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A B S T R A C T   

Soil contamination by agrochemicals is a big concern for soil health and ecosystem functioning. This is especially 
true for non-degradable substances like heavy metals (HM) that, because of their long-term use, are reaching 
significant values today due to soil accumulation. Among agrochemicals, copper (Cu) has been important in 
fighting fungal diseases on perennial crops for centuries. 

Laboratory experiments can be useful to understand the highest potential toxic effect of Cu but need to reflect 
what happens with long-term application in a dynamic and living agroecosystem. This study uses multivariate 
data analysis and machine learning to investigate long-term Cu accumulation on soil quality parameters, espe-
cially soil extracellular enzymatic activities. We collected soil samples from 21 apple orchards in South Tyrol, 
Italy. The orchards had different concentrations of Cu. We took 315 samples in total and analyzed them for 
various soil properties. We also measured the concentrations of elements in apple leaves and the activities of soil 
extracellular enzymes. We depicted the effect of Cu on several enzymatic activities, shedding light on the effect of 
Cu on the soil microbial communities functionality. Our results show that Cu concentrations in the study area 
affect only phosphatase activity, showing effects above 60 mg kg− 1 of available Cu. Protease activity was 
positively correlated with Cu, while soil organic matter and management mainly influenced the carbon (C) cycle 
enzymes. Phosphatase decrease could be of concern for the potential disruption of the Phosphorus (P) cycle in the 
soil and plays a role in plant nutrition, as seen by P concentration in apple trees' leaves. 

We demonstrated how machine learning can help interpret complex and multivariate environmental data and 
overcome some downsides of traditional statistical models.   

1. Introduction 

Soil degradation resulting from agricultural practices, such as the use 
of pesticides and fertilizers, is a growing concern due to the presence of 
heavy metals (HMs) (Guo et al., 2018; Panagos et al., 2018). Many 
pesticides that were widely used in the past and are still used today 
contain high levels of metals (e.g., Mancozeb (National Center for 
Biotechnology Information, 2021)). For example, copper (Cu) contain-
ing fungicides such as Bordeaux mixture (Cu sulfate) and Cu oxychloride 
have been used to protect perennial crops from infections (Cesco et al., 
2021). Nevertheless, HMs contamination, mainly Cu, can affect soil 

biodiversity particularly by reducing the soil microbial enzyme activ-
ities (Karimi et al., 2021; Signorini et al., 2023). As a result, soil enzymes 
are widely used as indicators of soil health due to their strong correlation 
with soil quality (Hassan et al., 2022). Also, they are significantly 
influenced by the different agricultural practices such as irrigation, 
application of inorganic fertilizers and organic amendments, and soil 
tillage (Karimi et al., 2021). They present several advantages as in-
dicators, such as operationally practical, sensitive, integrative, measur-
able, practical, and economical (Utobo and Tewari, 2015). However, 
certain limitations are associated with soil enzyme activities, including 
that only potential activity can be assessed, making it challenging to 
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distinguish between the background activity of soil-bound enzymes and 
that originating from soil organisms and plant roots. Therefore, they 
must always be considered in conjunction with other biological and 
physicochemical measurements to diagnose soil health correctly 
(Alkorta et al., 2003). 

Previous studies assessing the effect of Cu on soil quality have mainly 
been conducted in controlled conditions (Karimi et al., 2021). Labora-
tory experiments on Cu toxicity in soil are short-term and involve an 
abrupt change in Cu concentration by spiking the soil, thus investigating 
the so-called acute metal contamination. Soil process responses pro-
duced in short-term assays (acute toxicity or disturbance) can be useful 
to understand the potential toxic effect of Cu but do not reflect what 
happens in the field with long-term application in a dynamic and living 
agroecosystem (chronic toxicity or stress) (Giller et al., 2009; Hagmann 
et al., 2015; Renella et al., 2002). Field experiments are the only way to 
assess the real effects of HMs on microbial communities, and their re-
sults can diverge from laboratory experiments. Such experiments are 
scarce in literature, and, to our knowledge, very few studies have been 
conducted in large intensive agricultural districts so far (Schoffer et al., 
2022). Our study aimed therefore to explore the impact of soil Cu on 
enzymatic activities linked to biogeochemical cycles using a machine 
learning approach to enhance the depth and precision of soil quality 
investigation. In our investigation, we explored various sites exhibiting a 
gradient in Cu concentration. We hypothesized a possible influence of 
Cu on six enzymes (i.e. exoglucanase, β-glucosidase, exochitinase, 
phosphatase, protease, and arylsulfatase) linked to carbon (C), nitrogen 
(N), phosphorus (P), and sulfur (S) cycles (Adetunji et al., 2017). We 
supposed long-term Cu accumulation affects enzymatic activity in 
agricultural soils, with potential differences in field conditions 
compared to laboratory settings. We also assessed nutrient content in 
apple leaves to investigate a possible link between the activity of soil 
enzymes and plant nutrient content (Dussault et al., 2008). To test our 
hypothesis, we used machine learning to analyze the gathered data and 
reveal the possible relationship between soil characteristics and enzy-
matic activity. Machine learning algorithms, including non-linear and 
non-parametric ones like Random Forest (RF), are known to be well- 
suited for handling the complexity of soil physical-chemical data (Hu 
et al., 2016). Despite their potential, using machine learning methods to 
assess soil quality is relatively limited within soil science, with only a 

