
Future Generation Computer Systems 154 (2024) 219–234

A
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

EneA-FL: Energy-aware orchestration for serverless federated learning
Andrea Agiollo ∗,1, Paolo Bellavista, Matteo Mendula1, Andrea Omicini
Department of Computer Science and Engineering, University of Bologna, Italy

A R T I C L E I N F O

Keywords:
Serverless
Federated learning
Energy management
Internet of things
Resource-constrained learning

A B S T R A C T

Federated Learning (FL) represents the de-facto standard paradigm for enabling distributed learning over
multiple clients in real-world scenarios. Despite the great strides reached in terms of accuracy and privacy
awareness, the real adoption of FL in real-world scenarios, in particular in industrial deployment environments,
is still an open thread. This is mainly due to privacy constraints and to the additional complexity stemming
from the set of hyperparameters to tune when employing AI techniques on bandwidth-, computing-, and
energy-constrained nodes. Motivated by these issues, we focus on scenarios where participating clients are
characterised by highly heterogeneous computing capabilities and energy budgets proposing EneA-FL, an
innovative scheme for serverless smart energy management. This novel approach dynamically adapts to
optimise the training process while fostering seamless interaction between Internet of Things (IoT) devices and
edge nodes. In particular, the proposed middleware provides a containerised software module that efficiently
manages the interaction of each worker node with the central aggregator. By monitoring local energy budget,
computational capabilities, and target accuracy, EneA-FL intelligently takes informed decisions about the
inclusion of specific nodes in the subsequent training rounds, effectively balancing the tripartite trade-off
between energy consumption, training time, and final accuracy. Finally, in a series of extensive experiments
across diverse scenarios, our solution demonstrates impressive results, achieving between 30% and 60% lower
energy consumption against popular client selection approaches available in the literature while being up to
3.5 times more efficient than standard FL solutions.
1. Introduction

Most recent efforts in the Federated Learning (FL) community focus
on original and effective learning paradigms, aiming at optimising
model performance and privacy awareness [1–4]. Frameworks typically
rely on powerful and homogeneous clients to achieve strong baseline
accuracy and low latency. Regrettably, the high-dimensional space of
Quality of Service (QoS) constraints describing the set of trade-offs be-
tween optimal accuracy, minimal latency, and energy consumption [5,
6] is still slackening the adoption of Federated Learning on constrained
Internet of Things (IoT) devices. However, there is a wide range of real-
world industrial applications that call for FL solutions over constrained
devices [7,8]. Indeed, common frameworks impose a homogeneous
local setup amongst every client of the federation, hindering the de-
ployability of FL in IoT scenarios, and causing energy waste as well
as performance degradation. Ironically, one potential answer to this
matter may come from cloud applications. Here, Software as a Service
(SaaS) has been easing users to connect to and use cloud-based appli-
cations over the Internet in the last few decades. Nowadays, serverless
solutions relieve developers from the burden of managing servers and

∗ Corresponding author.
E-mail address: andrea.agiollo@unibo.it (A. Agiollo).

1 Co-first authors.

infrastructure-related tasks. In a serverless architecture, developers can
focus solely on writing and deploying code without worrying about
the underlying infrastructure. Consequently, the academia and the
industrial sector widely adopted serverless solutions for their increased
flexibility and pluggability. Transparent and fully provider-managed
services appear to be the best way to minimise energy costs and speed
up the development of real-world applications by allowing insiders to
focus on the most challenging phases of software development.

Inspired by the above trends, we introduce EneA-FL as a pioneering
serverless Federated Learning (FL) framework, uniquely equipped with
a smart energy management module tailored for resource-constrained
clients. Conceived to address the energy management challenges in-
herent in the real-world deployment of FL solutions, this innovative
middleware is crafted to facilitate the training and deployment of FL
models across a spectrum of heterogeneous Internet of Things (IoT)
devices. In particular, the core is an orchestrator that dynamically man-
ages the FL process by shipping to participant nodes a containerised
environment capable of monitoring the current status of the host-
ing machine in terms of: (i)computing and networking capabilities,
vailable online 8 January 2024
167-739X/© 2024 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.future.2024.01.007
Received 1 August 2023; Received in revised form 21 November 2023; Accepted 6
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

January 2024

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
mailto:andrea.agiollo@unibo.it
https://doi.org/10.1016/j.future.2024.01.007
https://doi.org/10.1016/j.future.2024.01.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2024.01.007&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Future Generation Computer Systems 154 (2024) 219–234A. Agiollo et al.
(ii)energy budget, and (iii)current accuracy over local samples. As
discussed in the paper, our orchestrator dynamically assesses the effort
required by each IoT client to fulfil specified QoS. Subsequently, it
autonomously applies the most suitable policy, by minimising any
intervention by FL users and FL-based application developers. Further-
more, the paper makes a significant novel contribution by showcasing
the feasibility of a dynamic approach for coordinating participating
nodes in an energy-aware manner. This innovation facilitates easy
access for IoT devices to FL capabilities while minimising the need
for user or developer intervention. Our automated energy management
scheme has been tested over a wide variety of clients and energy
requirements while showing its benefits over standard FL approaches.
In particular, we tested our solution over CPU- and GPU-enabled mi-
crocontrollers with limited computing capabilities and reduced energy
budgets [9]. The adaptable container-based approach proposed here
has shown to be able to achieve between 30% and 60% lower energy
consumption against popular client selection approaches available in
the literature.

The remainder of the paper is structured as follows. Section 2
describes the current state-of-the-art, highlighting promising directions
and lacking efforts in the academic literature. Section 3 illustrates our
novel energy modelling scheme, which supports the adoption of con-
tainerised applications in fog environments. We depict the architecture
of our middleware in Section 4, while Section 5 reports an extensive set
of performance results measured by employing different and heteroge-
neous IoT devices, discussed in Section 6. Finally, Section 7 contains
conclusive remarks and directions for future work.

2. Related work

In this section we provide an overview of recent research efforts in
the research areas intersecting our proposal—i.e., Serverless container-
isation for Machine Learning (ML), and resource management for FL
and fog computing scenarios.

Serverless containerisation for Machine Learning: As real-world
ML applications continue to expand, there is a growing demand for
significantly increased computational power to execute training pro-
cesses [10]. In this context, cloud resources prove invaluable, enabling
the execution of computationally intensive operations that would be
impractical for individuals and mid-sized companies. In addition, the
combination of serverless paradigm with containerisation approaches
enables remarkable scalability at minimal overhead cost [11,12]. While
ML-based container orchestration [13–15] has demonstrated the bene-
fits of ML in Serverless computing, the exploration of the applicability
of containerised serverless scheme for ML is still pending validation.
In this context, several works demonstrate the minimal impact of con-
tainerisation on deep learning application performance. Xu et al. [16]
results pinpoint how containers have a 0.2%–0.5% overhead compared
with host execution time, proving the deep learning containerisation
feasibility.

In the distributed ML realm, several works focused on serverless
paradigms for FL, such as [17] where the authors illustrate the benefits
of a middleware solution that eases the interaction between multiple
SaaS cloud providers. Similarly, Singh et al. [18] present a distributed
real-time privacy-preserving data analytic solution for smart grid sys-
tems based on a Serverless cloud computing FL approach to predict
the energy needs of Home Area Networks (HANs). Despite the remark-
able relevance of the above-mentioned solutions, none of them have
already addressed the feasibility of Serverless computing for FL in a
fog environment.

Resource Management in Fog Computing: Extensive analysis
of resource management in fog computing environments [19,20] is
meticulously explored in [21], where the authors delve deeply into a
comprehensive examination of resource management within fog com-
puting settings. The investigation results pinpoint task offloading [22–
220
24] as the predominant resource management approach in the liter-
ature. In this context, the need for ensuring transparency [25,26] in
offloading decisions for application developers is crucial. Addition-
ally, the heterogeneity of mobile nodes [27] and their energy per-
formance seems still underexplored. This forward-looking perspective
aims to promote efficient and developer-friendly offloading strategies
in the evolving landscape of mobile computing. Relevantly, the ma-
jority of academic efforts tackle offloading strategies by showcasing
innovative solutions leveraging simulation tools [28–30] and ignoring
QoS factors—i.e., only 18% of the reviewed articles [31–33] take
energy considerations into account. These factors represent relevant
limitations for enabling real-world deployment of such solutions.

