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Abstract: This work tackles the problem of image restoration, a crucial task in many fields of applied
sciences, focusing on removing degradation caused by blur and noise during the acquisition process.
Drawing inspiration from the multi-penalty approach based on the Uniform Penalty principle,
discussed in previous work, here we develop a new image restoration model and an iterative
algorithm for its effective solution. The model incorporates pixel-wise regularization terms and
establishes a rule for parameter selection, aiming to restore images through the solution of a sequence
of constrained optimization problems. To achieve this, we present a modified version of the Newton
Projection method, adapted to multi-penalty scenarios, and prove its convergence. Numerical
experiments demonstrate the efficacy of the method in eliminating noise and blur while preserving
the image edges.

Keywords: multi-penalty regularization; image restoration; uniform penalty principle

1. Introduction

Image restoration is an important task in many areas of applied sciences since digital
images are frequently degraded by blur and noise during the acquisition process. Image
restoration can be mathematically formulated as the linear inverse problem [1]

Au + e = b (1)

where b ∈ RM and u ∈ RN , respectively, are vectorized forms of the observed mx ×my
image and the exact nx × ny image to be restored, A ∈ RM×N is the linear operator
modeling the imaging system, and e represents Gaussian white noise with mean zero
and standard deviation σ. The image restoration problem (1) is inherently ill-posed and
regularization strategies, based on the prior information on the unknown image, are usually
employed in order to effectively restore the image u from b.

In a variational framework, image restoration can be reformulated as a constrained
optimization problem of the form

min
u

1
2
‖Au− b‖2 +R(u)

s.t. u ∈ Ω
(2)

whose objective function contains a L2-based term, imposing consistency of the model
with the data, and a regularization term R(u), forcing the solution to satisfy some a
priori properties. Here and henceforth, the symbol ‖ · ‖ denotes the Euclidean norm.
The constraint imposes some characteristics on the solution which are often given by
the physics underlying the data acquisition process. Since image pixels are known to be
nonnegative, a typical choice for Ω is the positive orthant.
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The quality of the restored images strongly depends on the choice of the regularization
term which, in a very general framework, can be expressed as

R(u) =
p

∑
i=1

λiψi(u) (3)

where the positive scalars λi are regularization parameters and the ψi(u) are regulariza-
tion functions for i = 1, . . . , p. The multi-penalty approach (3) allows to impose several
regularity properties on the desired solution, however a crucial issue with its realization
is the need to define reliable strategies for the choice of the regularization parameters λi,
i = 1, . . . , p.

Therefore, in the literature, the most common and famous regularization approach
is single-penalty regularization, also known as Tikhonov-like regularization, which corre-
sponds to the choice p = 1:

R(u) = λψ(u). (4)

In image restoration, smooth functions based on the L2-norm or convex nonsmooth
functions like the Total Variation, the L1 norm or the Total Generalized Variation are usually
used for ψ(u) in (4) [2,3]. Even in the case p = 1, the development of suitable parameter
choice criteria is still an open question. The recent literature has demonstrated a growing
interest in multi-penalty regularization, with a significant number of researchers focusing
on scenarios involving two penalty terms. Notably, the widely-used elastic regression in
Statistics serves as an example of a multi-penalty regularization technique, integrating
the L1 and L2 penalties from the Lasso and Ridge methods. However, the majority of the
literature primarily addresses the development of suitable rules for parameter selection.
Lu, Pereverzev et al. [4,5] have extensively investigated two L2-based terms, introducing a
refined discrepancy principle to compute dual regularization parameters, along with its
numerical implementation. The issue of parameter selection is further discussed in [6],
where a generalized multi-parameter version of the L-curve criterion is proposed, and in [7],
which suggests a methodology based on the GCV method. Reichel and Gazzola [8] propose
regularization terms of the form

φi(u) = ‖Diu‖2, i = 1, . . . , p (5)

where Di are suitable regularization matrices. They present a method to determine the reg-
ularization parameters utilizing the discrepancy principle, with a special emphasis on the
case p = 2. Fornasier et al. [9] proposed a modified discrepancy principle for multi-penalty
regularization and provided theoretical background for this a posteriori rule. Works such
as [10–14] also explore multi-penalty regularization for unmixing problems, employing
two penalty terms based on Lq and Lp norms, 0 ≤ q < 2 and 2 ≤ p < ∞. The latter
specifically concentrates on the L1 and L2 norms. The study [15] assesses two-penalty
regularization, incorporating L0 and L2 penalty terms to tackle nonlinear ill-posed prob-
lems and analyzes its regularizing characteristics. In [16], an automated spatially adaptive
regularization model combining harmonic and Total Variation (TV) terms is introduced.
This model is dependent on two regularization parameters and two edge information
matrices. Despite the dynamic update of the edge information matrix during iterations,
the model necessitates fixed values for the regularization parameters. Calatroni et al. [17]
present a space-variant generalized Gaussian regularization approach for image restoration,
emphasizing its applicative potential. In [18], a multipenalty point-wise approach based
on the Uniform Penalty principle is considered and analyzed for general linear inverse
problems, introducing two iterative methods, UpenMM and GUpenMM, and analyzing
their convergence.
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Here, we extend the methodology developed in [18] to image restoration problems
and we perform a comparative analysis with state-of-the-art regularization methods for
this application. We propose to find an estimate u∗ of u satisfying

