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Abstract
Many automated approaches have been proposed in literature to quantify clinically relevant wound features based on image 
processing analysis, aiming at removing human subjectivity and accelerate clinical practice. In this work we present a fully 
automated image processing pipeline leveraging deep learning and a large wound segmentation dataset to perform wound 
detection and following prediction of the Photographic Wound Assessment Tool (PWAT), automatizing the clinical judgement 
of the adequate wound healing. Starting from images acquired by smartphone cameras, a series of textural and morphological 
features are extracted from the wound areas, aiming to mimic the typical clinical considerations for wound assessment. The 
resulting extracted features can be easily interpreted by the clinician and allow a quantitative estimation of the PWAT scores. 
The features extracted from the region-of-interests detected by our pre-trained neural network model correctly predict the 
PWAT scale values with a Spearman's correlation coefficient of 0.85 on a set of unseen images. The obtained results agree 
with the current state-of-the-art and provide a benchmark for future artificial intelligence applications in this research field.
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Introduction

Due to the average population age increase, more dermatolo-
gist specialists are involved in wound management [1]. Wound 
healing is a complex process, and optimal wound assessment 
is essential for their management; choosing the most appro-
priate therapeutic approach can reduce healing times, and 
thus alleviate the healthcare system's economic burden [2]. 
An incorrect wound assessment model can lead to prolonged 
wound healing [3] and decrease patient compliance. The cor-
rect classification of acute and chronic ulcers is essential both 
at diagnosis and in follow-up. A growing number of centers 
resort to archiving clinical images with methodical and instru-
mental-assisted continuous monitoring to ascertain whether 
the healing process is proceeding correctly or not and then to 
determine prognosis and correct treatment [4].

The entire clinical evaluation process relies on the 
experience and subjectivity of the clinicians, introduc-
ing a not negligible inter- and intra- operator variability 
[5]. The introduction of wound assessment tools aims to 
reduce these effects, providing a series of standardized 
criteria for the quantitative description of the wound 
status and response to the treatments. One of the most 
popular in the dermatological practice is the Bates-Jensen 
Wound Assessment Tool (BWAT) [6], which consists of 
13 items that assess wound size, depth, edges, undermin-
ing, necrotic tissue type, amount of necrotic, granulation 
and epithelialization tissue, exudate type and amount, sur-
rounding skin color, edema, and induration. The items are 
represented as Likert scales with values ranging from 1 
to 5, associated with the unhealthiest attribute of each of 
them. The use of the BWAT requires the evaluation of the 
wound online, i.e., during clinical practice, since many of 
the items can be quantified only by manual operations on 
the lesion area. For this reason, automated solutions for 
the quantification of this score are not applicable and it is 
impossible its posterior editing or adjustment. To address 
these issues, the Photographic Wound Assessment Tool 
(PWAT) was introduced in 2000 [7]. The PWAT score, 
indeed, aims to quantify the wound status starting from 
photos acquired during the clinical practice and involving 
item-scores inferable directly by the picture. The PWAT 
includes only a subset of the full list of items described by 
the BWAT, but it has already proved its effectiveness and 
robustness for clinical applications [6, 7].

Despite the introduction of standardized assessment 
tools, the intrinsic subjectivity of the clinicians in the 
grading process continues to play a key role. The Likert 
format of the scale items, indeed, poses some constraints 
in the evaluation, but it forces the quantification of wound 
features which can be determined only by human inter-
vention. The possibility to obtain a completely objective 

estimation of wound status can be addressed only by intro-
ducing an agnostic mechanical component guided by the 
ever-growing artificial intelligence solutions. The appli-
cation of artificial intelligence models to medical image 
analysis already showed remarkable results [8–11], prov-
ing its effectiveness in guiding and facilitating clinical 
practice [12, 13]. According to the forementioned wound 
assessment tools, automated solutions for their estimations 
have been already proposed in literature [8, 14, 15], pro-
viding hints about their mathematical formalization but 
without a detailed analysis of the related features. The 
current trend of the medical image analysis, is based on 
the use of deep learning models for the prediction of the 
clinical outcomes, making harder the understanding of 
the relevant clinical features. Also in the context of the 
PWAT prediction, several approaches have already been 
proposed in literature, but only based on neural network 
models [14, 16, 17]. In our previous work [18], we trained 
a deep learning model to perform semantic segmentation 
of wound region-of-interests (ROIs) from digital images. 
Here, we extend the model to automatically predict the 
PWAT scores from the identified wound areas.