few reported examples (Liu et al., 2016; Parent et al., 2021; Paul et al., 
2020). Due to the multivariate and nonlinear nature of soil ecological 
data due to the complex interactions among soil properties, machine 
learning can enhance our understanding of the key drivers of enzymatic 
activity in soils. The multivariate and nonlinear characteristics of soil 
ecological data, arising from complex interactions among soil proper-
ties, make machine learning valuable for gaining deeper insights into the 
key drivers of enzymatic activity in soils. Our overarching goal is to 
contribute to a better understanding of the impact of chronic Cu 
contamination on soil health and to demonstrate the applicability of 
machine learning techniques in soil science research. 

2. Materials and methods 

2.1. Study area 

This study focuses on apple orchards at the valley floors and sidehills 
of the Venosta/Vinschgau and Adige/Etsch valley in Bolzano/Bozen, 
South Tyrol, Italy (Fig. 1). South Tyrol is in the north-east of Italy on the 
southern side of the main alpine ridge and borders Switzerland and 
Austria. The area has a typical continental climate with low annual 
precipitation (450–850 mm) and has a large elevation gradient, from 
200 to 3900 m a.s.l. Annual mean air temperature in apple growing sites 
is between 9.9 ◦C (Silandro/Schlanders) and 12.3 ◦C (Bolzano/Bozen). 
South Tyrol is the largest apple-growing region in Europe, with over 
18.000 ha and represents 50 % of the apple production in Italy and 10 % 
in the European Union (South Tyrol Apple Consortium, 2019; Variety 
Innovation Consortium South Tyrol, 2021). In this region, apple culti-
vation has a long tradition and goes back to the 16th century (Variety 
Innovation Consortium South Tyrol, 2021). Nowadays, apples grow 
from 200 m a.s.l. up to 1000 m a.s.l. (Variety Innovation Consortium 
South Tyrol, 2021) and 10 % are managed organically, whereas 90 % are 
managed with integrated pest management (Fig. 2) (South Tyrol Apple 
Consortium, 2019). Most organically produced apples are cultivated 
according to Bioland standards (South Tyrol Apple Consortium, 2019) . 
Most apple varieties in South Tyrol are grafted on dwarfing rootstocks 
like M9 (Waldner, 2012). M9 T337 is the most common one, followed by 
scions of M9 like Nic.29 and Pajam 2. In apple orchards, there are from 
3.000 up to 6.000 plants per ha (Waldner, 2012), planted in a 2.8–3.2 ×

Fig. 1. Study area, main valleys of South Tyrol, Italy. Black points represent sampling sites among which 15 soil samples and 15 leaves samples were collected.  
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1.2–0.7 m system. Lower plantation densities can be achieved with 
Bibaum (2.8–3.2 × 1–1.4 m). In South Tyrol, apple trees are trained on a 
trellised system to a slender spindle. Such plantations are put into the 
ground for 15 or more years (sometimes even 30 years are possible). 

2.2. Soil and leaves sampling 

The study was conducted across 21 apple orchards. Sampling was 
performed in June 2020. The 21 sites were chosen to have similar 
environmental and topographic conditions. In addition, we looked for 
areas with different land-use history and Cu concentration to have a Cu 
gradient ranging from 8.18 to 640 mg kg− 1. The data about soil char-
acteristics were known thanks to previous studies in the area (Della 
Chiesa et al., 2019a, 2019b; Genova et al., 2021). 

Soil and leave samples were taken from conventionally (n = 13 sites) 
and organically managed orchards (n = 8 sites). In each apple orchard, 
soil samples were taken from the topsoil (0–20 cm) of 5 adjacent trees in 
3 rows (n = 15 samples) with a hand auger (Eijkelkamp Auger Edelman, 
∅ 7 cm, a mix of three subsamples compose each sample). Large soil 
aggregates were crushed, and residues of plant material, roots and 
stones were removed. A mix of young and old leaves (approximately 10 
leaves in total) were taken from each tree under which soil samples were 
taken. In addition, soil moisture was measured underneath each tree by 
TDR HydroSense II and averaged. 

Soil samples for enzymatic analysis were maintained at 5 ◦C. Anal-
ysis was carried out by a routine soil testing laboratory (Ecorecycling 
Felderer) according to standardized procedures (see paragraph 2.3 for 
more details). Soil samples for chemical analysis were the result of 
mixing all 5 soil subsamples of one row (n = 3 per site). 

