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Abstract: Up to 80% of castration-resistant prostate cancer (CRPC) patients develop bone metastases
during the natural history of disease and about 25% harbor mutations in DNA damage repair (DDR)
genes. This retrospective observational study evaluated the prevalence of DDR alterations in CRPC
patients and their effect on the clinical outcomes associated with bone metastases. The mutational
status of CRPC patients was analyzed per FoundationOne® analysis in tissue biopsy or, when it
was not possible, in liquid biopsy performed at the onset of metastatic CRPC (mCRPC). The impact
of DDR gene mutations on bone-related efficacy endpoints was evaluated at the time of mCRPC
diagnoses. In total, 121 mCRPC patients with bone metastases were included: 38 patients had
mutations in at least one DDR gene, the remaining 83 ones had a non-mutated DDR status. DDR
mutated status was associated with bone metastases volume (p = 0.006), but did not affect SRE
(skeletal-related events) incidence and time to SRE onset. Liquid and tissue biopsies were both
available for 61 patients with no statistically significant difference in terms of incidence and type of
molecular DDR alterations. Mutated DDR status was associated with higher bone metastasic volume,
although a not detrimental effect on the other bone-related efficacy endpoints was observed.

Keywords: mCRPC; prostate cancer; DNA damage repair; DDR deficiency; bone metastases; liquid
biopsy; sheletal related events; SRE

1. Introduction

In prostate cancer (PCa), comprehensive genomic profiling (CGP) is attractive due
to the diversity of emerging treatment options. In particular, defects in Breast Related
Cancer Antigens (BRCA) 1 and BRCA2 genes result in impairments of DNA damage repair
(DDR) deficiency [1]. DDR-deficient cells are sensitive to the inhibition of poly (ADP-ribose)
polymerase (PARP), which results in irreversible DNA damage, cell cycle arrest and cell death.
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Recently, PARP-inhibitors have been approved for treatment of metastatic castration resis-
tant prostate cancer (mCRPC) patients with pathogenic mutation of BRCA1/2 [2–6]. Beyond
BRCA1/2, deleterious alterations in other genes have been associated with DDR deficiency:
ATM and CHEK2 (sensors of DNA damage), CDK12 (positive regulator of BRCA genes),
and PALB2 and FANCA (which interact with BRCA1 and/or BRCA2 during DNA repair).
These defects cause single-strand annealing, non-homologous end joining and, conse-
quently, genomic instability [7–11]. In PCa, the CGP has been previously characterized
using tissue biopsies in order to identify mechanisms of resistance to ARSI (androgen
receptor selective inhibitors, such as enzalutamide and abiraterone) [1,12,13]. Tissue testing
remains the gold standard for CGP, however, the main site of metastases in PCa is bone,
which is challenging to sample, analyze and is associated with high-failure rates of DNA
sequencing [1,12]. On the other hand, performing CGP on primary tumor samples can
be unsatisfying because of often old archival samples and/or lacking or poor material for
analysis [1,12]. GCP of plasma cell-free circulating tumor DNA (ctDNA) offers a compelling
and minimally invasive complement to tissue testing. Liquid biopsy may overcome the
technical difficulties and high-failure rates associated with bone metastasis biopsy with the
added value of reflecting the heterogeneity of the metastatic disease [14,15].

The molecular stratification of mCRPC patients remains an unmet clinical need.
BRCA2 mutations have been associated with more aggressive disease and poor clinical out-
comes [16,17], but the prognostic implications of other DDR genes are less well established
as well as their impact on bone metastases outcomes. PCa bone metastases affect quality
of life (QoL) due to the risk of bone pain and the development of “skeletal-related events”
(SREs) [18], which is negatively correlated with survival [19]. Pathological bone fractures,
hypercalcemia, spinal cord compression, bone surgery and bone radiation therapy are the
five events defined as SREs by the Food and Drug Administration (FDA) [20].