Resource Management in Federated Learning: FL represents the
most popular technology for enabling multi-party joint training of ML
models. In this context, multiple entities collaborate to locally optimise
a shared model by sending their local updates either relying on a central
controller or in a fully decentralised fashion. Relying on the local
optimisation procedure of the shared model, FL ensures data privacy,
while enforcing heavy computational constraints on the federation en-
tities. Therefore, the application of FL to resource-constrained devices
– e.g., IoT devices, battery-powered devices, etc. – represents an open
research issue [34,35]. In this context, many of the research efforts
focus on the identification of effective learning strategies to optimise
local model training. Wu et al. [36] propose relying on lower bit-length
integers to reduce the computational costs of training and inference
models. Similarly, tensor rematerialisation [37], recomputation [38],
and efficient architecture strategies [39] have been proposed to reduce
memory requirements of Neural Network (NN) training. Although these
proposals do not target directly the FL realm, these works focus on
resource optimisation during model training and thus can be applied
to FL to achieve a more efficient federation scheme. Few works have
specifically dealt with the optimisation of resources in the field of FL
when the federation is composed of inherently constrained and hetero-
geneous devices—in terms of either available energy or computational
power [40]. The problem of energy-efficient model transmission for
FL over wireless communication networks is analysed in [41], where
both local computation energy and transmission energy are taken
into account, formulating the FL convergence problem as a system
energy minimisation problem. The authors in [42] formulate an energy-
conscious resource management problem for FL where the federation
clients aim to minimise time over a set of energy and communication
constraints. Here, the problem is formulated as a Nash equilibrium
problem [43], solved in a decentralised fashion. In [44], the opti-
misation of the local update frequency and the compression ratio of
the model to effectively decrease the time required for optimisation
is proposed, thus reducing the consumed resources. Cui et al. [45]
aims at reducing FL resource usage by optimising their allocation. To
this extent, the authors analyse resource block allocation introducing a
mixed-integer linear programming strategy to better allocate resource
blocks over federation clients.

In this resource efficientisation context, few approaches focus on
the client selection process typical of FL. In this context, OORT [46]
represents the most popular node selection framework where clients
are selected depending on their model ‘‘utility’’, defined as the potential
improvement over the aggregated model. Arouj et al. [47] propose an
improved version of OORT – to which we will refer as OORTv2 for
the remainder of the manuscript – prioritising clients having higher
battery levels to maximise the overall system efficiency. Diversely from
these approaches which focus solely on the computation efficiency
perspective, [48] analyses the computation and communication effi-
ciency perspective, proposing a power-of-choice-based solution. Total
time to convergence represents another relevant factor in FL setups,
attracting several research efforts such as [49,50]. More in detail,
Kim et al. [49] propose to jointly optimise time to convergence and
energy consumption in data heterogeneity scenarios, proposing a re-

inforcement learning client selection algorithm. Similarly, the results

Future Generation Computer Systems 154 (2024) 219–234A. Agiollo et al.

o

Table 1
Comparison of related work based on their features. Legend: EA = Energy awareness,
RE = Real energy data collection, NH = Node Heterogeneity, C = Comparison with
ther solutions, SA = Serverless architecture.
Work EA RE NH C SA

Grafberger et al. [17] – X – – X
He et al. [51] – – – – X
Singh et al. [18] X – – – X
Yang et al. [41] X X – – –
Zaw et al. [42] X – – – –
Kim et al. [49] X X X – –
Xu et al. [44] – X X – –
Cui et al. [45] – X X X –
Cho et al. [48] X – – – –
Wang et al. [50] – X – – –
Lai et al. [46] – – X X –
Arouj et al. [47] X – X X –
EneA-FL X X X X X

in [50] highlight reduced time execution when communication data
collection and experiments upscaling over simulated environments are
considered.

Although relevant, these approaches do not sufficiently address the
academic gap in optimising power consumption within real and hetero-
geneous environments. While some of the proposed solutions neglect
to consider power consumption information entirely, others consider
energy optimisation as a direct consequence of training time minimi-
sation, which is not the case when heterogeneous nodes participate in
the training process. Ultimately, none of the existing solutions prioritise
the concerns of application developers, leading to a lack of seamless
integration in a serverless environment. The absence of consideration
for developers hinders the smooth and effortless incorporation of these
solutions into real-world applications. Therefore, up to our knowledge,
there exists no study on the effectiveness of resource management
solutions in FL when a set of resource bounds is considered, taking
into account heterogeneous resource requirements and availability over
multiple clients. Table 1 summarises the limitations of the existing
solution and highlights the academic gap that EneA-FL is meant to fill.

3. FL energy consumption modelling in fog deployment environ-
ments

One of the objectives of fog computing in several vertical domains of
application is to process data in near real-time. Here, a set of edge nodes
receives data from IoT devices and performs stream processing with
millisecond-grade response time. Given the opportunistic and heteroge-
neous nature of those scenarios, the unavailability of a node reaching
the end of its energy budget is an eventuality to be avoided at any cost.
Generally speaking, if we define 𝐸(𝑖) as the energy consumption of a fog
node 𝑖, and consider the canonical FL scenario made up of an arbitrary
set of workers of size 𝑛 and one aggregator node – where ideally,
all working nodes presents the same networking and computational
capabilities – we can compute the energy consumption of the entire
system 𝐸𝑠 simply as the sum of the individual contribution of each
worker and the aggregator node. Therefore, we can then model 𝐸𝑠 as:

𝐸𝑠 = 𝛴𝑖𝐸(𝑖) = 𝑛 ∗ 𝐸𝑤 + 𝐸𝑎,

where 𝐸𝑤 refers to the energy consumption of a single worker and 𝐸𝑎
to the energy consumed for the aggregation process.

By further investigating the contribution of each node in a FL
scenario, for a generic worker 𝑤 the energy consumption 𝐸𝑤 is directly
proportional to the local model complexity – referred to as 𝑀𝑐 (𝑤) – and
to the size of the local dataset—referred to as 𝑆𝑑 (𝑤). Given that in a FL
scenario all the participating nodes share the same model architecture,
we have that:

𝑀 (𝑤) = 𝑀 (𝑤) = ⋯ = 𝑀 (𝑤) = 𝑀 (𝑤) = 𝑀
221

𝑐 1 𝑐 2 𝑐 𝑛−1 𝑐 𝑛 𝑐
Meanwhile, as far as the aggregator node 𝑎 is concerned, the computa-
tion 𝐸𝑎 is usually an average-like operation with a limited correspond-
ing computational cost. However, this operation can became expensive
with a high number of tensor to be averaged. This consideration lead
us to the conclusion that 𝐸𝑎 is directly proportional to the number of
workers 𝑛.

The energy modelling scheme described above would be incomplete
if the relationship between energy, latency, and accuracy would not be
made explicit. In fact, the main priority of a FL pipeline is to provide
the best accuracy as possible while minimising the overall latency.
While the better accuracy 𝐴𝑐𝑐 usually corresponds to a higher 𝑀𝑐 ,
the minimisation of the overall latency 𝛥𝐿𝑎𝑡 is beneficial to energy
consumption, too. The optimisation of these constrains would be easy
to solve in an ideal scenario with a low level of heterogeneity among
participating working nodes. Theoretically speaking:

⎧

⎪

⎨

⎪

⎩

min(𝛥𝐿𝑎𝑡) =∧ min(𝑀𝑐)
max(𝐴𝑐𝑐) =∧ max(𝑀𝑐)
min(𝐸𝑠) =∧ min(𝑀𝑐)

(1)

Then, the minimisation of 𝑀𝑐 would be beneficial for 𝐸𝑤, 𝐸𝑎 and
𝛥𝐿𝑎𝑡. In other words, the one between 𝐴𝑐𝑐 and 𝑀𝑐 would be the only
trade-off to solve to minimise energy consumption while satisfying QoS
requirements.

Unfortunately, the erratic nature of fog environment brings into
play an higher-dimensional space of possible solutions. Given that each
worker node may be involved in more than one task and that it may
have a dynamic percentage of bandwidth at its disposal over time, the
selection of a specific node during the aggregation phase may be tricky
and negatively impactful not only in terms of 𝐴𝑐𝑐 and 𝛥𝐿𝑎𝑡, but also for
𝐸𝑠. For this reason, the dynamic selection of workers over the time is a
primary task to address in order to apply FL in real-world fog scenarios.

4. The EneA-FLserverless middleware

In this section, we present the architecture of our novel serverless
middleware for FL in fog environments, namely EneA-FL, shown in
Fig. 1. Inspired by the emerging Cloud Continuum paradigm, EneA-
FL presents the first middleware capable of bringing together the
best characteristics of serverless and fog computing, showcasing its
applicability to FL settings with highly dynamic and heterogeneous
devices.

