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ABSTRACT: An efficient enantioselective synthesis of chiral α-disub-
stituted β-homoprolines was developed, starting with the stereodivergent
allylation of chiral N-tert-butanesulfinyl imines derived from 4-bromobu-
tanal with indium or zinc and using well-established and reliable synthetic
transformations. This methodology allows the easy introduction of
different substituents at the α-position of the pyrrolidine scaffold and is
characterized by the possibility of switching the absolute configuration of
the newly formed stereocenter either by changing the configuration of the
tert-butanesufinamide chiral auxiliary or by using a different stereodivergent
allylation protocol with the same auxiliary.

The field of therapeutic peptides has witnessed a
remarkable evolution in the past several years, driven

by an ongoing pursuit of innovative design, synthesis, and
delivery strategies to address the inherent limitations
associated with the use of peptides.1 Indeed, peptide drugs
constituted a substantial portion of the pharmaceutical market
in 2019, with 10 non-insulin peptide drugs among the top 200
drug sales, and the top three peptide drugs employed in
treating type 2 diabetes.1 One of them, semaglutide, was
recently approved also for chronic weight management in
adults with general obesity,2 capturing the interest of
newspapers and public opinion for its potential misuse as a
weight loss aid.

The synthesis of bioactive peptides containing β-amino acids
represents a promising strategy for preparing new medicinal
chemistry entities with distinctive properties, because the
insertion of unnatural amino acids into peptide sequences can
modulate not only their conformations but also their biological
activity and metabolic stability.3 β-Homoproline (β-Pro, 1) has
demonstrated intriguing properties in this context and has
found compelling applications in medicinal chemistry. For
instance, the replacement of natural proline (Pro) with β-Pro
in the tetrapeptide endomorphin-1 (H-Tyr-Pro-Trp-Phe-NH2)
significantly increased both the μ-opioid receptor affinity and
the resistance to enzymatic hydrolysis.4 Interestingly, the
analogue with L-β-Pro exhibited ∼20-fold greater activity than
that with having D-β-Pro. Again, the replacement of Pro with β-
Pro in the Pro-Leu dipeptide, a potential agent against
cardiovascular diseases, displayed a 500-fold increase in the
inhibitory activity of bradykinin cleavage by aminopeptidase
and a complete stability to peptidases in kidney membranes
after 24 h.3a

Despite the interesting potential applications of β-Pro in the
production of new drugs, its use has remained relatively
unexplored in the chemical literature, most probably due to the

very few synthetic methods available for its preparation in
enantiopure forms.5a−f Some chiral homoprolines and
derivatives have been proposed as organocatalysts,5g−j in a
manner analogous to the use of proline.5k,l More recently, a few
syntheses of β-homoproline analogues, possessing supplemen-
tary substituents on the pyrrolidine ring, have also been
proposed.6

Another intriguing strategy for modulating the aggregation
and self-assembly of oligopeptides involves the insertion of
stereochemically constrained amino acids in the peptide
sequence, allowing protein secondary structures to be modeled
using short peptides.7 α-Aminoisobutyric acid (Aib, 2), the
simplest unnatural achiral amino acid possessing a quaternary
α-carbon atom, plays a crucial role in controlling peptide
conformations through the Thorpe−Ingold effect, promoting
helical folding in both synthetic and natural oligopeptides.8

Surprisingly, only a few synthetic procedures have been
reported so far for the preparation of conformationally
constrained α-disubstituted β-homoprolines (3), and invar-
iably in racemic form (Figure 1).9−13

Here we present a novel and straightforward method for the
enantioselective synthesis of a family of chiral α-disubstituted
β-homoprolines, which allows one to afford the desired
products in both enantiomeric forms, using readily available
and cost-effective reagents and exploiting well-established and
reliable synthetic transformations. Amidst the plethora of
methodologies for the construction of nitrogen-containing
heterocycles,14 the addition of organometallic reagents to
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chiral sulfinimines, followed by the intramolecular cyclization
of nitrogen on an opportunely positioned leaving group,
appears to be particularly appealing. This strategy was
originally pioneered by Ruano for the synthesis of optically
pure 2-(1-hydroxybenzyl)piperidine and pyrrolidine15a and
later found broad application in the construction of chiral
pyrrolidine scaffolds (5) from 4-halobutanal-derived chiral
sulfinimines 4 (Scheme 1).15

In 2002, Ellman reported the addition of lithium enolates to
chiral sulfinimines.16 Unfortunately, when we tried this
reaction on chiral sulfinimines derived from 4-bromobutanal

(4a), only simple acetate-derived enolates in the absence of
ClTi(OiPr)3 gave acceptable yields (40−50%), albeit with low
diastereoselectivities (∼75:25). As lithium enolates gave
unsatisfactory results, we decided to investigate the possibility
of using allylation reactions for the stereoselective introduction
of a double bond on the pyrrolidine scaffold, because simple
functional group manipulations (FGI) would allow trans-
formation of the terminal alkene moiety in the desired
carboxylic acids.

