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Abstract—The emerging trend of deploying complex algo-
rithms, such as Deep Neural networks (DNNs), increasingly poses
strict memory and energy efficiency requirements on Internet-
of-Things (IoT) end-nodes. Mixed-precision quantization has
been proposed as a technique to minimize a DNN’s memory
footprint and maximize its execution efficiency, with negligible
end-to-end precision degradation. In this work, we present a
novel hardware and software stack for energy-efficient inference
of mixed-precision Quantized Neural Networks (QNNs). We
introduce Flex-V, a processor based on the RISC-V Instruction
Set Architecture (ISA) that features fused Mac&Load mixed-
precision dot product instructions; to avoid the exponential
growth of the encoding space due to mixed-precision variants,
we encode formats into the Control-Status Registers (CSRs).
Flex-V core is integrated into a tightly-coupled cluster of eight
processors; in addition, we provide a full framework for the
end-to-end deployment of DNNs including a compiler, optimized
libraries, and a memory-aware deployment flow. Our results
show up to 91.5 MAC/cycle and 3.26 TOPS/W on the cluster,
implemented in a commercial 22nm FDX technology, with up
to 8.5× speed-up, and an area overhead of only 5.6% with
respect to the baseline. To demonstrate the capabilities of the
architecture, we benchmark it with end-to-end real-life QNNs,
improving performance by 2× - 2.5× with respect to existing
solutions using fully flexible programmable processors.

Index Terms—Embedded Systems, PULP Platform, Quantized
Neural Networks, Mixed-precision, Microcontroller

I. INTRODUCTION AND RELATED WORK

Modern IoT applications require end-nodes to acquire raw
data from sensors, extract “distilled” high-level features by ap-
plying near-sensors analytics including state-of-the-art ML and
DL algorithms, and transmit this semantically dense informa-
tion to higher-level nodes through wireless channels. However,
running these models on embedded microcontroller systems
poses severe challenges due to limited on-chip memory, power
budget, and compute capabilities, requiring optimizations on
both hardware and software.

A well-established solution to shrink the full-precision DL
models to fit the limited storage available on microcontrollers
is the adoption of low-bitwidth (8-bit or less) integer arithmetic
to represent their parameters, after post-training quantiza-
tion [1] or quantization-aware training [2]. These techniques
have been demonstrated on state-of-the-art DNN topologies,
adopting uniform or mixed-precision quantization schemes,
reducing the model footprint by 47% with a Top-1 accuracy
drop in the range of 3.4%, without significant impact upon the
user experience of many IoT applications. Banner et al. [3]

propose a post-training 4-bit quantization method with an
accuracy drop of a few percent, while authors of [1] presented
further improvements reducing the memory footprint of DNNs
up to 7× at the cost of an accuracy drop of only 4%.

If well supported by the hardware processing systems,
reduced precision integer arithmetic offers a significant effi-
ciency boost with respect to floating-point operations. Low-
bitwidth integer formats are widely adopted in custom digital
and analog accelerators such as UNPU [4], supporting fully-
variable 1 to 16 bit weight bit-precision and delivering a
peak energy efficiency of 50.6 TOPS/W at a throughput of
184 GOPS. Emerging Analog in-Memory Computing (AiMC)
accelerators such as DIANA [5] also implicitly exploit quanti-
zation, delivering peak energy efficiency in the range of 100-
1000 TOPS/W. However, the high performance and efficiency
of hardwired accelerators are counterbalanced by their poor
flexibility, which makes it hard to deploy real-sized end-to-
end DNNs on these systems and to achieve actual efficiencies
similar to the theoretical peak. Limited flexibility and high area
cost per device make them hard to adopt in IoT applications.

A compromise solution between dedicated accelerators and
fully programmable devices is represented by FPGAs, where
embedded general-purpose processors are coupled to the DSP-
capable hardware to accelerate DNNs [6]. Several works
explore reduced-precision arithmetic [7], but within a power
envelope orders-of-magnitude larger than IoT nodes budget.
Lattice proposed the SensAI stack [8], which offers machine
learning ultra-low-power (1 mW to 1 W) capabilities on
FPGAs. However, these solutions have a limited number of
LUTs and a non-negligible unit cost, not compatible with
many IoT applications. Hardware reconfigurability of these
platforms offers higher flexibility than ASICs, but it is still far
from the average IoT programmer demand. Additionally, their
efficiency is much lower than that of ASICs.