The PWAT includes items belonging to both the wound 
and peri-wound areas, so we adapted our model predictions 
to obtain both these ROIs, we then proposed a novel set 
of textural and morphological features mimicking the clini-
cian’s manual evaluation. According to these principia, all 
the proposed features are strictly connected to the wound 
appearance and completely human interpretable, guarantee-
ing their possible application during the clinical practice. We 
finally use this set of features to feed a penalized regression 
model for the prediction of the PWAT scale value, testing the 
effectiveness and robustness of our model on an independent 
subset of images. To the best knowledge of the authors, our 
work represents the first attempt to automatically predict the 
PWAT score on smartphone images, using a combination of 
standard and radiomic image features.

Materials and methods

Patient selection

In this work we analyzed the images belonging to the Deep-
skin dataset [18]. The images were acquired using smart-
phone cameras during routine dermatological examinations 
by the Dermatology Unit at IRCCS Sant'Orsola-Malpighi 
University Hospital of Bologna. The images were retrieved 
from charts of subjects who gave their voluntary consent to 
research. The Local Ethics Committee approved the study 
and carried it out in accordance with the Declaration of Hel-
sinki. The data acquisition protocol was approved by the 
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Local Ethics Committee (protocol n° 4342/2020 approved 
on 10/12/2020) according to the Helsinki Declaration.

We collected 474 patients over two years (from March 
2019 to September 2021) at the center with 1564 wound 
images. A smartphone digital camera (Dual Sony IMX 286 
12MP sensors with 1.25 µm pixel size, 27 mm equivalent 
focal length, F2.2 aperture, Laser-assisted AF, DNG Raw 
capture) acquired the raw images under uncontrolled illumi-
nation conditions, various backgrounds, and image exposi-
tions for clinical usage. The involved patients belonged to a 
heterogeneous population, including samples with ulcers at 
different healing stages and anatomical positions.

In this work, we used a subset of data extracted from 
the Deepskin dataset, composed of 612 images. This subset 
includes 324 males (52.9%) and 288 females (47.1%), with 
an average age of 77 ± 17 and 71 ± 17, respectively. There-
fore, the involved population was balanced according to sex 
and biased towards higher age, as expected in any dermato-
logical wound dataset.

The heterogeneity of the population in terms of wound 
severity was preserved also in the considered subset. The 
corresponding PWAT distribution, indeed, ranges from 
a minimum of 2 to a maximum of 24 with an average 
of 15 ± 3. Also in this case, the bias related to relatively 

higher value of PWAT is considered acceptable in relation 
to the clinical problem and intrinsically due to the neces-
sary presence of wound in each image.

Clinical scoring of images

Two trained clinicians evaluated the 612 images indepen-
dently. The clinicians scored each image according to the 
PWAT grading scale. For a robust estimation of the PWAT 
score, the quantification of the related sub-items was per-
formed during the image acquisition (online evaluation), 
i.e., monitoring the actual state of the wound. We chose 
the PWAT scale since it is a standard reference for wound 
assessment in clinical practice, and its automation can eas-
ily encourage the clinicians' community to use our method.

All the clinicians scored the wounds in the same physical 
space, with the same source of illumination and without time 
limits. Each wound evaluation was reviewed according to the 
photo acquired during the clinical practice (offline evaluation), 
discarding all doubtful cases. During the offline evaluation, 
the images were displayed using a computer monitor (HP Z27 
UHD 4 K, 27") with 3840 × 2160 resolution. The same screen 
color and brightness were used for the clinicians' evaluation.

