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Material and Methods 

MRI Data Acquisition 

All data were acquired using a 3 T Siemens Magnetom Prisma MRI scanner with a 32-channel head coil 

at the Dartmouth Brain Imaging Center. CaseForge headcases were used to minimize head motion. 

BOLD images were acquired in an interleaved fashion using gradient-echo echo-planar imaging with 

pre-scan normalization, fat suppression, multiband (i.e., simultaneous multi-slice; SMS) acceleration 

factor of 4 (using blipped CAIPIRINHA), and no in-plane acceleration (i.e., GRAPPA acceleration 

factor of one): TR/TE = 1000/33 ms, flip angle = 59°, resolution = 2.5 mm3 isotropic voxels, matrix size 

= 96 x 96, FoV = 240 x 240 mm, 52 axial slices with full brain coverage and no gap, anterior–posterior 

phase encoding. At the beginning of each run, three dummy scans were acquired to allow for signal 

stabilization. The T1-weighted structural scan was acquired using a high-resolution single-shot 

MPRAGE sequence with an in-plane acceleration factor of 2 using GRAPPA: TR/TE/TI = 

2300/2.32/933 ms, flip angle = 8°, resolution = 0.9375 x 0.9375 x 0.9 mm voxels, matrix size = 256 x 

256, FoV = 240 x 240 x 172.8 mm, 192 sagittal slices, ascending acquisition, anterior–posterior phase 

encoding, no fat suppression, and with 5 min 21 s total acquisition time. A T2-weighted structural scan 

was acquired with an in-plane acceleration factor of 2 using GRAPPA: TR/TE = 3200/563 ms, flip angle 

= 120°, resolution = 0.9375 x 0.9375 x 0.9 mm voxels, matrix size = 256 x 256, FoV = 240 x 240 x 

172.8 mm, 192 sagittal slices, ascending acquisition, anterior–posterior phase encoding, no fat 

suppression, and lasted for 3 min 21 s. At the beginning of each session (The Grand Budapest Hotel, the 

Hyperface stimulus, and the localizer task), a fieldmap scan was collected for distortion correction. 

DCNN Models 

We used five DCNN models in our analysis: three DCNNs trained for face recognition and two DCNNs 

trained for object recognition. These DCNNs cover a wide range of commonly used “classic” and state-

of-the-art DCNN architectures, including AlexNet (1), VGG16 (2), and ResNet100 (3). 

DCNN Models Trained for Face Recognition. All 3 Face DCNNs were trained using the MS-Celeb-

1M dataset (4), one of the largest publicly available datasets for face recognition. The training dataset 

contains approximately 10 million images sampled from 100,000 top celebrity identities from a 

knowledge base comprising 1 million celebrities. We used a curated version of the dataset as provided 

by the InsightFace package, which contains 85,742 identities and 5.8 million aligned face images with 

112 × 112 resolution. These images were divided into 45,490 batches with 128 images each during 

training. 
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The main architecture of the three face-DCNNs are ResNet100, AlexNet, and VGG16, 

respectively. The ResNet100 face-DCNN was the pre-trained ArcFace model provided by the 

InsightFace package (labeled as "LResNet100E-IR,ArcFace@ms1m-refine-v2", 

https://github.com/deepinsight/insightface/wiki/Model-Zoo#3-face-recognition-models), commonly 

known as the pre-trained ArcFace DCNN. 

We trained the other two DCNNs also with the ArcFace loss function, one of the most effective 

loss functions for face recognition (5). To facilitate convergence, for each of these two DCNNs, we first 

trained it for 4 epochs using the softmax loss function, and then fine-tuned it for another 16 epochs using 

the ArcFace loss function. For the softmax loss function, we followed the steps of (5) to normalize the 

embedding vectors and weights. 

We used the Adam optimizer for training (6), with an initial learning rate of 2-10. We used a 

procedure which we call "prestige" to choose the optimal learning rate. That is, for each epoch, we 

trained two replicas of the DCNN with different learning rates: one with the same learning rate as the 

previous epoch, and the other with half the previous learning rate. After both replicas had finished 

training, we only kept the one with a smaller loss. This procedure allows us to train our DCNNs with a 

satisfactory convergence speed. We also repeated the training of each network twice with different 

initializations, and only used the one with smaller loss. 