The highest flexibility for QNN inference is offered by com-
mercial general-purpose processors coupled with optimized
software libraries such as CMSIS-NN libraries [9] for ARM
Cortex M4 and M7 processors. A recent approach to enhance
the computing capabilities of low-power MCU systems is
through domain-specific Instruction Set Architecture (ISA)
extensions. To address the DNN computing at the extreme
edge, ARM presented the Cortex M-55 core based on the
ARMv8-1M ISA, including an M-Profile Vector Extension
(MVE) called Helium [10] that also supports 8-bit MAC in-
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TABLE I
OVERVIEW OF QNN EMBEDDED COMPUTING PLATFORMS AND MAIN

METRICS

Throughput Energy Power Flexibility
[Gop/s] Efficiency Budget

[Gop/s/W] [mW]
ASICs [4] 1K - 50K 10K - 100K 1 - 1K Low
FPGAs [8] 10 - 200 1 - 10 1 - 1K Medium
MCUs [13] 0.1 - 2 1 - 50 1 - 1K High
This Work 25 - 85 610 - 3K 1 - 100 High

structions. Unfortunately, microcontrollers implementing this
ISA are not yet commercially available. Many solutions in
the RISC-V ecosystem leverage this approach as well; for
example, authors of [11] propose the XpulpV2 custom RISC-
V ISA extensions for DSP applications, including support
for 16-/8-bit SIMD operations. However, this ISA incurs
performance degradation on sub-byte or mixed-precision linear
kernels, since additional extra-instructions are required for data
manipulation, introducing huge overhead [12], [13].

To boost sub-byte uniform linear kernels, XpulpNN [14]
extends XpulpV2 with 4- and 2-bit SIMD operations. More-
over, it introduces fused Mac&Load instructions that allow
concurrent execution of SIMD dot-product operations with
memory accesses, increasing the computation efficiency of
the core up to 94%. XpulpNN outperforms the performance
of commercially available Cortex-M cores by up to 20× on
quantized DNN layers. However, when operating on mixed-
precision inputs, the efficiency boost of XpulpNN narrows sig-
nificantly because of the massive software overhead necessary
for packing and unpacking data. To eliminate the performance
degradation compared to uniform precision kernels, authors
of [15] propose direct hardware support for mixed-precision
operations with dedicated RISC-V ISA extensions. To reduce
the number of mixed-precision instructions to be encoded into
the ISA, they exploit the dynamic bit-scalable execution mode:
the ISA instruction only encodes the type of the operation,
while its format is specified by a Control Status Register (CSR)
of the core.

In this work, we present a new hardware and software
stack targeting energy-efficient inference of mixed-precision
QNNs on a parallel cluster of RISC-V processors. The main
contributions of this paper are the following:

• We extend the RISC-V ISA with fused mixed-precision
Mac&Load instructions. The proposed instruction set
extension allows to achieve an ASIC-like utilization of
MAC units in the cores (larger than 80%), being able
to operate on all the mixed-precision variants. Consid-
ering the mixed-precision capabilities and the preserved
flexibility for general-purpose applications, we name our
processor Flex-V.

• We integrate the extended processor in an eight-cores
parallel ultra-low-power (PULP) cluster implemented in a
commercial 22nm FDX technology to evaluate accurately
the impact of such extensions on the operating frequency,
area, and power.

• We integrate the proposed hardware extensions in a soft-
ware framework for the end-to-end deployment of DNNs
including a compiler, optimized libraries, and a memory-
aware deployment flow, and we compare the proposed
solution with the state-of-the-art end-to-end DNNs.
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Fig. 1. Parallel Ultra-Low Power (PULP) system, consisting of a Fabric
Controller (FC) accelerated by a parallel cluster of 8 RISC-V based processors.