Fig. 1  Schematic representation of the pipeline. (Step 1) The image is 
acquired by the smartphone (Deepskin dataset) during clinical prac-
tice. (Step 2) Two expert clinicians performed the manual annotation 
of the PWAT score associated to each wound, considering the status 
of the lesion and peri-lesion areas. (Step 3) The neural network model 
trained on the Deepskin dataset performs the automated segmenta-
tion of the wound area. Focusing on the wound and peri-wound areas 
(obtained by image processing analyses), a set of features for the 

quantification of textures and morphology of the lesion are extracted. 
(Step 4) A regression model based on the features extracted from the 
images is tuned for the automated prediction of the PWAT scores. 
While Step 1 and Step 2 requires the human intervention, by defini-
tion, the second half of the pipeline automatically performed the anal-
ysis. We would like to stress that the first two steps are mandatory for 
the training of the automated solution but are discarded during real 
clinical applications
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Image processing pipeline

The proposed image processing pipeline is composed of a 
series of independent and fully automated steps (ref. Fig. 1):

Step 1. Image acquisition using smartphone camera dur-
ing clinical practice.
Step 2. Manual annotation of the wound status according 
to the PWAT scores by the two expert clinicians, pro-
viding the ground truth required for the training of the 
automated model.
Step 3. Automated identification of the wound and peri-
wound areas using the neural network model trained on 
the Deepskin dataset; extraction of human interpretable 
features for the quantification of the PWAT items and 
wound status.
Step 4. Prediction of the PWAT score via weighted com-
bination of the identified features.

The first step of processing involves segmenting the wound 
area from the background. For the automated segmentation of 
the images, we used our previously published convolutional neu-
ral network model: the details about the model implementation 
and its performances on the Deepskin dataset are discussed in 
our previous work [18]. The efficiency of wound segmentation 
is crucial for identifying the regions of interest on which perform 
the subsequent feature extraction. The segmentation masks gen-
erated by our neural network model involve only the wound bed 
areas, while several PWAT sub-items concern scores describing 
the peri-wound boundaries. To overcome this issue, we extended 
each wound mask using a combination of morphological opera-
tors, extracting a second mask related to the only peri-wound 
areas (ref. Wound segmentation section).

In the second step, we performed a features extraction 
from the areas identified by the segmentation model and 
the peri-wound masks. We extracted a set of standard image 
features based on different color spaces (RBG and HSV), 

redness measurements based on quantities already proposed 
in literature [19, 20], and the Haralick's textural features 
[21] for the quantitative description of wound morphology 
(ref. Wound features section for details about them).

In step three, the extracted set of features was used to feed 
a penalized regression model for the prediction of the final 
PWAT scale value.

Calculation

Wound segmentation

The definition of the wound area gives the principal limit of the 
Deepskin dataset. Since there is not a standardized set of criteria 
for the wound area definition, its reliability is left to the clinical 
needs. In our previous work, we trained a convolutional neural 
network model to segment the regions involving only the wound 
bed areas. In contrast, the Peri-ulcer Skin Viability and Edges 
items for the PWAT estimation involve the description of the 
peri-wound area, which is excluded by our segmentation mask.

In this work, we implemented a second step of automated 
image processing for the identification of the peri-wound 
areas, starting from the segmentation masks generated by 
our model. Using a combination of erosion and morphologi-
cal dilation operators, keeping fixed the size of the structur-
ing element (kernel) involved, we extracted for each image 
the associated peri-wound mask, i.e.

where ⊕ and ⊖ denote the dilation and erosion operators 
between the wound mask (M) and the kernel k, respectively. 
We used an ellipse shape for the kernel, with a dimension 
of 3 × 3. An example of the resulting image processing is 
shown in Fig. 2.

Mperi−lesion =

(

Mlesion ⊕ k
)

−

(

Mlesion ⊖ k
)

Fig. 2  Example of segmentation masks used for wound identification. 
a Raw image extracted from Deepskin dataset. b Wound segmenta-
tion mask generated by automated neural network model. c Peri-

wound segmentation mask obtained applying morphological opera-
tors on wound mask
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Wound features

The quantification of the items related to the PWAT estima-
tion involves both the wound and peri-wound areas. Since 
only 1/8 of PWAT sub-items involves the peri-wound area, 
we independently performed the features extraction on both 
the ROIs. In this way, we aimed to maximize the informa-
tive power of the features extracted from the wound area, 
minimizing the putative confounders, but preserving the 
information related to the peri-wound area.