u∗ =arg min
u≥0

1
2
‖Au− b‖2 +

1
2

N

∑
i=1

λ∗i (Lu)2
i ,

λ∗i =
‖Au∗ − b‖2

N((Lu∗)2
i + ε)

.

(6)

where ε is a positive scalar and L ∈ RN×N is the discrete Laplacian operator. This model,
named MULTI, is specifically tailored for the image restoration problem. Observe that
MULTI incorporates a pixel-wise regularization term and includes a rule for choosing the
parameters. We formulate an iterative algorithm for computing the solution (u∗, λ∗) of
(6), where λ∗ = (λ∗1 , . . . , λ∗N)

T . Once the regularization parameters are set in every inner
iteration, the constrained minimization subproblem is efficiently solved by a customized
version of the Newton Projection (NP) method. Here, the Hessian matrix is approximated
by a Block Circulant with Circulant Blocks (BCCB) matrix, which is easily invertible in
the Fourier space. This modified version of NP was designed in [19] for single-penalty
image restoration under Poisson noise and it is adapted here to the context of multi-
penalty regularization. Consequently, the convergence of the modified NP method can
be established.

The principal contributions of this work are summarized as follows:

1. We propose a variational pixel-wise regularization model tailored for image restora-
tion and derived from the theoretical model developed in [18].

2. We devise an algorithm capable of effectively and efficiently solving the proposed model.
3. Through numerical experiments, we demonstrate that the proposed approach can

proficiently eliminate noise and blur in smooth areas of an image while preserving
its edges.

The structure of this paper is as follows: Section 2 introduces the proposed algorithm.
The results of numerical experiments are presented in Section 3, and finally, the conclusions
are drawn in Section 4.

2. Materials and Methods

In this section, we present the iterative algorithm that generates the sequence (u(k), λ(k))
converging to the solution (u∗, λ∗) in (6).

Starting from an initial guess u(0) taken as the observed image b, the correspondent
initial guess of the regularization parameters is computed as:

λ
(0)
i =

‖Au(0) − b‖2

N(S (0)i + ε)
, i = 1, . . . , N (7)

where
S (0)i = max

i∈Ni
(Lu(0))2

i , i = 1, . . . , N (8)

and Ni is a neighborhood of size R× R, (with R odd and R ≥ 1) of the i-th pixel with
coordinates (xi, yi).

The successive terms (u(k+1), λ(k+1)) are obtained by the update formulas reported in
steps 3–5 of Algorithm 1. The iterations are stopped when the relative distance between
two successive regularization vectors is smaller than a fixed tolerance Tol > 0.
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Algorithm 1 Input: λ(0) ∈ RN , Tol, A, b, ε, Output: (u∗, λ∗)

1: Set k = 0.
2: repeat

3: u(k+1) = arg min
u∈Ω

{
1
2
‖Au− b‖2 +

N

∑
i=1

λ
(k)
i (Lu)2

i

}
4: S (k+1)

i = max
i∈Ni

(Lu(k+1))2
i ), i = 1, . . . N

5: λ
(k+1)
i =

‖Au(k+1) − b‖2

N(S (k+1)
i + ε)

, i = 1, . . . , N

6: k = k + 1
7: until ‖λ(k) − λ(k−1)‖ ≤ Tol‖λ(k)‖
8: λ∗ = λ(k), u∗ = u(k)

Algorithm 1 is well defined, and we experimentally observe a converging behaviour.
Its formal convergence proof is obtained in [18] (theorem 3.4) for the case R = 1, since in
this case, Algorithm 1 corresponds to UPenMM. Otherwise, to preserve convergence, we
should introduce a correction as proposed in the Generalized Uniform Penalty method
(GUPenMM) [18]. However, even without this correction, we obtained good-quality results
and we prefer here to investigate Algorithm 1 because, in the case of large scale image
restoration problems, it is much more convenient from a computational point of view.
Moreover, we verified that the results obtained with such a correction are qualitatively com-
parable with those given by Algorithm 1, as the human eye cannot distinguish differences
smaller than a few gray levels.