We compare the extended processor with state-of-the-art
architectures by running both single convolutional layers and
full end-to-end QNNs, we report a summary in Table I. Our
results show a performance improvement, with respect to
the execution with the extensions disabled, up to 8.5× on
a single layer and up to 2.5× on the end-to-end network
with negligible degradation of accuracy and a peak energy
efficiency of 3.26 TOPS/W, approaching that of accelerators,
at low area cost 5.6% with respect to the baseline processor
cluster and without compromising flexibility. The hardware
and software described in this work are open-source, to support
and boost an innovation ecosystem focusing on ultra-low-
power computing for the IoT landscape.

II. BACKGROUND

A. PULP cluster

Parallel Ultra-Low Power (PULP) is an open-source com-
puting platform exploiting near-threshold computing to reach
high energy efficiency, leveraging parallelism to enhance the
performance degradation at low voltage [16]. The PULP
cluster adopted as a reference, shown in Fig. 1, is composed
of eight RI5CY cores [11], each of them characterized by a 4-
stage in-order single-issue pipeline and the RV32IMCXpulpV2
Instruction Set Architecture (ISA). XpulpV2 is a specialized
extension to the RISC-V ISA [11] designed for efficient digital
signal processing (DSP) computation. It features hardware
loops, post-modified access load and store instructions, along
with SIMD operations on 16-bit and 8-bit integer vector
operands.

The cores in the cluster share data on a Tightly Coupled
Data memory (TCDM) of 128 kB, divided into 16 banks. The
memory is accessed through a one-cycle latency logarithmic
interconnect. The PULP cluster accelerator and its host, i.e.
the Fabric Controller (FC), communicate through an AXI
interface. Data transfers between the TCDM and the second
level of memory, hosted by the Fabric Controller, are managed
by a dedicated DMA.

The cluster processors fetch the instructions from a two-
levels (the first private to each core, the second shared)
hierarchical instruction cache to enhance the hit rate. The
cluster is also provided with the Hardware Synchronization
Unit which manages fine-grained parallel thread dispatching



(a) (b)

Fig. 2. (a) Dotp Unit and (b) execution flow of a mixed-precision sumdotp instruction between 8-bit operand A and 4-bit operand B.

and clock-gating of idle cores waiting for synchronization,
enabling low-overhead and fine-grained parallelism, thus high
energy efficiency.

B. QNN execution model
The software stack we propose in this work extends the

PULP-NN software library presented in [13]. It relies on
the Height-Width-Channel (HWC) data layout and on an
execution model optimized for resource-constrained micro-
controllers. Convolution layers are implemented by combining
three distinct phases:

im2col: for a given output pixel position, the 3D input
activations (in HWC format) of the current convolution are
re-arranged into a 1D vector along the filter and input channel
dimensions. PULP-NN performs this operation simultaneously
for 2 output pixels, producing two separate im2col buffers.

Matrix Multiplication: this step consists of a sum-of-dot-
product operation between the current im2col buffer and the
sets of filters to produce the intermediate outputs at the higher
32-bit precision. The kernel leverages the XpulpV2 ISA and
exploits data locality within the Register File (RF) of RI5CY
to maximize the computation throughput. As a result of design
exploration in the space of registers resources available in the
RI5CY RF, it is possible to implement a MatMul with a “4×2”
unrolling factor, fetching from memory the weights from two
consecutive filters and the input activations from two different
im2col buffers to produce two activation outputs related to four
consecutive channels, in the same inner loop of the MatMul.

Quantization: each intermediate 32-bit accumulator from
the previous stage is represented back in low-bitwidth form by
applying normalization and quantization functions, composed
of one MAC, one shift, and one clip operation.

III. FLEX-V CORE ARCHITECTURE

We introduce Flex-V, our RISC-V ISA-extended processor
that flexibly supports sub-byte and mixed-precision preserving
the fully-programmable capabilities of a general-purpose pro-
cessor. The three key concepts that guided the development of
the core’s micro-architecture are dynamic bit-scalable execu-
tion, fused Mac&Load, and fully-flexible mixed-precision. In
dynamic bit-scalable execution, a particular op-code defines a
whole family of virtual instructions; the choice of a particular

Fig. 3. Instruction Decoding during status-based execution.

one to execute depends on contextual bits stored in a status
register of the core.

