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Summary. Sum-based global tests are highly popular in multiple hypothesis testing. In
this paper we propose a general closed testing procedure for sum tests, which provides
lower confidence bounds for the proportion of true discoveries (TDP), simultaneously over
all subsets of hypotheses. These simultaneous inferences come for free, i.e., without
any adjustment of the α-level, whenever a global test is used. Our method allows for an
exploratory approach, as simultaneity ensures control of the TDP even when the subset of
interest is selected post hoc. It adapts to the unknown joint distribution of the data through
permutation testing. Any sum test may be employed, depending on the desired power
properties. We present an iterative shortcut for the closed testing procedure, based on the
branch and bound algorithm, which converges to the full closed testing results, often after
few iterations; even if it is stopped early, it controls the TDP. We compare the properties
of different choices for the sum test through simulations, then we illustrate the feasibility of
the method for high dimensional data on brain imaging and genomics data.

Keywords: closed testing, multiple testing, permutation test, selective inference, sum
test, true discovery proportion

1. Introduction

In high-dimensional data analysis, researchers are often interested in detecting subsets of
features that are associated with a given outcome. For instance, in functional magnetic
resonance imaging (fMRI) data the objective may be to identify a brain region that is
activated by a stimulus; in genomics data one may want to find a biological pathway
that is differentially expressed. In this context, global tests allow to aggregate signal
from multiple features and make meaningful statements at the set level. A diverse
range of global tests has been proposed in literature: well-known examples are p-value
combinations, described and compared in Pesarin (2001), Loughin (2004), Won et al.
(2009) and Pesarin and Salmaso (2010); other popular methods are Simes test (Simes,
1986), the global test of Goeman et al. (2006), the sequence kernel association test
(SKAT) (Wu et al., 2011) and higher criticism (Donoho and Jin, 2015). A substantial
proportion, including many of the above-mentioned methods, is sum-based, meaning
that the global test statistic may be written as a sum of contributions per feature. In
this paper we restrict to such sum-based tests.
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The probability distribution of a global statistic depends not only on the marginal
distributions of the data, but also on the joint distribution; for this reason, many sum
tests only have a known null distribution under independence. Approaches that deal
with the a-priori unknown joint distribution are worst-case distributions, defined either
generally or under restrictive assumptions (Vovk and Wang, 2020), and nonparametric
permutation testing (Fisher, 1936; Ernst, 2004). As worst-case distributions tend to be
very conservative, the latter approach is preferable; it relies on minimal assumptions
(Hemerik and Goeman, 2018a), and generally offers an improvement in power over the
parametric approach, especially when multiple hypotheses are considered (Westfall and
Young, 1993; Pesarin, 2001; Hemerik and Goeman, 2018b; Hemerik et al., 2019).

Rejecting a null hypothesis, however, gives little information on the corresponding
set. A significant p-value only indicates that there is at least one true discovery, i.e., one
feature associated with the outcome, but does not give any information on the proportion
of true discoveries (TDP), nor their localization. This becomes problematic especially
for large sets (Woo et al., 2014). Moreover, since interest is usually not just in the set
of all features, but in several subsets, a multiple testing procedure is necessary (Nichols,
2012; Meijer and Goeman, 2016). Finally, when researchers do not know a priori which
subsets they are interested in, they may want to test many and then make the selection
post hoc. The case for the use of TDPs in large-scale testing problems was argued by
Rosenblatt et al. (2018) in neuroimaging and by Ebrahimpoor et al. (2020) in genomics.

This paper presents a general approach for inference on the TDP. The method allows
any sum-based test, requiring only that critical values are determined by permutations.
It provides TDPs not only for the full testing problem, but also simultaneously for all
subsets, allowing subsets of interest to be chosen post hoc.

We will rely on the closed testing framework (Marcus et al., 1976), which allows to
construct confidence sets for the TDP simultaneously over all possible subsets (Genovese
and Wasserman, 2006; Goeman and Solari, 2011; Goeman et al., 2019). These additional
simultaneous inferences on all subsets come for free, i.e., without any adjustment of the
α-level, whenever a global test is applied. Simultaneity ensures that the procedure is
not compromised by post-hoc selection, therefore researchers can postpone the choice of
the subset until after seeing the data, while still obtaining valid confidence sets; used in
this way, closed testing allows a form of post-hoc inference. Furthermore, closed testing
has been proven to be the optimal way to construct multiple testing procedures, as all
family-wise error rate (FWER), TDP and related methods are either equivalent to or
can be improved by it (Goeman et al., 2021). The main challenge is the computational
complexity, which is extremely high when considering many hypotheses, and when using
many permutations. Permutation-based closed testing for the TDP so far mostly focused
on Simes-based test procedures, while sum tests were approached under independence
or with worst-case distributions (Vovk and Wang, 2020; Wilson, 2019; Tian et al., 2022),
that are simpler as critical values depend only on the size of the subset.

We propose a general closed testing procedure for sum-based permutation tests, which
provides simultaneous confidence sets for the TDP of all subsets of the testing problem.
We develop two shortcuts to make this procedure feasible for large-scale problems. First,
we develop a quick shortcut that approximates closed testing and has worst-case com-
plexity of order m log2m in the number m of individual hypotheses, and linearithmic in
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the number of permutations. Next, we embed this shortcut within a branch and bound
algorithm, obtaining an iterative procedure that converges to full closed testing, often
after few iterations; even if it is stopped early, it still controls the TDP. This procedure is
exact and extremely flexible, as it applies to any sum test and adapts to the correlation
structure of the data. It can be scaled up to high-dimensional problems, such as fMRI
data, whose typical dimension is of order 105. Finally, we show that particular choices of
the sum test statistic, namely statistics based on truncation, result in faster procedures.

The structure of the paper is as follows. First, we briefly discuss related works in
Section 2. Then we introduce sum tests in Section 3, and we review the properties
of permutation testing and closed testing in Sections 4 and 5. We derive the single-
step shortcut in Section 6, and characterize when it is equivalent to closed testing in
Section 7. In Section 8 we define the iterative shortcut, and finally in Section 9 we
introduce refinements that improve the computational complexity. In the remaining
section we compare the properties of different sum tests through simulations, and explore
an application to fMRI data. Proofs and some additional results are postponed to the
supplementary material; the corresponding sections are referred to with an additional
S- in the numbering.

2. Related work

In this section we discuss related work, highlighting the contribution of the proposed
method and its relevance in applications. As argued in Section 1, in this paper we focus
on permutation-based tests. Here we justify the choice of closed testing procedures that
give lower (1 − α)-confidence bounds for the TDP simultaneously over all subsets of
hypotheses, which we will refer to as procedures with true discovery guarantee as in
Goeman et al. (2021). Then we argue that it is worthwhile to construct such procedures
for global tests that are frequently used, many of which are sum-based.

Genovese and Wasserman (2006) and Goeman and Solari (2011) showed that all
global tests automatically come with an inbuilt selective inference method; they can be
embedded in the closed testing framework to obtain procedures with true discovery guar-
antee without any adjustment of the α-level. Furthermore, a great number of multiple
testing methods, including all those controlling FWER, generalized FWER (k-FWER),
false discovery proportion (FDP), false discovery exceedance (FDX) and joint error rate
(JER), can be written as procedures with true discovery guarantee. Among these, how-
ever, only closed testing procedures are admissible, i.e., cannot be uniformly improved
(Goeman et al., 2021). This motivates the study of closed testing procedures for popular
global tests.