4.1. Serverless computing and energy awareness in constrained scenarios

The harmonic combination of microservice architecture and energy
awareness emerges as a natural consequence of applying the serverless
paradigm in fog computing scenarios. The microservice architecture,
with its modular and decentralised approach, enables the development
of flexible and scalable applications by breaking down complex func-
tionalities into smaller independent services, by easing software porta-
bility over heterogeneous IoT devices at the same time. Meanwhile,
energy awareness focuses on optimising resource consumption and
power utilisation to achieve energy efficiency in constrained computing
environments. When integrated into fog computing, which extends
cloud services to the edge of the network, the serverless paradigm
brings its on-demand execution and resource management capabilities.
This allows applications to leverage microservices while efficiently
utilising resources and minimising energy consumption in the edge
and fog nodes. By combining these elements, fog scenarios can har-
ness the benefits of microservice-based application development while
maintaining energy-conscious operations. This fusion facilitates the
creation of responsive, adaptable, and energy-efficient systems, making
it an advantageous approach for deploying applications in dynamic and
resource-constrained edge environments.

The synergy between microservice-oriented architecture and energy

awareness for serverless fog computing represents a significant step

Future Generation Computer Systems 154 (2024) 219–234A. Agiollo et al.
towards building sustainable and high-performance applications at the
edge of the network. In this context, EneA-FL is an original and relevant
contribution, by providing FL developers with the first framework
supporting the hybrid composition of serverless and fog computing by
taking into account the resources consumed by participating nodes.
By bridging the gap between serverless computing and fog scenarios,
EneA-FL capitalises on the benefits of on-demand execution and re-
source optimisation, while extending these advantages to the edge of
the network.

4.2. EneA-FL architecture

EneA-FL consists of three main modules:

Energon Prometheus2 is a well-established open-source systems mon-
itoring and alerting toolkit originally built at SoundCloud [52].
Inside EneA-FL, Energon is the Prometheus-compliant exporter
for IoT and edge devices that keeps track of each participating
device status in a completely transparent way. It is shipped to
participating nodes as a container that passively collects the
energy metrics of the host, independently of the local operating
system and offers to the aggregator an endpoint for polling
energy and network metrics It scrapes a wide set of Linux-based
microcontrollers by reading specific registries at the operating
system level Energon is published as a Pypi package3 to help
the community track down the system metrics of edge device
transparently

Furcifer A novel container orchestrator that handles the communi-
cation between participants nodes by offering an overlay net-
work [53,54] to each node inside the cluster This enables peer-
to-peer communication between participating nodes and corre-
sponding containers over a virtual network managed through a
Docker DNS interface In addition, it provides each participating
node with a kernel-compliant container-based application

Magister A policy manager that takes care of the aggregation process
by choosing the aggregation policy and selecting the participant
clients for each aggregation round It is also in charge of deciding
when the learning process is completed depending on the grade
of satisfaction of the specified QoS requirements for the FL
application

4.2.1. Energon for transparent energy awareness
Energon is a modular monitoring tool for IoT and edge devices.

It keeps track of an extensible set of system metrics about energy
consumption, network channel quality, and resource utilisation, among
others. Collected metrics are compliant with the Prometheus exporting
standard, which was recognised as graduated project maturity level in
2016 by Cloud Native Computing Foundation, the open-source vendor-
neutral hub of cloud-native computing. Diagnostic information can
be obtained by HTTP requests to the/metrics endpoint on the IoT
device. This allows both scanning with application-dependent business
logic and a smooth interaction with the Prometheus ecosystem. The
ubiquitous nature of Energon allows the user to monitor critical met-
rics and to make real-time decisions at the application level, without
generating any additional overhead for the constrained devices. When
it comes to system monitoring, one of the primary objectives is to
minimise the additional operations necessary to collect the desired
metrics while the target applications are running. Energon has been
meticulously designed to ensure complete isolation from the rest of the
system. It operates independently and does not require any interaction

2 https://github.com/prometheus/prometheus.
3 https://pypi.org/project/energon-prometheus-exporter/.
222
Fig. 1. Serverless middleware architecture.

with the running applications, thereby eliminating any potential in-
terference or performance overhead caused by monitoring processes.
Running as a separate process allows Energon to efficiently collect
the desired metrics and perform monitoring operations without being
tightly coupled to the application’s execution and its business logic.
By adopting this approach, Energon efficiently and seamlessly gathers
essential metrics without impacting the performance and behaviour of
the monitored applications, making it an effective and non-intrusive
solution for system monitoring tasks. This helps developers focus solely
on the development of their applications without the need to worry
about logging the device’s state for later historical analysis or real-time
decision-making.

In addition to raw data monitoring and exposition, Energon can
be customised to send an event when a specific condition is met.
Inside our EneA-FL middleware, Energon plays the central role of
keeping the orchestrator updated about the current state of the moni-
tored nodes, thus allowing the policy manager (i.e., Magister) to select
the best workers available in terms of residual energy, instantaneous
power consumption, and peer-to-peer communication quality. About
the querying interface, Energon wraps PromQL, the functional expres-
sion language defined by Prometheus, with easier high-level REST APIs.
Those JSON-based endpoints can be further customised depending
on QoS requirements. Scraped metrics can be stored locally on the
orchestrator side, as done inside EneA-FL, or they can be saved on a
separate database for later use—e.g., time series analysis for designing
new better policies. All metrics are stored as time series data identified
by a metric name and a set of key–value pairs. Sharding and federation
are also possible with minimal additional settings.

4.2.2. Furcifer : Container orchestrator for IoT devices
Furcifer is a centralised microservice manager, specialised for con-

strained devices and enabling communication between participant
nodes. It is available in multiple versions through a set of containers
for different operating systems and architectures. Furcifer is meant
to fill the gap between potential policy-oriented adaptation and the
heterogeneous nature of fog computing, by exploiting container orien-
tation – and not virtual machines –, largely accepted as more suitable
for these deployment environments. The introduction of an additional
abstraction layer offered by containers is justified by the minimal im-
pact on system resources and the need for higher flexibility for context

https://github.com/prometheus/prometheus
https://pypi.org/project/energon-prometheus-exporter/

Future Generation Computer Systems 154 (2024) 219–234A. Agiollo et al.

a
b
t
i
o
t
i
t
e
m
r

m
a
t
a
n
r
o
h
N
w
a
t
N

a
e
m
s
t
t
e
a
i
e
i
i
o
s
a
t
i
r
c
h
i
a
a
s
c
d
a t

i
n
a

adaptation purposes. In particular, when focusing on FL deployment
over edge devices, we have to consider model drifting as a critical cir-
cumstance where model performance drops in an unpredicted manner.
When model drifting is detected, it is very likely that a new model
architecture has to be deployed on all edge devices. In a traditional
setup, where all participating nodes are executing their local training at
the OS level without any kind of containerisation, a manual deployment
of the updated model will have to take place, with additional effort
and substantial impracticality in real-world scenarios—e.g., required
intervention for each participant IoT device. On the other hand, if a new
model architecture has to be deployed in a containerised environment
the only operation required by workers is to pull a new image from the
container registry offered by Furcifer. This wraps and extends Harbor,4

well-known open-source container registry supporting Kubernetes-
ased applications, for fog scenarios. In addition, since the majority of
he dependencies are likely to be unchanged, only the last layer of the
mage will be downloaded, minimising at the same time maintenance
perations and bandwidth utilisation. When a container image is built,
he platform builder attempts to reuse layers from earlier builds and
f a layer of an image is unchanged, then the builder picks it up from
he build cache without any additional download. As a consequence,
ven if the container occupies more memory compared with bare
etal solutions, only the device initialisation phase is affected; while

eal-time adaptations minimally impact the context switch latency.
Furcifer use of container images significantly simplifies the deploy-

ent and scaling of applications. Once an updated container image is
vailable, it can be easily distributed to all participating edge devices
hrough the container registry, ensuring that the latest version of the
pplication or model architecture is seamlessly deployed across the
etwork. This streamlined process minimises manual intervention and
educes operational overhead, making it feasible to manage a large fleet
f IoT devices efficiently. Furthermore, Furcifer overcomes the lack of
ardware acceleration support on constrained devices by integrating
VIDIA Engine Runtime for GPU-enabled IoT devices in a transparent
ay. The orchestrator checks automatically the availability of hardware
cceleration and reserves the GPU for the FL training process before it
akes place. This feature has been successfully tested inside EneA-FL on
VIDIA Jetson family boards.