Fig. 3 shows the decoding process when the Flex-V core
is running in dynamic bit-scalable execution mode: in case
of a Scalar instruction, the decoder extracts all necessary
information from the encoding of the instruction and commu-
nicates it to the EX stage. Contrarily, if the received op-code
corresponds to a Virtual SIMD instruction, e.g. a (ml)sdotp, the
decoder enables the proper functional unit within the EX stage,
but the precision of the operation’s operands depends also on
status bits stored in the CSRs, such as the SIMD format, and
on signals coming from dedicated controllers.

The mixed-precision Dot Product (Dotp) Unit shown in Fig.
2a, exploiting the operand-precision information stored in the
CSRs, implements the sub-byte and mixed-precision support.
It integrates dedicated units for 4- and 2-bit operands together
with a Slicer&Router responsible for their extraction from a
32-bit input word. Considering the sum-of-dot-product (sdotp)
operation between an 8-bit operand A and a 4-bit operand B,
only four elements within the 32-bit input word for B can
be consumed by a single instruction: as shown in Fig. 2b, the
Slicer selects either the first or the last four elements depending
on the value of MPC CNT signal, then the Router directs
the selected elements to the Dotp sub-unit specified by the
SIMD FMT signal coming from the CSR, i.e. the DOTP-8 for
this example. The overall process is governed by the Mixed-
Precision Controller (MPC).

The fused Mac&Load (mlsdotp) instruction overlaps a
SIMD dot-product-like operation with a Load performed dur-
ing the writeback stage, typically to replace non-stationary data
in a register feeding the following Mac&Load instruction. Fi-
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csrwi sb_legacy,  0
csrwi simd_fmt,   8
csrwi mix_skip,   16
csrw a_stride,   A_STRIDE
csrw w_stride,   W_STRIDE
csrw a_rollback, A_ROLLB
csrw w_rollback, W_ROLLB
csrw a_csr, A_BASE_ADDR
csrw w_csr, W_BASE_ADDR
pv.mlsdotsp.h zero, aw, 16
pv.mlsdotsp.h zero, aw, 18
pv.mlsdotsp.h zero, aw, 20
pv.mlsdotsp.h zero, aw, 22
pv.mlsdotsp.h zero, ax, 8
lp.setup l1, l2, end

pv.mlsdotsp.h zero, ax, 9
pv.mlsdotusp.b s1,  aw, 0
pv.mlsdotusp.b s2,  aw, 2
pv.mlsdotusp.b s3,  aw, 4
pv.mlsdotusp.b s4,  ax, 14
…
pv.mlsdotusp.b s13, aw, 1
pv.mlsdotusp.b s14, aw, 3
pv.mlsdotusp.b s15, aw, 5
pv.mlsdotusp.b s16, ax, 15
pv.mlsdotusp.b s1,  aw, 0
…
pv.mlsdotusp.b s13, aw, 17
pv.mlsdotusp.b s14, aw, 19
pv.mlsdotusp.b s15, aw, 21

(end): pv.mlsdotusp.b s16, aw, 23
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Fig. 5. Pseudo-assembly code of a “4×4” MatMul between 8-bit activations
and 4-bit weights.

nally, we define fully flexible mixed-precision as the hardware
support for automatic management of instructions involving
operators with different bit precision. An additional Neural
Network Register File (NN-RF), with six 32-bit registers
dedicated to values of activations and weights, has been added
to enable Load operations during the Mac&Load write-back
stage, which cannot be done in the general purpose register file
(GP-RF). Finally, the core includes a Mac&Load Controller
(MLC) that is in charge of the automatic address generation,
described in Fig. 4.