At each inner iteration, the constrained minimization subproblem (step 3 in Algorithm 1)
is solved efficiently by a tailored version of the NP method where the Hessian matrix is
approximated by a BCCB matrix easily invertible in the Fourier space.

Let us denote by J (k)(u) the function to be minimized at step 3 in Algorithm 1:

J (k)(u) =
1
2
‖Au− b‖2 +

N

∑
i=1

λ
(k)
i (Lu)2

i

and by g its gradient ∇J (k)(u) where the iteration index k has been omitted for easier
notation. Moreover, let gI denote the reduced gradient:

{gI}i =

{
gi, if i /∈ I(u);
0, otherwise;

(9)

where I(u) is the set of indices [20]:

I(u) = {i | 0 ≤ ui ≤ ε and gi > 0}

with
ε = min{ε̄, w}, w = ‖u− [u−∇J (u)]+‖

and ε̄ is a small positive parameter.
The Hessian matrix ∇2J (u) has the form

∇2J (k)(u) = AT A + LTΛ(k)L

where Λ(k) is the diagonal matrix with diagonal elements λ
(k)
1 , . . . , λ

(k)
N .

A general iteration of the proposed NP-like method has the form:

u(`+1) =
[
u(`) − α(`)p(`)

]+ (10)



J. Imaging 2023, 9, 249 5 of 14

where p(`) is the search direction, α(`) is the steplength and [·]+ denotes the projection on
the positive orthant.

At each iteration `, the computation of p(`) requires the solution of the linear system

H(k)d(`) = g(`)
I , (11)

where H(k) is the following approximation to ∇2J (k)(u)

H(k) = AT A + µ(k)LT L, µ(k) = mean
(

λ
(k)
1 , . . . , λ

(k)
N

)
. (12)

Under periodic boundary conditions, H(k) is a BCCB matrix and system (11) can be
efficiently solved in the Fourier space by using Fast Fourier Transforms. Therefore, despite
its simplicity, the BCCB approximation H(k) is efficient, since it allows to solve the linear
system in O(N log2 N) operations, and effective, as is shown by the numerical results.
Finally, given the solution d(`) of (11), the search direction p(`) is obtained as

p(`)i =

{
d(`)i , if i /∈ I(u(`));
g(`)i , otherwise;

i = 1, . . . , N. (13)

The step length α(`) is computed with the variation of the Armijo rule discussed in [20]
as the first number of the sequence {βm}m∈N, 0 < β < 1, such that

J (u(`))−J (u(`)(βm)) ≥ η

βm ∑
i/∈I(u(`))

g(`)i p(`)i + ∑
i∈I(u(`))

g(`)i

(
u(`)

i − u(`)
i (βm)

) (14)

where u(`)(βm) = [u(`) − βmu(`)]+ and η ∈ (0, 1
2 ).

We observe that the approximated Hessian H(k) is constant for each inner iteration `
and it is positive definite, then it satisfies

c1‖y‖2 ≤ yT(H(k))−1y ≤ c2‖y‖2 ∀y ∈ RN , ∀` > 0.

Following that, the results given in [19] for single-penalty image restoration under
Poisson noise can be applied here to prove the convergence of the NL-like iterations to
critical points.

The stopping criteria for the NP-like method are based on the relative distance between
two successive iterates and the relative projected gradient norm. In addition, a maximum
number of NP iterations have been fixed.

3. Numerical Experiments

All the experiments were performed under Windows 10 and MATLAB R2021a running
on a desktop (Intel(R) Core(TM) i5-8250CPU@1.60 GHz). Quantitatively, we evaluated
the quality of image restoration by the relative error (RE), improved signal to noise ratio
(ISNR), and mean structural similarity index (MSSIM) measures. The MSSIM is defined by
Wang et al. [21] and ISNR is calculated as:

ISNR = 20 log10

(
‖b− u‖
‖û− u‖

)
where û is the restored image, u is the reference image, and b is the blurred, noisy image.

Four reference images were used in the experiments: galaxy, mri, leopard, and
elaine, shown in Figures 1–4. The first three images have size 256× 256, while the elaine
image is 512× 512. In order to define the test problems, each reference image was convolved
with two PSFs corresponding to a Gaussian blur with variance 2, generated by the psfGauss
function from the MATLAB toolbox Restore-Tool [1], and an out-of-focus blur with radius
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5, obtained with the function fspecial from the MATLAB Image Processing Toolbox. The
resulting blurred image was then corrupted by Gaussian noise with different values of the
noise level δ = ‖e‖/‖b‖. The values δ = 2.5× 10−2, 10−2, 5× 10−3 were used.