Leaves were collected based on soil sample locations, then dried at 
50 ◦C and ground using a ball mill (MM400, RETSCH, Pedrengo, BG, 
Italy). Approximately 0.3 g of each dried sample were mineralized with 
4 mL of concentrated ultrapure HNO3 (650 mL L− 1) in a single reaction 
chamber microwave digestion system (UltraWAVE, Milestone, Shelton, 
CT, USA). After cooling, the digested samples were diluted with Milli-Q 
water to 20 mL. The following elements were analyzed: Ca, K, Mg, P, Cu, 
Fe, Mn, Ni, Pb, Zn, and B. The concentrations of elements were analyzed 
by Inductively Coupled Plasma – Optical Emission Spectroscopy (ICP – 
OES, Spectro Arcos, Spectro Ametek, Kleve, Germany) using spinach 
leaves (SRM 1570a) and tomato leaves (SRM 1573a), as external certi-
fied reference materials. 

2.3. Soil physical and chemical analysis 

Soil texture was determined by feel test according to the German 
classification (AD-HOC AG, 2005). Soil pH was determined in 0.01 M 
CaCl2 solution and deionized water with a calibrated pH-meter at a soil- 
to-solution ratio of 1:2.5. Electrical conductivity (EC) was analyzed 
using conductivity meter (EC-meter,edge™ HI2020–02 HANNA In-
struments srl, Italy) with solution ratio of 1:2.5. Total carbon (TC), total 
nitrogen (TN) and total inorganic carbon (TIC) were assessed using an 
elemental analyzer (Skalar PrimacsSNC100). For analysis of TC and TN 
soil samples were combusted at 1400 ◦C. TIC was determined by mixing 
the soil sample with phosphoric acid and heating the soil samples at 
130 ◦C. The CO2 deriving from combustion (TC) or the reaction with 
acid (TIC) was quantified in a NDIR detector, The N2 deriving from 
combustion was quantified by thermal conductivity detection (TCD). 
The ammonium lactate method according to Egner-Riehm (KAL, pH 
3.75) was used to determine plant available K and P. Ca and Mg were 
also analyzed in the Egner-Riehm extract, which determines the sum of 
exchangeable Ca, Mg plus the Ca, Mg bound within the reactive car-
bonate fraction (suffix “Res”, Table S 1). In the experimental soils, the 
proportion of Ca-res exceeding 500 mg/100 g can clearly be attributed 
to carbonates; in soils with Ca-res > 800 mg 100 g-1, soil chemistry is 
significantly affected by the calcareous conditions (oral communica-
tion). The plant available fraction of Mg, Fe, Cu, Mn, Zn and B was 
analyzed using 0.01 M CaCl2 and 0.002 M DTPA (diethylene-
triaminepentaacetic acid) solution (VDLUFA, 1991) (suffix “CAT”, 
Table S 1). Water-soluble fraction of Na was determined in deionized 
water (suffix “Soluble”, Table S 1). Elemental analysis of solutions was 
conducted by ICP-AES for all soil extracts. Table S 1 shows the soil 
properties analyzed by the soil testing laboratory (Accredited laboratory 
under ISO 17025:2005, methods: ISO 10694:1995, DIN EN 15933:2012, 
ÖNORM L 1087:2012 A.5). 

2.4. Enzymatic activity essay 

Enzymatic activities are either determined by conventional colori-
metric methods (Margesin et al., 2002; Tabatabai and Bremner, 1969) or 
by recently developed fluorescent methods using micro-plate readers, 
which enable the simultaneous determination of several soil enzymes 
(Dick et al., 2018). The substrates added are either associated with the 
highly fluorescent compounds 4-methylumbelliferon (MUF) or 7- 
Amino-4-methylcoumarin (AMC). The potential hydrolytic enzyme ac-
tivity of cellobiohydrolase (CBH) (Clayssens et al., 1989; Schwarz et al., 

Fig. 2. Organic apple orchard (right), Conventional apple orchard (left). Conventional management periodically uses herbicides for weed control, while in organic 
management mowing is applied. This creates a difference, especially in the tree understory, where in organic management there is a permanent presence of living 
roots which is lacking in conventional management. 
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1987), acid phosphatase (PHO) (Grange, 1978; Neumann, 1948), β-1,4- 
glucosidase (BGL) (Dick et al., 1990; Sirová et al., 2003), ß-N-acetyl-
glucosaminidase (NAG) (Frouz et al., 2003; Sirová et al., 2003), aryl-
sulfatase (AS) (Chiba et al., 1998) and leucine aminopeptidase (LAP) 
(Sirová et al., 2003) was measured fluorometrically according to (Del-
tedesco et al., 2020) with minor modifications. Soil samples were 
analyzed 1–3 weeks after soil sampling. Soil suspensions were prepared 
by placing 1 g soil in a 150 mL beaker adding 100 mL of sodium acetate 
buffer (100 mmol L-1 adjusted to pH 5.5 with acetic acid). The soil 
suspension was homogenized by using an ultrasonicator (Fisherbrand™, 
Schwerte, Germany) for 1 min at 35 % amplitude. The soil suspension 
was kept homogeneous using a magnetic stirrer and then transferred to a 
black microplate well with a pipette. 200 μL were transferred to the 
black microplate well, having 3 replicates for each sample. Fluoro-
metrically labelled substrates Methylumbelliferyl (MUF) and 7-Amino- 
4-methylcoumarin (AMC) were used to measure enzyme activities. 

