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Abstract—Vibration-based structural health monitoring
(SHM) systems continuously estimate modal parameters to
detect structural anomalies. The modal data corresponding
to a healthy state are stored in a database during a training
period, forming a baseline for comparison. However, variations
in modal frequencies due to environmental and operational
factors can lead to larger false positive rates and decrease
the sensitivity of system to small damages, reducing the
probability of damage detection. To mitigate these challenges,
temperature compensation techniques are commonly employed
to reduce variations in recorded modal data. In this paper, we
propose a temperature compensation technique using neural
network regression models. Unlike commonly used multivariate
linear regression (MVLR), neural networks can capture
the nonlinear relationship between temperature and modal
frequencies effectively. The results of the numerical simulation
in the present work demonstrate the superiority of the neural
network-based compensation over the MVLR approach.

Index Terms—Structural health monitoring, Anomaly detec-
tion, Temperature compensation, Neural network regression

I. INTRODUCTION

In vibration-based structural health monitoring (SHM) sys-
tems, continuous monitoring of modal parameters, such as
modal frequencies, is performed using automated operational

modal analysis (OMA) [1]. The frequencies corresponding to
a healthy structural condition are stored in a database during
a training period, creating a baseline for comparison. After
the training phase, the SHM system enters the operational
period, where it looks for anomalies. Anomalies are typically
detected using a damage index (DI), a scalar quantity which
measures the distance between the new frequency sample and
the baseline. If the DI exceeds a certain threshold, an alert is
triggered, indicating the presence of anomalous data [2].

However, variations in modal frequencies due to environ-
mental and operational factors can lead to larger DI deviations
from the threshold, increasing the risk of false positives
or false alarms when the structure is actually healthy [3].
Additionally, these variations can also decrease the ability of
the SHM system to reliably detect smaller damages in the
structure, increasing the Minimum Detectable Damage (MDD)
size [4].

To mitigate these issues, it is essential to reduce the varia-
tions of the recorded modal frequencies as much as possible,
which leads to a decrease in the discussed risks. One of the
most significant factors contributing to variations in modal
frequencies is temperature fluctuations. Temperature variations



affect materials, supports, and connections, resulting in direct
effects on the natural frequencies of the structure [5]–[7].

To address the influence of temperature variations on
modal frequencies, temperature compensation techniques are
commonly employed, as also required by standards such as
UNI/TR 11634, the Italian Guidelines for Structural Moni-
toring [8]. In this approach, thermocouples are installed on
the structure to record temperature values corresponding to
each sample of modal frequencies during the training phase.
A regression model is then built for the dataset, with tem-
peratures as the independent variables and modal frequen-
cies as the target parameters. This regression model allows
the reconstruction of modal frequencies, using corresponding
temperature values as the input to the model. The temperature
compensation is then performed on the modal frequencies by
subtracting the reconstructed values from original frequencies
[9], [10].

When the regression model is accurate, it is expected
that the temperature-related variations of the compensated
parameters are smaller than those of the original frequencies.
This basically allows to better discriminate the variation of
frequencies due to damage increasing thus sensitivity of the
SHM system.

Most existing works employ multi-variate linear regression
(MVLR) to build the regression model. However, the rela-
tionship between temperature and modal frequencies is highly
nonlinear. Additionally, due to limitations in the number of
thermocouples used in practice, there are usually only a few
independent parameters available for regression. Consequently,
MVLR may not fully exploit the potential of the available
dataset for compensation purposes.

In this work, we propose a compensation technique that
exploits neural network (NN) regression models to overcome
the limitations of MVLR. Neural networks are capable of
capturing complex nonlinear relationships between tempera-
ture and modal frequencies, making them well-suited for this
task. Thus, using NN, the variations in modal frequencies are
reduced more effectively compared to MVLR-based compen-
sation. Consequently, the probability of damage detection is
noticeably increased. The approach is investigated through
a numerical truss example by considering the temperature
variations and measurement noises. In this example, for three
cases: (I) no compensation, (II) compensation using MVLR,
and (III) compensation using NN, the resulting PODs are com-
pared. Moreover, the effect of proper selection of independent
parameters in the regression models are discussed.