Fig. 5, shows an assembly snippet of a Matrix Multiplication
kernel between 8-bit activations and 4-bit weights. The kernel
starts initializing the CSRs driving the inputs of the MLC
(i.e. {w,a} skip, {w,a} stride, {w,a} rollback), and the MPC
parameters defining encoded activations and weight precision
(simd format) and the weight reuse parameter (mix skip).
Once the CSRs needed to configure MLC and MPC are set,
the inner loop of the kernel starts the execution. After the
initialization of the base memory addresses, four weights and
one activation are loaded explicitly to fill the NN-RF. The
innermost loop executes only one explicit load per iteration,
then all other updates of the NN-RF are performed in the write-
back phase of the Mac&Load instruction. Strides, rollbacks,
and thresholds are all stored in CSRs and they depend only
on static features of the MatMul, such as the number of input
channels, the dimensions of the filter kernel, and the precision
of the operands.

During the execution of the inner loop the MLC auto-
matically generates the memory address for both operands:

+0 +4 +8

A E

B

C

D

...

base +w_stride-4

A: addr  = base       à base
B: addr += w_stride   à base + w_stride
C: addr += w_stride   à base + 2*w_stride
D: addr += w_stride   à base + 3*w_stride
E: addr += w_rollback à base + 4

Fig. 6. Example of regular addressing pattern for w in a MatMul with
unrolling factor “4×2”.

it navigates a two-dimensional strided pattern by updating
a register-stored pointer {w,a} addr with three static pa-
rameters, {w,a} stride, {w,a} rollback, and {w,a} skip. The
{w,a} stride parameter corresponds to the stride in the direc-
tion of the innermost loop of the pattern, while {w,a} rollback
rolls back the pointer of all innermost loop iterations and adds
the stride of a single outermost loop iteration. {w,a} skip is the
number of innermost loop iterations. Fig. 6 shows the pattern
in the example of a MatMul with unrolling factor “4×2” in
PULP-NN [13]. This kind of pattern would require substantial
instruction overhead (∼30%) for pointer management; the
MLC deals with this entirely in hardware.

We can also note that, in case of mixed-precision inputs,
there’s an additional degree of unrolling with respect to
uniform precision execution: thanks to the hardware support
for mixed-precision, each 32-bit register dedicated to weights
can be exploited from 2 to 4 times to process different
activations, then they’re updated at the end of each innermost
loop iteration. These features, together with the automatic
update of the activations and weights pointers enabled by
the MLC, increase the utilization of MAC units reducing the
overall number of loads from memory. Furthermore, it can
be noted that, while the baseline core (i.e. RI5CY) is limited
to a maximum unrolling factor of “4×2” that saturates the
registers within the GP-RF, the introduction of the dedicated
NN-RF in Flex-V extends it to “4×4” further improving data
reuse, hence performance.

IV. DEPLOYMENT FLOW

We develop an optimized software library to take advantage
of the proposed ISA extensions, replacing software-based low-
precision data unpacking with the hardware support for sub-
byte and mixed-precision operands, and introducing the new
unrolling degree for matrix multiplications between mixed-
precision operands.

To deploy end-to-end real-sized QNN benchmarks, we
extend the open-source DORY tool [17]1 to support low-
precision data formats (< 8-bit). The tool automatically pro-
duces template-based C code that wraps a target backend,
managing different levels of memories (i.e., L1, L2, and the
external RAM) and orchestrating the tensor movements. In
particular, DORY exploits a tiling approach to separate layers
into small nodes whose tensors can fit the L1 memory of the
system. Then, it produces C routines which i) execute these
smaller nodes in L1, and ii) double-buffer the movements of
tensors from L2 to L1. Notice that since the DMA is not

1https://github.com/pulp-platform/dory



blocking, the calls to the kernels are always overlapped with
the asynchronous DMA calls.

The existing tool only supported 8-bit integer tensors. To
plug in our new library, we modify the key elements of
DORY to support 2-bit and 4-bit data formats. First, we
extend the tiling solver based on Constraint Programming
to support different data formats: now it considers the new
constraints associated with sub-byte data formats, i.e., that the
convolutional loop’s innermost dimensions should always be
byte-aligned. Then, we create a new set of templates to support
the new ISA extensions. In the new templates, before the tiling
loops, we insert the CSRs setup that is common to every sub-
nodes executed. Inside the tiling loops, we call the functions
implementing the key kernels exploiting the new proposed
ISA extensions. Finally, we adjust the DORY mapping tool to
consider that layers’ tensors can have different data formats,
correctly sizing the data transfers between L3, L2, and L1.

