogs were not influenced by the
joint type.

In summary, the two-way ANOVA results suggested that there were no significant
differences in the expression levels of CB1R, CB2R, and GPR55 between the stifle and the
hip joints of dogs. The lack of significant interactions and individual effects of dogs and
joints indicated that the variation in receptor expression was not dependent on these factors.
However, it is important to note that the difference in mean expression between the hip
and the stifle joints was small and not statistically significant.

4. Discussion

The discoveries regarding the ECS receptors evidenced their important regulatory role
in organic homeostasis and their involvement in several pathophysiological processes; the
clinical and scientific demand is currently growing with respect to how best to use them
as a therapeutic target. For this, one needs to first identify the presence or not of the ECS
components in the organ of the pathology of interest.

Currently, the definition of the ECS is expanding to include other cannabinoid-related
receptors [47,48]. This is the case, for example, for the GPR55, TRPV1, and nuclear PPARα,
all of which are currently considered to be possible cannabinoid receptors [4].

Cannabinoid receptors are widely expressed through different cellular types of the
organism; their distribution will be different depending on the organ and cell-type of inter-
est [9]. Within the canine species, the expression of the CB1R, CB2R, and GPR55 was shown
at the central nervous system (CNS) and the peripheral nervous system (PNS) [39,49,50], at
the skin [37], and at the gastrointestinal tract [4]. Furthermore, the authors’ group recently
showed the expression of cannabinoid and cannabinoid-related receptors at the synovio-
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cytes (FLSs and MLSs) of horses [1], in which the mRNA and the immunoreactivity of
CB1R was found in the synoviocytes of some but not all the subjects. The findings of the
present study showed an important species-related particularity. In the equine species,
only 71% of the equines expressed the CB1R by the synovial cells [1]; on the contrary, in the
canine species, 100% of the dogs expressed the CB1R by the synoviocytes.

Although the exact factors which will regulate the ECS tone expression of the receptors
related to species are still unknown, knowing the difference will reflect directly on the ther-
apeutic choice for each veterinary patient. Moreover, the immunohistochemical expression
of CB1R has been shown at the synovial membrane of all cats both with healthy joints and
with degenerative joint disease [51]—and its upregulation was directly corelated to the
degree of severity of the disease. Comparatively, the expression of CB1R is upregulated
at the joint level in horses with synovitis [52,53]. Pointing to the role of CB1R in keeping
a healthy joint environment, as well as its involvement within the pathogenesis of joint
inflammation and its potential as a therapeutic target, new information regarding the
moderate expression of CB1R by the synoviocytes and chondroblasts of dogs suggests a
potential role in modulating pain and inflammation in joint tissue within canine species.

Although the use of the most known agonist molecule of the CB1R (∆9-Tetrahydrocannabinol
—THC) is still controversial, science can no longer deny the evidence of its use as a therapy
for many pathologies. In a recently published study, Lowin et al. [54] were able to show the
biphasic effects of THC on synovial fibroblasts from human patients with rheumatoid arthri-
tis (synovial fibroblasts of rheumatoid arthritis—RASF) and peripheral blood mononuclear
cells (PBMC) from healthy donors; THC provides proinflammatory and anti-inflammatory
effects on the RASF and the PBMC. The effectiveness of THC in treating inflammation
pertaining to rheumatoid arthritis may vary depending on the activating stimulus and
the THC concentration. Therefore, it is important to titrate THC dosage to determine the
therapeutic window.

Other minor phytocannabinoids also seem to exert therapeutic effects by means of
CB1R modulation. Palomares et al. [12] showed that ∆9-Tetrahydrocannabinolic acid
(∆9-THCA-A), the precursor of ∆9-THC, can act as an orthosteric CB1R agonist; in vivo,
∆9-THCA-A reduced arthritis in collagen-induced arthritic mice, preventing the infiltration
of inflammatory cells, synovium hyperplasia, and cartilage damage. Furthermore, ∆9-
THCA-A inhibited the expression of inflammatory and catabolic genes on stifle joints;
∆9-THCA-A exerts anti-arthritis activity through the CB1R pathways, highlighting its
potential in the treatment of chronic inflammatory diseases such as RA.