II. TEMPERATURE COMPENSATION USING MVLR

Let H be the matrix representing the baseline modal
frequencies of a healthy structure (training dataset), and T be
the corresponding baseline temperatures.

Step 1: Building the regression model
First, a multi-variate regression model is constructed to simu-
late the relationship between H and T. This regression model
is represented by the coefficient matrix β, usually obtained

using the least squares method and by minimizing the error E
of (1):

E = H− β.T (1)

Here, β is a matrix containing the regression coefficients.

Step 2: Frequency reconstruction
For any frequency sample fn from the baseline or test dataset
with corresponding temperature vector of tn, the frequencies
are reconstructed using the regression model. The recon-
structed frequencies f̂n are given by:

f̂n = β.tn (2)

It should be noted that fn could be related to a healthy or
damaged state of the structure.

Step 3: Compensation
With the reconstructed frequencies at hand, the temperature
compensation is performed by subtracting the respective re-
constructed frequencies from the original data and adding the
mean of the baseline modal frequencies:

f cn = fn − f̂n + µ[H] (3)

If we use (3) for the baseline frequencies H, the baseline for
the compensated frequencies Hc can be obtained as follows:

Hc = H− Ĥ+ µ[H] (4)

III. TEMPERATURE COMPENSATION USING NEURAL
NETWORK REGRESSION

Neural network (NN) regression is a machine learning
technique which finds a model to predict target parameters
having the independent features.

The NN concept centers around the organization of input,
hidden, and output layers, each comprising neurons. Specif-
ically, the number of neurons in the input and output layers
corresponds to the number of independent and target variables,
respectively. However, the number of neurons in the hidden
layers is a hyperparameter decided based on the complexity
of the problem [11].

Within each layer, individual neurons derive their values
through a weighted sum of the preceding layer neurons, with
the addition of a bias term. These computed values then
undergo a non-linear “activation function,” introducing non-
linearity into the estimations. Sigmoid, ReLU (Rectified Linear
Unit), tangent, and hyperbolic tangent are popular activation
functions [12].

The training phase begins with “forward propagation,”
where computations cascade through the layers until arriving at
the output layer providing predictions for the target variables.
These predictions are then compared to the actual values for
error assessment. Subsequently, during “backward propaga-
tion,” weight coefficients and biases are adjusted to minimize
the prediction error. Hyperparameters such as gradient, step,



and loss tolerances and iteration limit correspond to this
optimization problem. Once the optimal weights and biases
are determined, the NN model is ready for making predictions
[12].

In the present work, we propose using NN to build a
regression model (mdl) between the temperatures as the inde-
pendent, and the modal frequencies as the target parameters
on the baseline dataset. Then, the reconstructed frequencies
(f̂n) are obtained from the prediction of mdl having the
corresponding temperature values tn:

f̂n = predict(mdl, tn) (5)

Then, the frequencies compensated for temperature varia-
tions can be calculated using (3) and (4).

In the present paper, the built-in MATLAB function Mdl
= fitrnet(X,Y) has been used to construct the neural
network regression model with X and Y as independent and
target variables, respectively [13]. This function provides
the possibility to adjust different hyperparameters mentioned
above.

To predict the target value on a given input, the built-in
function yfit = predict(Mdl,X) is used. This function
computes the prediction yfit using the input X, employing
the NN regression model mdl.

For the case study investigated in this work, the neural
network model is visually depicted in Fig. 1. The input
layer comprises three neurons, corresponding to the three
temperature measurements, while the output layer consists of
five neurons, representing the five frequencies. Furthermore,
the intermediate hidden layer consists of ten neurons. The
utilized hyperparameters are detailed in Tab. I.

TABLE I
NEURAL NETWORK REGRESSION HYPERPARAMETERS.

Hyperparameter Value
Layer size 10

Iteration limit 103

Gradient tolerances 10−6

Step tolerances 10−6

Loss tolerances 10−6

Regularization term strength 0
Standardization Off

Activation function ReLU

IV. DAMAGE INDEX

A damage index (DI) is considered based on the modal
frequencies which could be non-compensated or compensated
for temperature, the latter using MVLR or NN. First, the
baseline matrix H is considered as the training database, and
its mean value vector and covariance matrix are calculated as
µ[H] and S, respectively.