Color features

We extracted the average and standard deviation of RGB 
channels for each wound and peri-wound segmentation. 
This set of measures aims to quantify the appearance of the 
wound area in terms of redness and color heterogeneity.

We converted each masked image into the corresponding 
HSV color space. For each channel, we extracted the average 
and standard deviation values. The HSV color space is more 
informative than the RGB one since it takes care of differ-
ent light exposition (saturation). In this way, we monitored 
the various conditions in which the images were acquired.

Both these two sets of features aim to quantify the 
necrotic tissue components of the wounds. The necrotic tis-
sue, indeed, could be modeled as a darker component in the 
wound/peri-wound area, which alters the average color of 
the lesion. The Necrotic Tissue type and the Total Amount of 
Necrotic Tissue involve 2/8 items in the PWAT estimation.

Redness features

The primary information on the healing stage of a wound 
can be obtained by monitoring its redness (erythema) com-
pared to the surrounding area. Several redness measurements 
are proposed in literature [22], belonging to different medi-
cal fields and applications. In this work, we extracted two 
measures of redness, validated in our previous work [23] on 
a different image processing topic.

The first measure was proposed by Park et al. [20], and 
involves a combination of the RGB channels, i.e.,

where R, G, and B are the red, green, and blue channels 
of the masked image, respectively, the n value represents 
the number of pixels in the considered mask. This measure 
emphasizes the R intensity using a weighted combination of 
the three RGB channels.

The second measure was proposed by Amparo et al. [19], 
and involves a combination of the HSV channels, i.e.,

RednessRGB =
1

n

n
∑

i=1

2Ri − Gi − Bi

2 ×
(

Ri + Gi + Bi

)

where H and S represent the hue and saturation intensities 
of the masked image, respectively. This measure tends to be 
more robust against different image light expositions.

Both these features were extracted on the wound and peri-
wound areas independently. Redness estimations could help 
to quantify the Peri-ulcer Skin Viability, Granulation Tissue 
Type, and Necrotic Tissue Type, which represent 3/8 items 
involved in the PWAT estimation.

Morphological features

We measured the morphological and textural characteristics 
of the wound and peri-wound areas by computing the 13 
Haralick's features [21]. Haralick's features are becoming 
standard texture descriptors in multiple medical image anal-
yses, especially in the Radiomic research field [24–28]. This 
set of features was evaluated on the grey-level co-occurrence 
matrix (GLCM) associated with the grayscale versions of 
the original images, starting from the areas identified by 
our segmentation models. We computed the 13 standard 
Haralick's features, given by energy, inertia, entropy, inverse 
difference moment, cluster shade, and cluster prominence. 
Using textural elements, we aimed to quantify information 
related to the Granulation Tissue types and Amount of Gran-
ulation Tissue, which are 2/8 items of the total PWAT score.

Regression pipeline

We started the regression analysis by standardizing the distri-
bution of the extracted features. Each distribution of features 
belongs to a different domain of values, and to combine them, we 
need to rescale all the values into a common range. We rescaled 
the distributions of features using their median values, normal-
izing according to the 1st and 3rd quantiles, i.e., a robust scaling 
algorithm, minimizing the dependency from possible outliers. 
Both medians and quantiles were estimated on the training set 
and then applied to the test set to avoid cross contamination.

Starting from the processed features, we used a penalized 
Lasso regression model [29] to predict the PWAT clinical 
scores. Lasso regression is a regularized linear regression 
variant with an additional penalization component in the 
cost function [30]. In our simulations, we used a penalization 
coefficient equal to  10-2. We split the complete set of data 
into train/test sets using a shuffled tenfold stratified cross-
validation: in this way, we can ensure a balance between 
classes at each subdivision. The model was trained on a sub-
set (90%) of data, and its predictions were evaluated on the 
remaining test set (10%), at each fold.