We assessed the performance of the two DCNNs we trained using the Labeled Faces in the Wild 

(LFW) dataset (7). Specifically, we used the curated version of the dataset provided by the InsightFace 

package, which contained 6000 pairs of images. 

We used a 10-fold cross-validation scheme to evaluate the prediction accuracy of our DCNNs. 

For each pair of images, we computed the similarity of their embedding vectors, and predicted whether 

they were the same identity or not based on a threshold. For each cross-validation fold, the threshold 

was chosen based only on training data. 

The classification accuracy was 98.75% and 98.45% (chance accuracy: 50%) for the face 

AlexNet and face VGG16 (Figure S2), respectively, which were comparable to previous results based on 

DCNNs that had similar architectures (https://paperswithcode.com/sota/face-verification-on-labeled-

faces-in-the). 

DCNN Models Trained for Object Recognition. We used pretrained AlexNet and VGG16 models 

provided by the torchvision package (https://pytorch.org/vision/stable/models.html), which were 

optimized for object recognition based on the ImageNet dataset. Although those networks were not 

specifically trained for face recognition, they were able to classify face identity to some extent, with an 

https://pytorch.org/vision/stable/models.html
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accuracy of 68.43% and 68.30% for the object AlexNet and object VGG 16, respectively (chance 

accuracy: 50%). 

Data Analysis 

Preprocessing. MRI data were preprocessed using fMRIPrep version 1.4.1 (8). T1-weighted images 

were corrected for intensity non-uniformity (9) and skullstripped using antsBrainExtraction.sh. High 

resolution cortical surfaces were reconstructed with FreeSurfer (10) using both T1-weighted and T2-

weighted images, and then normalized to the fsaverage template based on sulcal curvature (11). 

Functional data were slice-time corrected using 3dTshift (12), motion corrected using MCFLIRT (13), 

distortion corrected using fieldmap estimate scans (one for each session), and then resampled to the 

fsaverage template based on boundary-based registration (14). After these steps, functional data were in 

alignment with the fsaverage template based on cortical folding patterns. The following confound 

variables were regressed out of the signal in each run: six motion parameters and their derivatives, 

global signal, framewise displacement (15), 6 principal components from a combined cerebrospinal fluid 

and white matter mask (aCompCor) (16), and up to second-order polynomial trends. 

Searchlight Hyperalignment. All three imaging datasets were hyperaligned (17–20) based on 

responses to the Grand Budapest Hotel (Figure S1). We first built a common model information space 

where patterns of fMRI responses to the Grand Budapest Hotel movie were aligned across subjects. 

Whole-cortex transformation matrices for each individual were calculated using a searchlight-based 

algorithm to project each participant’s cortical space into the common model information space. 

Transformation matrices were calculated for all 15 mm radius searchlights in each brain using an 

iterative procedure and Procrustes alignment, and then aggregated into a single matrix for each 

hemisphere. Transformation matrices for each participant were used to transform their Hyperface and 

dynamic localizer data into the common model space, so that all three imaging datasets were 

functionally aligned in the same common model information space. 

Reweighting Features Prior to RSA. RSA has the strong assumption that all features contribute 

equally to generate an RDM (e.g. all cortical vertices in a searchlight are equally important when 

computing pattern similarity between two conditions) (21, 22). We tested whether relaxing this 

assumption might yield larger DCNN-neural correlations. We developed a novel approach that best 

matched the DCNN features to the brain responses before performing RSA. First, the DCNN features 

were matched to the brain responses by performing singular value decomposition (SVD) on the 

covariance matrix between the DCNN features and brain features. This step corresponds to bringing the 

DCNN features into a space with reduced dimensionality N that best matches brain responses. Second, 
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ridge regression was used to predict responses for each brain feature (vertex) from the reduced-

dimension DCNN features. Third, the fitted ridge model was used to generate predictions of the brain 

responses from DCNN features for left-out data. This procedure ultimately yields a reweighted subspace 

of the original DCNN feature space that best predicts brain features. Finally, these predicted features 

were used to generate RDMs, which were then analyzed as reweighted DCNN RDMs. 