The enzyme activities measured and the respective substrates and 
references can be found in the table below (Table 1). Fifty μL of substrate 
were pipetted into microplate wells with 200 μL of soil suspension. To 
set the calibration, MUF was used for phosphatase, cellulase, sulfatase 
and chitinase activities, whereas AMC was used for calibration of pro-
tease activity. A soil-specific calibration curve was developed for each 
assay for Leucin-aminopeptidase, AMC was used instead of using 50 μL 
MUF substrate. The samples were then incubated for 3 h at 30 ◦C in the 
dark. Relative fluorescence was measured at 365 nm extinction and 450 
nm emission with a fluorescence spectrophotometer (Tecan Infinite 
F200 Fluorometer). 

2.5. Data analysis and machine learning 

For the statistical analysis we relied on ordination techniques to 
reduce the dimensionality of the multivariate dataset and machine 
learning to model and automatically find patterns in the data. All the 
analysis was done with the R programming language (R Core Team, 
2021), the data are available in the supplementary material. 

Constrained Correspondence Analysis (CCA) was used for dimen-
sionality reduction using the R package vegan (Oksanen et al., 2020). 
CCA is a multivariate method that can reveal the relationships between 
biological assemblages of species and their environmental variables. A 
typical use for CCA in the experimental context is to identify the envi-
ronmental factors that explain the most variation in species composition 
among different sites. In this study we used CCA to see how the soil 
chemical and physical analysis vary given the variability of enzymatic 
activity dataset. The original method was by ter Braak (1986), but the 
implementation used follows Legendre and Legendre (Legendre and 
Legendre, 2012). CCA will find linear combinations of two vectors (e.g., 
X and Y) which have maximum correlation with each other. Harold 
Hotelling first introduced the method in 1936 (Hotelling, 1936), but in 
the context of angles between flats the mathematical concept was pub-
lished by Jordan in 1875 (Jordan, 1875). 

We employed a dual approach involving Classification and Regres-
sion Trees (CARTs) and RF algorithms to analyze enzymatic activity and 
uncover patterns and thresholds within soil data. CARTs are a method 
for creating decision trees through iterative binary recursive partition-
ing. Initially, all training data records are grouped into one partition, 
and the algorithm then splits them into two branches based on the best 
binary split for each field, minimizing the squared deviations from the 
mean. This process continues until nodes reach a specified minimum size 
or have zero squared deviations from the mean. On the other hand, RF is 
a machine-learning technique that leverages ensemble learning by 
combining multiple decision trees. This ‘forest’ is trained using bagging 
(bootstrap aggregating) and makes predictions by averaging the outputs 
from various trees. RF models tend to perform well on unseen data and 
are less susceptible to outliers, but they are computationally intensive 
and do not offer a straightforward visual representation. To strike a 
balance, we fitted and interpreted six CARTs and six RF models, each 
corresponding to a specific enzymatic activity listed in Table 1. Addi-
tionally, we used a linear model to investigate the potential impact of Cu 
on leaf nutrient content Table 1. 

3. Results and discussion 

3.1. Exploratory statistics 

Table 2 shows the summary statistics of the soil variables of the 
analyzed samples. Among these, SOM varies from a minimum of 2 % to a 
maximum of 8.75 %, with a median of 3.95 %. pH ranges from very 
strongly acidic to slightly alkaline. Cu has a median of 31.76 mg kg− 1, 
the third quartile is 92.53 but the maximum value reaches 641.08. Fig. 3 
shows the results from the CCA. On the first axis (CCA1) Cu is one of the 
predominant constraint variables, positively correlated with protease 
and negatively correlated with phosphatase. SOM, N, Ca, and pH are 
predominant on CCA2, the first two being positively correlated with 
exoglucanase and B-glucosidase and negatively correlated with aryl-
sulfatase, while an opposite correlation can be seen for Ca and pH. These 
are first descriptive clues that Cu may affect protease (positively) and 
phosphatase (negatively) while SOM and N could be more influential on 
other enzymatic activities such as the carbon-cycle related ones. pH has 
low loading values on both CCA1 and CCA2 and it is therefore not useful 
to describe the enzymatic activity on these axes. The CCA coefficients for 
the soil variables can also be found in Table S 2. 

Fig. 4 refers to the correlation matrix between the soil properties and 
the enzymatic activity. Here we see how pH and Ca have a strong pos-
itive correlation and are both negatively correlated with Fe. SOM and N 
also show a strong positive correlation with each other. Boron shows a 
positive correlation with SOM and Mg, Zn is positively correlated with 
Cu, Mn does not show strong correlations with other elements and so 
goes for Al. K is positively correlated with Conductivity. Na is positively 

Table 1 
Measured enzyme activities with their substrates.  