This retrospective observational study evaluated the prevalence on liquid and tissue
samples of DDR alterations of mCRPC patients at baseline of the first line treatment and
their effect on the clinical outcomes of bone metastases.

2. Results
2.1. Patients: Sample Disposition and Genomic Profile

From January 2021 to September 2022, 150 mCRPC patients were enrolled in the
prospective observational study. Plasma samples were obtained from 105 patients before
starting first line treatment for mCRPC, whilst tissue samples from the primary tumor were
available for 104 patients. Liquid and tissue biopsy were both available for 61 patients. The
baseline characteristics of all patients enrolled in the study are described in Table 1. The
distribution of molecular alterations found in tissue and liquid biopsy is resumed in Table 2
and graphically described in Figure 1. A total number of 54 mutations in DDR-related
genes were found in liquid biopsy, compared to 34 mutations in tissue biopsy of primary
tumor. A total of 6 BRCA1/2 mutated patients have also experienced other mutations in
other DDR-related genes. We included in group A all patients with at least one or more
pathogenic mutations in DDR-related genes. No statistically significant difference was
found in terms incidence of molecular DDR alterations between tissue and liquid biopsy. In
patients with both tissue and liquid samples available, the level of agreement between tissue
and liquid biopsy is represented in Table 3. Among the 150 patients enrolled, 11 did not ex-
perience mCRPC, remaining hormone-sensitive during the observation period. Among the
139 mCRPC patients enrolled, 18 did not develop bone metastases and, consequently,
they have been excluded from the final analyses. We therefore included 121 mCRPC pa-
tients with bone metastases, divided into group A (“BRCA/DDR mutated”, 38 patients,
31.4%) and group B (not mutated, 83 patients, 68.6%) according to their molecular status.
Among the 121 mCRPC patients with bone metastases divided into group A and group B,
45 patients have both liquid and solid samples. Every patient in group B has no mutation
in both liquid and solid biopsy.
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Table 1. Baseline patients’ characteristics.

Variable Number (%) Total = 150

Age at diagnosis, years Median value (range): 65.5 (42–86)

Gleason score

<8 47 (31.3%)

≥8 92 (61.4%)

Unknown 11 (7.3%)

Stage at diagnosis

Localized PCa 73 (48.8%)

mHSPC 64 (51.2%)

Type of mHSPC

High risk and/or high volume 59 (39.3%)

No high risk/volume 66 (44%)

No mHSPC 25 (16.7%)

Sites of metastases in mCRPC

Bone only 53 (35.4%)

Bone and visceral 11 (7.3%)

Bone and nodes 55 (36.6%)

Bone, visceral and nodes 2 (1.4%)

Visceral or nodes only 18 (12%)

No mCRPC 11 (7.3%)

Treatment for mHSPC

LhRH analogue 69 (46%)

LhRH analogue + docetaxel 31 (20.7%)

LhRH analogue + ARSI 25 (16.6%)

No mHSPC 25 (16.7%)

Tissue biopsy

No 46 (30.6%)

Yes 104 (69.3%)

Liquid biopsy

No 45 (30%)

Yes 105 (70%)

First line treatment for mCRPC

Chemotherapy 13 (8.7%)

ARSI 126 (91.3%)
Abbreviations: PCa: prostate cancer; mHSPC: Metastatic hormone sensitive prostate cancer; mCRPC: Metastatic
castration resistant prostate cancer; LhRH: Luteinizing hormone-releasing hormone; ARSI: androgen receptor
selective inhibitor.

Table 2. Distribution of molecular alterations found in tissue and liquid biopsy.

Gene
Tissue Biopsy (n = 104) Liquid Biopsy (n = 105)

Wild Type No. Mutated No. Wild Type No. Mutated No.

BRCA 2 94 10 93 12

BRCA 1 99 5 102 3

ATM 96 8 92 13
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Table 2. Cont.