Then, for each frequency sample fn, a scalar damage index
DIn is computed using the Mahalanobis distance [2], [14] as:

DIn =

√
(fn − µ [H])

T
S−1(fn − µ[H]) (6)
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Fig. 1. The NN regression model of the current case study.

The Mahalanobis distance is a scalar indicating the distance
between a sample point fn, and a probability distribution
Q(µ,S) in a multi-dimensional space, taking into account the
correlation of the data.

For instance, in Fig. 2a, the DIs are calculated for two years.
In the first year (blue dots), the structure is healthy and is used
as the baseline H matrix. In the second year (red dots), the
structure is damaged and the DIs are computed with respect
to H.

POD

PFA
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h
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o
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Undamaged
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DI

Fig. 2. Classification based on an alarm threshold: a) different outcomes; b)
PFA and POD from the probability density functions.

It is worth mentioning that in (6), if f cn and Hc are
used instead of fn and H, respectively, the calculated DIs
will be based on the temperature compensated frequencies.



Both MVLR or NN can be used for compensation and DI
calculation.

V. PFA, POD, AND ALARM THRESHOLD

The alarm threshold (τ ) is a value defined on the DIs which
classifies the dataset into two categories of healthy (negative)
for DI ≤ τ , and damaged (positive) for DI > τ . For instance,
the green horizontal dashed line represented in Fig. 2a is the
alarm threshold on the introduced dataset.

In a supervised scenario where the damage is known, the
number of healthy samples with DI > τ (false positives)
is taken as FP (τ) (Fig. 2a, top-left quarter), the number of
DI < τ (true negatives) is taken as TN(τ) (Fig. 2a, bottom-
left quarter), the number of damaged samples with DI > τ
(true positives) is taken as TP (τ) (Fig. 2a, top-right quarter),
and the number of DI < τ (false negatives) is taken as FN(τ)
(Fig. 2a, bottom-right quarter).

Therefore, given a τ value, we can calculate the probability
of false alarm PFA(τ) and the probability of damage detec-
tion POD(τ) as follows:

PFA(τ) =
FP (τ)

FP (τ) + TN(τ)

POD(τ) =
TP (τ)

TP (τ) + FN(τ)

(7)

Both PFA(τ) and POD(τ) are visually illustrated in Fig.
2b, showcasing the distributions of DIs for the healthy and
damaged scenarios. It can be seen that having a threshold, if
the variations of the DIs decrease, the POD increases, and the
PFA decreases.

In this study, we utilize the PFA to establish the alarm
threshold for the SHM system [4], [15]. For this purpose, we
take the DI corresponding to PFA = 0.05 on the baseline
DI dataset as the alarm threshold. Such procedure can be
performed on compensated or non-compensated datasets.

VI. PROCEDURE

The process of temperature compensation used in this work
can be summarized as follows:

I: For the healthy structure
1) Collect modal frequencies of the healthy structure

through operational modal analysis and simultaneously,
record corresponding temperature measures. Consider
a period of the healthy frequencies as the training or
baseline period, preferably covering one year to ensure
a well-trained regression model in the next steps. Keep
the remaining of the healthy samples as the test dataset.

2) Perform a correlation analysis between frequency and
temperature variations to select thermocouples with high
correlation as independent variables for the regression
model.

3) Build regression models (MVLR or NN) with frequen-
cies as the target and the chosen temperatures as inde-
pendent parameters on the baseline.

4) Use the regression model to compensate for temperature
fluctuations in the baseline frequencies. Thus, the base-
line of the frequencies compensated for temperature is
obtained.

5) Calculate the DI for the baseline frequencies compen-
sated for temperature fluctuations by computing the
Mahalanobis distance. Determine the threshold value (τ )
for the DI corresponding to a PFA of 5%.

6) For the healthy test dataset, apply the regression model
for compensation and calculate the DIs. Use τ and verify
that the PFA obtained from the test dataset is close to
5% to assess the robustness of the regression model.

II: For the damaged structure (supervised scenario)
1) In the framework of a supervised approach, use for

instance a calibrated finite element model (FEM) to
simulate a damage scenario.

2) Use a temperature history, perhaps covering one year
of time, and properly apply it to the FEM model for
the computation of the temperature dependent modal
frequencies; introduce a noise with a given standard
deviation on such frequencies.