So far, most procedures that explicitly give true discovery guarantee (Meinshausen,
2006; Rosenblatt et al., 2018; Hemerik et al., 2019; Ebrahimpoor et al., 2020; Blanchard
et al., 2020; Andreella et al., 2020; Blain et al., 2022) were constructed using critical
vectors for ordered p-values, e.g., based on variants of Simes (1986) or higher criticism
(Donoho and Jin, 2015). With the exception of higher criticism, the global tests implicit
in these procedures have seldom been considered as global tests in application contexts,
and their popularity in multiple testing procedures is partly motivated by mathematical
convenience. In contrast, tests based on sums are natural and popular as global tests.
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This broad class includes many popular p-value combination tests, such as the classical
Fisher combination (Fisher, 1925), as well as recent proposals such as Wilson (2019),
Liu and Xie (2020), the global test of Goeman et al. (2006), SKAT (Wu et al., 2011),
and e-value combinations (Vovk and Wang, 2021). Though closed testing procedures
for sum-based tests were proposed in general in the parametric approach (Tian et al.,
2022) and for some particular cases (Goeman and Solari, 2011; Blanchard et al., 2020),
general scalable procedures in the permutation framework were lacking. In this paper
we fill this gap, providing a procedure that can be applied to any sum-based test, as
long as permutations are used to calculate the critical values.

Among permutation-based procedures, we mention especially the methods of Blan-
chard et al. (2020) and Andreella et al. (2020), using tests based on critical vectors of
ordered p-values. First, we remark that our proposed method is not a competitor but
complementary, as it deals with a different choice of the underlying test with differ-
ent power properties. Subsequently, we observe that these methods do not perform full
closed testing, and thus may be conservative. Blanchard et al. (2020) and the single-step
version in Andreella et al. (2020) have computation times primarily related to comput-
ing and sorting permutation test statistics; we will show that the computation time of
our single-step shortcut is comparable. The iterative method of Andreella et al. (2020)
uniformly improves the corresponding single-step version and Blanchard et al. (2020),
but requires a high computational time and is still not guaranteed to converge to closed
testing. On the contrary, the proposed iterative shortcut converges to closed testing and
so cannot be uniformly improved.

3. Sum tests

We start with a general definition of a sum test statistic. Throughout the paper, we will
refer to null hypotheses simply as hypotheses, and we will denote both variables and
sets with capital letters, leaving the distinction to context. Let X = (X1, . . . , Xm) be a
collection of observable variables from m testing units, having indices in M = {1, . . . ,m}
and taking values in a sample space X . We are interested in studying m corresponding
univariate hypotheses H1, . . . ,Hm with confidence 1− α, where α ∈ [0, 1). Let N ⊆ M
be the unknown subset of true hypotheses. A generic subset S ⊆ M , with size |S| = s,
defines an intersection hypothesis HS =

⋂
i∈S Hi, which is true if and only if S ⊆ N . In

the particular case of S = ∅, we take H∅ as usual to be a hypothesis that is always true.
For each univariate hypothesis Hi, let Ti : X → R be a test statistic. The general

form of a sum test statistic for HS is

TS = g

(∑
i∈S

fi(Ti)

)
,

where fi : R → R are generic functions, and g : R → R is strictly monotone. Usually the
functions fi are also taken as monotone, so that high values of TS give evidence against
HS . Moreover, as fi may depend on i, the contributions fi(Ti) may have different distri-
butions, as in the case of weighted sums. Examples include p-value combinations such as
Fisher (1925), Pearson (1933), Liptak/Stouffer (Liptak, 1958), Lancaster (1961), Edg-
ington (1972), and Cauchy (Liu and Xie, 2020). We mention especially the generalized
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mean family (Vovk and Wang, 2020) with fi(y) = yr and g(z) = z1/r, where r ∈ R, for
which Wilson (2019) studied the harmonic mean (r = −1).

Since we can always re-write T̃i = fi(Ti) and T̃S = g−1(TS), without loss of generality
we can assume that fi and g are the identity, so that TS =

∑
i∈S Ti. In particular, for the

empty set we obtain T∅ = 0. Furthermore, we assume that the signs of the statistics Ti

are chosen in such a way that high values of Ti, and therefore TS , correspond to evidence
against Hi and HS , respectively.

4. Permutation testing

To test HS with significance level α we will use permutations. Let Π be a collection of
transformations π : X → X of the sample space; these may be permutations, but also
other transformations such as rotations (Langsrud, 2005; Solari et al., 2014) and sign
flipping (Hemerik et al., 2020). We assume that Π is an algebraic group with respect to
the operation of composition of functions. The group structure is important as, without
it, the resulting test may be highly conservative or anti-conservative (Hoeffding, 1952;
Southworth et al., 2009).

Denote with Ti = Ti(X) and T π
i = Ti(πX), with π ∈ Π, the statistics for the original

and transformed variables, respectively, and with ti and tπi the values computed on the
observed and transformed data. The main assumption of permutation testing is the
following.

Assumption 1. The joint distribution of the statistics T π
i , with i ∈ N and π ∈ Π,

is invariant under all transformations in Π of X: (Ti)i∈N
d
= (T π

i )i∈N for each π ∈ Π,

where
d
= denotes equality in distribution.

This assumption is common to most permutation-based multiple-testing methods,
such as maxT-method (Westfall and Young, 1993; Meinshausen, 2006; Goeman and
Solari, 2010; Hemerik et al., 2019). For some choices of the group Π, the assumption
holds only asymptotically (Winkler et al., 2014; Solari et al., 2014; Hemerik et al., 2020).
Detailed illustration and examples can be found in Pesarin (2001), Huang et al. (2006)
and Hemerik and Goeman (2018a). Even if the invariance assumption is common and
reasonable in many contexts, in applications an argument must be given for it; in some
cases, it is violated even asymptotically (e.g., for Behrens-Fisher problem (Schildknecht
et al., 2015)).

A slightly stronger assumption, that is easier to check, is that the statistic TS =

TS(XS) is a function of XS = (Xi : i ∈ S) only, and XN
d
= πXN for each π. Note

that the assumption holds also when the distributions of the individual statistics Ti are
different, as in the case of weighted sums. Moreover, it holds in the particular case when

HS true implies that XS
d
= πXS for each π.