Enzyme name Fluorescent substrate Enzyme 
reference 

Manufacturer 
code 

Exoglucanase 4-MUF β-D-cellobioside EC 3.2.1.91 CAS No. 
72626–61-0 

β-Glucosidase 4-MUF-β-D-glucopyranoside EC 3.2.1.21 CAS No. 
18997–57-4 

Exochitinase 4-MUF-N-acetyl-ß-D- 
glucosaminid 

EC 3.2.1.52 CAS No. 
37067–30-4 

Protease Leucine- 
aminomethylcoumarin 

EC 3.4.21 CAS No. 
62480–44-8 

Arylsulfatase 4-MUF sulfate potassium 
salt 

EC 3.1.6.1 CAS No. 
15220–11-8 

Phosphatase 4-MUF-phosphate EC 3.1.3.2 CAS No. 3368- 
04-5  

Table 2 
Summary statistics of the soil variables analyzed in this study.  

Parameter Unit Median Mean SD 

SOM %  3.95  4.19  1.44 
N tot %  0.23  0.25  0.09 
pH –  6.65  6.59  0.64 
Conduct μS/cm− 1  197.5  217.06  90.79 
Mg CAT mg kg− 1  30.5  34.35  12.02 
B CAT mg kg− 1  0.07  0.08  0.02 
Fe CAT mg kg− 1  13.02  12.95  5.93 
Cu CAT mg kg− 1  3.18  10.83  15.7 
Zn CAT mg kg− 1  1.82  2.37  1.65 
Mn CAT mg kg− 1  3.7  4.42  2.87 
Na Soluble mg kg− 1  0.88  2.9  3.92 
Ca Res mg 100 g− 1  440  819.94  759.61 
K Res Mg 100 g− 1  20  21.41  8.29 
P Res mg 100 g− 1  50.5  48.22  23.96 
Al Res mg kg− 1  9.5  10.4  4.1  
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correlated with β-glucosidase and exoglucanase. Exochitinase, β-gluco-
sidase, and exoglucanase are positively correlated and with SOM and N. 
Phosphatase is negatively correlated with Cu and P. Protease is posi-
tively correlated with pH and Ca while being negatively correlated with 
Fe. Arylsulfatase is positively correlated with SOM and N while nega-
tively correlated with P. These correlations and the patterns observed in 
the CCA will be used as support for the following paragraphs. 

3.2. Random forest and regression trees 

3.2.1. Carbon cycle enzymes 
From the RF model (Fig. 5, Table 3), we see how the enzymatic ac-

tivities dealing with the carbon cycle, (namely exoglucanase, β-gluco-
sidase, and exochitinase) not only share the same most important 
variables such as SOM and N, but also slightly differ in terms of which 
variables appear to be the most important and for their position on the 
ranking of relevance. These enzymes follow similar patterns in the 
regression trees as well (Fig. 6). When SOM is higher than 4.55 % 
(exoglucanase and β-glucosidase) or 4.85 % (exochitinase) the activity is 
higher than the average. Among the high-SOM samples, orchard man-
agement (organic or non-organic) plays a role in showing organically 
managed samples with higher activity levels. Among the low-SOM 
samples for exoglucanase and β-glucosidase SOM is again identified as 
the variable influencing the activity (the lower the SOM, the lower the 
activity), while for exochitinase the electrical conductivity is positively 

correlated with the enzymatic activity. Among these regression trees 
there is no sign of Cu influencing the potential activity of these enzymes. 
This is confirmed by the RF model, which identifies Cu as a low- 
importance variable for all the carbon-cycle-related enzymes (Fig. 5). 
For β-glucosidase this confirms what was seen by (Dussault et al., 2008). 
Nevertheless, other studies indeed found a negative effect at 450 mg 
kg− 1 of Cu (Cao et al., 2020). This discrepancy could be due to the 
relatively lower concentrations of Cu found in our study area (. 

Table 2). Moreover, laboratory and field experiments most likely 
lead to different Cu dynamics and effects on enzymatic activity. In fact, 
lab experiments mimic acute Cu toxicity while field trials (e.g., sampling 
soil from real conditions where long-term Cu-containing fungicides have 
led to Cu accumulation) mimic chronic Cu toxicity. In this study, SOM is 
what mostly influenced enzymatic activity, and this is confirmed by the 
literature (Kotroczó et al., 2014). The overall positive effect of soil 
organic matter on enzyme activities found in our study is in accordance 
with previous studies (Aponte et al., 2021)and, according to our results, 
organic farming indeed enhances the potential enzymatic activity but 
only when SOM is quite high (higher than 4–5 %). The higher enzymatic 
activity in organically managed soils (when SOM is high) could be 
caused by the kind of fertilization used, where for instance the appli-
cation of manure in organic farming can significantly increase hydro-
lytic enzymes. In addition, previous studies show how the labile fraction 
of the SOM is rapidly decomposed from the hydrolytic enzymes 
(Kotroczó et al., 2014). 