3) Calculate the DIs of the damaged samples using the
Mahalanobis distance of (6) and compute the POD for
the calculated threshold value (τ ).

4) Repeat the procedure with different regression models or
combinations of independent/target variables and com-
pare the resulting PODs.

In the next section, this procedure is applied to a numerical
example and the performances of different regression models
for temperature compensation are compared.

VII. NUMERICAL EXAMPLE

A 9-element plane truss composed of steel elements with prop-
erties defined at a reference temperature of 20°C is analyzed.
The truss has a Young’s modulus (E0) of 200 GPa, a cross-
sectional area (A) of 0.0025 m2, and a material density (ρ) of
7850 kg/m3 (Fig. 3). Using finite element model and solving
eigenvalue problem, the first five modal frequencies of the
truss are calculated as f1 = 36.71, f2 = 78.91, f3 = 82.00,
f4 = 145.97, and f5 = 219.22 Hz.

Three temperature distributions T1, T2, and T3 are created,
and for each, seasonal (TY ), daily (TD), and random (TR)
variations for a three-year period are considered (Fig. 4). Ten
temperature samples per day are simulated, resulting in a total
of 3650 samples per year for each distribution. The relations
used to build the temperature distributions are presented in
Tab. II, in which i = 1 to 10950 is the sample number, NY =
3650 is the number of samples per year, and ND = 10 is the
number of samples per day.

The temperature effect on the truss structure is then incorpo-
rated at all elements using a non-linear temperature-dependent
Young’s modulus, as described by the following equation [16]:

E(T ) = E0[1− 0.005(T − 20)(−0.01T )

+0.01 rand[N (0, 1)]]
(8)



TABLE II
THE SEASONAL, DAILY, AND RANDOM TEMPERATURE VARIATIONS OF THE

THREE TEMPERATURE MEASURES.

T1 T2 T2

TY TY
1 (i) = 20 + 25 sin(2πi/NY ) TY

2 (i) = 15 + 20 sin(2πi/NY ) TY
3 (i) = 17 + 25 sin(2πi/NY + 2/3)

TD TD
1 (i) = 20 sin(2πi/ND) TD

2 (i) = 16 sin(2πi/ND) TD
3 (i) = 20 sin(2πi/ND + 2π/3)

TR TR
1 (i) = 5 rand[N (0, 1)] TR

2 (i) = 2 rand[N (0, 1)] TR
3 (i) = 8 rand[N (0, 1)]

where T = (T1 + T2 + T3)/3. Fig. 5 illustrates the variations
of the Young’s modulus of the elements with respect to the
mean temperature value T .

𝟏
𝒎

𝟑
𝒎

𝟒 𝒎 𝟒𝒎 𝟒𝒎

Fig. 3. The truss under investigation.

Fig. 4. The simulated temperature variations for three years.

Fig. 5. The variations of element Young’s modulus for the healthy dataset
using (8).

For the healthy structure, the first five modal frequencies are
computed over the first 7300 temperature samples (two-year

duration). The baseline frequency matrix H is then constructed
using the first 3650 samples as the healthy training, and the
second 3650 samples are considered as the healthy test dataset.

Then, a damage is applied on element 1 as 16% reduction in
the cross-sectional area, and the last 3650 temperature samples
are used to obtain the first five modal frequencies in the
presence of this damage scenario. All frequencies (healthy
and damaged) are then contaminated by 1% noise to simulate
typical noise levels in SHM systems [17] (Fig. 7).

Next, the frequencies without tempearature compensation
are used to calcualte the DIs, visualized in Fig. 6. In this
scenario, a threshold of τ = 3.314 was obtained corresponding
to a PFA = 0.05 on the baseline, resulting in a PFA of 0.054
on the test dataset, demonstrating the robustness of the damage
index. However, a POD of 0.5252 is obtained, indicating a
performance no better than random guessing.

Fig. 6. The DI variations with no temperature compensation.

Next, temperature compensation is performed on the fre-
quencies. For this purpose, four different combinations of
independent parameters, namely T1, T1 − T2, T2 − T3, and
T1 − T2 − T3 are considered for the regression models. Tem-
perature compensation is then performed using both MVLR
and NN regression with the first five modal frequencies as the
target variables. The hyperparameters used in constructing the
NN regression model are introduced in Tab. I.