If the cardinality of Π is large, a valid α-level test may use B randomly chosen
elements (Hemerik and Goeman, 2018b). The value of B does not need to grow with m
or s; to have non-zero power we must only have B ≥ 1/α, though larger values of B give
more power. For α = 0.05, B ≥ 200 is generally sufficient (see Section 10.2). Consider a
vector π = (π1, . . . , πB), where π1 = id is the identity in Π, and π2, . . . , πB are random
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Table 1. Toy example: original and centered test statistics.

original tπi centered cπi
H1 H2 H3 H4 H5 H1 H2 H3 H4 H5

id 6 5 4 1 1 0 0 0 0 0
π2 1 2 1 0 4 5 3 3 1 -3
π3 8 3 0 2 1 -2 2 4 -1 0
π4 8 1 0 1 0 -2 4 4 0 1
π5 0 6 1 1 2 6 -1 3 0 -1
π6 7 0 1 2 1 -1 5 3 -1 0

elements drawn with replacement from a uniform distribution on Π. A test for HS may
be defined taking as critical value the ⌈(1 − α)B⌉-th quantile, where ⌈·⌉ represents the

ceiling function, and t
(1)
S ≤ . . . ≤ t

(B)
S are the sorted values tπS , with π ∈ π.

Lemma 1. Under Assumption 1, the test that rejects HS when tS > t
(⌈(1−α)B⌉)
S is an

α-level test.

The test is defined conditionally on X, but it becomes unconditional if we take the
expected value on both sides of the inequality. Note that both the test statistic and
the critical value are random variables. For our method it will be convenient to use an
equivalent characterization of the test with a non-random critical value. Therefore, for
each π we define the centered statistic Cπ

S = TS−T π
S , so that the observed value cS = cidS

is always zero, and so no longer random. We give a permutation test based on these new
statistics, using ω = ⌊αB⌋+ 1 to obtain the quantile, where ⌊·⌋ is the floor function.

Theorem 1. Under Assumption 1, the test that rejects HS when c
(⌊αB⌋+1)
S > 0 is an

α-level test.

For illustration, we introduce a recurring toy example with m = 5 univariate hy-
potheses and B = 6 transformations (Table 1). Given the subset S = {1, 2}, we are
interested in testing HS with significance level α = 0.4. The statistics tπS and cπS are

obtained summing columns 1 and 2 by row. Since ω = 3 and c
(ω)
S = 2, the test of

Theorem 1 rejects HS .

5. True discovery guarantee

Based on the notation introduced above, consider the number of true discoveries δ(S) =
|S \ N | made when rejecting HS . We are interested in deriving simultaneous (1 − α)-
confidence sets for this number, so that the simultaneity makes their coverage robust
against post-hoc selection. This way, the rejected hypothesis can be selected after review-
ing all confidence sets, while still keeping correct (1− α)-coverage of the corresponding
confidence set (Goeman and Solari, 2011).

Let d : 2M → R be a random function, where 2M is the power set of M . We say that
d has true discovery guarantee if d(S) are simultaneous lower (1−α)-confidence bounds
for δ(S), i.e.,

P (δ(S) ≥ d(S) for each S ⊆ M) ≥ 1− α.
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An equivalent condition is that {d(S), . . . , s} is a (1 − α)-confidence set for δ(S), si-
multaneously for all S ⊆ M . Notice that the resulting confidence sets are one-sided,
since hypothesis testing is focused on rejecting, not accepting. From d(S) simultaneous
(1−α)-confidence sets can be immediately derived for other quantities of interest such as
the TDP and the number or proportion of false discoveries (Goeman and Solari, 2011).

A general way to construct procedures with true discovery guarantee is provided by
closed testing, based on the principle of testing different subsets by means of a valid
α-level local test, which in this case is the permutation test. Throughout this paper, we
will loosely say that a set S is rejected when the corresponding hypothesis HS is. Hence
denote the collection of sets rejected by the permutation test of Theorem 1 by

R =
{
S ⊆ M : c

(ω)
S > 0

}
.

Genovese and Wasserman (2006) and Goeman and Solari (2011) equivalently define a
procedure d with true discovery guarantee as d(S) = s− q(S), where

q(S) = max {|V ∩ S| : V ⊆ M, V /∈ R} (1)

is the maximum intersection between S and a set not rejected by the permutation test.
The equivalence of the two methods is shown in Goeman et al. (2021).

The main challenge of this method is its exponential complexity in the number of
hypotheses. Indeed, the number of tests that must be evaluated to determine d(S) may
be up to order 2m. In the toy example, where m = 5, this number is 32; it is immediate
that it quickly grows to an infeasible size as m increases.

6. Shortcut

Fix the set of interest S, so that any dependence on it may be omitted in the notation.
We propose a shortcut that quickly evaluates whether q < z for any value z. This will
allow to approximate q, and eventually define a procedure with true discovery guarantee.
First, we will re-write q as the unique change-point of an increasing function:

ϕ : {0, . . . , s+ 1} −→ {0, 1}, ϕ(z) = 1 if and only if q < z (2)

q = max {z ∈ {0, . . . , s+ 1} : ϕ(z) = 0} . (3)

Then we will approximate q from above with the change point q(0) of a second increasing
function:

ϕ : {0, . . . , s+ 1} −→ {0, 1}, ϕ(z) ≤ ϕ(z) (4)

q(0) = max
{
z ∈ {0, . . . , s+ 1} : ϕ(z) = 0

}
. (5)

We start by giving an equivalent characterization of the quantity of interest q. For
any z ∈ {0, . . . , s+1}, we define the collection Vz = {V ⊆ M : |V ∩S| ≥ z} of sets that
have at least size z overlap with S, and investigate whether all its elements are rejected.
We define ϕ so that it represents such rejection, taking

ϕ(z) = 1{Vz ⊆ R} (z ∈ {0, . . . , s+ 1}), (6)
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Fig. 1. Toy example with S = {1, 2}: shortcut to evaluate ϕ(z) in z = 1 and z = 2. Points
denote the quantiles for the sets in Vz. The dashed and solid lines represent the bound ℓz (8)
and the path uz (15), respectively.

where 1{·} denotes the indicator function. The following lemma shows that q can be
written as in (3).

Lemma 2. ϕ(0) = 0 and ϕ(s + 1) = 1. Moreover, ϕ(z) = 0 if and only if z ∈
{0, . . . , q}.

Now we fix a value z ∈ {1, . . . , s} and derive the shortcut to make statements on ϕ(z)
without testing all the sets contained in Vz. We do this by partitioning Vz by the size
of its elements, obtaining

Vz =

m⋂
v=z

Vz(v), Vz(v) = {V ∈ Vz : |V | = v}. (7)

Each Vz(v) is the sub-collection of all sets of size v that have at least size z overlap with
S. We can analyse these sub-collections separately and combine the results, noting that
ϕ(z) = 1 if and only if Vz(v) ⊆ R for all v ∈ {z, . . . ,m}.