Gene
Tissue Biopsy (n = 104) Liquid Biopsy (n = 105)

Wild Type No. Mutated No. Wild Type No. Mutated No.

FANCA 103 1 102 3

RAD 51 103 1 104 1

CHECK 2 100 3 96 9

PALB 2 103 1 102 3

CDK12 100 4 95 10

Total mutations - 33 - 54
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Table 3. Concordance analysis between solid and liquid biopsy.

Liquid Biopsy

Tissue Biopsy
WT Mutated Total

K Value (95% CI)
N (%) N (%) N (%)

BRCA2

WT 52 (98.1) 1 (1.9) 53 (100)

Mutated 0 8 (100) 8 (100) 0.94 (0.80 to 1.00)

Total 52 9 61

DR (95% CI) 1.64% (0–4.83)

ATM

WT 51 (96.2) 2 (3.8) 53

Mutated 1 (12.5) 7 (87.5) 8 0.80 (0.57 to 1.00)

Total 52 9 61

DR (95% CI) 4.92% (0–10.34)

FANCA

WT 60 (100) 0 60 (100)

Mutated 0 1 (100) 1 (100) 1.00 (1.00 to 1.00)

Total 60 1 61

DR (95% CI) 0%

RAD 51

WT 60 (100) 0 60 (100)

Mutated 1 (100) 0 1 (100) -

Total 60 0 61
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Table 3. Cont.

Liquid Biopsy

Tissue Biopsy
WT Mutated Total

K Value (95% CI)
N (%) N (%) N (%)

DR (95% CI) 1.64% (0–4.83)

BRCA1

WT 56 (100) 0 56 (100)

Mutated 2 (40.0) 3 (60.0) 5 (100) 0.73 (0.38 to 1.00)

Total 58 3 61

DR (95% CI) 3.28% (0–7.97)

CHECK 2

WT 56 (96.7) 2 (3.3) 58 (100)

Mutated 0 3 (100) 3 (100) 0.73 (0.38 to 1.00)

Total 56 5 61

DR (95% CI) 3.28% (0–7.97)

PALB2

WT 60 (100) 0 60 (100)

Mutated 0 1 (100) 1 (100) -

Total 60 1 61

DR (95% CI) 0%

CDK12

WT 56 (98.3) 1 (1.7) 57 (100)

Mutated 1 (25.0) 3 (75.0) 4 (100) -

Total 57 4 61

DR (95% CI) 3.28% (0–7.97)
Abbreviations: WT: wild type; DR (95% CI): Discordance Rate (95% Confidence Interval).

2.2. Clinical Outcomes

Clinical characteristics of these patients are resumed in Table 4. There were no statis-
tically significant differences between Group A and Group B patients in terms of clinical
characteristics: age at diagnosis, Gleason score of the primary PCa, stage at diagnosis, type
of presentation of mHSPC (high risk and/or high volume according to CHARTEED and
LATITUDE criteria [21,22], and type of first-line treatment for mCRPC received.

Then, we evaluated the impact of DDR gene mutations on bone-related efficacy
endpoints at the time of mCRPC diagnosis, by dividing patients in two aforementioned
molecular groups.

We investigated differences between the two groups in terms of time from bone
metastases onset to death, skeletal metastatic tumor burden (sites and number of lesions),
skeletal-related events (SREs) incidence, and time to first on-study SRE. The use of antire-
sorptive agents (bisphosphonates or denosumab) was similar between the two groups.

Concerning bone sites, we divided the patients in those with lesions localized in the
axial skeleton only and those with at least one extra-axial lesion; we did not find any
difference according to this parameter between group A and B.

SRE were similar in both groups, in terms of incidence but also of median onset
time from the diagnosis of bone metastases. Bone pain did not differ between the two
groups (Table 5).

For the number of bone lesions, we adopted two different threshold values, 4 and
10 lesions; interestingly, we found a higher bone metastatic burden in group A than
group B, being statistically significant only for the value of 10 lesions as the threshold
(p = 0.006) (Figure 2).
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Table 4. Clinical characteristics of mCRPC patients with bone metastasis.