Figure 1. galaxy test problem: out-of-focus blur; δ = 10−2. Top row: original (left) and blurred
(right) images. Bottom row: MULTI (left) and TGV (right) restorations.

Figure 2. mri test problem: out-of-focus blur; δ = 10−2. Top row: original (left) and blurred (right)
images. Bottom row: MULTI (left) and TGV (right) restorations.
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Figure 3. leopard test problem: out-of-focus blur; δ = 10−2. Top row: original (left) and blurred
(right) images. Bottom row: MULTI (left) and TGV (right) restorations.

Figure 4. elaine test problem: out-of-focus blur; δ = 10−2. Top row: original (left) and blurred
(right) images. Bottom row: MULTI (left) and TGV (right) restorations.

We compared the proposed pixel-wise multi-penalty regularization model (MULTI)
with some commonly used state-of-the-art methods based on a variational approach.
In particular, we considered the Tikhonov method (TIKH) [22], the Total Variation (TV) [2],
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and Total Generalized Variation (TGV) [3] regularization with nonnegative constraints.
Tikhonov and TV regularization are quite classic regularization terms. It is well known that
Tikhonov regularization tends to make images overly smooth and it fails to preserve sharp
edges. On the contrary, TV regularization better preserves sharp edges but often produces
staircase effects. TGV has been recently proposed to overcome the drawbacks of Tikhonov
and TV regularization such as blurring and the staircasing effect. Therefore, we compared
MULTI with TGV in order to demonstrate the capacity of MULTI to preserve sharp features
as well as smooth transition variations.

In our numerical experiments, the regularization parameter values for TIKH, TV, and
TGV were chosen heuristically by minimizing the relative error values. The Alternating
Direction Method of Multipliers (ADMM) was used for the solution of the TV-based
minimization problem, while for TIKH, we used the Scaled Gradient Projection (SGP)
method with Barzilai and Borwein rules for the step length selection [23]. Regarding the
TGV regularization, the RESPOND method [24] was used. We remark that RESPOND has
been originally proposed for the restoration of images corrupted by Poisson noise by using
Directional Total Generalized Variation regularization. It has been adapted here to deal with
TGV-based restoration of images under Gaussian noise. The MATLAB implementation
for Poisson noise is available on GitHub at the url https://github.com/diserafi/respond
(accessed on 18 September 20).

The tolerance Tol, in the outer loop of MULTI in Algorithm 1 step 7, was 10−1, while
the maximum number of iterations was 20. Regarding the NP method, a tolerance of 10−5

was used and the maximum number of iterations was 1000.
The size of the neighborhood Ni in (8) was 5× 5 pixels for all tests except for galaxy,

where a 3× 3 neighborhood was used.
The values of the parameter ε in (6), used in the various tests, are in the range

[10−4, 10−3]. In order to compare all the algorithms at their best performance, the val-
ues ε used in each test are reported in Table 1, where we observe that the value of ε is
proportional to the noise level. The parameter ε represents a threshold and, in general,
should have a small value when compared to the non-null values of Si. We note that
at the cost of adjusting a single parameter ε > 0, it is possible to achieve point-wise
optimal regularization.

Table 1. Values for the parameter ε in (7).

Test Problem Blur δ = 2.5 × 10−2 δ = 10−2 δ = 5 × 10−3

galaxy
Out-of-focus 0.5 × 10−3 0.25 × 10−3 0.1 × 10−3

Gaussian 0.5 × 10−3 0.25 × 10−3 0.1 × 10−3

mri
Out-of-focus 1.5 × 10−3 1 × 10−3 0.5 × 10−3

Gaussian 1.5 × 10−3 1 × 10−3 0.5 × 10−3

leopard
Out-of-focus 2.5 × 10−3 1.5 × 10−3 1. × 10−3

Gaussian 2.5 × 10−3 0.1 × 10−3 0.5 × 10−4

elaine
Out-of-focus 1 × 10−3 1 × 10−3 1 × 10−3

Gaussian 1 × 10−3 0.5 × 10−3 0.5 × 10−3

Tables 2–5 report the numerical results for all the test problems. The last column of
the Tables shows the used values of the regularization parameter for TIKH, TV, and TGV
while, for MULTI, it reports the norm of the regularization parameters vector (λ1, . . . , λN)
computed by Algorithm 1. Column 7 shows the number of RESPOND, ADMM, and SGP
iterations for TGV, TV, and TIKH, respectively. For the MULTI algorithm, Column 7 shows
the number of outer iterations and NP iterations in parenthesis.

https://github.com/diserafi/respond
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Table 2. Numerical results for the galaxy test problem. Column Iters shows the number of RESPOND,
ADMM and SGP iterations for TGV, TV and TIKH, respectively. For the MULTI algorithm, it shows
the number of outer iterations and NP iterations in parenthesis. The best results are highlighted in
bold. Column λ shows the used values of the regularization parameter for TIKH, TV and TGV while,
for MULTI, it reports the norm of the regularization parameters vector (λ1, . . . , λN) computed by
Algorithm 1.