By definition, Vz(v) ⊆ R when all sets in the sub-collection have positive quantiles,

i.e., c
(ω)
V > 0 for each V ∈ Vz(v). The main idea of the shortcut is to obtain information

on each sub-collection Vz(v) by bounding the corresponding quantiles from below. In
particular, we will construct a bound

ℓz : {z, . . . ,m} −→ R, ℓz(v) ≤ c
(ω)
V for each V ∈ Vz(v). (8)

This way, if ℓz(v) > 0, we know that all sets in Vz(v) have positive quantiles. If ℓz is
positive in its entire domain, then Vz(v) ⊆ R for each v, and so ϕ(z) = 1. Figure 1
displays the bound, which we will define in the following paragraphs, in the toy example
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Table 2. Toy example with S = {1, 2}: matrix of the sorted
centered statistics to compute the bound ℓ1. The value ℓ1(v) is
obtained summing the first v columns by row, and then taking the
quantile.

selected in S remaining
i1(π) j1(π) j2(π) j3(π) j4(π)

id 0 (H1) 0 (H2) 0 (H3) 0 (H4) 0 (H5)
π2 3 (H2) -3 (H5) 1 (H4) 3 (H3) 5 (H1)
π3 -2 (H1) -1 (H4) 0 (H5) 2 (H2) 4 (H3)
π4 -2 (H1) 0 (H4) 1 (H5) 4 (H2) 4 (H3)
π5 -1 (H2) -1 (H5) 0 (H4) 3 (H3) 6 (H1)
π6 -1 (H1) -1 (H4) 0 (H5) 3 (H3) 5 (H2)

for z = 1 and z = 2. Note that indeed all quantiles lie on it or above; the bound can be
loose, as seen with ℓ1(3). Since ℓ2 lies entirely in the positive half-space, we know that
ϕ(2) = 1. In contrast, we cannot make a statement on ϕ(1) based on ℓ1.

Fix a size v ∈ {z, . . . ,m}. To define an ℓz(v) that does not exceed the minimum
quantile over all sets in Vz(v), as required in (8), we approximate the minimum quantile
from below with the quantile of the minimum. We do this by taking the smallest centered
statistics for each transformation π, with some constraints from the structure of Vz(v).

In the toy example, choose z = 1, and let V be any set in the sub-collection V1(v) of
interest. Note that V must contain v indices, at least z = 1 of which is in S. Consider
the centered statistics cπ2

i for transformation π2 (second row in Table 1, right). First,
we select the lowest value in S, then we sort the remaining values in ascending order,
as in the second row of Table 2. If bπ2

v is the sum of the first v elements of the row, we
know that bπ2

v ≤ cπ2

V . After constructing the other rows of Table 2 according to the same

principle, we define ℓ1(v) = b
(ω)
v . Since bπv ≤ cπV for each π, we obtain ℓ1(v) ≤ c

(ω)
V .

In general, for each π ∈ π, we select the z smallest centered statistics in S, and then
the v − z remaining smallest statistics. We define two permutations of the indices:

S = {i1(π), . . . , is(π)} : cπi1(π) ≤ . . . ≤ cπis(π) (9)

M \ {i1(π), . . . , iz(π)} = {j1(π), . . . , jm−z(π)} : cπj1(π) ≤ . . . ≤ cπjm−z(π)
. (10)

The set {i1(π), . . . , iz(π)} is a subset of S, containing the indices of the z smallest values
in S (for transformation π). For instance, in the toy example we have S = {2, 1}, and
M \ {2} = {5, 4, 3, 1}. Then the value of the bound is defined as

ℓz(v) = b(ω)v where bπv =

z∑
h=1

cπih +

v−z∑
h=1

cπjh (π ∈ π). (11)

Lemma 3. ℓz(v) ≤ c
(ω)
V for all V ∈ Vz(v). Hence minv ℓz(v) > 0 implies ϕ(z) = 1.

Now we use the bound to define a function ϕ as in (4). In the extremes, where the
value of ϕ is known, we set ϕ(0) = ϕ(0) = 0 and ϕ(s+1) = ϕ(s+1) = 1 (see Lemma 2).
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Elsewhere, we set

ϕ(z) = 1
{
min
v

ℓz(v) > 0
}

(z ∈ {1, . . . , s}). (12)

This function may not be monotone, but we are only interested in its smallest change
point; indeed, if ϕ(z) = 1 for a value z, we know that q < z. We make it increasing and

obtain a single change point in q(0), as defined in (5), by imposing

ϕ(z) = 1 if ϕ(z∗) = 1 for some z∗ ≤ z (z ∈ {1, . . . , s}). (13)

Proposition 1. As ϕ(z) ≤ ϕ(z) for each z ∈ {0, . . . , s+ 1}, q(0) ≥ q.

For instance, in the toy example of Figure 1, ϕ(1) = 0 and ϕ(2) = 1, and so q(0) = 1.

Finally, from this result we can approximate d from below with d(0) = s− q(0).

Theorem 2. d(0) ≤ d.

To summarise, Proposition 1 represents the basis of the shortcut. For any value z, it
allows to make statements on the value of ϕ(z) by constructing ϕ(z) ≤ ϕ(z); it requires
to evaluate a number of tests which is linear in the total number m of hypotheses,
in contrast to the exponential number required by closed testing. Theorem 2 employs
the shortcut to provide a lower (1 − α)-confidence bound d(0) for the number of true
discoveries δ. The theorem holds for all S ⊆ M , hence the procedure d(0) has true
discovery guarantee. In Section S-1 we propose an algorithm for the shortcut, then we
embed it into a binary search to approximate q with reduced complexity. We prove
that in the worst case the computational complexity is of order mB(log2m + logB).
Moreover, we show how the method can be combined with an algorithm of Tian et al.
(2022) to find the largest set with given TDP among a collection of incremental sets.

7. Equivalence to closed testing

The shortcut of Proposition 1 defines ϕ(z) ≤ ϕ(z) for any z. For those values of z for
which ϕ(z) = 1, we know that also ϕ(z) = 1. Where ϕ(z) = 0, however, there are
two distinct cases. If ϕ(z) = 0, the shortcut is equivalent to closed testing; otherwise,
if ϕ(z) = 1, it is conservative, as it does not reject all sets in Vz while closed testing
does. In the toy example with z = 1 we are in the first case (Figure 1, left), but we
cannot see that from the bound only. Now we propose a sufficient condition to state
that ϕ(z) = ϕ(z). This will play an important role in the iterative shortcut of Section
8. We will define an increasing function

ϕ : {0, . . . , s+ 1} −→ {0, 1}, ϕ(z) ≤ ϕ(z) ≤ ϕ(z). (14)

This way, if ϕ(z) = ϕ(z) for a value z, we know that ϕ(z) = ϕ(z). Note that this holds

in particular when either ϕ(z) = 1 or ϕ(z) = 0.
Fix z ∈ {1, . . . , s}. Based on partition (7) of Vz, the main idea is to construct a

greedy path of sets Vz ⊂ . . . ⊂ Vm, with Vv ∈ Vz(v) for each v, and check whether
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Table 3. Toy example with S = {1, 2}: matrix of the sorted cen-
tered statistics to compute the path u1. The value u1(v) is obtained
summing the first v columns by row, and then taking the quantile.

selected in S remaining
i1 (H2) j1 (H4) j2 (H5) j3 (H3) j4 (H1)

id 0 0 0 0 0
π2 3 1 -3 3 5
π3 2 -1 0 4 -2
π4 4 0 1 4 -2
π5 -1 0 -1 3 6
π6 5 -1 0 3 -1

their quantiles are all strictly positive. If we find a non-positive quantile, then we have
established that Vz ̸⊆ R, and so ϕ(z) = ϕ(z) = 0; the shortcut is equivalent to closed
testing for this value of z. We will define the path

uz : {z, . . . ,m} −→ R, uz(v) = c
(ω)
Vv

with Vv ∈ Vz(v) (15)

that connects these quantiles. This way, if uz(v) ≤ 0, we know that Vz(v) contains a
non-rejected set, and so ϕ(z) = 0. Figure 1 displays the bound ℓz and the path uz, which
we will define in the next paragraphs, for the toy example. The path connects some of
the quantiles, one for each size v, and so is never smaller than the bound. From ℓ2 we
already had ϕ(2) = 1; as u1 is entirely positive, results on ϕ(1) are still unsure.