Litter quantity and quality can have an influence on the enzymatic 
activity and soil pH, which also has a direct effect on microbial com-
munities and, therefore, on the enzymatic activity (Błońska et al., 2017, 
2021; Wang et al., 2020). We see how, in our sites (Fig. 2), the kind and 
quantity of litter changes dramatically between organic and conven-
tional apple orchards. In Conventional management, herbicides are 
often used under the trees, and this is where the samples of this study 
were collected. Conversely, weeds are only mulched and left on the 
ground in organic agriculture. This leaves more litter, root exudates and 
dead roots, which are an important source of nutrients for microor-
ganisms, and increase their number and activity (Błońska et al., 2017). 
This could explain the increased activity in organic apple orchards. 

3.2.2. Protease 
Protease activity is influenced by pH, Ca, Fe, Cu and B according to 

the RF model (first 5 most important variables) (Fig. 5), and the CART 
identifies Ca, Cu and Na as useful variables to describe the variability of 
the enzymatic activity levels (Fig. 7). Samples having Ca higher than 
1128 mg 100 g− 1 have a higher activity, and among these, when Cu is 
higher than 80.77 mg kg-1 the activity is around 100 nmol g− 1 h− 1 

higher compared to samples with Cu lower than 80.77 mg kg− 1 the 
samples with low Ca (below 1128) having Na lower than 1.4 is lowering 
the median values below the overall median. The effect of Cu increasing 
protease activity confirms what is seen in the CCA, although the 
mechanism underlying the process is still undefined and unclear. Pre-
vious studies drew contrasting conclusions on this matter, as some found 
inhibition of protease activity in Cu-spiked soils (Effron et al., 2004), 
while others found no impact on protease activity in soils spiked with 
Cu-containing nanosized agrochemicals (Tang et al., 2021). In other 
studies, arsenic did not significantly affect the activity of protease, 
whereas cadmium significantly reduced protease activity (Lorenz et al., 
2006), underlining the effect that the type of heavy metal has on pro-
tease activity. Other studies showed no effect of Cu on protease activity 
(Dussault et al., 2008). The discrepancy between our findings and the 
previously cited work most likely derives from laboratory and spiking 
experiments not reflecting in vivo conditions as described earlier. In 
addition, Protease can vary its activity according to the seasonal period 
of the year or climatic conditions (Łukowski and Dec, 2018), making it 
hard to compare different studies. We also see an effect of Ca on protease 
activity. In this case, we hypothesize an effect of Ca on pH(deriving from 
carbonates present in certain sites of the study area), which is a key 

Fig. 3. Constrained Correspondence Analysis for the six enzymatic activities 
constrained by the soil variables. 
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factor for proteases (Neina, 2019). 

3.2.3. Arylsufatase 
Arylsulfatase is influenced by texture, P, N, SOM, and management 

(organic or conventional) according to the RF model (first 5 most 
important variables) (Fig. 5), and the CART identifies N, P and texture as 
useful variables to describe the enzyme activity variability (Fig. 7). The 
N content increases the activity when higher than 0.22 %, and P nega-
tively impacts the higher N samples, bringing samples above 52.5 of P 
mg 100 g− 1 below the overall median. The results for this enzyme could 
be clearer compared to the other enzymes. The drop in variable 
importance in the RF model is less sharp for this enzyme (Fig. 5) than the 
other enzymes, highlighting lower confidence in identifying driving 
factors for the variability of arylsulfatase activity. Nevertheless, P and N 
are crucial for arylsulfatase activity (Wang et al., 2019). The texture is 
important, and sandy soils have relatively low activity. However, the 
activity levels measured in silty soils, which are just a few in this study, 
exhibited a high standard deviation, making it difficult to compare their 
values with those measured in sandy soils, and interpret the results. 

3.2.4. Phosphatase 
According to our RF model, which pinpoints the five most influential 

variables (Cu, Fe, P, pH, and Na, as illustrated in Fig. 5), and the CARTs 
analysis, which singles out P, Cu, and Na as pivotal variables in 
explaining the variability of enzyme activity (as shown in Fig. 7), it 
becomes evident that these factors play a substantial role in shaping 
phosphatase activity. 

When phosphorus (P) levels exceed 24.5 mg/100 g− 1, we observe a 
subsequent reduction in phosphatase activity. Among the subset of 
samples exhibiting higher P concentrations, the presence of Cu has a 
negative impact, with samples above 56.6 mg kg− 1 of Cu having 

phosphatase activity below the overall median. We can consider this 
value as a threshold for Cu influence on Phosphatase activity. This 
observation closely aligns with our grouping of samples based on 
increasing Cu concentrations, where we indeed notice a significant 
decrease in phosphatase activity, as corroborated by Fig. S1 and 
Table S3. We therefore emphasize that our hypothesis regarding the 
reduction of Phosphatase enzymatic activity in the presence of Cu has 
been demonstrated. 