Variable

Total
(No. 121)

Group A
DDR Mutated

(No. 38)

Group B
DDR Normal

(No. 83) p Value

No. (%) No. (%) No. (%)

Age at diagnosis (years)

Median value (range) 65 (42–85) 65 (52–85) 65 (42–82) 0.773

Gleason score

<8 41 (33.9%) 14 (36.8%) 27 (32.5%)
0.642

≥8 80 (66.1%) 24 (63.2%) 56 (67.5%)

Stage at diagnosis

LocalizedPCa 59 (48.8%) 19 (50%) 40 (48.2%)
0.853

mHSPC 62 (51.2%) 19 (50%) 43 (51.8%)

mHSPC type

High risk and/or volume 59 (48.8%) 17 (44.7%) 42 (50.6%)
0.549

No high risk and/or volume 62 (51.2%) 21 (55.3%) 41 (49.4%)

Sites of metastases (mCRPC)

Bone only 53 16 (42.1%) 37 (44.6%)

0.772Bone and visceral 11 4 (10.5%) 7 (8.4%)

Bone and nodes 55 18 (47.4%) 37 (44.6%)

Bone, visceral and nodes 2 0 2 (2.4%)

Type of first line treatment mCRPC

Chemotherapy 13 4 (10.5%) 9 (10.8%)
0.958

ARSI 108 34 (89.5%) 74 (89.2%)

Denosumab or bisphosphonates

Yes 38 10 (26.3%) 28 (33.7%)
0.414

No 83 28 (73.7%) 55 (66.3%)
Abbreviations: mCRPC: Metastatic castration resistant prostate cancer; ARSI: androgen receptor selective inhibitors.

Table 5. Variables in bone metastases positive mCRPC cohort.

Variable Group A (=38) Group B (=83) p Value

Age at mCRPC diagnosis (range) 71 (53–86) 69 (44–85) 0.196

Bone sites
- axial only 10 (26.3%) 33 (39.8%)

- extra-axial 28 (73.7%) 50 (60.2%) 0.152

Number of bone metastases
- <4 7 (18.4%) 29 (34.9%)

- ≥4 31 (81.6%) 54 (65.1%) 0.065

Number of bone metastases
- <10 11 (28.9%) 47 (56.6%)

- ≥10 27 (71.1%) 36 (43.4%) 0.006

Incidence of SREs 16/38 (42.1%) 38/83 (45.7%) 0.706

Median time to SRE onset (mo.) 48 (13–not reached) 21 (11–not reached) 0.312

Median time from bone
metastases onset to death (mo.) Not reached 57.6 (44.6–not reached) 0.763

Bone pain
- No 17 (46%) 45 (57.7%)

0.238

- Yes 20 (54%) 33 (42.3%)
- Unknown/missing 1 5

Abbreviations: mCRPC: Metastatic castration resistant prostate cancer; SREs: Skeletal-related events.
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3. Discussion

DDR genes are involved in the mechanisms of genetic instability, the repair of DNA
aberrations during cell cycle, and the detection and repair of DNA damage, leading to
apoptosis of dangerous mutated cells [23]. In this study, we propose testing all PCa patients
for sDRR mutations at diagnosis of mCRPC. Somatic determination of molecular alterations
on liquid biopsy and/or on the primary site on historic paraffin preparations (if available)
was performed.

The incidence of pathogenic variants of somatic mutations in DDR genes among men
with mCRPC varied between 11% and 33% [24], significantly higher than in non-metastatic
PCa. BRCA2 mutations were more frequent when compared to other DDR genes (13%),
followed by an ATM incidence of 7.3% [25]. The incidence of sDDR mutations in our study
is in line with literature data; 25.3% of all patients enrolled presented at least a mutation in
DDR-related genes and BRCA2 was the more frequent one, followed by ATM.