Fix a size v ∈ {z, . . . ,m}. We define uz(v) as the quantile of a set Vv ∈ Vz(v), as
required in (15), choosing Vv such that it is unlikely to be rejected. We take Vv as the set
containing the smallest observed non-centered statistics, with the constraint that Vv is
an element of Vz(v). This is a heuristic choice: ti by itself does not give full information
on the rejection of Hi; still, if ti is small, generally Hi is less likely to be rejected.

In the toy example, choose z = 1. The set Vv ∈ V1(v) must contain v indices, at least
z = 1 of which is in S. Consider the observed statistics ti (first row in Table 1, left).
First, we select the column of the smallest value in S, then sort the remaining columns
so that their values are in ascending order. Table 3 presents the centered statistics cπi
according to this new order. We define Vv as the set of the indices of the first v columns,
obtaining V1 = {2}, V2 = {2, 4}, V3 = {2, 4, 5}, V4 = {2, 4, 5, 3} and V5 = M .

In general, we select the z smallest observed non-centered statistics in S, and then
the v − z remaining smallest statistics. We define two permutations of the indices:

S = {i1, . . . , is} : ti1 ≤ . . . ≤ tis (16)

M \ {i1, . . . , iz} = {j1, . . . , jm−z} : tj1 ≤ . . . ≤ tjm−z
. (17)

The set {i1, . . . , iz} is a subset of S, containing the indices of the z smallest values in
S. For instance, in the toy example we have S = {2, 1}, and M \ {2} = {4, 5, 3, 1}. The
value of the path is then defined as

uz(v) = c
(ω)
Vv

where Vv = {i1, . . . , iz} ∪ {j1, . . . , jv−z}. (18)

It is immediate that Vv ∈ Vz(v) and uz(v) ≥ ℓz(v).
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Lemma 4. minv uz(v) ≤ 0 implies ϕ(z) = 0.

The path is used to define a function ϕ as in (14). Similarly to the definition of ϕ in

the previous section, first we set ϕ(0) = ϕ(0) = 0, ϕ(s+ 1) = ϕ(s+ 1) = 1, and

ϕ(z) = 1
{
min
v

uz(v) > 0
}

(z ∈ {1, . . . , s}). (19)

Then we make the function increasing by taking only its largest change point, imposing

ϕ(z) = 0 if ϕ(z∗) = 0 for some z∗ ≥ z (z ∈ {1, . . . , s}). (20)

Proposition 2. ϕ(z) ≤ ϕ(z) ≤ ϕ(z) for each z ∈ {0, . . . , s+ 1}. Hence ϕ(z) = ϕ(z)
implies ϕ(z) = ϕ(z), i.e., equivalence between the shortcut and closed testing.

For instance, in the toy example of Figure 1 we obtain ϕ(1) = 0 < ϕ(1) = 1 and

ϕ(2) = ϕ(2) = 1. Hence the shortcut is equivalent to closed testing for z = 2, as we
already observed, but we cannot establish equivalence for z = 1.

8. Iterative shortcut

The shortcut we have described in Section 6 approximates closed testing and efficiently
computes q(0) ≥ q; however, as seen in Section 7, it may be conservative. In this
section we improve this single-step shortcut by embedding it into a branch and bound
algorithm. We obtain an iterative shortcut which defines closer approximations of q, and
thus smaller confidence sets for δ, as the number of steps increases. Eventually, after a
finite number of steps, it reaches the same results as full closed testing.

At each step n ∈ N, we will define two increasing functions

ϕ(n), ϕ
(n)

: {0, . . . , s+ 1} −→ {0, 1}, ϕ(n)(z) ≤ ϕ(z) ≤ ϕ
(n)

(z). (21)

We will approximate q from above with the change point of the first function,

q(n) = max
{
z ∈ {0, . . . , s+ 1} : ϕ(n)(z) = 0

}
. (22)

Then we will use the second to assess possible equivalence to closed testing. If ϕ(n)(z) =

ϕ
(n)

(z) for a value z, then ϕ(n)(z) = ϕ(z) and so results cannot be further improved.

Moreover, these functions will be defined so that q(n) becomes a better approximation
of q as n increases, and finally converges to it after at most m steps:

q(n) ≥ q(n+1) ≥ q(m) = q (n ∈ N). (23)

In the next sections we introduce the structure of the branch and bound algorithm,

then use it to construct the functions ϕ(n) and ϕ
(n)

with the desired properties.
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Fig. 2. Toy example with S = {1, 2}: iterative shortcut at step n = 1 to evaluate ϕ(z) in z = 1.
Points denote the quantiles for the sets in V−

1 and V+
1 . The dashed and solid lines represent the

bound and the path, respectively.

8.1. Branch and bound
The branch and bound algorithm (Land and Doig, 1960; Mitten, 1970) is used when
exploring a space of elements in search of a solution, and is based on the following prin-
ciple. The space is partitioned into two subspaces, and each subspace is systematically
evaluated; the procedure can be iterated until the best solution is found. Hence the
algorithm consists of a branching rule, which defines how to generate subspaces, and a
bounding rule, which gives bounds on the solution. This way, one can discard entire
subspaces that, according to the bounding rule, cannot contain the solution.

Here, we want to evaluate ϕ(z) for any value z, i.e., determine whether the space Vz

contains a non-rejected set (see definition (6)). The bounding rule that allows to make
statements on the existence of such a set is the single-step shortcut of Propositions 1 and
2. If the shortcut is equivalent to closed testing, meaning that we are able to determine
ϕ(z), the procedure stops; otherwise, we partition Vz and apply the shortcut within each
resulting subspace. This procedure may be iterated as needed.

For instance, in the toy example, the single-step shortcut gives ϕ(2) = 1 but cannot
determine ϕ(1) (Figure 1). At step n = 1, we partition V1 into two subspaces V−

1 and
V+
1 , according to the inclusion of index j∗ = 1: V−

1 contains all sets that do not include
j∗, and V+

1 contains the others. We choose j∗ ∈ M as the index of the hypothesis that
we believe we have most evidence against, i.e., having the greatest value ti (first row in
Table 1, left). Subsequently, we use the shortcut to examine each subspace. Figure 2
shows the bound ℓ1 and the path u1 in the two subspaces; the path indicates that V+

1
contains a non-rejected set, therefore we conclude that ϕ(1) = 0.