Blur δ Model RE ISNR MSSIM Iters λ

Out-of-focus

2.5 × 10−2

TGV 9.5953 × 10−2 7.2175 × 100 9.1418 × 10−1 226 3.0000 × 102

TV 1.0268 × 10−1 6.6291 × 100 8.7089 × 10−1 278 1.0000 × 10−4

TIKH 1.3864 × 10−1 4.0211 × 100 8.3486 × 10−1 200 1.1000 × 10−2

MULTI 8.2096 × 10−2 8.5722 × 100 9.3431 × 10−1 4(857) 8.4116 × 100

10−2

TGV 7.1519 × 10−2 9.7292 × 100 9.5015 × 10−1 302 7.5000 × 102

TV 6.7196 × 10−2 1.0271 × 101 9.4744 × 10−1 259 5.0000 × 10−5

TIKH 1.0943 × 10−1 6.0351 × 100 8.5965 × 10−1 200 3.0000 × 10−3

MULTI 6.2660 × 10−2 1.0878 × 101 9.5843 × 10−1 7(1061) 2.1493 × 100

5 × 10−3

TGV 6.1028 × 10−2 1.1102 × 101 9.6274 × 10−1 323 1.0000 × 103

TV 6.3776 × 10−2 1.0719 × 101 9.4229 × 10−1 303 1.0000 × 10−5

TIKH 9.1181 × 10−2 7.6143 × 100 8.7665 × 10−1 200 1.0000 × 10−3

MULTI 4.8955 × 10−2 1.3017 × 101 9.7150 × 10−1 9(1013) 1.0491 × 100

Gaussian

2.5 × 10−2

TGV 9.6150 × 10−2 4.5854 × 100 9.3328 × 10−1 198 2.5000 × 102

TV 8.8306 × 10−2 5.3246 × 100 9.2702 × 10−1 224 1.0000 × 10−4

TIKH 1.0047 × 10−1 4.2032 × 100 9.0136 × 10−1 200 5.0000 × 10−3

MULTI 7.3686 × 10−2 6.8966 × 100 9.5114 × 10−1 4(699) 8.3317 × 100

10−2

TGV 8.5737 × 10−2 5.5019 × 100 9.4922 × 10−1 246 1.0000 × 103

TV 7.7929 × 10−2 6.3312 × 100 9.3945 × 10−1 223 1.0000 × 10−5

TIKH 8.4284 × 10−2 5.6503 × 100 9.2110 × 10−1 200 1.0000 × 10−3

MULTI 6.0402 × 10−2 8.5442 × 100 9.6606 × 10−1 5(437) 2.3968 × 100

5 × 10−3

TGV 8.0734 × 10−2 6.0131 × 100 9.5637 × 10−1 280 2.5000 × 103

TV 7.3912 × 10−2 6.7800 × 100 9.5186 × 10−1 214 1.0000 × 10−6

TIKH 7.3620 × 10−2 6.8143 × 100 9.4621 × 10−1 200 5.0000 × 10−4

MULTI 5.7592 × 10−2 8.9471 × 100 9.7129 × 10−1 6(383) 1.3106 × 100

Table 3. Numerical results for the mri test problem. Column Iters shows the number of RESPOND,
ADMM, and SGP iterations for TGV, TV, and TIKH, respectively. For the MULTI algorithm, it shows
the number of outer iterations and NP iterations in parenthesis. Column λ shows the used values
of the regularization parameter for TIKH, TV, and TGV while, for MULTI, it reports the norm of
the regularization parameters vector (λ1, . . . , λN) computed by Algorithm 1. The best results are
highlighted in bold.