For samples with low phosphorus levels, sodium (Na) positively in-
fluences enzymatic activity when present at levels exceeding 8.3 mg 
kg− 1. The inverse relationship between phosphatase activity and phos-
phorus is likely linked to the “quorum sensing mechanism” (Krupke 
et al., 2016). When phosphorus is readily available, microorganisms 
don't need to produce the enzyme to break down proteins to access it. 
Furthermore, we find that, in cases where phosphorus levels are low, an 
increase in sodium (Na) content above 8.25 mg kg− 1 enhances enzy-
matic activity. 

These findings align with previous research in winegrowing soils, 
where phosphatase activity was found to be most sensitive to both total 
Cu (Cu_total) and available Cu (Cu_DTPA) content (Fernández-Calviño 
et al., 2010). Similar impacts of CaCl2–Cu, total Cu, and organic carbon 
(Corg) on phosphatase activity in apple orchard soils have been reported 
(Wang et al., 2009). Additionally, phosphatase has been reported the 
sole enzyme significantly influenced by Cu in a terrestrial model 
ecosystem (Lebrun et al., 2012). 

To provide a biochemical rationale for the effects of Cu on phos-
phatase activity, we can rely on the Canonical Correlation Analysis 
(CCA) (Fig. 3), which is constrained to the enzymatic activity dataset. 
This analysis shows a positive correlation between phosphatase activity 
and magnesium (Mg), while Cu displays an inverse correlation with 
phosphatase activity. It is important to note that Mg is a crucial cofactor 

Fig. 4. Correlation matrix considering the soil properties and the enzymatic activity. The Kendall correlation coefficient was used. Both correlation coefficients 
(bottom part of the matrix) and significance levels (upper part of the matrix) are shown. Signif. codes: 0 ≤ ‘***’ < 0.001 < ‘**’ < 0.01 < ‘*’ < 0.05 < ‘.’ < 0.1 < “< 1. 
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for phosphatase functioning (Anderson et al., 1975; Dean, 2002). 
Consequently, a plausible biochemical explanation for Cu's impact on 
phosphatase activity could be the displacement of Mg from the active 
site due to the presence of Cu, as suggested by (Csopak and Falk, 1970). 

Considering these findings, it is evident that Cu exerts a multifaceted 
influence on phosphatase activity, with its effects intricately intertwined 
with other vital factors, including phosphorus, sodium, and magnesium. 
This complex interplay underscores the intricate nature of enzymatic 
processes within soil ecosystems and emphasizes the imperative need for 
a comprehensive understanding of these interactions to advance our 
knowledge in soil science. The threshold of 56.6 mg kg− 1 of Cu on 
phosphatase activity is automatically derived from the machine learning 
model and successfully addresses the goals of this study. 

3.3. Nutrient content in leaves and Cu in soil 

Since phosphatase resulted to be the only enzyme negatively affected 
by Cu in soil we hypothesized and tested an effect on P content in the 
apple tree leaves. We also checked other nutrients in the leaves, and we 
did not find any correlation with Cu (data not shown). The results of a 
linear model between P in the leaves and Cu in soil can be seen in Fig. 8 
and Table 4. 

The model depicts a negative correlation between Cu concentration 
in soil (log transformed) and P in the leaves. The intercept and the co-
efficient are statistically significant, and the overall model describes a 
significant trend. The R-squared is low (Adjusted R-squared: 0.1241) 
highlighting the high variability of the data around the trendline; this 
could be due to the measurement uncertainty and or to the presence of 
outliers, but also due to Inherent biological variability of apple leaves 
across a such broad agronomic district. Nevertheless, we can confirm a 
possible causal effect between the amount of Cu in soil and the P in the 
leaves. P in soil is mostly in the organic form and needs to be mineralized 
(transformed in phosphate) by the soil microbiota to be available for 
plants (Alori et al., 2017). Cu is negatively correlated with the phos-
phatase activity (see Sections 3.1 and 3.2) meaning a detrimental effect 
on the P mineralization. In addition, reduction of shoot phosphorus 
content could be caused by Cu/P antagonism at the root level (Marastoni 
et al., 2019). 

Fig. 5. Variable importance for the random forest model for each enzymatic activity considered in this study, the higher the value, the higher the importance for the 
soil variable. The importance of a variable is computed following the permutation principle of the mean decrease in accuracy importance and then scaled to 
relative importance. 

Table 3 
Accuracy of the six RF models dealing with enzymatic activity and soil charac-
teristics. They are computed with a test set comprising 15 % of the data.  