This process was performed using nested cross-validation. The 12 scanning runs were separated 

into two sets (11 training runs and one test run) for both the brain and DCNN (ArcFace) responses. The 

training runs were used to estimate the transformation for the shared components and the ridge 

regression parameters. The hyperparameters (number of dimensions N and ridge regularization 

parameter 𝛼) were chosen based on a nested leave-one-run-out loop within the 11 training runs. We 

performed a grid search on N and 𝛼 by testing 18 evenly distributed values from 5 to 90 for N, and 29 

evenly distributed values from 10-7 to 107 on a logarithmic scale for 𝛼. The regression model was trained 

to yield the best R2. The best model was then used to generate RDMs for the left-out run. This analysis 

was performed within each searchlight. 

Cross-subject Identity Decoding. The cross-subject identity decoding analysis was done as a binary 

classification task with a simple one-nearest-neighbor classifier across all searchlights (10 mm radius). 

We performed the analysis using a split-half cross-validation scheme. That is, we divided the subjects 

into two groups (training and test). For each face and each group, we computed an average response 

pattern across subjects in the group. We assessed whether the average pattern of a face for the training 

group is more similar to that of the same face for the test group compared to a different face (2-

alternative forced choice; chance accuracy = 50%). We repeated this for all pairs of faces and averaged 

the accuracy. Because there are many different ways to split the subjects into two groups, we also 

repeated the split-half procedure 100 times and averaged the accuracy across repetitions. 

We also performed a similar analysis using leave-one-subject-out cross-validation instead of split-half 

cross-validation. Each time, we computed the average response patterns of 20 subjects and compared 

with the left-out test subject. 

Note that the RSA analysis is based on the average of all 21 subjects rather than half of the 

subjects or a single subject, and the data quality is superior to the average patterns used in this 

classification analysis. 

Variance Partitioning Analysis. Variance partitioning analysis based on multiple linear regression was 

used to quantify the unique contributions of each model taking into consideration the contribution of 

other models. In detail, this analysis was done to tease apart the contribution of face- and object-trained 

DCNNs in explaining variance of the behavioral arrangement task RDM, and to separate the relative 
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contributions of face- and object-trained DCNNs, as well as the behavioral arrangement task 

performance in explaining variance of the neural RDM for a given face-selective region. In the first 

analysis (comparing behavioral RDMs and two types of DCNN RDMs), the off-diagonal elements of the 

behavioral RDM were assigned as the dependent variable, and the off-diagonal elements of the two 

DCNN models were assigned as independent variables (predictors). In the second analysis (comparing 

neural, behavioral, and two types of DCNN RDMs), the dependent variable was the off-diagonal 

elements of the mean RDM across vertices in face-selective cortex, and the independent variables were 

the off-diagonal elements in the two DCNN models and the behavioral RDM. Both analyses were 

performed within runs and the variance was averaged across runs as the final result. To obtain unique 

and shared variance for each model, in the former analysis, three multiple regression analyses were run 

in total. The three analyses included the full model that had both DCNNs as predictors and two reduced 

models that contained an individual DCNN as the predictor. For the latter analysis, seven multiple 

regression analyses were run including one full model that had behavioral and two DCNN models as 

predictors, as well as six reduced models that had either combinations of two models from the three 

(behavioral, two DCNNs) or one individual model alone as the predictor. By comparing the adjusted 

explained variance (adjusted R2) of the full model and the reduced models, variance that was explained 

by each model independently could be inferred (23, 24). The variance partitioning analysis was 

conducted using the “vegan” package of R (https://cran.r-project.org/web/packages/vegan/vegan.pdf).  

RSA between the behavioral arrangement task RDMs and RDMs of DCNNs were carried out for 

each run and correlations were averaged across runs. “Best layers” for the behavioral arrangement task 

were layers that had the strongest correlations with the behavioral RDMs, including _plus45 of ArcFace, 

pool5 of face AlexNet, block5_conv2 of face VGG16, fc2 of object AlexNet, and fc2 of object VGG16. 