In general, the branching rule is chosen to find an eventual non-rejected set with the
smallest number of steps. Fix z ∈ {1, . . . , s}, as by Lemma 2 there is no need to partition
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V0 or Vs+1. The space Vz of interest is partitioned into

V−
z = {V ∈ Vz : j∗ /∈ V }, V+

z = {V ∈ Vz : j∗ ∈ V }

where j∗ is the index of the greatest observed non-centered statistic, with the constraint
that the procedure cannot generate empty subspaces. Recall that any set V ∈ Vz has at
least size z overlap with S. Hence, with the notation of (16) and (17), we fix the indices
{i1, . . . , iz} of the z smallest observed statistics in S, then we take j∗ = jm−z as the
index of the greatest remaining observed statistic. The same principle may be applied
to partition any subspace.

At any step n ∈ N, the procedure partitions Vz into Kn,z subspaces V1
z , . . . ,V

Kn,z
z

without any successors, where Kn,z ∈ {1, . . . , 2n}. Suppose to apply the single-step
shortcut within a subspace Vk

z . If the result is ϕ(z) = 0, then Vk
z contains a non-rejected

set, and we stop with ϕ(z) = 0. In contrast, if the shortcut determines that ϕ(z) = 1,
all sets in Vk

z are rejected, and we may explore other subspaces. Finally, if the shortcut
produces an unsure outcome, i.e., ϕ(z) is still unknown, Vk

z can be partitioned again.

8.2. Structure of the iterative shortcut
Fix a step n ∈ N. For every z, the branching rule partitions Vz into Kn,z subspaces

V1
z , . . . ,V

Kn,z
z , and the bounding rule applies the shortcut within them. We use this

structure to define the functions ϕ(n) and ϕ
(n)

introduced in (21). We consider the

point-wise minimums of ϕ and ϕ within the different subspaces, and so we take

ϕ(n)(z) = min
k

{
ϕ(z) in Vk

z

}
, ϕ

(n)
(z) = min

k

{
ϕ(z) in Vk

z

}
.

Since ϕ and ϕ are increasing functions, also ϕ(n) and ϕ
(n)

are increasing. The following
proposition shows that property (21) holds, so that we can approximate q from above
with q(n), and we can assess possible equivalence to closed testing for any z. Moreover,

the proposition gives property (23) by showing that ϕ(n) and ϕ
(n)

become closer to ϕ as
n increases, and finally converge to it after at most m steps.

Proposition 3. For any n ∈ N and any z ∈ {0, . . . , s+ 1},

ϕ(n)(z) ≤ ϕ(n+1)(z) ≤ ϕ(m)(z) = ϕ(z) = ϕ
(m)

(z) ≤ ϕ
(n+1)

(z) ≤ ϕ
(n)

(z).

Hence ϕ(n)(z) = ϕ
(n)

(z) implies ϕ(n)(z) = ϕ(z), i.e., equivalence between the iterative

shortcut and closed testing. Moreover, q(n) ≥ q(n+1) ≥ q(m) = q.

In the toy example, consider step n = 1 of the iterative shortcut. For z = 2, from

results of the single-step shortcut we have ϕ(1)(2) = ϕ
(1)

(2) = ϕ(2) = 1 without parti-

tioning V2. For z = 1, from Figure 2 we have ϕ(1)(1) = ϕ
(1)

(1) = ϕ(1) = 0. After one

step we obtain the same results as full closed testing, with q(1) = q = 1. Then, similarly
to Theorem 2, at each step n we may approximate d from below with d(n) = s− q(n).
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Theorem 3. d(n) ≤ d(n+1) ≤ d(m) = d for each n ∈ N.

Proposition 3 is the basis of the iterative shortcut. At any step n and for any z,
it allows to make statements on the value of ϕ(z) by applying the single-step shortcut
within at most 2n subspaces. Then Theorem 3 gives lower (1−α)-confidence bounds for
the number of true discoveries δ. Even if the iterative shortcut is stopped early, before
reaching convergence, d(n) is always a valid lower confidence bound; we have increasingly
better approximations of d as n increases, and obtain full closed testing results after at
most m steps. As the theorem may be applied to any S ⊆ M , the procedure d(n) has true
discovery guarantee. In Section S-1 we provide an algorithm for the iterative shortcut.
In the worst case, the complexity of each iteration, i.e., each application of the shortcut
in a subspace, is of order mB log(mB). The algorithm converges to full closed testing
results after a number of iterations of order 2m.

9. Refinements

In this section we show two strategies that reduce the computational time of the shortcut.
First we modify the ordering of the statistics used to define the path in Section 7 and
the branching in Section 8.1; then we introduce truncated test statistics.

Both the path and the branching are constructed sorting the indices as in (16) and
(17), with the intuition that a small observed value ti corresponds to a hypothesis that
is less likely to be rejected. This heuristic choice may be improved if we relate the
observed value with all the permuted ones, i.e., if we sort ti − mean(tπi ) instead of ti.
This modification proved to be slightly more efficient.

Subsequently, recall that the computational complexity of the shortcut increases with
m. We argue that this complexity is much reduced if the method is applied to truncated
statistics, as it allows to shrink the effective total number of hypotheses from m to
m′ ∈ {s, . . . ,m}. In practice, with large B, m′ is obtained by taking all statistics in S,
and only the non-truncated observed statistics in M \ S.

Truncation-based statistics were advocated in the truncation product method of Za-
ykin et al. (2002), in the context of p-value combinations. The main idea was to em-
phasize smaller p-values by taking into account only p-values smaller than a certain
threshold, and setting to 1 the others; a natural, common choice for the threshold is
the significance level α. A similar procedure, the rank truncation product (Dudbridge
and Koeleman, 2003; Kuo and Zaykin, 2011), takes into account only the k-th smallest
p-values, for a given k. Eventually, weights can be incorporated into both analyses. Such
procedures provide an increased power in many scenarios, and in particular for signal
detection, when there is a predominance of near-null effects. They have been widely
applied in literature (Yu et al., 2009; Li and Tseng, 2011; Biernacka et al., 2012; Dai
et al., 2014); refer to Zaykin et al. (2007), Finos (2003) and Zhang et al. (2020) for a
review of the methods and their applications.

With our notation, we can define a truncation-based statistic for HS as following.
For each hypothesis Hi, we set to a common ground value γ all statistics T π

i smaller
than a threshold τi. The threshold τi may depend on i, or be a prefixed value, or be
the k-th greatest statistic T π

i (i ∈ M , π ∈ π) for a given k. The ground value must be
γ ≤ mini τi; it may be chosen, for instance, as the minimum possible value of the test
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Table 4. Toy example with S = {1, 2}: test statistics after
truncation of elements smaller than τ = 2 to the ground
value γ = 0, and after dimensionality reduction.

truncated f(tπi ) dim. reduction
H1 H2 H3 H4 H5 H1 H2 H4,5

id 6 5 4 0 0 6 5 0
π2 0 2 0 0 4 0 2 4
π3 8 3 0 2 0 8 3 2
π4 8 0 0 0 0 8 0 0
π5 0 6 0 0 2 0 6 2
π6 7 0 0 2 0 7 0 2

statistics, or set equal to the smallest threshold mini τi. Then

TS =
∑
i∈S

fi(Ti), fi(Ti) = γ · 1{Ti < τi}+ Ti · 1{Ti ≥ τi}.