The allylation of chiral sulfinimines with allylindium reagents
was reported for the first time by Yus and Foubelo in 200417a−c

and extended to prenylation by Gonzaĺez-Goḿez in 2013.17d

The same authors further investigated this synthetic strategy,
applying it also to the synthesis of pyrrolidine and piperidine
scaffolds.17e−h In 2018, Guo reported the allylation of chiral
sulfinimines with allylzinc reagents for the construction of
indolines and tetrahydroquinoline derivatives.18a Subsequently,
Zhu employed the same procedure for the preparation of cyclic
sulfinamides.18b

We started our investigation by examining the prenylation
reaction of chiral sulfinimine (S)-4a, using magnesium, zinc,
and indium, in THF, DMF, or water as the solvent, with or
without additives (Table 1). The preformed Grignard reagent
was added to a solution of the imine in THF at −78 °C. After
1 h, the complete disappearance of the imine was detected by
TLC analysis, and the product was confirmed to be open
adduct 8a through 1H NMR analysis of a quenched sample.
Cyclized product 7a was quantitatively obtained with a
diastereomeric ratio of 96:4 by simply allowing the reaction
mixture to warm to 0 °C in 2 h (entry 1). The one-pot reaction
protocol with indium and prenyl bromide 6a (entry 2), as
established by Yus and co-workers,17 yielded open product 8a
as a single diastereoisomer with a very high conversion. Crude
open product 8a can be very conveniently cyclized using
LiHMDS in THF at rt for 1 h, affording the desired product 7a
in quantitative yield while maintaining the stereochemical
integrity. Once the compound was cyclized, we confirmed by
1H NMR analysis that magnesium and indium favored the
formation of the same diastereoisomer. When zinc was used
under one-pot Barbier conditions, using THF as the solvent
(entry 3), once again the conversion was quantitative at 0 °C
after 5 h. In this instance, the crude mixture predominantly

Figure 1. Structures of β-homoproline (1), α-aminoisobutyric acid
(2), and α-disubstituted β-homoprolines (3a−k).

Scheme 1. Synthesis of Pyrroldines from 4-Halobutanal-
Derived Chiral Sulfinimines

Table 1. Prenylation of Imine (S)-4aa

entry metal solvent additive T (°C) t (h) conversion (%)b 7a:8ab drb,c

1 Mg THF − −78/0 1/2 >99 >99:1 96:4
2 In THF − 60 6 >99 >1:99 >99:1
3 Zn THF − 0/rt 5/12 >99 20:80 90:10
4 Zn DMF − 0/rt 5/12 >99 80:20 55:45
5 Zn THF LiCl 0/rt 5/12 >99 40:60 60:40
6 Zn DMF LiCl 0/rt 5/12 >99 70:30 >1:99
7 Zn H2O NH4Cl rt 2.5 89 70:30 67:33

aReactions run on 1 mmol of 4a, using 1.5 mmol of 6a, 1.5 mmol of metal, and 1.5 mmol of an additive. bDetermined by 1H NMR analysis of
crude reaction mixtures. cThe diastereomeric ratio (dr) refers to 7a or 8a; when a mixture of 7a and 8a was obtained, the dr was calculated on 7a
after cyclization of the crude mixture with LiHMDS in THF.
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contained open adduct 8a (80:20), even after the mixture had
been stirred for 12 h at room temperature.

Once again, after the complete cyclization to closed product
7a with LiHMDS, we confirmed by 1H NMR analysis that the
main diastereoisomer formed (90:10) was the same as that
obtained using magnesium or indium. Under identical
conditions employing DMF as the solvent, conversion was
again complete; however, the main product was closed adduct
7a (80:20), and two diastereoisomers formed in almost the
same amounts (entry 4). The addition of LiCl to the
prenylzinc reagent had a profound impact on stereoselectivity,
both in THF and in DMF. While the 7a:8a ratio changed only
slightly, the diastereoselectivity significantly decreased in THF
(entry 5 vs entry 3). Conversely, only one diasteroisomer was
obtained using DMF (entry 6 vs entry 4), displaying the
opposite configuration of the newly formed stereocenter with
respect to the previous cases. Finally, by using water as the
solvent in the presence of NH4Cl as the additive (entry 7), a
good conversion was obtained after 2.5 h at room temperature,
favoring the formation of closed product 7a (70:30), but with a
moderate diasteroselectivity (67:33). The observed stereo-
chemical behavior of prenylzinc reagents, favoring the
formation of opposite diasteroisomers by using THF or
DMF/LiCl, was fully consistent with the results obtained by
Guo in the allylation of chiral aromatic imines.18a

The formation of two different diastereoisomers can be
easily determined and quantified by 1H NMR analysis of crude
reaction mixtures, examining the chemical shifts of the
hydrogens at positions 2 and 5 of the pyrrolidine ring as
well as the chemical shifts of the methyl groups in the specific
case of the prenylation reaction (Figure 2).