In terms of storage utilisation, containers occupy a relatively larger
mount of additional space compared to OS-level applications. How-
ver, it is crucial to note that the business-logic application and ML
odel utilise less than 5% of the total space, while the majority of

torage is dedicated to user libraries. This efficient distribution means
hat when deploying a new model or communication strategy, only
he last layer of the image needs to be shipped to the worker node,
quivalent to the size of an OS-level application. Consequently, the
dditional storage introduced by containerisation significantly impacts
nitialisation time, but once the application is running, it does not
xacerbate overall latency. This highlights the advantage of containers
n efficiently managing application dependencies and minimising the
mpact on run-time performance once the containerised application is
perational. In addition to providing support for real-time adaptation
cenarios and dynamic resource allocation, Furcifer offers an essential
dvantage in terms of security and isolation. Thanks to containerisa-
ion, each service and application running on the constrained devices
s encapsulated within its own container, creating a boundary that
estricts its access to system resources. Isolation ensures that if one
ontainer is compromised, the security of other containers and the
ost system remains intact. This level of security is particularly crucial
n edge computing and FL environments, known to be susceptible to
ttacks [2,4,55]. In addition, defining the communication interface
t the container level provides an additional layer of security in the
ystem. With this setup, any potential malicious node attempting to
ommunicate with the central aggregator would face significant hur-
les. Such a node would need to compromise and flawlessly replicate
n existing image used in the container to establish communication.

4 https://goharbor.io/.
223
4.2.3. Magister for fog-oriented context switch decision making
The worker selection problem in FL has been approached from

various perspectives, including faster convergence [56–58], higher trust
level [59–61], and energy-awareness [62,63]. However, selecting the
most suitable workers in terms of both energy consumption and train-
ing speed becomes challenging in scenarios where multiple heteroge-
neous devices interact and multiple tasks must be executed simulta-
neously. Complexity arises from the diverse capabilities and resource
constraints of the devices involved, making it crucial to develop innova-
tive and efficient approaches to address the worker selection dilemma
in such dynamic and diverse environments. While the identification
of the most efficient device can be done in a static and self-evident
way by considering the amount of FLOPS per Watt on each device,
a more dynamic adaptation is required when additional constraints
take place. For example, the most efficient device may not be available
due to the limited battery duration or to the parallel execution of a
different task with higher priority. In addition, network channel quality
can also play a central role when dealing with mobile devices. For
these reasons, even though in a controlled environment a static energy-
preserving policy may be suitable, this is not applicable when moving
to real-world scenarios. A higher-dimensional space of constraints has
to be taken into account to save as much energy as possible while
meeting QoS requirements. Inside EneA-FL, Magister is the module of
the container orchestrator in charge of optimising the clients selection
policy depending on the state of each worker in terms of system metrics
and QoS satisfaction. In particular, Magister takes into account the
consumed energy of participating workers, the time required to perform
the local training procedure and the accuracy improvement compared
with the previous training epochs. Communication is not taken into
account at this level.

At the beginning of each federation round, Magister collects the
clients’ resource usage from Energon – using Furcifer – and selects
clients accordingly. The local training procedure is not impacted by
Magister, which upon the reception of local updates from the selected
clients decides whether to keep the distributed training process alive
or to stop it—depending on the achieved QoS metrics. Therefore, the
global model aggregation process is also not affected by our solution.
As a result, Magister represents a flexible client selection component
which can be integrated with any custom training and aggregation
mechanism for FL. To effectively identify the Magister smart selection
process, here we analyse how the worker selection process affects the
consumed energy, execution time and accuracy improvements. First,
we define the workers available to the federation process a =
{𝑤1, 𝑤2,… , 𝑤𝑁}, where 𝑁 represents the total number of workers that
compose the federation. Out of these 𝑁 workers only a subset 𝑆 ∈
is selected by the aggregating entity for each round of the optimisation
process. The selection function used to identify 𝑆 is defined as {},
and is usually considered to be a simple random selection process in
most FL setups. Magister’s objective is to identify some novel selection
procedure ∗ minimising the amount of energy and latency required
by the federation process while maintaining the performance of the
aggregated model untouched. To this extent, we first consider the
selection function to be dependent on the history of the federation
process, accounting for smart selection of highly impactful nodes and
disregarding unreliable workers.

To identify the optimal selection function, we need to take into
account the dependency between the achieved performance of the ag-
gregated global model and the amount of energy and time spent by the
FL system to reach this global optimum. To this end, we here define the
neural network model trained by worker 𝑤𝑖 at the 𝑡th optimisation step
of the federation process as (𝑡)

𝑖 . Consequently, the amount of energy
used to obtained (𝑡)

𝑖 via local computation is defined as 𝐸𝑐 (
(𝑡)
𝑖). The

ime it takes for the optimisation process in worker 𝑤𝑖 to compute (𝑡)
𝑖

s written as 𝜏((𝑡)
𝑖). Meanwhile, at the aggregator node, the neural

etwork model computed at the end of the 𝑡th federation step is defined
s (𝑡) = { (𝑡) ∀𝑖 ∈ (𝑡)}, where represents a custom aggregation
𝑎 𝑖 𝑠

https://goharbor.io/

Future Generation Computer Systems 154 (2024) 219–234A. Agiollo et al.

m
s
t
g
e
p
s
e

c
p
a
s

w
a

T
t
m
n

function used to compute the global model from the local updates.
FedAvg [64], where corresponds to the average weights of the local

odel, represents the most popular aggregation solution thanks to its
implicity of competitor solutions [65,66]. If we consider relying on a
est set of examples to compute the goodness of the obtained aggregated
lobal model, we can define its performance – e.g., accuracy, f1-score,
tc. – as ((𝑡)

𝑎). The overall aim of any FL process is to increase the
erformance of the aggregated model ((𝑡)

𝑎) at each federation step 𝑡,
o that ((𝑡+1)

𝑎) ≥ ((𝑡)
𝑎) and the global optimum is achieved at the

nd of the federated optimisation process.
To account for smart selection of the federation workers, we here

onsider relying on a selection function that aims at maximising the
erformance of the aggregated model, while minimising the energy
nd time spent. Therefore, we would be ideally able to define a new
election function that selects the next set of workers (𝑡+1)

𝑆 , such
that:

 (𝑡+1)
𝑆 𝑠.𝑡.

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

max
(

(

 (𝑡+1)
𝑎

))

min
(

∑

 (𝑡+1)
𝑆

𝐸
(

 (𝑡+1)
𝑖

)

)

min
(

∑

 (𝑡+1)
𝑆

𝜏
(

 (𝑡+1)
𝑖

)

)

(2)

However, while desirable, such a setup cannot be solved directly, as the
nodes that mostly affect the most the computation of the aggregated
model (𝑡+1)

𝑎 cannot be known a priori. Therefore, we here rely on the
assumption that the setup can be computed a posteriori. Thus, we aim
at identifying the set of nodes that affect mostly positively the perfor-
mance of the aggregated model for previous steps 𝑡, 𝑡 − 1,… , 1, while
consuming less resources – i.e., energy and time –, and rely on these
nodes also for aggregation step 𝑡 + 1. Therefore, the selection process
becomes a combinatorial search problem, where we aim at identifying
the subset of best workers ̂ (𝑡)

𝑆 , such that their combination achieves
high performance while keeping both energy and time requirements
under control.

As it represents a combinatorial optimisation problem, finding the
optimal set of workers ̂ (𝑡)

𝑆 to maximise performance and minimise
resources is not scalable when the number of workers increases. There-
fore, relying on such an optimal procedure would lead to huge com-
putational waste from the aggregator node end. While we aim at
minimising the amount of resources spent at workers level, shifting
the computational burden to the aggregator node would not represent
a feasible solution. Thus, we here consider relying on a simplified
approach that does not require the solution of the combinatorial opti-
misation problem. To this end, we here define an effectiveness measure
aiming at identifying how much the local model update from a worker
𝑤𝑖 impacts the performance and resource consumption of the whole
federation setup.