For simplicity of notation, let τi = τ , and so fi = f , be independent of i. Table 4 shows
the values f(ti) in the toy example after truncation with τ = 2 and γ = 0. Here, τ is set
as the k-th greatest statistic, where k = ⌈Bmα⌉ is chosen so that the proportion of non-
null contributions f(tπi ) is approximately α. Observe that H3 is such that the observed
truncated statistic is the greatest over all permutations, i.e., f(t3) = maxπ f(t

π
3 ); as a

consequence, adding {3} to any set V can only increase the number of rejections. On
the contrary, H4 and H5 are such that the observed statistics are the smallest over
all permutations, and so adding {4} or {5} to any set can only decrease rejections.
Truncation makes those two particular cases more common as well as easier to check,
through the following conditions:

f(tπi ) = γ for all π ∈ π \ {id} (24)

f(ti) = γ (25)

Proposition 4. Let V ⊆ M and i ∈ M . If i satisfies condition (24), then V ∈ R
implies (V ∪ {i}) ∈ R. If i satisfies condition (25), then (V ∪ {i}) ∈ R implies V ∈ R.

The shortcut examines the collection Vz of sets that have at least size z overlap with
S, searching for a set V /∈ R. In this case, the focus is on the number of indices in S,
hence we may reduce the dimensionality of the problem by applying Proposition 4 to
the remaining indices. If an index i ∈ M \S satisfies condition (24), then it is not useful
for finding a non-rejected set, and so can be removed from M . If two indices i, j ∈ M \S
satisfy condition (25), they may be collapsed into a new index h, so that Hh = H{i,j}
can only decrease the number of rejections. This allows to reduce the total number of
hypotheses from m for computational purposes to a substantially lower m′ ∈ {s, . . . ,m}.
In the toy example column 3 is removed, while columns 4 and 5 are collapsed into a
single column, reducing the number of hypotheses from m = 5 to m′ = 3.
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10. Applications

In this section, we use the iterative shortcut of Section 8 to analyse simulated and real
fMRI data, while in Section S-2.3 we analyse differential gene expression data. We use
the sumSome package (Vesely, 2021) developed in R (R Core Team, 2017), with underlying
code in C++.

10.1. Simulations
We use the shortcut to compare the performance of different p-value combinations
through simulations. When using p-value combinations, the unknown joint distribution
of the data is often managed through worst-case distributions, defined either generally
or under restrictive assumptions (Vovk and Wang, 2020). However, this approach makes
comparisons difficult, since different tests have different worst cases. In contrast, our
method adapts to the unknown distribution through permutations, and thus allows to
compare the tests on equal footing. Determining which test has the highest power in
different settings is a major issue, for which a full treatment is out of the scope of the
paper; we present a first exploration.

We simulate n independent observations from a multivariate normal distribution
with m variables: X = µ + ε, with X,µ, ε ∈ Rm and ε ∼ MVN(0,Σρ). Here Σρ is
an equicorrelation matrix with off-diagonal elements equal to ρ. The mean µ has a
proportion a of non-null entries, with value computed so that the two-sided one-sample
t-test with significance level α has a given power β. From the resulting data, we obtain
p-values applying a two-sided one-sample t-test for each variable i, with null hypothesis
Hi : µi ̸= 0. P-values are computed for B random permutations. Moreover, we employ
truncation, setting to a common ground value γ any p-value greater than a threshold τ .

We analyse the subset S of false hypotheses (active variables), and the complemen-
tary subset M \ S of true hypotheses (inactive variables), by means of different p-value
combinations: Pearson (1933), Liptak (1958), Cauchy (Liu and Xie, 2020), and gener-
alized means with parameter r ∈ {−2,−1,−0.5, 0, 1, 2} (Vovk and Wang, 2020). The
latter will be denoted by VW(r). Notice that VW(-1) corresponds to the harmonic mean
(Wilson, 2019), VW(0) to Fisher (1925), and VW(1) to Edgington (1972). As a com-
parison, we also apply the maxT-method of Westfall and Young (1993), corresponding
to the limit of VW(r) when r tends to −∞; we apply the usual algorithm for the maxT.

We fix n = 50, m = 1000, α = 0.05, B = 200 and γ = 0.5, then we consider
a ∈ {0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 0.9}, β ∈ {0.5, 0.8, 0.95}, ρ ∈ {0, 0.3, 0.6, 0.9}, and
τ ∈ {0.005, 0.01, 0.05, 0.1, 1}, where τ = 1 leads to no truncation. For each setting, we
simulate data 1000 times, and compute the TDP lower confidence bound for the set S
as the mean of d(S)/s over the simulations. Furthermore, we compute the FWER as
the proportion of simulations where d(M \ S) > 0, meaning that the method finds at
least one discovery among the true hypotheses. The algorithm is run for a maximum of
1000 iterations.

Figure 3 shows the average TDP lower confidence bounds obtained in different sce-
narios for β = 0.95 and τ ∈ {0.005, 0.05, 1}. Certain groups of tests have similar perfor-
mances: (a) VW(1), VW(2) and Pearson; (b) VW(-1) and Cauchy. For clarity, among
these tests, only VW(1) and VW(-1) are displayed in the plots. Results indicate that
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proportion a (log scale) and for different p-value combinations. Variables have equicorrelation
ρ. P-values greater than τ are truncated.

the intensity of the signal, determined by the parameter β, does not significantly affect
the behaviour of the tests; nevertheless, differences between tests are amplified when
the signal is high. Furthermore, results suggest that truncation is generally advisable,
unless the signal is very dense, i.e., a is high. Indeed, in most cases tests tend to be
more powerful when τ is low, and thus more statistics are truncated; the improvement
is stronger for sparse signal, and when considering VW(0), VW(1) and Liptak.

When the signal is sparse, VW(r) with r < 0 performs best; the most powerful
test is VW(-1) for low correlation, and VW(-2) for high correlation. The remaining
tests perform well when the signal is dense; among those, in the considered scenarios
VW(0) is the most powerful, but the powers of these tests become more similar as the
signal becomes denser. These results confirm that the test is more directed towards
sparse alternatives when the individual contributions, i.e., the transformed p-values,
have heavy-tailed distributions, and towards dense alternatives otherwise (Vovk and
Wang, 2020). Computation time is between 0.04 and 20 seconds. Moreover, simulations
confirm that the method controls the FWER. Plots for the computation time, rates of
convergence and the FWER are provided in Section S-2.1.

Finally, Section S-2.1 contains a comparison with closed testing based on worst-case
distributions (Tian et al., 2022) for generalized means VW(r) (Vovk and Wang, 2020).
As expected, worst-case distributions tend to be very conservative, and are never more
powerful than the shortcut. The difference in power varies according to the choice of r
and the setting. The largest differences are observed for r = 1 in settings with dense
signal and medium-low correlation, for which only the shortcut has non-zero power.
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10.2. fMRI data
In this section we apply the shortcut to fMRI brain imaging data, demonstrating fea-
sibility of the method on large datasets, adaptation to the correlation structure and
post-hoc flexibility. In fMRI imaging, Blood Oxygen Level Dependent (BOLD) response
is measured, i.e., changes in blood flow in the brain induced by a sequence of stimuli,
at the level of small volume units called voxels. Brain activation is then inferred as
correlation between the stimuli and the BOLD response. Researchers are interested in
studying this activation within different clusters, brain regions of connected voxels.