In the run-by-run RSA analysis between neural RDMs and RDMs of DCNNs, “best layers” were 

_plus42 of ArcFace, conv1 of face AlexNet, block2_pool of face VGG16, conv2 of object AlexNet, and 

block3_pool of object VGG16. These layers were very similar with the “best layers” in the RSA 

analysis using all 707 stimuli (_plus42 of ArcFace, conv1 of face AlexNet, block2_conv1 of face 

VGG16, conv2 of object AlexNet, and block3_conv3 of object VGG16).  

Multidimensional Scaling. Multidimensional scaling (MDS) was used to visualize the representational 

geometry of face stimuli for different DCNNs, behavioral arrangements, and neural ROIs. Pairwise 

correlation distance matrices were computed for stimuli pairs in each of the spaces in a run-by-run 

manner. Metric MDS was used to project the stimuli onto a 2-dimensional space and these locations 

were color-coded based on the behavioral ratings. MDS was also used to visualize representational 

geometry of the 18 face-selective ROIs (Figure S5). Pairwise correlation distance matrices were 
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computed for face ROI pairs based on the 707-by-707 RDM of each face ROI in a second-order RSA 

manner.  
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Figure S1. Schematic of the hyperalignment procedure. A. Transformation matrices were calculated by 

hyperaligning each participant’s responses to the Grand Budapest Hotel movie to the common model 

space. B. The transformation matrix derived from the Grand Budapest Hotel movie for each participant 

was then applied to the Hyperface data. C. The transformation matrix derived from the Grand Budapest 

Hotel movie for each participant was also applied to the localizer runs. Thus, after hyperalignment, the 

Budapest data, the Hyperface data, and the localizer data were all functionally aligned to the common 

model space. 
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Figure 

S2. DCNN performance on face recognition. Using the Labeled Faces in the Wild (LFW) dataset, we 

assessed the face recognition performance of the DCNNs used in our analysis. The benchmarking task 

was to tell if two faces were the same person or not based on the similarity of their embeddings, and thus 

the chance accuracy was 50%. The dataset was divided into 10 folds and a leave-one-out cross-

validation was used to determine the threshold (i.e. the similarity level to determine if two faces are the 

same or not). The accuracy was 68.43% and 68.30% for the object AlexNet and object VGG16, 

respectively, and 98.75% and 98.45% for the face AlexNet and face VGG16, respectively. The accuracy 

was 99.77% for the pre-trained ArcFace, which was provided by the InsightFace package.  Error bars 

are the standard deviation of the accuracy across 10 cross-validation folds.  
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Figure S3. Object-DCNN representations. A. Correlations in each pair of layers in the two object-

trained AlexNet and VGG16, and across the six face- (ArcFace, AlexNet, and VGG16) and object-

DCNN pairs. B. Mean correlations across participants and runs between the behavioral RDM and 

DCNN RDM in each layer in the two object-DCNNs. The star marks the layer that has the highest 

correlation with the behavioral task in each DCNN. The red horizontal line in each subplot represents 

the mean noise ceiling of the behavioral arrangement task across runs. C. Average correlations for face-

selective regions and non-face-selective regions for each layer in the two object-DCNNs. Regions, 

significance, and the color code were defined the same as in Figure 3C. Stars indicate the layers that had 

the largest correlations. D. Difference in the between- and within-group distance of perceived gender 

(red), age (orange), ethnicity (green), expression (blue), and head orientation (purple) in representational 

geometries of the behavioral arrangement task, each layer of the two object-trained DCNNs (AlexNet, 
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VGG16). These differences were calculated within each run and then averaged across runs. Shaded 

layers and ROIs show significant differences in the between- versus within-group test (p < 0.05, 

permutation test, one-tail). Significance of the difference was estimated based on a random permutation 

test randomizing the stimulus labels. Error bars represent one standard error of the mean estimated by 

bootstrap resampling stimuli. *** p < 0.001.  
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Figure S4. Between-subject identity decoding accuracies. A. Searchlight analysis of between-subject 

identity classification. This classification analysis was a binary classification task with a simple one-

nearest-neighbor correlation-based classifier. We used a searchlight radius of 10 mm, similar to our 

other analyses. We used a split-half cross-validation scheme. That is, we divided the subjects into two 

groups (training and test). The classification task is binary classification (2-alternative forced choice). 