Accordingly, we define the effectiveness metric as:

 = 𝛼 ⋅
𝐸
(

 (𝑡)
𝑖

)

max{𝐸(𝑡)}
+ (1− 𝛼) ⋅

𝜏
(

 (𝑡)
𝑖

)

𝑚𝑎𝑥{𝜏(𝑡)}
− 𝛽 ⋅𝛥

(

(

 (𝑡)
𝑎
)

,
(

 (𝑡)
𝑎⊖𝑖

))

, (3)

here max{𝐸(𝑡)} represents the maximum energy spent by any worker
t step 𝑡, namely max{𝐸(𝑡)} = max{𝐸

(

 (𝑡)
𝑗

)

∀𝑗}. Similarly, max{𝜏(𝑡)}
represents the maximum time taken by any worker at step 𝑡, namely
max{𝜏(𝑡)} = max{𝜏

(

 (𝑡)
𝑗

)

∀𝑗}. Meanwhile, 𝛥 represents the difference
in performance between the aggregated model (𝑡)

𝑎 and the model
 (𝑡)

𝑎⊖𝑖 obtained aggregating all workers updates except 𝑤𝑖. Finally, 𝛼
and 𝛽 represent the hyperparameters that identify the trade-off be-
tween the relevance of energy consumption, time requirements, and
the performance improvement achieved. Intuitively, a local worker 𝑤𝑖
whose model has a high impact and is obtained by spending little
resources ensures a small score. On the other hand, workers whose
models have little-to-no impact on the model performance and/or are
224

obtained consuming a vast amount of resources result in high scores.
o account for devices that are not capable of sending an update to
he aggregation entity, we set a handicap value ℎ to the effectiveness
etric of those devices that do not guarantee an update when selected,
amely:
(

𝑤(𝑡)
𝑖

)

=

{

 if received update
ℎ otherwise.

(4)

Finally, to take into account the reputation history of workers, we
consider measuring the reputation score of each worker as its average
effectiveness score, namely:

(

𝑤(𝑡)
𝑖

)

=

∑𝑡
𝑙=1

(

𝑤(𝑙)
𝑖

)

𝑡
. (5)

Considering the reputation score of Eq. (5), we can now redefine the
problem of identifying optimal workers as the process of identifying

̂ (𝑡)
𝑆 𝑠.𝑡. min

(

(

𝑤(𝑡)
𝑖

))

. (6)

Therefore, in our novel workers selection process, the workers selected
to run the optimisation procedure for the next aggregation step 𝑡 + 1
are

 (𝑡+1)
𝑆 =

{

̂ (𝑡)
𝑆 𝑠.𝑡. min

(

(

𝑤(𝑡)
𝑖

))

⊕ 𝑟

(

 − ̂ (𝑡)
𝑆

)}

, (7)

where ̂ (𝑡)
𝑆 represents the set workers with optimal performance from

step 𝑡 – to account for incentivisation of highly performing nodes –
and 𝑟

(

 − ̂ (𝑡)
𝑆

)

represents a random sampling – i.e., 𝑟 – of the
remaining non-optimal nodes—i.e., − ̂ (𝑡)

𝑆 . The selection of a set of
random non-optimal nodes is necessary for the federation process to
take into account nodes that were not present in previous aggregation
procedures, which may still impact positively the global model. The
cardinality of the set of optimal nodes and randomly selected ones
accounts for the trade-off between static behaviour over time and
workers coverage. Thus, we add a third hyperparameter value 𝑘 that
balances the cardinality of optimal nodes and randomly selected ones.
In particular, if we identify with 𝑂 the cardinality of ̂ (𝑡)

𝑆 – i.e., the
number of optimal nodes selected from one iteration to the next – and
with 𝑅 the cardinality of 𝑟

(

 − ̂ (𝑡)
𝑆

)

—i.e., the randomly sampled
non-optimal nodes, and with 𝑛𝑟 the number of workers to be selected
at each round, we obtain 𝑂 = ⌊𝑘 ⋅ 𝑛𝑟⌋ and 𝑅 = ⌈(1 − 𝑘) ⋅ 𝑛𝑟⌉. Taking
into account energy consumption, time, and reached performance level
of each client in the federation – Eq. (3) –, EneA-FL handles device
heterogeneity in terms of computational capabilities, computational
efficiency, and data availability.

5. Experimentation testbed and experiment preliminaries

As already stated, our primary objective is to address the pressing
need for more energy-efficient and sustainable machine learning mod-
els, especially in the era of ubiquitous data and resource constraints.
By leveraging the collaborative power of FL, we aim at demonstrating
significant energy savings without compromising model performance.

5.1. FL training process and model complexity

The experiments are conducted on a real networking testbed con-
sisting of heterogeneous edge devices, which mimics a real-world de-
ployment environment with diverse computational capabilities. We use
representative datasets from LEAF [67], which includes different use
case data coming from Computer Vision and Natural Language Pro-
cessing areas. From LEAF we select two datasets: MNIST and Sent140
to test the feasibility of our energy-aware Federated Learning selec-
tion on multiple tasks. While MNIST is the distributed version of the
well-known MNIST dataset for image classification, Sent140 consists
of a corpus of 1,600,000 tweets extracted using the Twitter API for
sentiment analysis. Finally, we also employ the N-BaIoT dataset [68]

Future Generation Computer Systems 154 (2024) 219–234A. Agiollo et al.
Fig. 2. Time execution and energy consumption comparison on GPU enabled Jetson Nano over 5 training epochs. (a) On Sent140 dataset. (b) On MNIST dataset. (c) On N-BaIoT
dataset.
Table 2
Complexity of leveraged NN models.

MAC n params

Sent140 16.106 M 2.006 M
MNIST 5.962 M 2.278 M
N-BaIoT 4.384 K 4.491 K

to include a dataset containing realistic traffic data gathered from 9
commercial IoT devices authentically infected by Mirai and BASH-
LITE. Here, the malicious traffic is divided into 10 different attack
classes (e.g., network scanning and firmware) plus 1 benign class.
On all datasets, we implement a small neural network composed ei-
ther of a few blocks of convolution operations or linear ones. The
corresponding model complexity is evaluated in terms of both MAC
(Multiply-Accumulate Operations) and the total number of parameters,
reported in Table 2. The overall model complexity of the model for
image classification on MNIST is more than three times the one for
sentiment analysis over Sent140 and 1000 times the one for attack
identification in N-BaIoT.

5.2. Container vs. operating system FL training execution

Before delving into finer details, we perform a comparison between
the containerised FL training application and the execution at operating
system level. We execute EneA-FL with and without containerisation
to estimate the additional overhead brought by a higher level of ab-
straction. The training process consists of five local epochs for each
dataset where both os-level and container training execution follow
the same node selection policy. For this reason, the device is selected
or ignored depending on the current state of the federation. This
unveils noteworthy similarities in their energy consumption, with a
minor difference of about 5% in terms of training time. As can be
seen in Fig. 2, both executions demonstrate comparable energy usage,
indicating that the containerisation process does not significantly im-
pact overall power consumption during training tasks. However, the
containerised environment exhibits a slight delay, with training times
being approximately 1%–2% slower compared to the operating system
level environment. As it can be seen, the most powerful device, the
Jetson AGX Orin, exhibits significant variability and dispersion in its
values; while the two most efficient devices, the Jetson Nano and
the Jetson Xavier tend to manifest a consistent and steady behaviour,
in particular when equipped with hardware acceleration. Generally
speaking, over all the devices considered, the usage of GPU seemingly
leads to lower data sparsity and a more predictable trend. The overall
marginal disparity in terms of startup required time proves the minimal
overhead versus the benefits of GPU-enabled containerisation. The
improved portability, isolation, and ease of deployment remain highly
advantageous, making it a viable and efficient choice for FL training
tasks in fog environments.
225
Fig. 3. Time startup comparison of CPU containers vs. GPU-enabled containers.

5.3. Container startup latency assessment

In the dynamic landscape of IoT and serverless architecture, a
crucial aspect of consideration revolves around the comparison of
container startup latencies when utilising IoT devices with and with-
out GPU hardware acceleration. Serverless computing, which enables
on-demand execution of functions without the need for server man-
agement, is particularly attractive in IoT environments where data is
generated at the network’s edge. Containers, acting as self-contained
units of application code and dependencies, can significantly impact
the responsiveness of IoT applications during initialisation and de-
ployment. By assessing and contrasting the startup latencies with and
without GPU hardware acceleration, we gain valuable insights into the
potential performance gains and resource optimisation for serverless ar-
chitectures in the context of IoT applications. This section analyses the
minimal additional overhead given by containerisation during training
execution. In particular, we evaluated the startup latency for all the
devices taking into account over 100 startup cycles.

The data presented in Fig. 3 demonstrates the startup latencies of
various configured devices, revealing that the presence of hardware
acceleration does not result in significantly higher delays. On average,
the additional latency incurred with hardware acceleration is merely
5%–10%. Moreover, across all devices, the observed latencies range
between 200 ms and 300 ms, underscoring the minimal overhead
introduced by containerisation techniques on the overall training exe-
cution. These findings highlight the efficiency and effectiveness of util-
ising hardware-accelerated containers, as they offer near-instantaneous
startup times while providing substantial benefits in terms of flexibility
and modularity during training processes.