Typically, voxels are highly correlated. This is usually taken into account by means
of cluster extent thresholding (Nichols, 2012; Woo et al., 2014; Rosenblatt et al., 2018).
However, when the method finds activation in a given cluster, it only indicates that the
cluster contains at least one active voxel, but does not provide any information on the
proportion of active voxels (TDP) nor their spatial location. This leads to the spatial
specificity paradox, the counter-intuitive property that activation in a large cluster is a
weaker finding than in a small cluster (Woo et al., 2014). Moreover, follow-up inference
inside a cluster leads to inflated Type I error rates (Kriegeskorte et al., 2009). In contrast,
our approach not only adapts to the high correlation, but also provides confidence sets
for the TDP, and allows for post-hoc selection and follow-up inference inside clusters.

We analyse data collected by Pernet et al. (2019), which compares subjects examined
while listening to vocal and non-vocal sounds. Data consists of brain images for 140
subjects, each composed of 168,211 voxels. As for any standard fMRI analysis (Lindquist,
2008), as first-level analysis for each subject we estimate the contrast map that describes
the difference in activation during vocal and non-vocal stimuli, with the same procedure
of Andreella et al. (2020). Then these contrast maps are used to run the second-level
analysis; for each voxel we compute a test statistic by means of a two-sided one-sample
t-test, with the null hypothesis that the voxel’s mean contrast between subjects is zero.
Finally, we define the global test statistic for a cluster as the sum of its voxels’ t-statistics.

We examine supra-threshold clusters with threshold 3.2, chosen by convention, and
then we make follow-up inference inside those by studying clusters with threshold 4.
The significance level is taken as α = 0.05. We construct statistics for the permutation
test by using B elements from the group of sign-flipping transformations, which satisfies
Assumption 1 (Winkler et al., 2014). Moreover, we employ truncation as in Section 9
by setting to γ = 0 any statistic smaller than τ = 3.2; this way, we take into account
only statistics at least as extreme as the cluster-defining threshold. We use two settings.
First, we apply a ‘quick’ analysis, fast and feasible on a standard machine, by using
B = 200 transformations and stopping after 50 iterations of the single-step shortcut.
Subsequently, we consider a ‘long’ analysis, run on the platform CAPRI (University of
Padua, 2017), that employs B = 1000 transformations and stops after 1000 iterations.
Computation time for the ‘quick’ setting is less than 8 minutes on a standard PC, while
the ‘long’ setting requires around 9 hours for clusters with threshold 3.2, and 36 hours
for follow-up inference on clusters with threshold 4.

Results, shown in Section S-2.2, indicate that the setting of the ‘long’ analysis does
not provide larger TDP values than the ‘quick’. Notice that the method provides valid
(1 − α)-confidence bounds for the TDP in all settings. In Section S-2.2 we further
investigate the role of the numbers of iterations and permutations, confirming that, even
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though larger values give greater mean power and less variability, the ‘quick’ setting
provides suitable power. Moreover, our method finds activation in concordance with
previous studies. An extensive comparison with other methods is beyond the scope of
this paper, however our results can be immediately compared to those in Andreella et al.
(2020), since the same data was used. For the particular settings used in the analyses,
the proposed method is more powerful in detecting signal in bigger clusters, while loses
power in smaller ones. In general, however, results strongly depend on the choice of the
tests: the sum test in the proposed method, and the critical vector in Andreella et al.
(2020). A preliminary study is shown in Vesely et al. (2021).

11. Discussion

We have proposed a new perspective on the age-old subject of global testing, arguing that
all global tests automatically come with an inbuilt selective inference method, allowing
many additional inferences to be made without paying a price in terms of the global
test’s α-level. Our proposed approach provides not just p-values but gives a confidence
bound for the TDP, which is considerably more informative; indeed, reporting a p-
value only infers the presence of some discoveries, while the TDP allows to quantify the
proportion of these discoveries. Such TDP confidence bounds come not just for the full
testing problem, but also simultaneously for all subsets of hypotheses; this way, subsets
of interest may be chosen post hoc, without compromising the validity of the method.

To construct simultaneous confidence bounds for the TDP of all subsets, we have pro-
vided a general closed testing procedure for sum tests, a broad class of global tests that
includes many p-value combinations and other popular multiple testing methods. The
procedure uses permutation testing to adapt to the unknown joint distribution of the
data, avoiding strong assumptions or potential loss of power due to worst-case distribu-
tions. We have presented an iterative shortcut for this procedure, where the complexity
of each iteration is linearithmic both in the numbers m of hypotheses and B of permuta-
tions. Moreover, we have argued that B = 200 permutations are generally sufficient for
the usual significance level α = 0.05. The shortcut converges to full closed testing results
after a finite, but possibly exponential in m, number of iterations; furthermore, it may
be stopped at any time while still providing control of the TDP. As shown in simulations,
when studying 1000 hypotheses, in many cases the procedure converges to closed testing
in seconds. Moreover, the method is feasible in high-dimensional settings, as shown in
applications on fMRI data and differential gene expression data. An implementation is
available in the sumSome package (Vesely, 2021) in R, with underlying code in C++.

Our method is extremely flexible, allowing any sum test of choice; different choices
of the sum test have very different power properties, as we have illustrated. More
research is needed on the performance of different sum tests in different scenarios. Notice
that the test statistic, including the eventual truncation, needs to be chosen a priori,
before performing the analysis. Moreover, permutations are known to have a better
performance than worst-case distributions under general dependence structure, but we
have performed only a preliminary investigation to quantify the improvement given by
permutations in the case of sum tests. Finally, a comparison with other permutation-
based procedures that rely on bounding functions (Blanchard et al., 2020; Andreella
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et al., 2020; Blain et al., 2022) would be of great interest, but would be extensive for two
main reasons. First, all these procedures do not represent single methods but families of
methods, allowing different choices for the test (i.e., sum test statistic in our case, and
critical vector in the others); where and how the signal is distributed strongly influences
the power of each method. Hence a fair study would require to first choose a proper
test within each family, depending on many different characteristics of the problem, and
only then compare results. Furthermore, the methods give statements for each of the
2m possible subsets of hypotheses. Depending on the loss function chosen to summarize
these statements, different methods could result to be preferable. In consequence, such
an analysis is left for future work.
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List of figures

Figure 1: Toy example with S = {1, 2}: shortcut to evaluate ϕ(z) in z = 1 and z = 2.
Points denote the quantiles for the sets in Vz. The dashed and solid lines represent the
bound ℓz (8) and the path uz (15), respectively. (p. 8)

Figure 2: Toy example with S = {1, 2}: iterative shortcut at step n = 1 to evaluate
ϕ(z) in z = 1. Points denote the quantiles for the sets in V−

1 and V+
1 . The dashed and

solid lines represent the bound and the path, respectively. (p. 13)

Figure 3: Simulated data: TDP lower confidence bounds for the set S of active vari-
ables, by active proportion a (log scale) and for different p-value combinations. Variables
have equicorrelation ρ. P-values greater than τ are truncated. (p. 18)
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