In the current study, the FLSs showed moderate/bright CB1R immunostaining, and
only a few MLSs showed weak CB1R-IR. The authors’ hypothesis was that the CB1R path-
way was directly involved in maintaining the structural integrity and physical barrier of
the synovial membrane as well as regulating the synthesis of the synovial fluid. Therefore,
one can reduce the inflammatory and degenerative synovium response by means of CB1R
modulation [12,54]. The acquisition of this piece of information will directly determine the
clinician’s therapeutic choice and positively change the case outcome. Molecule agonists of
the CB1R would provide benefits for patients suffering from inflammatory joint disease
directly at the pathological site, slowing the disease evolution and supporting the mainte-
nance of a healthy synovial environment. However, more in vitro species-specific studies
and clinical trials are needed.

Cannabinoid receptor 2 has already been identified in the synovium cells of mice [55],
rats, humans [56,57], and horses [1]. In the present study, the FLSs, the MLSs, and the
macrophage/dendritic cell antigen-presenters exhibited an elevated expression of CB2R.
Furthermore, it was found that the FLSs coexpressed CB1R and CB2R, while the dendritic
cells expressing CB1R also expressed CB2R. This indicates that synovial cells expressing
CB1R also expressed CB2R, whereas not all the CB2R-expressing synovial cells expressed
the CB1R. Notably, this difference in expression was more pronounced among the MLSs,
which reinforced the role of the CB2R, rather than the CB1R, in regulating immune response.
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Inflammatory processes within the stifle joint can alter the composition of the cruciate
ligaments [58], and patients with a cruciate ligament rupture will have a higher density of
macrophages and MLSs at the joint infiltrate and synovium [59]. By means of the CB2R
pathways, one can regulate macrophage signalling and proinflammatory cytokine release;
thus, as a result of the strong immunolabeling of MLSs and dendritic cells for the CB2R
at the synovium of dogs, one could postulate that modulating its activity could benefit
patients suffering from inflammatory degenerative joint diseases, specifically immune
mediated diseases. In addition to cannabinoids, other compounds of the cannabis plant
can interact with the CB2R, such as terpenes and β-Caryophyllene [60].

G protein-coupled receptor 55 is a relatively new and poorly understood cannabinoid
receptor. It has been identified in a variety of cell types including sensory neurons, inflam-
matory cells, and bone cells [17]. Recent studies have shown that GPR55 is expressed in
the synovial cells of horses [1], T cells and neutrophils of dogs [37], and chondrocytes of
humans [61] and may play a role in regulating inflammation and immune response in joint
tissue. In vitro studies have shown that activation of GPR55 in synoviocytes can increase
the production of proinflammatory cytokines, such as Interleukin-6 (IL-6) and IL-8, which
are associated with the pathogenesis of RA [54].

Neutrophils are important immune cells which infiltrate the synovium during inflam-
mation [62]. Healthy joints are not expected to have an elevated presence of neutrophils; in
the current study, very few neutrophils, scattered in the subintima of the synovial mem-
branes, expressed cytoplasmatic GPR55-IR. Neutrophils in the synovial fluid of human
patients with RA have been shown to express GPR55; its activation can induce neutrophil
chemotaxis which can contribute to joint inflammation and damage in RA [63].

In the present study, FLSs, MLSs, and neutrophils (and chondrocytes) demonstrated
GPR55-IR; these findings suggested that GPR55 may play a role in regulating synovial
inflammation and joint destruction in inflammatory degenerative joint disease. Cannabidiol,
being a GPR55 antagonist, may play a role in reducing the secretion of proinflammatory
cytokines and in immune and inflammatory cell migration.