BRCA alterations have been associated with short metastatic-free survival, short
cancer-specific survival (CSS) and are predictive of a response to PARP inhibitors and to
platinum salts [6,26].

In PCa, Castro E. et al. demonstrated that BRCA1-2 mutations were more frequently
associated with a Gleason score of ≥8, T3/T4 stage, nodal involvement and metastases at
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diagnosis [27]. The impact of DDR gene alterations and other biomarkers on the clinical
outcome of radiometabolic agents in mCRPC is under investigation [28,29], but there are
no data about the association between DDR gene alterations and other clinical-biological
features rising during the clinical history of mCRPC as PSA/tumor flare, neuroendocrine
differentiation, androgen receptor amplification and others [30–33].

Furthermore, there are no literature data regarding the impact of sDDR genes alter-
ations on bone outcomes of mCRPC patients. In PCa, bone represents the most preferential
target site of metastases with an incidence of nearly 75%; autopsy data indicate that the
incidence of metastatic bone lesions is 65–75% in PCa patients [34,35].

Bone metastases led to the disruption of normal bone homeostasis as a result of
complex interactions between tumor cells, bone marrow cells, and resident bone cells [36].

Prostate cancer cells are attracted to skeletal tissue by chemotactic cytokines, which
normally regulate the migration of Hematopoietic Stem Cells (HSCs) into the hematopoietic
stem cell niche: in fact, osteoblastic-induced stromal-derivedfactor-1 (SDF-1 or CXCL12)
binds the CXCR4 receptor expressed both by HSCs and PCa cells. The competitive binding
of SDF-1/CXCR4 of HSCs and PCa cells leads to the formation of the “onco-niche”, in
which PCa cells can migrate and then may stay in a quiescent state that can last over years,
or can be activated. In the latter case, they can damage physiological bone remodeling by
interfering with normal osteoclastic and osteoblastic activity processes through secretion of
paracrine factors, such as transforming growth factor β1 (TGF β1), parathroid-hormone-
related peptide (PTHrP) and interleukin 6 (IL-6). The result is an aberrant activation of
the RANK/RANK ligand (RANKL) pathway and, consequently, abnormal stimulation of
bone resorption [37,38].

In PCa bone metastasis, the first step of enhanced osteolysis is followed by strong
osteoblastic stimulation, resulting in an excessive abnormal bone apposition. During the
natural history of PCa, the development of SREs negatively correlates with survival: patho-
logic fractures and metastatic spinal cord compressions are associated with a significantly
increased risk of death [38–40].

This study investigated differences between the DDR gene alterations-carriers and
non-carriers in mCRCP patients with bone metastases in terms of time from bone metastases
onset to death, skeletal metastatic tumor burden (sites and number of lesions), skeletal-
related events (SREs) incidence, and time to first on-study SRE. We hypothesized that the
DNA-repair defects in mCRPC may be associated with poor prognoses in terms of bone
related outcomes as an indirect consequence of the acquired survival advantages of these
tumor cells.

This study does not demonstrate any difference in bone-related outcomes in sDDR
genes mutations carriers compared to non-carriers: incidence of SREs, median onset time
of the first SRE from the diagnosis of bone metastases as well as bone pain did not differ
between the two groups. However, sDDR mutated status showed an association with higher
bone tumor burden in mCRPC: these patients had a superior count of bone metastases
at the diagnoses of mCRPC compared to patients with normal sDDR status. It should be
noticed that the two groups of patients were balanced in terms of use of antiresorptive
agents bisphosphonates or denosumab) and first-line treatment performed for mCRPC [41].