Enyzme R_squared RMSE

Exoglucanase 0.8 38

B_Glucosidase 0.8 510

Exochitinase 0.3 74

Protease 0.7 19

Arylsulfatase 0.8 16

Phosphatase 0.5 224
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Fig. 6. Regression tress for exoglucanase, β -glucosidase and exochitinase activities. Every node represents a split in the dataset that minimizes the sum of the 
squared deviations from the mean in the two separate partitions. The maximum depth of the regression trees is 2. In the plots of the final nodes the points represent 
the enzymatic activity value for each sample, the red dot represents the median of the samples and the vertical gray line the median of the entire dataset. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Regression tress for protease, arylsulfatase and phosphatase activities. Every node represents a split in the dataset that minimizes the sum of the squared 
deviations from the mean in the two separate partitions. The maximum depth of the regression trees is 2. In the plots of the final nodes the points represent the 
enzymatic activity value for each sample, the red dot represents the median of the samples and the vertical gray line the median of the entire dataset. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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4. Conclusions 

In this study, we employed regression trees and random forest 
techniques to comprehensively analyze the effect of Cu on soil extra-
cellular enzymatic activities in intensively managed apple orchards. Our 
findings shed light on the intricate relationships among soil composi-
tion, including HM concentration, and enzymatic activity particularly 
focusing on soil enzymes related to C, N, S, and P cycles. Copper pri-
marily disrupted phosphatase activity, potentially through the 
displacement of Mg ions on the active site. This disruption of phospha-
tase activity raises concerns about its implications for the P cycle in soil 
and its effects on plant nutrition, as evidenced by variations in P content 
in apple tree leaves. Furthermore, the application of machine learning 
techniques proved to be valuable in navigating the complex interplay 
between soil properties, pollution, and enzymatic activity. Using this 
approach, we not only identified Cu as a significant factor in the enzy-
matic activity but also determined a threshold value for Cu concentra-
tion concerning phosphatase activity. These results represent a critical 
step forward in assessing the potential toxic effects of Cu accumulation 
in intensive agricultural soils, aligning with the goals of increasingly 
sustainable agriculture practices. Surprisingly, we uncovered a positive 
correlation between Cu concentration and protease activity in soil. This 
unexpected finding challenges existing literature and highlights the 
need for further elucidate the underlying thresholds and field processes 
driving this relationship. 

In conclusion, our study highlights the effectiveness of data-driven 

approaches in uncovering complex soil ecological relationships. It em-
phasizes the importance of managing Cu in intensive agricultural set-
tings, underscores the role of phosphatase in the P cycle and plant 
nutrition, and calls for further investigation into the unexpected corre-
lation between Cu and protease activity. The integration of conventional 
soil fertility indicators with advanced statistical approaches, including 
machine learning, can aid ongoing efforts to develop crucial information 
for defining environmentally sustainable agricultural plans. This bene-
fits not only farmers but also decision-makers and stakeholders dedi-
cated to responsible land management. 
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Fig. 8. Linear model describing the correlation between P in apple tree leaves and Cu in soil (log transformed). The range of Cu concentration of the graph is between 
8 and 490 mg kg− 1. 

Table 4 
Linear model considering P content in the apple trees leaves and Cu in soil.   

Estimate Standard Error t value Pr(>|t|)

(Intercept) 1.709 0.028 60.755 0.0000 ***

log (Cu_cat) − 0.087  0.014 − 6.378  0.0000 ***

Signif. codes: 0 ≤ ‘***’ < 0.001 < ‘**’ < 0.01 < ‘*’ < 0.05 < ‘.’ < 0.1 < “< 1. 
Residual standard error: 0.2797 on 279 degrees of freedom. Multiple R-squared: 
0.1272, Adjusted R-squared: 0.1241. F-statistic: 40.67 on 279 and 1 DF, p-value: 
0.0000. 

G. Genova et al.                                                                                                                                                                                                                                 



Applied Soil Ecology 195 (2024) 105261

10

Acknowledgement 

This study was carried out within the Agritech National Research 
Center and received funding from the European Union Next-Generation 
EU (PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR) – _MIS-
SIONE 4 COMPONENTE 2, INVESTIMENTO 1.4 – _D.D. 1032 17/06/ 
2022, CN00000022). 

In particular, our study represents an original paper related to the 
Spoke 4 Multifunctional and resilient agriculture and forestry systems 
for the mitigation of climate change risks and in particular to the 
following Tasks: 

4.1.2 titled Smart phenotyping platforms for the on-farm selection of 
resilient varieties and rootstocks (SC); 
4.2.1 titled Farm network setup (Living Labs): a network of farms 
representative of the different agricultural systems to apply inno-
vative technologies for the sustainable management of crops, ani-
mals and forests (TM); 
4.2.2 titled Advanced monitoring techniques and novel management 
practices for saving soil and water, optimizing carbon balance, and 
maximizing the efficiency of used resources and mitigating impacts 
(TM e LB) 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.apsoil.2023.105261. 

References 

Adetunji, A.T., Lewu, F.B., Mulidzi, R., Ncube, B., 2017. The biological activities of 
β-glucosidase, phosphatase and urease as soil quality indicators: A review. J. Soil Sci. 
Plant Nutri. 17 (3), 794–807. https://doi.org/10.4067/S0718-95162017000300018. 

AD-HOC AG, B., 2005. Bodenkundliche Kartieranleitung, Bundesanst. ed. Auflage, 
Hannover.  

Alkorta, Itziar, Aizpurua, Ana, Riga, Patrick, Albizu, Isabel, Amézaga, Ibone, 
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