For each face and each group, we computed an average response pattern across subjects in the group. 

Each time, we assessed whether the test group's average pattern of a certain face was more similar to the 

training group's pattern to the same face than to a different face (chance accuracy = 50%). We repeated 
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this procedure for each pair of faces and averaged the accuracy across face pairs. Because there are 

multiple ways to split subjects into groups, we also repeated the split-half procedure 100 times and 

averaged the accuracy across repetitions. Classification accuracy was high for visual and face-selective 

regions. B. Similar analysis based on a leave-one-subject-out cross-validation scheme. Each time, we 

computed the average response patterns of 20 subjects and compared these patterns with those of the 

left-out test subject. The accuracies were lower compared with A, because the data from only a single 

subject was used as test data, but nonetheless clearly significant. Note that even in the split-half 

condition, there were only 10 or 11 subjects per group. Our RSA analysis was based on the average 

across all 21 subjects, and thus the average patterns have higher quality than those used in A. C. Split-

half classification accuracy in face-selective regions. D. Leave-one-subject-out classification accuracy in 

face-selective regions.  
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Figure S5. MDS plot of distances between RDMs in 18 bilateral face-selective ROIs. Each dot 

represents one face-selective ROI (10 mm radius with the peak at the center). These face ROIs were 

localized using the faces-vs-objects contrast with the dynamic localizer. Red markers denote ROIs in 

ventral temporal cortex, orange markers denote ROIs in lateral temporal cortex, and yellow markers 

denote ROIs in frontal cortex. The clustering of ROIs follows the anatomical and functional hierarchy of 

the face-processing network.  
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Figure S6. Contrast maps and noise ceilings. A. The whole-brain faces-vs-objects contrast t-map was 

calculated for each individual using hyperaligned dynamic localizer data. Then the t-maps were 

averaged across participants. The darker the red color was, the stronger the responses were to faces. B. 

The face-selective regions thresholded at t > 5. C. Whole-brain Conbach’s alpha map (run-wise). 

Reliabilities of neural RDMs across participants were calculated for each searchlight for each run, and 

the mean Cronbach’s alpha map was derived by averaging maps across runs.  
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Figure S7. RSA results in layers of three face-DCNNs with noise ceilings. Bar plots of the mean 

DCNN-neural correlations in face-selective, non-face-selective, and whole-brain regions in layers of the 

three face-DCNNs with noise ceilings. Horizontal lines in each panel represent the mean noise ceiling in 

face-selective, non-face-selective, and whole-brain searchlights. These lines are coded with the same 

colors in the legends. In all three panels, error bars represent one standard error of the mean estimated by 

bootstrap resampling stimuli. Significance of the difference was estimated based on a permutation test 

randomizing the stimulus labels. *** p < 0.001.  
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Figure S8. RSA results in layers of two object-DCNNs with noise ceilings. Bar plots of the mean 

DCNN-neural correlations in face-selective, non-face-selective, and whole-brain regions in layers of the 

two object-DCNNs with noise ceilings. Horizontal lines in each panel represent the mean noise ceiling 

in face-selective areas, non-face-selective areas, and across the whole brain. These lines are color coded 

according to the legend at top. In panels A, B, and C, the error bars indicate standard error of the mean 

estimated by bootstrap resampling stimuli. Significance of the difference was assessed based on a 

permutation test randomizing the stimulus labels. *** p < 0.001.  
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Figure S9. RSA and prediction analysis. A. Left panel shows the whole-brain ArcFace-neural RSA map 

(run-wise). Right panel shows the whole-brain prediction correlation map. Because prediction analysis 

was done in a leave-one-run-out cross-validation procedure (see Material & Methods for details), the 

RSA was recalculated using a run-wise procedure for comparison. In detail, RDMs were computed for 

each run in each searchlight, and the resulting correlations were averaged across runs to generate the 

map in the left panel. B. Histograms of ArcFace-neural RSA correlations calculated using data in each 

run and averaged across all twelve runs are plotted at bin size of 0.002 in the upper panel. Histograms of 

correlations between predicted and original RDMs are plotted at the same bin size in the lower panel. C. 