Blur δ Model RE ISNR MSSIM Iters λ

Out-of-focus

2.5 × 10−2

TGV 8.6404 × 10−2 6.8531 × 100 8.3691 × 10−1 185 9.0000 × 101

TV 8.7052 × 10−2 6.7882 × 100 8.3805 × 10−1 212 5.0000 × 10−4

TIKH 1.1476 × 10−1 4.3882 × 100 7.4472 × 10−1 200 1.0000 × 10−2

MULTI 7.9139 × 10−2 7.6160 × 100 8.5073 × 10−1 4(1403) 1.0098 × 101

10−2

TGV 6.6508 × 10−2 9.0670 × 100 8.9245 × 10−1 180 2.5000 × 102

TV 6.7875 × 10−2 8.8903 × 100 8.9272 × 10−1 232 1.0000 × 10−4

TIKH 9.4934 × 10−2 5.9760 × 100 8.2645 × 10−1 200 5.0000 × 10−3

MULTI 5.4634 × 10−2 1.0775 × 101 9.1681 × 10−1 5(1456) 1.7962 × 100

5 × 10−3

TGV 5.3582 × 10−2 1.0936 × 101 9.2644 × 10−1 292 1.0000 × 103

TV 6.2557 × 10−2 9.5905 × 100 8.9043 × 10−1 283 1.0000 × 10−5

TIKH 7.8021 × 10−2 7.6717 × 100 8.2844 × 10−1 200 1.0000 × 10−3

MULTI 4.6590 × 10−2 1.2150 × 101 9.4086 × 10−1 7(2483) 5.8348 × 10−1

Gaussian

2.5 × 10−2

TGV 7.4295 × 10−2 5.1521 × 100 8.8489 × 10−1 212 5.0000 × 101

TV 7.2950 × 10−2 5.3107 × 100 8.9032 × 10−1 214 5.0000 × 10−4

TIKH 8.0602 × 10−2 4.4444 × 100 8.6998 × 10−1 200 7.5000 × 10−3

MULTI 5.8445 × 10−2 7.2363 × 100 9.0902 × 10−1 4(650) 9.6213 × 100

10−2

TGV 6.3055 × 10−2 6.4566 × 100 9.1791 × 10−1 204 1.7500 × 102

TV 6.1079 × 10−2 6.7331 × 100 9.3336 × 10−1 173 8.0000 × 10−5

TIKH 6.7156 × 10−2 5.9092 × 100 9.1910 × 10−1 200 2.5000 × 10−3

MULTI 4.6651 × 10−2 9.0737 × 100 9.4174 × 10−1 3(462) 1.9888 × 100

5 × 10−3

TGV 5.6288 × 10−2 7.4254 × 100 9.3696 × 10−1 222 1.0000 × 103

TV 5.7295 × 10−2 7.2713 × 100 9.5196 × 10−1 155 5.0000 × 10−5

TIKH 5.8965 × 10−2 7.0219 × 100 9.3828 × 10−1 200 7.5000 × 10−4

MULTI 4.0354 × 10−2 1.0316 × 101 9.5758 × 10−1 4(1075) 8.1542 × 10−1
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Table 4. Numerical results for the leopard test problem. Column Iters shows the number of RE-
SPOND, ADMM, and SGP iterations for TGV, TV, and TIKH, respectively. For the MULTI algorithm,
it shows the number of outer iterations and NP iterations in parenthesis. Column λ shows the used
values of the regularization parameter for TIKH, TV, and TGV while, for MULTI, it reports the norm
of the regularization parameters vector (λ1, . . . , λN) computed by Algorithm 1. The best results are
highlighted in bold.