RednessHSV =
1

n

n
∑

i=1

Hi × Si
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Results

We analyzed a dataset of 612 images using our automated 
pipeline, producing the complete set of segmentation 
masks, and extracting the related features. We fed a Lasso 
regression model using the 54 obtained features (12 color 
features + 2 redness features + 13 Haralick's features for 
both wound and peri-wound masks), estimating the cor-
relation between the clinical PWAT values (ground truths) 
and the predicted ones. We trained the regression model 
using a tenfold cross-validation; the best model found pre-
dicts the correct PWAT scale values with a Spearman's 
rank correlation coefficient of 0.85 (ref. Fig. 3a) and a 
corresponding p-value close to zero. According to the ten-
fold cross validation, the correlation performances were 
evaluated using the test subset of the data at each fold, 
combining the results to obtain the score presented in the 

figure legend. An example of the prediction obtained on 
the test set is shown in Fig. 4.

We reiterated the same pipeline for 100 different cross-
validations to test the robustness of our model, i.e. repeat-
ing the regression step 100 times with different train/test 
subdivision of the data. We re-trained a Lasso regression 
using tenfold cross-validation at each iteration, monitoring 
the model's sensitivity to different training set subdivi-
sions. The resulting distribution of Spearman's rank cor-
relation coefficient is shown in Fig. 3b.

We evaluated the informative power of each feature 
independently, performing a second set of 100 hold-
out (90/10) cross-validations using the proposed pipe-
line, monitoring the coefficients of the Lasso regression 
model. The ranked distribution of the average coeffi-
cients associated with the corresponding feature is shown 
in Fig. 3c.

Fig. 3  Results of the penalized regression model for predicting the 
PWAT scale values developed starting from the extracted features. 
The correlation between the ground truth and the predicted values is 
estimated using Spearman's rank correlation coefficient (ref. plot leg-
ends). a Results on a single cross-validation of the model. With the 
dashed line, we highlight the axes bisector corresponding to a per-
fect prediction. The model tends to overestimate the low PWAT scale 
values due to the few samples characterized by this condition. We 

remark that the predictions are performed on a data set independent 
of the training set. b Results obtained by the same pipeline on 100 
different cross-validations. A tenfold cross-validation was applied in 
each iteration to estimate Spearman's rank correlation coefficients. c 
Top ranking features involved in the prediction of PWAT scores. The 
informative power of the features was estimated using the coefficients 
of the lasso regression model

Fig. 4  Example of the predictions obtained by the regression model on three test images. We report the assigned PWAT score and the predicted 
one for each image using our model. We highlighted the wound areas identified by our automated segmentation model with the green lines
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Discussion

The automated segmentation model, combined with the 
refinement image processing step proposed in this work, 
allowed the extraction of quantitative information on both 
the wound and peri-wound areas. Starting from the defini-
tion proposed in the literature about the items related to 
the PWAT score, we extracted a series of features to char-
acterize the wound and peri-wound areas. Each proposed 
feature was designed to model a different aspect of the 
wound area and a related PWAT sub-item. In this work, 
we focused on the "global" estimation of the PWAT score, 
but the correlation between each feature and the theoretical 
PWAT sub-items will be analyzed in a future work.

The results obtained on the PWAT prediction highlight 
a statistical agreement between (a subset of) the features 
extracted from the wound area and the grading scores. The 
robustness of the predictions on a set of images sampled with 
a no-rigid acquisition protocol confirms its possible use in 
clinical practice as a viable decision support system for der-
matologists. We would like to stress that the results proposed 
in this work were obtained by a rigid train-test subdivision of 
data, i.e., evaluating the model on a never-seen set of data. 
Moreover, the entire pipeline produces real-time prediction 
on standard hardware, making it suitable for standard clinical 
practice and a valid candidate for smartphone implementation.