For each regression type (MVLR or NN), and each combi-
nation of independent parameters (T1, T1 − T2, T2 − T3, or
T1−T2−T3), the DIs are computed and the alarm thresholds τ
associated with a PFA of 0.05 are determined on the baseline.

Figs. 8, 9, 10, and 11 represent the DIs considering only T1,
T1−T2, T2−T3, and T1−T2−T3, respectively, as independent
parameters in the regression models. In each plot, the first row
shows the DIs calculated using MLVR compensation, whereas
in the second row, the NN regression model was used. Tab.
III summarizes the resulting PODs for different scenarios.

TABLE III
THE POD RESULTS FOR DIFFERENT REGRESSION MODELS AND

INDEPENENT PARAMETERS.

T1 T1 and T2 T2 and T3 T1, T2, and T3

MVLR 0.7595 0.7608 0.7033 0.7581
NN 0.9293 0.8666 0.8027 0.8923

Compared to the case without temperature compensation
(Fig. 6), using MVLR increased the POD values to 0.7595,



Fig. 7. Pseudo frequencies of the healthy (first and second years) and the
damaged (third year) structure for the damage on element 1, as 16% reduction
in the cross-sectional area.

Fig. 8. The DI variations using only T1 as the independent parameter with:
a) MVLR compensation; b) NN compensation.

Fig. 9. The DI variations using T1, T2 as the independent parameters with:
a) MVLR compensation; b) NN compensation.

Fig. 10. The DI variations using T2 and T3 as the independent parameters
with: a) MVLR compensation; b) NN compensation.

Fig. 11. The DI variations using T1, T2 and T3 as the independent parameters
with: a) MVLR compensation; b) NN compensation.

0.7608, 0.7033, and 0.7581 for the four temperature combina-
tions, respectively. These results demonstrate the effectiveness
of temperature compensation in enhancing the damage detec-
tion capability of the system with MVLR.

Similarly, when utilizing NN for temperature compensa-
tion, higher POD values were achieved, specifically 0.9293,
0.8666, 0.8027, and 0.8923 for the four combinations men-
tioned, respectively.

The findings clearly indicate that using NN for temperature
compensation is more effective in increasing the POD while
maintaining a low PFA. For instance, considering only T1 as
the independent parameter resulted in a POD of 92%, whereas
with the use of MVLR, the POD was 76%.

Altogether, both MVLR and NN compensation showed
higher POD values in cases involving T1 compared to
scenarios that only included T2 and T3. To further explain
this observation, a correlation coefficients matrix between the
baseline frequencies and the temperatures was calculated (Fig.
12).

Analyzing this matrix reveals that T1 exhibits the strongest
correlation (more than 95%) with all modal frequencies.



Tab. II confirms this observation where T1 has the largest
constants and coefficients, making it the most effective factor
in computing T in (8). Moreover, T2 also shows a noticeable
correlation with frequencies (more than 85%), while weaker
than that of T1. However, T3 demonstrates less correlation
with the frequencies (more than 62%). This could be due to
the phase shift in TY

3 and TD
3 (Tab. II), leading to a smaller

contribution to T in (8) compared to the in-phase temperatures
T1 and T2.

This observation implies the importance of preliminary
study on the SHM system to identify which independent pa-
rameters significantly affect the variations in target frequencies
to be used for temperature compensation.

Fig. 12. Correlation coefficients matrix of the independent and target
parameters.

VIII. CONCLUSIONS

In this work, we addressed the challenges of SHM systems
caused by variations in modal frequencies due to environmen-
tal and operational factors, which may lead to false positives
and reduce sensitivity to small damages. To mitigate these
issues, we proposed a temperature compensation technique
using neural network regression models, which have the ability
to capture complex nonlinear relationships between temper-
ature and modal frequencies. Through numerical validation,
we demonstrated the superiority of the neural network-based
compensation technique over the multi-variate linear regres-
sion approach. The neural network regression significantly
reduced temperature-induced variations in modal frequencies,
resulting in a significant improvement in the probability of
detecting structural damages. Moreover, we investigated the
importance of preliminary correlation analysis between the
independent and target parameters, to chose effective features
for temperature compensation.
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