Blur δ Model RE ISNR MSSIM Iters λ

Out-of-focus

2.5 × 10−2

TGV 1.6971 × 10−1 6.0610 × 100 7.5515 × 10−1 221 1.2500 × 102

TV 1.7345 × 10−1 5.8714 × 100 7.5114 × 10−1 276 5.0000 × 10−4

TIKH 2.0715 × 10−1 4.3292 × 100 5.8731 × 10−1 200 5.0000 × 10−3

MULTI 1.6854 × 10−1 6.1211 × 100 7.4807 × 10−1 3(325) 4.4885 × 100

10−2

TGV 1.3874 × 10−1 7.7949 × 100 8.0408 × 10−1 250 3.0000 × 102

TV 1.3360 × 10−1 8.1228 × 100 8.0757 × 10−1 371 1.0000 × 10−4

TIKH 1.6784 × 10−1 6.1411 × 100 6.6137 × 10−1 200 1.5000 × 10−3

MULTI 1.2572 × 10−1 8.6512 × 100 8.1534 × 10−1 10(9141) 1.2627 × 101

5 × 10−3

TGV 1.1579 × 10−1 9.3633 × 100 8.3657 × 10−1 353 7.5000 × 102

TV 1.1976 × 10−1 9.0706 × 100 8.2166 × 10−1 411 2.5000 × 10−5

TIKH 1.3891 × 10−1 7.7821 × 100 7.1537 × 10−1 200 5.0000 × 10−4

MULTI 1.1057 × 10−1 9.7643 × 100 8.1755 × 10−1 19(18607) 2.7656 × 100

Gaussian

2.5 × 10−2

TGV 1.6936 × 10−1 3.7549 × 100 7.7259 × 10−1 261 1.0000 × 102

TV 1.6515 × 10−1 3.9736 × 100 7.7529 × 10−1 314 4.0000 × 10−4

TIKH 1.7150 × 10−1 3.6456 × 100 6.8620 × 10−1 200 2.5000 × 10−3

MULTI 1.6298 × 10−1 4.0884 × 100 7.7539 × 10−1 3(241) 4.5599 × 100

10−2

TGV 1.5058 × 10−1 4.7470 × 100 8.0108 × 10−1 339 1.0000 × 103

TV 1.4747 × 10−1 4.9279 × 100 8.0458 × 10−1 281 5.0000 × 10−5

TIKH 1.5280 × 10−1 4.6194 × 100 7.2992 × 10−1 200 5.0000 × 10−4

MULTI 1.4385 × 10−1 5.1440 × 100 8.0937 × 10−1 4(375) 1.0924 × 100

5 × 10−3

TGV 1.4220 × 10−1 5.2400 × 100 8.1688 × 10−1 500 1.0000 × 104

TV 1.4489 × 10−1 5.0775 × 100 8.0509 × 10−1 309 1.0000 × 10−6

TIKH 1.4156 × 10−1 5.2795 × 100 7.7128 × 10−1 200 1.0000 × 10−4

MULTI 1.3314 × 10−1 5.8118 × 100 8.2728 × 10−1 5(513) 3.6611 × 10−1

Table 5. Numerical results for the elaine test problem. Column Iters shows the number of RESPOND,
ADMM, and SGP iterations for TGV, TV, and TIKH, respectively. For the MULTI algorithm, it shows
the number of outer iterations and NP iterations in parenthesis. Column λ shows the used values
of the regularization parameter for TIKH, TV, and TGV while, for MULTI, it reports the norm of
the regularization parameters vector (λ1, . . . , λN) computed by Algorithm 1. The best results are
highlighted in bold.

Blur δ Model RE ISNR MSSIM Iters λ

Out-of-focus

2.5 × 10−2

TGV 5.2937 × 10−2 4.2620 × 100 7.0502 × 10−1 117 2.5000 × 101

TV 5.3390 × 10−2 4.1879 × 100 7.0068 × 10−1 79 2.5000 × 10−3

TIKH 6.7772 × 10−2 2.1162 × 100 6.4440 × 10−1 200 2.5000 × 10−2

MULTI 5.2967 × 10−2 4.2571 × 100 7.0941 × 10−1 6(789) 9.2884 × 101

10−2

TGV 4.7522 × 10−2 4.8898 × 100 7.2933 × 10−1 111 1.0000 × 102

TV 4.7884 × 10−2 4.8238 × 100 7.3036 × 10−1 86 5.0000 × 10−4

TIKH 5.6612 × 10−2 3.3695 × 100 6.9381 × 10−1 200 1.0000 × 10−2

MULTI 4.6498 × 10−2 5.0791 × 100 7.3630 × 10−1 4(426) 2.6005 × 101

5 × 10−3

TGV 4.4345 × 10−2 5.4451 × 100 7.4655 × 10−1 123 2.0000 × 102

TV 4.6262 × 10−2 5.0776 × 100 7.4001 × 10−1 80 5.0000 × 10−4

TIKH 5.0669 × 10−2 4.2873 × 100 7.3213 × 10−1 200 5.0000 × 10−3

MULTI 4.3129 × 10−2 5.6867 × 100 7.5707 × 10−1 4(201) 5.5324 × 100 »