Average correlations of face-selective regions (t > 5) and non-face-selective regions (t <= 5) using RSA 

and prediction maps. The error bars indicate standard error of the mean estimated by bootstrap 

resampling of the stimuli (5000 bootstraps). Significance of the difference between the two bars was 

assessed using a permutation test randomizing the stimulus labels (5000 permutations). * p <  0.05. 
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Figure S10. RSA results in layers of ArcFace with different searchlight sizes. A. Line plots of the mean 

DCNN–neural correlations in face-selective regions (red), non-face-selective regions (gray), and across 

the whole brain (orange) for each layer of ArcFace with a searchlight radius of 10 mm, 15 mm, and 20 

mm (note that the gray and orange lines are largely overlapped). B, C, & D. Bar plots of the same values 

as in panel A (mean DCNN-neural correlations in face-selective, non-face-selective, and whole-brain 

regions in layers of ArcFace) with noise ceilings. Horizontal lines in each panel represent the mean 

noise ceiling in face-selective, non-face-selective, and whole-brain searchlights. These lines are coded 
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with the same colors in the legends. In all four panels, error bars represent one standard error of the 

mean estimated by bootstrap resampling stimuli. Significance of the difference was estimated based on a 

permutation test randomizing the stimulus labels. *** p < 0.001. Larger searchlight sizes slightly 

increased DCNN-neural correlations, but the overall correlations remained weak.  
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Figure S11. RSA results in individual face-selective ROIs with different ROI sizes. A, B, & C. RSA 

correlations for each layer of ArcFace in individual face-selective ROIs with ROI size of r = 10 mm, 15 

mm, and 20 mm. Error bars indicate standard error of the mean estimated by bootstrap resampling the 

stimuli (1000 bootstraps).  
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Figure S12. RSA results and noise ceilings in individual face-selective ROIs. A. Peak coordinates of 18 

bilateral face-selective ROIs across both hemispheres. Red markers denote ROIs in ventral temporal 

cortex, orange markers denote ROIs in lateral temporal cortex, and yellow markers denote ROIs in 

frontal cortex. B, C, D, E, & F. RSA correlations for each layer of ArcFace, AlexNet (face-trained), 

VGG16 (face-trained), AlexNet (object-trained), VGG16 (object-trained) respectively in individual 

face-selective ROIs. Error bars indicate standard error of the mean estimated by bootstrap resampling 

the stimuli (1000 bootstraps). The line plots at the top of each panel match the values from the bar plot 

below. The line plots are included to more clearly display the profile of correlations across DCNN 

layers. G. Noise ceilings (Cronbach’s alphas) in each face-selective ROI. Noise ceilings were calculated 

using all stimuli at once (All, upper panel), and within each run and averaged across runs (Run-wise, 

lower panel). The DCNN-neural correlations were much lower than the noise ceiling of that ROI across 

all layers.   
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Figure S13. Variance partitioning analysis. A. Results of the variance partitioning analysis on the 

RDMs of face-DCNNs (light blue) and the object-DCNNs (purple) explaining variance of the behavioral 

task representations. Variance noted as unique or shared (numbers above the bars) are percentages of the 

total variance explained by both models combined (total r2). The first two bars (solid edges) show the 

total variance that each DCNN category (face or object) explained, and the rest of the bars (dotted 

edges) show the unique and shared variance that each DCNN category explained. In the upper panel, 

face- and object-DCNN RDMs were the mean of the RDMs in layers with the highest correlations with 

the behavioral RDM (“best” layers, marked with stars in panel B. _plus45, pool5, block5_conv2, fc2, 

and fc2 in ArcFace, face AlexNet, face VGG16, object AlexNet, and object VGG16 accordingly). In the 

lower panel, face- and object-DCNN RDMs were the mean of the RDMs in the final layer. B. Results of 

the variance partitioning analysis on the RDMs of face-DCNNs (light blue), object-DCNNs (purple), 

and behavioral task (yellow) explaining variance of the neural representations in face-selective areas (t > 