Future Generation Computer Systems 154 (2024) 219–234A. Agiollo et al.
Fig. 4. Time execution and energy consumption on considered devices over 5 training epochs. (a) On Sent140 dataset. (b) On MNIST dataset. (c) On N-BaIoT dataset.
5.4. Energy consumption and training execution time on IoT devices

To evaluate the performance and the effectiveness of energy optimi-
sation, we used the following metrics: model accuracy, communication
rounds and clock time required for convergence, and total energy
consumption. We first evaluate the energy consumption of a wide
range of IoT devices commonly used in fog and edge scenarios. In
particular, we measure the energy consumption of our models on a
Raspberry Pi model 4, a Jetson Nano developer kit, a Jetson Xavier NX
board, and a Jetson AGX Orin developer kit. In addition, each of the
Jetson boards has been tested with and without GPU support to check
the energy cost of hardware acceleration in IoT training processes.
Fig. 4 illustrates the experiments performed to measure the energy
consumption of all devices tested in five training epochs. The Jetson
AGX Orin developer kit is the fastest, but it is also the one with the
higher instantaneous power consumption. On the contrary, the slowest
device is the Jetson Nano without GPU, while the hardware-accelerated
version of the device appears the be the best compromise in terms of
energy consumption and training time.

Surprisingly, the notion of utilising low-resource devices, like the
well-known Raspberry Pi model 4, proves to be unfavourable in terms
of both overall energy consumption and training execution time. When
considering the total energy cost over the whole training, employ-
ing a higher-powered device may lead to lower energy consumption.
Additionally, the experiments underscore the remarkable reduction in
training execution time achieved with higher-tier devices, exemplified
by the Jetson AGX Orin, albeit at the expense of consuming approxi-
mately 10 times more energy compared to other devices. On the other
hand, the Raspberry Pi 4 requires over five times more time for training
execution compared to the majority of other constrained devices. No-
tably, in the first two datasets, the difference in training time between
GPU-enabled devices and their CPU-limited versions is significant.
However, on the N-BaIoT dataset, this difference is minimal. As ex-
pected, in this case, the lower complexity of the model does not benefit
significantly from parallel computation. led by hardware-accelerated
resources.

Fig. 5 showcases the energy efficiency of the examined devices,
determined by computing the amount of Joules using Simpson’s rule
for numerical approximation integration [69]. This method allows us to
precisely evaluate the energy consumption of each device and compare
their efficiency in performing the given task. By employing Simpson’s
rule, we gain valuable insights into the energy performance of the de-
vices, providing a comprehensive understanding of their capabilities in
optimising power utilisation during the integration process. According
to the results, the Jetson AGX Orin emerges as the least efficient device
in terms of energy consumption, indicating higher energy usage during
the integration process. On the other hand, the Jetson Nano and Jetson
Xavier stand out as more energy-efficient options, as they exhibit lower
power consumption relative to their execution times.
226
Fig. 5. Ranking of overall energy consumption over considered devices.

6. EneA-FL performance results and discussion

In this section, we present the results obtained during the testing
phase of EneA-FL framework. More in detail, we first describe the setup
used for the analysis of our framework in Section 6.1. In Section 6.2 we
perform an ablation study to identify EneA-FL best hyperparameters.
We then study the performance of the EneA-FL framework in terms of
reached accuracy when a set of resources budgets are considered (see
Section 6.3). Sections 6.4 and 6.5 analyse respectively the impact of the
number of selected devices per round and the inactive devices on the
performance of EneA-FL. Finally, in Section 6.6 we study the flexibility
of EneA-FL over variations of the distribution of device types in the
federation.

6.1. Experiments setup

To test the proposed EneA-FL framework we implement a federated
learning simulation tool that takes into account the testbed results ob-
tained in Section 5 to emulate the deployment of containerised workers
on each of the seven selected devices. More in detail, we implement the
proposed framework using PyTorch [70] for the definition of models
and their learning process and rely on FedAvg [64] as the aggregation
algorithm during the FL training process. Through all our experiments,
we consider a federation network composed of 100 different worker
and for each worker we identify the probability of it being one of the
seven device types considered in Section 5. We refer to the distribution
of these probabilities as the distribution of device types and, apart from
the experiments in Section 6.6, we build the federation using a uniform
distribution of device types. In particular, since we consider 7 different
type of devices – see Section 5.4 – we deploy a federation composed by

Future Generation Computer Systems 154 (2024) 219–234A. Agiollo et al.

t
a
o
a

6

w
t

m
r
e
3
w
t
g
o

a
F
t
w
o
d
p
v
p
d

t
𝛼
p
i
f
a
p

v
v
t
h

f
t
e
c
d
t
r
s
w
r
g

s
s
i
M
w
T

14.29% of each device type. Thus we obtain a setup where each device
type covers one-seventh of the whole federation hardware.

The energy consumption and execution time of the local training
process of each device is emulated by the worker belonging to the
federation to keep track of the total energy consumption and total
execution time. More in detail, for each training step of the worker local
training process, we perform a sampling from the normal distribution
of the energy consumption and time requirements that characterise
the device type at hand. The characteristic normal distribution is
extracted from the testbed measurements obtained in Section 5, thus
representing faithfully the real-world energy consumption and latency
of the selected devices.

The implemented framework also allows for a flexible definition
of several additional options, such as device type distribution, de-
vice lifetime, data distribution, QoS target definition and many more.
The device lifetime is modelled as an exponential random variable
that models the number of available federation rounds and is used
in Section 6.5 to assess the impact of device discharge on EneA-FL.
Meanwhile, QoS targets definition supports various types of resource
budgets – investigated in Section 6.3 – and target performance. Finally,
if not diversely specified, throughout our experiments we consider
uniformly distributed data samples over all workers belonging to the
federation. For maximum results reproducibility, the developed code
and documentation for all the experiments presented in this article are
published on a dedicated EneA-FL GitHub repository.5

6.2. Ablation study

EneA-FL relies on its Magister component for optimisation of the
device selection process throughout federation learning. In this context,
the energy-aware policy defined in Section 4.2.3 takes into account a
mixture of energy consumption, latency and achieved performance to
promote energy-effective workers. To balance these three components
EneA-FL relies on three hyperparameters to select the devices of each
federation round, namely: (i)𝛼, balancing energy consumed and execu-
ion time; (ii)𝛽, to account for local models’ accuracy; and (iii)𝑘, adding
randomness component to the selection process. Given the relevance
f these hyperparameters in EneA-FL we here propose an ablation study
iming to identify the best Magister setup.

.2.1. 𝛼 And 𝛽 values
The energy effective metric proposed in Eq. (3) relies on 𝛼 and 𝛽

hyperparameters to weigh the relevance of minimal power consump-
tion, training execution time and achieved accuracy. By leveraging
the values of 𝛼 and 𝛽, EneA-FL can balance the trade-off between
energy consumption over training execution time. Therefore, it rep-
resents a significant aspect of the identification of the best 𝛼 and 𝛽
setup for running EneA-FL. Indeed, setting these hyperparameters is
not a straightforward process, as 𝛼 is the component setting a trade-
off between energy and time, while 𝛽 represents the parameter tuning
the relevance of the achieved accuracy. More in detail, higher values of
𝛼 define an optimisation process where the energy is considered more
valuable than the execution time of the learning step, thus giving higher
priority to very efficient – possibly slow – devices. Meanwhile, smaller
𝛼 prioritises raw optimisation speed over energy efficiency, valuing
faster devices that may consume more energy. On the other hand, 𝛽
represents ideally the relevance given to the reached accuracy of local
models. Therefore, higher 𝛽 allows Magister to promote devices whose
model reaches higher accuracy improvements, without regarding their
energy consumption and latency. Meanwhile, smaller 𝛽 allows Magister
to focus solely on optimisation energy and latency, disregarding the
reached accuracy.

5 https://github.com/AndAgio/EneA-FL.
227

i

Table 3
Comparison of energy consumption, time execution and rounds required to converge on
MNIST dataset between different worker selection approaches and the best and worst
(𝛼, 𝛽) EneA-FL setups. The EneA-FL best setup is obtained for 𝛼 = 0.6, 𝛽 = 40, while its

orst setup is obtained for 𝛼 = 0 and 𝛽 = 100. For each metric, we highlight in green
he best approach.
Approach Energy Time Rounds

Standard FL 4.6 MJ 28.5 h 9.7
OORT [46] 1.8 MJ 13.2 h 11.2
OORTv2 [47] 2.2 MJ 13.8 h 13.8
EneA-FL worst 2.1 MJ 14.1 h 10.7
EneA-FL best 1.3 MJ 12.7 h 10.8

To analyse the impact of 𝛼 and 𝛽 values on the federation opti-
isation we let their values vary between 0 and 1, and 0 and 100

espectively. We perform 10 federation optimisation experiments for
ach 𝛼 and 𝛽 combination, setting the number of federation rounds to
0. Training is performed over the MNIST dataset. For each experiment,
e keep track of the (i) overall energy consumption; (ii) total execution

ime; and (iii) number of rounds required to converge. Here, conver-
ence is considered to be achieved when the global model achieves 97%
f accuracy on the test set.