The stereochemistry of the newly formed stereocenter (C2)
can be deduced by considering that prenylmagnesium,
prenylindium, and prenylzinc in THF react by adopting a
closed six-membered chair transition state, while an open
antiperiplanar transition state is preferred using strongly
coordinating solvents (DMF) in the presence of LiCl (Figure
3).

Once we had established the use of indium in THF at 60 °C
(protocol A) and the use of zinc/LiCl in DMF (protocol B),
followed by cyclization of the crude reaction mixture with
LiHMDS in THF, as the two most efficient stereodivergent
methods for the synthesis of 7a (Table 2, entries 1−3), we
extended the allylation reaction to include additional
disubstituted cyclic allyl bromides (6b−d). The reaction with
prenylzinc bromide was scaled up to 5 mmol using
enantiomeric imine (R)-4a, with very good results (entry 3).
The NMR spectra of the resultant product were completely
superimposable with those derived from the reaction of
prenylindium bromide with imine (S)-4a (entry 1), and we

further confirmed the two products to be enantiomers by
comparing the sign of their optical rotations.

We were very pleased to find that bromide 6b afforded the
desired product 7b in very good, isolated yields and with a
complete diastereoselectivity using both protocols (entries 4
and 5). However, different results in terms of reactivity were
observed with bulkier bromides 6c and 6d. When using indium
(protocol A), we observed a drastically reduced reactivity for
both bromides (entries 6 and 8), a trend that was somewhat
attenuated using zinc (protocol B), albeit with diminished
product yields of 7c (69%, entry 7) and 7d (46%, entry 9),
compared to less hindered bromides. Notably, a slight
improvement in the yield (74%) was obtained in the case of
7d, simply by running the reaction under protocol B
conditions but increasing the temperature to 50 °C (entry 10).

Once we had obtained the precursors (S,R)-7a−d, the
reaction sequence to the corresponding (R)-homoprolines
11a−d was completed by a three-step sequence of standard
synthetic transformations (Scheme 2). All reactions gave
satisfactory yields of isolated products, considering the
presence of a quite sterically hindered quaternary carbon
atom at the α-position of the reaction center, particularly for
ozonolysis and Pinnick oxidation. Interestingly, the Pinnick
reaction gave 11 in approximately 50% yields, albeit with near-

Figure 2. 1H NMR insets of the crude reaction mixture for the
prenylation of imine (S)-4a with indium (blue) and zinc (red).

Figure 3. Closed and open transition states involved in the
prenylation of imine (S)-4a.

Table 2. Synthesis of N-Sulfinyl 2-Allyl Pyrrolidines 7a

entry 6 protocol 7 [yieldb (%)] 7 drc

1 6a A 7a (92) >99:1
2 6a B 7a (82) >99:1
3 6a Bd 7a (71) >99:1
4 6b A 7b (87) >99:1
5 6b B 7b (85) >99:1
6 6c A 7c (15) nd
7 6c B 7c (69) >99:1
8 6d A 7d (<5) nd
9 6d B 7d (46) nd
10 6d Be 7d (74) >99:1

aReactions run on 2 mmol of imine (S)-4a using protocol A (In,
THF, 60 °C, 6 h) or protocol B (Zn, LiCl, DMF, 0 °C for 5 h, rt for
12 h), followed by cyclization of the crude reaction mixture
(LiHMDS, THF, 0 °C to rt, 1 h). bIsolated yield after purification
by column chromatography. cDetermined by 1H NMR analysis of the
crude reaction mixtures. nd = not determined. dReaction on 5 mmol
of imine (R)-4a. eAt 50 °C.
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complete conversions, because ∼50% of aldehyde 10 could be
recovered alongside product 11 by flash chromatography.

In conclusion, we have developed a simple and highly
diastereoselective route for the preparation of yet undisclosed
chiral α-disubstituted β-homoprolines 11, which is charac-
terized by a short sequence of operationally simple, cost-
effective, and reliable synthetic steps. Furthermore, this
procedure allows the introduction of different substituents at
the α-position of β-homoproline simply by changing the nature
of the starting bromides 6, opening the possibility for further
functionalizations and structural modifications.
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