V. RESULTS AND DISCUSSION

To evaluate the Flex-V core in terms of timing, power,
and area overhead compared to other cores based on the
RI5CY architecture, we integrate RI5CY, MPIC, XpulpNN
and Flex-V cores into the PULP cluster and perform separate
full implementations with the Global Foundries 22nm FDX
technology node. To evaluate the proposed hardware-software
stack, we benchmark the PULP cluster with the Flex-V cores
on synthetic convolutional layers and on the full deployment
of real-world end-to-end QNNs.

A. Physical Implementation
We synthesize the PULP clusters with Synopsys Design

Compiler-2019.12 and perform full place&route flow with
Cadence Innovus-17.11.000 using the worst-case corner (SSG
0.59V, -40°C/125°C). To perform power overhead evaluations
between RI5CY and Flex-V with disabled extensions, we run
timing-annotated post-layout simulations of 8-bit MatMuls in
typical corners at 250 MHz.

The total area of the Flex-V core is 0.018 mm2, with an
overhead of 30% compared to RI5CY due to the additional
logic to extend the Dotp Unit and implement the MLC and
the MPC. We note that the impact is only 6% when we
compare the area at the cluster level. The additional logic
of Flex-V compared to RI5CY does not significantly impact
the maximum operating frequency of the cluster (-2%), which
peaks up to 463 MHz.

Note that, despite the additional logic introduced to im-
plement the new ISA extensions, the power consumption
overhead with respect to RI5CY related to the execution of
an 8-bit MatMul with only XpulpV2 extensions is limited to
2.47% for the single processor and 2.04% for what concerns
the whole cluster thanks to clock-gated CSRs. Complete area
and power results are reported in Table II.

B. DNN Layers Benchmarking
To demonstrate the benefits of the proposed core, we bench-

mark the PULP cluster with Flex-V cores on a set of synthetic
convolution kernels, in terms of performance and energy
efficiency, and we compare it with RI5CY [11], MPIC [15] and
XpulpNN [14]. The layers operate on representative tiles used
in such types of devices to deploy QNN inference, applying

TABLE II
AREA AND POWER CONSUMPTION RESULTS

RI5CY Flex-V
fmax [MHz] 472 463

Area [µm2] (Overhead w.r.t. baseline [%])
Cluster 518227 547211 (5.59 %)

Core 13721 17816 (29.8 %)
Core Power [mW] 8b MatMul (Overhead w.r.t. baseline [%])
Dynamic 0.160 0.162 (0.87 %)
Leakage 0.024 0.037 (56.8 %)

Total 0.825 0.846 (2.47 %)
Cluster Power [mW] 8b MatMul (Overhead w.r.t. baseline [%])

Dynamic 2.34 2.37 (1.32 %)
Leakage 0.613 0.71 (15.7 %)

Total 12.3 12.6 (2.04 %)

TABLE III
PERFORMANCE [MAC/CYCLE] / ENERGY EFFICIENCY [TOPS/W] OF

MATMUL KERNELS

Inputs RI5CY MPIC XpulpNN Flex-V
a2w2 - 57.44 / 0.84 90.8 / 2.99 91.5 / 3.26
a4w2 - 35.91 / 0.93 7.62 / 0.23 51.9 / 1.87
a4w4 - 32.08 / 0.87 49.5 / 1.60 50.6 / 1.71
a8w2 4.91 / 0.25 19.55 / 0.60 6.07 / 0.20 27.8 / 1.01
a8w4 6.38 / 0.28 19.19 / 0.59 7.63 / 0.20 27.6 / 0.96
a8w8 16.6 / 0.67 16.45 / 0.53 26.1 / 0.79 26.9 / 0.87

64×3×3×32 filters on a 16×16×32 input tensor and featuring
different bit-precision for activations and weights (including
mixed-precision). The results are then compared against the
cluster execution of the same kernels on similar RISC-V
cores and reported in Fig. 7. Although MPIC [15] supports
mixed-precision operations in its ISA, our solution speeds-
up convolution kernels by 1.4× thanks to the Mac-Load
mechanism available in the Flex-V core and the supported
“4× 4” MatMul format. Moreover, the performance boost of
Flex-V grows up to 4.5× and 8.5× with respect to XpulpNN
and XpulpV2, respectively, which show heavy performance
degradation on mixed-precision and sub-byte QNN kernels
due to lack of support in the ISA for these operations that
require adding extra-instructions in the assembly for data
manipulation.