Fig. 6 shows the average values for energy, time and convergence
chieved over the 10 experiments of each 𝛼 and 𝛽 setup. More in detail,
ig. 6(a) presents the average energy consumption. Here, it is possible
o notice that smaller 𝛼 values lead to higher energy consumption,
hile higher 𝛼 leads to smaller energy values, confirming the goodness
f the proposed policy. Interestingly, selecting 𝛼 = 0 can lead to almost
oubled energy consumption over 𝛼 = 1. Meanwhile, concerning 𝛽, it is
ossible to notice a slight increment of consumed energy for higher 𝛽
alues. This behaviour is expected, as higher 𝛽 values force Magister to
romote devices depending mostly on their models’ reached accuracy,
iscarding their energy efficiency.

Fig. 6(b) presents the average time execution. Here, it is possible
o notice that smaller 𝛼 values lead to smaller latency, while higher

leads to time increments. Meanwhile, 𝛽’s impact is less evident,
robably due to the fact that selecting devices with high accuracy
mprovements usually leads to improved convergence time. Differently
rom the energy analysis, the difference in execution time is confined
s it is possible to save at most only a couple of hours when selecting
roperly 𝛼 and 𝛽.

Fig. 6(c) presents the average number of rounds required to con-
erge to 97% of accuracy. Here, it is possible to notice that 𝛼 and 𝛽
alues do not impact clearly the convergence time. Indeed, convergence
ime is mostly influenced by the quality of the data that each device
olds rather than its efficiency.

Given the results of Fig. 6, it is possible to select the best 𝛼 and 𝛽
or EneA-FL. Throughout our experiments, we select 𝛼 = 0.6 and 𝛽 = 40
o be the best EneA-FL setup, as it allows to consume only 1.3 MJ of
nergy, while requiring 12.7 h to complete 30 federation rounds and
onverge in 10.8 steps. Finally, these results show that Magister can
efine hybrid systems that adapt to the scenario at hand depending on
he chosen 𝛼 and 𝛽 values. Indeed, in a federation setup where energy
epresents the most relevant component we suggest selecting high 𝛼 and
mall 𝛽 values. Meanwhile, when the latency is the most valuable aspect
e suggest selecting small 𝛼. Finally, when both energy and latency are

elevant, Magister can reach improved efficiency by selecting a middle
round between the previous two options.

Having obtained the best 𝛼 and 𝛽 setup, we compare our proposed
olution with the standard FL setup – which relies on random node
election – and the OORT [46] and its extended version (OORTv2) [47]
n Table 3. For a fair comparison, we compare both the best and worst
agister setups. The best setup is achieved for 𝛼 = 0.6 and 𝛽 = 40,
hile the worst counterpart is obtained by selecting 𝛼 = 0 and 𝛽 = 100.
he results highlight that Magister offers a favourable solution for min-
mising energy consumption and execution time against all baselines.

https://github.com/AndAgio/EneA-FL

Future Generation Computer Systems 154 (2024) 219–234A. Agiollo et al.
Fig. 6. Impact of (𝛼, 𝛽) values on energy consumption (a), time execution (b) and rounds required to converge (c) on MNIST dataset.
Fig. 7. Impact of 𝑘 values on energy consumption (a), time execution (b) and rounds required to converge (c) on MNIST dataset.
Meanwhile, Magister does not impact the convergence time—i.e., the
number of rounds required to reach 97% of accuracy. The best Magister
setup consumes 3.5 times less energy than its standard FL counterpart
and 30% less energy than OORT which represents the best baseline.
These findings highlight the significant advantages of the Magister
approach, offering substantial energy savings and improved training
efficiency when compared to standard FL, making it a highly promising
and effective solution for FL scenarios.

6.2.2. 𝑘 values
As expressed in Eq. (7), Magister relies on a hybrid worker selection

strategy, where a portion of workers is selected from the best workers
of previous rounds and the remaining portion is picked randomly
from the devices available. The random component is used to allow
Magister to explore the effectiveness of federation devices throughout
the federation history and avoid getting stuck in selecting always the
same devices. The balance between the number of workers selected via
the effectiveness metric and the number of randomly selected workers
is given by the parameter 𝑘 in Eq. (7). To assess the relevance of 𝑘 we
compare EneA-FL against a standard FL setup, while varying 𝑘, aiming
at identifying the best 𝑘 for deploying EneA-FL.

Fig. 7 shows the results for the ablation study on the values of 𝑘.
We let 𝑘 vary between 0 and 1. Here, 𝑘 = 0 represents the setup where
EneA-FL and random node selection are equivalent, as all devices are
selected randomly also in EneA-FL. Meanwhile, 𝑘 = 1 represents the
EneA-FL setup where workers are only selected based on their energy
effectiveness metric and no worker is selected randomly. Figs. 7(a)–
7(c) highlight that higher values of 𝑘 allow the federation to reach
smaller energy consumption and execution time. Meanwhile, a similar
convergence time is achieved for all 𝑘 setups. Interestingly, the results
show a high level of energy and time savings even for small values
of 𝑘—e.g., 𝑘 = 0.5. As a result, Magister shows that it is possible to
save a high amount of energy and time even when a large part of the
workers are selected randomly. From the obtained results, it is possible
to identify the best 𝑘 value, that we select to be equal to 0.8. We
avoid considering 𝑘 = 1 as we want to allow Magister to explore all
federation devices over its history. In its best setup, Magister reaches
3 times less energy consumption, while requiring almost 2 times less
time to complete the 30 federation rounds.
228
Table 4
Average accuracy on each dataset for EneA-FL against selected baselines when the
federation is optimised given an energy budget. For each dataset, we highlight in green
the best approach.

Dataset Budget Standard FL OORT [46] OORTv2 [47] EneA-FL

MNIST 1 MJ 95.3% 95.4% 95.7% 97.4%
Sent140 500 kJ 72.1% 72.3% 72.3% 72.5%
NBIoT 50 kJ 87.8% 87.5% 86.7% 89.3%

6.3. Resources budget

In real-world scenarios, one desideratum of distributed optimisation
scenarios such as FL is to identify efficient processes over limited
resources budgets. In particular, we here consider scenarios where the
federation network has a pre-defined budget of energy or time that
can be invested into the FL optimisation. Indeed, when considering
FL setups in the real world, it is common to impose an upper bound
on the time that the FL can take for optimising the model at hand.
Similar requirements can be expressed for the total amount of energy
that the FL process should take to reduce costs and have a restricted
environmental impact. Therefore, in order to assess the performance of
EneA-FL over limited resource budgets, we compare its performance –
i.e., accuracy – against the available baselines when we set energy and
time limits (budgets) over the MNIST, Sent140 and N-BaIoT datasets.

Table 4 shows the average performance – over 10 iterations –
achieved by the federation when training using the given energy bud-
get. The EneA-FL policy vastly outperforms the selected baselines,
achieving higher accuracy over all datasets and showing a statistically
significant improvement over the experiment iterations. This is due to
the higher longevity achieved by the federation when implementing
the energy management policy—i.e., Magister. Indeed, the number of
optimisation rounds that the federation can survive with the given
energy budget is on average more than doubled with respect to the
standard FL policy. This behaviour can be seen in Fig. 8, where we plot
the average selected devices distribution over federation rounds on the
MNIST training. On the 𝑥 axis it is possible to notice that the baselines

Future Generation Computer Systems 154 (2024) 219–234A. Agiollo et al.
Fig. 8. Selected devices distribution over rounds for various client selection policies when federation is optimised given an energy budget of 1 MJ on the MNIST dataset.
Table 5
Average accuracy on each dataset for EneA-FL against selected baselines when the
federation is optimised given a time budget. For each dataset, we highlight in green
the best approach.

Dataset Budget Standard FL OORT [46] OORTv2 [47] EneA-FL

MNIST 8 h 96.4% 96.2% 96.1% 97.0%
Sent140 4 h 72.3% 72.5% 72.4% 72.9%
NBIoT 10 m 87.9% 88.0% 87.8% 89.9%

survive at most 8 federation rounds, while EneA-FL reaches up to 17
optimisation rounds.