In this study, patients were defined as sDDR-gene mutation carriers if one or more
mutation in DDR-related genes was detected in the solid and/or liquid biopsy. It is well-
known that genomic alterations can be acquired during the progression of the disease as
a consequence of the selective pressure of treatments and biological molecular changes
occurring during disease progression itself [42]; consequently, a biopsy of a metastatic site
represents the ideal approach to identify molecular alterations. The PROfound trial [6],
which evaluated 2792 biopsies of mCRPC, showed that DDR genes alterations were present
in 28% of all samples, with a similar incidence considering the primary tumor (27%) or
metastatic sites (32%). However, somatic determination on a metastatic site, in particular,
bone, may be associated with various biases, as well as possible side effects [12]; the
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PROfound study, for example, pointed out that 30% of biopsy samples may not be of
sufficient quality for gene sequencing [42].

The analysis of free circulating tumor DNA (ctDNA) is a promising approach as it
may overcome the difficulties that are associated with obtaining tissue; however, there are
no solid data that currently allow the reliable use of this test. In our study, the incidence of
mutations in DDR-related genes in liquid biopsy (performed at the diagnosis of mCRPC) is
numerically higher as compared to solid biopsy (performed on tissue samples of primary
tumor); therefore, there was a substantial agreement between solid and liquid biopsy for
DDR gene alterations, with different values according to the gene analyzed. For example,
mutations of BRCA1/2, PALB 2, FANCA showed an almost perfect agreement; on the other
hand, ATM showed a moderate agreement between solid and liquid biopsy. According to
these data, liquid biopsy could be a valid tool also in PCa with prevalent bone involvement,
in which solid biopsy of the metastatic sites is difficult to perform and also in the case of
older primary tissues, which are unlikely to be adequate for molecular analysis [43,44]. It
is difficult to establish if the higher number of genomic alterations in liquid biopsy is due
to a time- and treatment-dependent increase or to a selection of clones harboring those
mutations rather than resulting from diagnostic issues such as assay sensitivity; further
study is needed to answer to this question.

The retrospective nature of the data analyzed is a limitation of this study. Another
limitation is that patients did not perform a solid biopsy of the metastatic site at the time
of diagnosis of mCRPC, which may be more comparable to liquid biopsy, reflecting the
selective pressure of treatment received from the diagnosis of PCa to the diagnosis of
mCRPC. Standard imaging was performed to diagnose mCRPC (CT scan and/or bone
scan), however, more sensitive imaging tools as choline PET scan and, more recently, PSMA
PET scan, could have an impact on the number of metastatic bone lesions [45,46].

These results should be considered preliminary and further work is needed to deter-
mine the relevance of these findings.

4. Materials and Methods
4.1. Study Design and Aims

The primary aim was to assess the impact of somatic DDR (sDDR) mutations on
clinical course of bone metastases in mCRPC patients.

The impact of sDDR mutations on clinical outcomes of bone metastases is defined as:
bone metastatic burden, defined as the number and sites (axial only vs. non-axial) of bone
metastases at time of mCRPC diagnosis with standard imaging (CT scan and/or bone scan);
bone metastases-specific survival, defined as the time from bone metastases onset to death
for any cause; prevalence and type of Skeletal-related-events (SREs); time to first on-study
SRE, defined as the time from bone metastases onset to first SRE; Bone pain, defined as
necessity of opioid use for bone pain at the diagnosis of bone metastases in mCRPC.

As defined by FDA, SREs have been considered: Pathologic bone fractures, hypercal-
cemia, spinal cord compression, surgery to bone, and radiotherapy to bone.

The analysis of the impact of sDDR mutations have been performed according to
2 groups: patients with mutation in at least one of these gene ATM/BRCA1/BRCA2/RAD51/
PALB2/FANCA/ATM/CDK12/CHECK2 (Group A, all patients “positive” for genomic defects
in DDR genes); no DDR carriers (Group B, all patients negative for genomic defects in
DDR genes).

The secondary and point of the study is to evaluate the concordance between liquid
and tissue biopsy in terms of presence or absence and type of molecular DDR
alterations observed.