Table III shows that the proposed architecture reaches a peak
of energy efficiency of 3.26 TOPS/W on the uniform 2-bit
MatMul kernel and 870 GOPS/W on the 8-bit configuration,
which is comparable to dedicated hardware acceleration units
without giving away software flexibility. Flex-V outperforms
all the other solutions for all the configurations.

C. End-to-end Networks

To further demonstrate the capabilities of the proposed ar-
chitecture, we benchmarked it with end-to-end real-life QNNs
exploiting the deployment flow described in Section IV. We
considered three use cases: an 8-bit MobileNetV1, a fully
mixed-precision 8b4b MobileNetV1 and an aggressively quan-
tized 4b2b ResNet-20. The two MobileNetV1 networks have
been trained on ImageNet while the 4b2b ResNet-20 targets
CIFAR10. It is worth noticing that the memory footprint of
the 8b4b MobileNetV1 is reduced by 47% with respect to the
8-bit quantized model while its accuracy reaches 66.0%, with
a degradation of only 3.3%. Performance and accuracy of all
the tested networks are reported in Tab. IV: the experiments
performed on the ResNet-20 featuring 4-bit activations and 2-
bit weights show that the proposed architecture achieves 2.3×
and 2.5× of speedup with respect to XpulpV2 and XpulpNN.
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Fig. 7. Performance (a) and energy efficiency (b) of single convolutional kernels executed on the PULP cluster.

TABLE IV
ACCURACY, MEMORY FOOTPRINT AND PERF. OF END-TO-END NETWORKS

Network MNV1 (8b) MNV1 (8b4b) ResNet20 (4b2b)
Top-1 Acc. 69.3% 66.0% 90.2% [18]

Deg. w.r.t. 8b - 3.3% 0.15%
Model size 1.9 MB 997 kB 142 kB

Mem. saved 47% 63%
Performance [MAC/cycle]

STM32H7 0.33 0.30 -
XpulpV2 5.6 3.2 4.8
XpulpNN 6.0 2.7 4.4

Flex-V 6.0 5.8 11.2

We also report the results of the execution of an end-to-end
network on the STM32H7 presented by Capotondi et al. [12]:
the speedup of the proposed architecture with respect to this
commercial product reaches 19× thanks to the combination
of the extended ISA and the optimized software executed on
the eight-core cluster.

VI. CONCLUSION

We presented a novel hardware and software stack that meets
the challenge of energy-efficient mixed-precision QNN in-
ference on MCU processors core. We extended the RISC-
V ISA with sub-byte and mixed-precision fused Mac&Load
instructions aiming to remove the overhead caused by loading
and unpacking data before actual computation. We integrated
the Flex-V core, which implements the extended ISA, into a
tightly-coupled PULP cluster of eight cores. Its implementa-
tion with GF22FDX technology shows an area overhead of
only 5.6% with respect to the baseline cluster with RI5CY
cores. Furthermore, we developed a software library leverag-
ing the new ISA extensions to improve the performance of
convolutional kernels, key kernels to boost the execution of
end-to-end QNNs. The results on single convolutional layers
show up to 38.2 MAC/cycle boosting by 8.5× and 4.5× the
execution on RI5CY and XpulpNN cores, respectively. We
also benchmarked the proposed architecture with three end-to-
end real-life QNNs, obtaining a performance gain of 2× - 2.5×
with respect to state-of-the-art solutions. From the physical
implementation of the cluster in 22nm FDX technology, we
observed a peak energy efficiency of 3.26 TOPS/W.
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