The proposed penalized regression model combines the 
extracted features, finding the optimal weights, i.e., param-
eters, to associate with each one. Beyond the resulting per-
formances, interpreting the regression coefficients allows 
to rank the extracted features according to their informative 
power for the PWAT estimation. As expected, not all the 
features are equally informative, but only 15 provide infor-
mation on the PWAT score. It is interesting to notice how 
the most informative features selected by our model involve 
textural measures of the peri-wound and wound areas in a 
fairly balanced contribution (ref. Fig. 3c), followed by the 
values related to the exposition and contrast of the wound. 
The same measures are strictly related also to the human 
perception of the image and its colors. This result confirms 
the efficiency of a Radiomic approach in medical image 
evaluation and the possibility to apply analogous techniques 
also to photographic medical images. The importance of 
contrast-based features could be mainly imputed to the 
necrotic condition of the most severe lesions which lead 
to a heterogeneous spread of the image colors. It is also 
interesting to notice how the classical redness expected in a 
lesion status, quantified by the Park et al. score, plays quite 
a negligible role in the final prediction. This behavior could 
be due to a bias in our dataset related to an unbalanced rep-
resentation of the lesions, corresponding to different sever-
ity grades and color shades.

In our analysis, we intentionally discarded the wound 
area feature for the PWAT estimation; despite this informa-
tion being included in the clinical practice and in the PWAT 
estimation, its automated computation requires a pre-deter-
mined rigid standardization of image acquisition, which 
could disfavor its applicability to routine clinical examina-
tions. The Deepskin dataset includes wounds belonging to 
several anatomical positions, with images acquired without 
strict standardization. Therefore, the correct estimation of 
the wound area is impossible without a term of comparison 
or a pre-determined reference. We are currently developing 
an ad hoc segmentation model to address this issue with-
out losing the easy-to-use characteristics of the proposed 
method, which will be discussed in future work.

The main limit of our work could be imputed to the 
monocentric source of the data and to the intrinsic bias 
duced by the reduced patient heterogeneity of the Italian 
country. A deeper validation of our system could be achieved 
with the analysis of a large scale multi-center dataset, involv-
ing patients with a wider heterogeneity.

A second limit of the study could be attributed to a bias 
in the considered PWAT scores and patients. In the analyzed 
dataset, the PWAT scores ranged from a minimum of 2 to a 
maximum of 24, lacking the scores from 25 to 32 with an 
unbalanced subdivision of the value classes. While this reflects 
real-life values   of the Italian population, it could nevertheless 
represent a limitation for the training of our system.

A further bias could be related toalso be present regard-
ing the general picture acquisition condition. Capturing the 
images with a wider range of devices different light condi-
tions could improve the robustness of the proposed method, 
as well as the introduction of standardized image processing 
techniques as preprocessing step of our analysis [31, 32].

All the limits identified in this manuscript will be faced 
in future works, which will manage to improve the image 
processing pipeline and enlarge the dataset with new records 
according to the clinical availability.

Conclusions

This work introduced a fully automated pipeline for pre-
dicting the PWAT grading scale. We combined a previously 
published automated pipeline to analyze wound images 
with a feature extraction approach to quantify information 
related to the wound healing stage. We performed a robust 
machine learning analysis of the image features, providing a 
regression model to correctly predict the PWAT score with 
a Spearman's correlation coefficient of 0.85. Moreover the 
proposed regression model could provide PWAT predic-
tions with a continuous range of values, i.e. floating-point 
scores. The possibility to describe the wound severity using 
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a finer-grained scale could provide a better patients stratifi-
cation while preserving the same informative power as the 
original PWAT scale.

A penalized regression model allowed us to deeply investi-
gate the informative power of each feature extracted, provid-
ing a ranking of them according to their relation to the PWAT 
score. We proved that Haralick's features play a statistically 
significant role in the PWAT prediction. Furthermore, the fea-
tures extracted on the peri-wound areas were as informative as 
the wound ones. This confirms the importance in defining the 
correct shape and boundaries of the wound area for the correct 
automatization of the PWAT analysis.

The proposed pipeline is currently used in the Derma-
tological Unit of IRCCS Sant'Orsola-Malpighi University 
Hospital of Bologna in Italy, and it is still being perfected 
to overcome the current limitations of the method. These 
improvements will be the subject of future work.
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