Patients were retrospectively included for the analysis at the “Department of Medical
Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) Dino Amadori”
(Meldola, Italy) from January 2021 to September 2022 and prospectively observed until the
data cut-off time on 31 December 2022.
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4.2. Patients

Patients enrolled were included in the biological observational prospective study
IRSTB073 “Biomarker study: the next generation of prostate cancer biomarkers” (Identifier
Code: L3P1380). Local Ethical Committee (“IRST Ethical Committee”) approved the IRST
B073 single center prospective study. All patients provided written informed consent.

Main inclusion criteria were: histological or cytological confirmed diagnosis of prostate
cancer or unequivocal increased of PSA; Patients must have metastatic and/or inopera-
ble disease; Life expectancy of greater than 3 months; ECOG performance status < 2;
Age ≥ 18 years; no previous line of treatment for mCRPC; sample tissue of the primary
PCa tumor available for NGS analyses and/or blood sample baseline first-line treatment
for mCRPC.

4.3. Study Procedures and Somatic Variants Analyses

Next generation sequencing using FoundationOne DX1 (Foundation Medicine®, Cam-
bridge, MA, USA) was performed on DNA from tumor-biopsy samples obtained at diag-
noses of PCa and/or on circulating cell-free DNA from 10-mL blood sample obtained at
diagnoses of mCRPC, if available.

Through genomic testing of plasma and/or tumor tissue (archival, if available), pa-
tients were screened for the presence of a deleterious somatic alteration in BRCA1, BRCA2,
ATM, CDK12, CHEK2, FANCA, PALB2, RAD51.

We considered DDR to be mutated in all patients with at least one pathogenic mutation
(according to the classification of American College of Medical Genetics and Genomics,
ACMG) [13], in one of the DDR genes evaluated (BRCA1/2, ATM, FANCA, CHEK2, RAD51,
PALB2, and CDK12) in solid and/or liquid biopsy. Patients performing NGS analyses on
solid sample and liquid biopsy were included in group B if no mutation was detected in
both liquid and solid NGS analysis.

If a mutation in one or more DDR-related genes occurred in liquid biopsy and was not
detected in solid biopsy (or vice versa), the patient was included in group A.

4.4. Statistical Analyses

The description of the cases was carried out through the use of descriptive statis-
tics such as absolute frequencies and percentage frequencies for variables measured on
a nominal or ordinal scale, medians, and intervals of variation for variables measured on
a continuous scale.

Comparisons of median values of markers within different clinical features were
obtained using the nonparametric Wilcoxon test of medians.

Time to skeletal event (SRE) was calculated as the time between the date of bone
metastases onset and the date of the first SRE onset for patients who had at least one
skeletal event and the difference between the date of bone metastases onset and last follow-
up date for patients who did not have any SRE. Events are represented by patients who
had at least one SRE.

The curves of the time-dependent variables were determined with the Kaplan–Meier
limit product method and the relative comparisons were made according to the
log-rank test.

All p-values were obtained considering two-tailed tests and statistical analyzes were
performed with SAS statistical software, version 9.4.

For each biomarker, concordance was defined as either positive or negative in both tu-
mor and metastasis and discordance was defined as positivity at one site and negativity at
the other or vice versa. For each receptor, the discordance rate (DR) was calculated as the
proportion of discordant cases with respect to the total number of patients. The two-sided
exact binomial 95% confidence interval (95% CI) was estimated.

The relation between the value and the level of agreement was first reported by Landis
and Kock [47], with values indicating agreement as follows: 0.00–0.20, slight agreement;
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0.21–0.40, fair agreement; 0.41–0.60, moderate agreement; 0.61–0.80, substantial agreement,
and 0.81–1.00, almost perfect agreement (perfect agreement = 1.00).

5. Conclusions

Mutated DDR status showed an association with higher bone tumor burden in mCRPC.
Nevertheless, DDR mutated patients showed neither a higher incidence of SRE or shorter
time to the first SRE. In prostate cancer liquid biopsy could be a valid tool for DDR
mutational status assessment.
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