5). Variance noted as unique or shared (numbers above the bars) are percentages of the total variance 

explained by all three models combined (total r2). The first three bars (solid edges) stand for the total 

variance that DCNNs and the behavioral task explained, and the rest of bars (dotted edges) stand for the 

unique and shared variance that each DCNN category and the behavioral task explained. In the upper 

panel, face- and object-DCNN RDMs were the mean of the RDMs in layers that had the highest 

correlations with the neural RDM in the run-by-run analysis (“best” layers, _plus42, conv1, 

block2_pool, conv2, block3_pool in ArcFace, face-trained AlexNet, face-trained VGG16, object-trained 

AlexNet, and object-trained VGG16 accordingly). In the lower panel, face- and object-DCNN RDMs 

were the mean of the RDMs in the final layer.  
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Figure S14. Correlations based on stimuli in behavioral pairwise comparison experiments. A. Mean 

correlations between RDMs based on behavioral similarity ratings and RDMs based on DCNN features 

in each layer, across participants and the four groups (white females ages 21-30, generally happy, facing 
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right, 18 clips; black males age 21-30, neural expression, facing right, 15 clips; black females age 21-40 

with happy or neutral faces, facing right, 16 clips; white males age 21-30 with neutral faces, facing right, 

20 clips). All correlations are below 0.039 and only a small fraction of the noise ceiling of 0.86. The 

gray line stands for zero. B. The neural-behavioral correlation values in the cortex. C. The mean 

behavioral-neural correlations in face-selective (red) and non-face-selective (gray) areas. Note that the 

behavioral-neural correlations in face-selective areas for individuation are comparable (non-significant 

difference) to the behavioral-neural correlations based on the arrangement task which reflected mostly 

categorical attributes. The error bars indicate standard error of the mean estimated by bootstrap 

resampling the stimuli. D. Bar plots of the mean DCNN-neural correlations, restricted to the within-

group RDMs for the faces selected to minimize differences in categorical attributes in face-selective and 

non-face-selective regions in layers of the three face-DCNNs and two object-DCNNs. In all five panels, 

error bars represent one standard error of the mean estimated by bootstrap resampling stimuli.  
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Figure S15. Correlations based on stimuli in behavioral pairwise comparison experiments with noise 

ceilings. A. Mean correlations between RDMs based on behavioral similarity ratings and RDMs based 

on DCNN features in each layer, across participants and the four groups. Noise ceilings based on the 
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cross-participant reliability of the similarity ratings (Cronbach’s alpha) were over 0.8, showing that 

DCNNs captured only a very small portion of the meaningful variance in behavioral ratings reflecting 

individuation of faces. B. Bar plots of the mean DCNN-neural correlations, restricted to the within-

group RDMs for the faces selected to minimize differences in categorical attributes, in face-selective, 

non-face-selective, and whole-brain regions in layers of the three face-DCNNs and two object-DCNNs 

with noise ceilings. Noise ceilings based on the cross-participant reliability of the neural RDMs 

(Cronbach’s alpha) were over 0.35 for the face-selective areas and over 0.1 for the non-face-selective 

areas and the whole brain, showing that DCNNs captured only a very small portion of the meaningful 

variance in neural representational geometry even when that variance is restricted to information for 

individuation.  
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Figure S16. RSA results for high-level category-selective areas across layers of DCNNs with noise 

ceilings. A. Line plots of the mean DCNN–neural correlations in face-selective regions (red), body-

selective regions (purple), scene-selective regions (blue), object-selective regions (yellow), non-face-

selective regions (gray), and across the whole brain (orange) for each layer of the five DCNNs. B. Bar 

plots of the same values as in panel A (mean DCNN-neural correlations in face-selective, body-

selective, scene-selective, object-selective, non-face-selective, and whole-brain regions in layers of the 

five DCNNs) with noise ceilings. Horizontal lines in each panel represent the mean noise ceilings of 

those regions. These lines are coded with the same colors in the legends. In both panels, error bars 

represent one standard error of the mean estimated by bootstrap resampling stimuli.  
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