Minor cannabinoids, such as cannabigerol (CBG), ∆9-Tetrahydrocannabivarin (THCV), and
cannabidivarin (CBDV), have been found to interact with GPR55 [64]. ∆9-Tetrahydrocannabivarin,
a partial agonist of GPR55, is capable of inhibiting the activity of the full agonist lysophos-
phatidylinositol (LPI); CBG has also been shown to weakly inhibit the LPI response in
GPR55 assays [65]. Another study found that CBD and other GPR55 antagonists can
inhibit bone resorption in vivo; additionally, GPR55 ligands affect osteoclast formation
in vitro, suggesting a potential therapeutic role for CBD and minor cannabinoids in bone
disorders [17,66].

Chondroblasts are cells which produce and maintain the extracellular matrix of car-
tilage. G protein-coupled receptor 55 expression has been detected in human chondro-
cytes [67], and studies have shown that the activation of GPR55 in chondrocytes can induce
the production of matrix metalloproteinases (MMPs), which are enzymes that degrade the
extracellular matrix and contribute to cartilage destruction in arthritis [17]. Therefore, tar-
geting GPR55 in chondrocytes may represent a potential therapeutic approach for slowing
down cartilage destruction in dogs with arthritis, thus enhancing the welfare of older dogs,
those most affected by spontaneous OA, using a molecular antagonist such as CBD.

Although there was no macroscopic or microscopic evidence of OA development or a
history of lameness in the animals included in the small sample size of the present study,
it is crucial to note that the median age of the animals was 10 years. This represented
an important number of canine patients which could potentially be undergoing early
development of OA or be suffering from subclinical OA, as age-related involution in
dogs involves the loss of muscle mass and changes in the connective tissue and articular
cartilage [36,68]. By discovering the cellular expression pattern of the ECS receptors in the
joints of animals in this age group, one could speculate that it could be used as a target to
treat and prevent the development of arthropathies in patients with elevated risk for the
development of the disease.
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The fact that no significant difference was found in the cellular distribution and
expression of CB1R, CB2R, and GPR55 between hip and stifle joints without overt signs
of OA is important in understanding the patterns of the ECS in these joints and in the
organism. Understanding the patterns of the ECS in joints of mostly aged dogs provides a
foundation for exploring its potential therapeutic applications in arthropathy treatment.
Modulating the ECS using cannabinoid-based therapies or other approaches may offer
promising avenues to alleviate pain and reduce inflammation in affected joints.

By recognising the similarities in the expression of CB1R, CB2R, and GPR55 in both
the hip and the stifle joints of individuals without overt signs of OA, researchers and
veterinarians can focus on developing targeted interventions which harness the ECS to
restore joint health. Furthermore, the virtually slight (not statistically significant) difference
in the mean expression of each receptor between the hip and the stifle joints was due to the
different structure of each joint, as the stifle synovial membrane was shown to be composed
of more cell layers than that of the hip joint; therefore, there are more cells to be analysed in
the same area.

The results of the CB1R, CB2R, and GPR55 codistribution and coexpression within
different cell types at different joint environments suggested that these receptors played
a role in regulating inflammation and immune response in joint tissue and points to the
complexity of the ECS. Additional research is warranted to fully elucidate the specific roles
and interactions of the ECS receptors in joint health and disease, enabling the development
of more effective and tailored treatment strategies for arthropathies in dogs.

5. Conclusions

The discovery of cannabinoid receptors (CB1R, CB2R, GPR55) in the synovial tissue of
middle-aged dogs provides compelling molecular evidence supporting the use of cannabi-
noids for treating and delaying joint diseases. This breakthrough suggests the potential for
developing the therapeutic agonists/antagonists targeting these receptors. Understanding
the cellular expression of CB1R, CB2R, and GPR55 allows us to comprehend the role of
the ECS in modulating inflammation, pain, and immune responses in canine synovia.
This knowledge opens avenues for novel interventions utilising the ECS to maintain and
enhance joint health and well-being in dogs.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ani13182833/s1, Figure S1. Colocalisation between the anti-GPR55 and
anti-CD31 antibodies in the synovial membrane of the stifle joint of a dog.
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