Gaussian

2.5 × 10−2

TGV 4.8945 × 10−2 2.5540 × 100 7.2618 × 10−1 98 1.5000 × 101

TV 4.8877 × 10−2 2.5660 × 100 7.2428 × 10−1 78 2.5000 × 10−3

TIKH 6.0527 × 10−2 7.0909 × 10−1 7.1350 × 10−1 200 3.0000 × 10−2

MULTI 4.7693 × 10−2 2.7791 × 100 7.3403 × 10−1 5(537) 8.6631 × 101

10−2

TGV 4.5610 × 10−2 2.6121 × 100 7.4550 × 10−1 100 1.0000 × 102

TV 4.5903 × 10−2 2.5566 × 100 7.4522 × 10−1 75 8.0000 × 10−4

TIKH 4.9219 × 10−2 1.9508 × 100 7.3947 × 10−1 200 7.5000 × 10−3

MULTI 4.4332 × 10−2 2.8590 × 100 7.5318 × 10−1 3(135) 1.2558 × 101

5 × 10−3

TGV 4.3903 × 10−2 2.8586 × 100 7.5594 × 10−1 112 2.5000 × 102

TV 4.4699 × 10−2 2.7025 × 100 7.5904 × 10−1 68 2.5000 × 10−4

TIKH 4.6376 × 10−2 2.3826 × 100 7.5546 × 10−1 200 2.5000 × 10−3

MULTI 4.2950 × 10−2 3.0493 × 100 7.6433 × 10−1 2(56) 2.9785 × 100
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In Tables 2–5, we note that for the case of Gaussian blur, MULTI consistently achieves
the best results, as highlighted in bold. This is evident from its higher MSSIM and ISNR
values and lower RE values. However, for the Out-of-focus case, there are three instances
(representing 25%) where TGV exhibits superior error parameters. Furthermore, our
observations indicate that TGV consistently outperforms both TIKH and TV in terms of
accuracy. Therefore, in Figures 1–4 we only represent the images obtained by MULTI and
TGV in the out-of-focus case, with δ = 10−2, as this is a very challenging case.

The strength of MULTI is evident by observing some details of the reconstructed
images. In Figures 5–8 we show some cropped details of the original images and compare
it with MULTI and TGV reconstructions. Figure 5 shows a detail of the galaxy with a
few stars over a dark background. In this case the image sparsity is better preserved by
MULTI. Figure 6 shows the galaxy centre: it is a smooth area which is well recovered by
MULTI while TGV shows staircasing. In Figure 7 we observe that the leopard’s whiskers
and fur spots are better reproduced by MULTI. Moreover, from the images provided in
Figure 8, it can be observed that MULTI method better preserves the local characteristics
of the image, avoiding flattening the smooth areas and optimally preserving the sharp
contours. We observe that a smooth area such as the cheek is better represented by MULTI,
avoiding the staircase effect. Moreover, an area with strong contours, such as the teeth
and the eyes, is better depicted. In summary, these examples show the good capacity of
MULTI to preserve the different image structures, narrow peaks, and smooth areas by
using local regularization parameters that are inversely proportional to the local curvature
approximated by the discrete Laplacian.

Figure 5. galaxy test problem: out-of-focus blur; δ = 10−2. A detail of the original image (left), MULTI
restoration (centre), and TGV restoration (right). Red arrows highlight the different image features.

Figure 6. galaxy test problem: out-of-focus blur; δ = 10−2. A detail of the original image (left), MULTI
restoration (centre), and TGV restoration (right). Red arrows highlight the different image features.

Figure 7. leopard test problem: out-of-focus blur; δ = 10−2. A detail of the original image (left),
MULTI restoration (centre), and TGV restoration (right). Red arrows highlight the different im-
age features.
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Figure 8. Elaine test problem: out-of-focus blur; δ = 10−2. A detail of the original image (left),
MULTI restoration (centre), and TGV restoration (right). Red arrows highlight the different im-
age features.

The regularization parameters computed by MULTI are represented in Figure 9; the
adherence of the regularization parameters’ values to the image content is clear, showing
larger values in areas where the image is flat and smaller values where there are pronounced
gradients (edges). The range of the parameters automatically adjusts according to the
different test types.

Figure 9. Computed regularization parameters: out-of-focus blur, δ = 10−2.

Finally, we show in Figure 10 an example of the algorithm behavior, reporting the
history of the regularization parameter norm, relative error, and residual norm (top row),
in the case of leopard test with out-of-focus blur and noise level δ = 10−2. In the bottom
row we show the decreasing behavior of the objective function and projected gradient norm.
The relative error flattens after a few iterations, and the same behavior can be observed in
all the other tests. Therefore, we used a large tolerance value (Tol = 10−1) in the outer loop
of Algorithm 1, making it possible to obtain good regularization parameters and accurate
restorations in a few outer iterations. We observe that even in the most difficult case, Table 4
row 12, the total computation time is 285 s, proving the algorithm efficiency.
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Figure 10. leopard test problem (out-of-focus blur, δ = 10−2). Top line: regularization parameters
norm (left), relative error (middle), and residual norm (right) history for the multi-penalty model.
Bottom line: objective function (left) and projected gradient norm history (right).

4. Conclusions

Despite the interest of recent literature on multi-penalty regularization, its drawback
lies in the difficult computation of the regularization parameters. Our work proposes
the pixel-wise regularization model to tackle the significant task of image restoration,
concentrating on eliminating degradation originating from blur and noise. We show
that multi-penalty regularization can be realized by an algorithm that is able to compute
efficiently and automatically a large number of regularization parameters. The numerical
results confirm the algorithm’s proficiency in eliminating noise and blur while concurrently
preserving the edges of the image. Such an approach can be exploited in different real-world
imaging applications, such as computed tomography, super-resolution, and biomedical
imaging in general. Finally, further analyses of the properties of the proposed algorithm
will be the subject of future works.
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