To assess the effectiveness of our policy in selecting the most
efficient devices, we study the effect of the Magister policy on the
device selection distribution. We plot the average selected devices
distribution over the optimisation rounds in Fig. 8—one box for each
client selection policy. The size and the colour of each blob represent
the probability of each device type being selected for a specific round
of the federation. Interestingly, all baselines behave similarly to the
random context, where every device has the same uniformly distributed
probability of being selected. Meanwhile, for EneA-FL the probability
of selecting the Jetson Nano with GPU and the Jetson Xavier with GPU
increases over the number of rounds, reaching the point where these
devices represent almost the totality of devices selected for the last
time stages of the federation. Similarly, the probability of selecting very
slow and energy-hungry devices such as the Raspberry Pi v4 decreases
over time, enabling efficiency improvements of FL. This behaviour
highlights the quality of our policy for selecting efficient devices over
their counterparts.

Table 5 shows the performance improvements obtained by EneA-FL
against the available worker selection approaches when time budgets
are considered.

6.4. Number of clients

Given the Magister focus on client selection, we here analyse the
impact of the number of selected devices per round on Magister ef-
fectiveness. The number of workers selected at each federation step
represents a fundamental parameter of FL settings, as it defines the
broadness of data gathered at each optimisation step. Selecting a higher
amount of workers for each round leads to a higher number of updates
for each round, but also to increased energy and latency. Therefore,
identifying smart workers selection policies such as Magister represents
a key aspect to efficiently optimise the federation while avoiding
selecting a high number of clients for each round.

To study the impact of the number of clients per round on the
federation, we consider selecting 𝑛 workers per round and let 𝑛 vary
between 10 and 80. Overall the federation consists of 100 devices,
therefore 𝑛 ranges from selecting only a small portion of the federa-
tion workers to almost selecting them all. We perform 10 federation
optimisation experiments for each 𝑛, letting the federation converge
to 97% accuracy when the optimisation process is stopped. Training
229
is performed over the MNIST dataset and for each experiment we keep
track of the (i)overall energy consumption; and (ii)total execution time.

Fig. 9 shows the results of our experiments. More in detail, Fig. 9(a)
presents the results concerning energy consumption. Here, it is relevant
to notice how Magister outperforms all selection baselines for almost
every value of 𝑛. For small 𝑛 values – e.g. 𝑛 = 30, 𝑛 = 40 – EneA-FL
requires almost 30% less amount of energy to converge to the same
accuracy level. Meanwhile, for higher 𝑛s the difference is less evident.
As the number of workers selected increases, Magister ends up selecting
both efficient and inefficient devices – since the number of efficient
devices is limited –, therefore decreasing the advantage of smart device
selection. Concerning the total execution time (Fig. 9(b)), EneA-FL
seems to perform similarly to the available client selection baselines,
while outperforming the standard FL setup.

6.5. Device discharge

One of the issues to face when dealing with FL scenarios in edge
and IoT domains is linked with the lifetime span of edge devices. In
particular, in real-world setups, it is common for the edge devices to
be battery-powered. Therefore, the devices belonging to the federa-
tion could suffer discharging issues, leaving the optimisation process
unattended. To study if – and to what extent – the proposed energy
management policy can help in these scenarios, we here study the effect
of device discharging on EneA-FL and compare it to the standard FL
scenario.

We model the discharging process of devices as an exponentially
distributed event over the federation rounds that a device can complete
and set its average value to be equal to a random value between 1
and 5. Therefore, in this experimental setup, each device belonging to
the federation is capable of completing a variable number of federation
rounds, after which it discharges completely and stops sending updates
if selected. To account for the discharge process, the proposed energy
management mechanism relies on a handicap ℎ value that is assigned
to the energy effectiveness score of each worker whenever it does not
provide an update to the aggregator (recall from Section 4.2.3). In
our experiments, we set ℎ = 5 and measure the average number of
discharged selected workers for each round. The measurements are
obtained over ten iterations of the experiments to account for process
variability.

Fig. 10 shows the percentage of dead selected devices over the
federation round, comparing EneA-FL with the selected baselines. As
expected, at first the number of discharged devices is zero, as it is
considered impossible for devices to join the federation when already
dead. The number of selected devices that cannot produce updates
increases over the first few steps of the federation process for both
approaches, as it is at this point that a few devices start to drain
their batteries. However, after a few rounds, the behaviours of EneA-FL
and the baselines diverge. Indeed, all baselines keep selecting devices
unable to produce updates, reaching peaks of up to 80% of selected
workers with drained batteries. Meanwhile, the energy management
approach kicks in for EneA-FL, showing a stable percentage of dead

Future Generation Computer Systems 154 (2024) 219–234A. Agiollo et al.
Fig. 9. Impact of the number of selected clients per round on energy consumption (a), and time execution (b) on MNIST dataset. Here, we consider training the federation to
reach a target accuracy of 97%.
Fig. 10. Percentage of selected dead devices for each round of optimisation.

devices selection. EneA-FL allows for this percentage to stay always
below 40%. This is thanks to the handicap given to devices that do
not produce any update. Moreover, it is also possible to notice that the
energy management mechanism allows the federation to converge more
rapidly, as the updates are more consistently produced by workers.
Finally, it is relevant to notice that although EneA-FL assigns handicap
to inactive devices, it is still impossible to avoid completely selecting
drained devices. Indeed, part of the EneA-FL selection process is ran-
dom. Moreover, it is also favourable to avoid disregarding completely
the drained devices, as they could become available once again if
charged during the federation optimisation process.

6.6. Impact of device type heterogeneity

When considering real-world scenarios where FL frameworks can
be deployed, one commonly changing aspect is represented by the het-
erogeneity of device types belonging to the federation, along with their
distribution. In this context, we refer to device type as to their hardware
component, thus indicating the seven different devices selected for our
experimentation. The distribution of these devices may vary radically
depending on the scenario at hand and this variability can impact
greatly the performance of the federation process. Therefore, it is
required to analyse the flexibility of a given FL framework towards
the different setups of device distributions that can be encountered.
230
Therefore, we here consider investigating how the device distribution
can impact the effectiveness of the proposed EneA-FL framework.

To study the impact of devices distribution on EneA-FL we consider
running different experiments where the distribution of device types
differ vastly. More in detail, we focus on the devices that are found
to be more efficient (see Fig. 5) and define three experimental setups
where the probability of the federation containing those devices varies.
In particular, we focus on the Jetson Nano with GPU and Jetson Xavier
with GPU devices. We then define three experimental setups, namely:

• Likely setup, where Jetson Nano with GPU and Jetson Xavier
with GPU are more likely to appear in the federation. Here, the
probability of a random device being one of these two types is
equal to 0.25.

• Uniform setup, where Jetson Nano with GPU and Jetson Xavier
with GPU are equally likely to appear in the federation. Here, the
probability of a random device being one of these two types is
0.14, similarly to the uniform device type distribution scenario
considered so far.

• Rare setup, where Jetson Nano with GPU and Jetson Xavier with
GPU are less likely to appear in the federation. Here, the proba-
bility of a random device being one of these two types is equal to
0.05.

Finally, we study whether EneA-FL and the standard FL selection policy
can select efficient devices. We focus solely on the standard FL baseline,
as previous experiments highlight the similarity between available
client selection policies and standard FL in terms of the distribution
of selected devices—see Fig. 8.

Fig. 11 shows the distribution of the selected device types over the
federation rounds for the standard FL scenario. Similarly to Fig. 8, the
size and the colour of each blob represent the probability of each device
type being selected for a specific round of the federation. As expected,
for the random selection policy, the distribution of the selected devices
follows the distribution of their deployment. Here, the probability of
an efficient device to be selected is equal throughout the optimisation,
being higher for the likely setup (Fig. 11(a)) and smaller for the rare
setup (Fig. 11(c)).

Fig. 12 shows the same distribution study for the EneA-FL setup.
Here, it is possible to notice that the probability of efficient devices
being selected increases over time, independently of their likelihood of
being in the federation or not. Indeed, in the likely setup (Fig. 12(a)) the
Jetson Nano with GPU and Jetson Xavier with GPU end up being almost
the only devices selected from the federation mechanism. Even in the

rare setup (Fig. 12(c)) the Jetson Nano with GPU and Jetson Xavier with

Future Generation Computer Systems 154 (2024) 219–234A. Agiollo et al.
Fig. 11. Distribution of selected devices for the standard FL policy over rounds when more efficient devices (Jetson Nano with GPU and Jetson Xavier with GPU) are more likely
(a), equally likely (b) or least likely to be selected.
Fig. 12. Distribution of selected devices for the EneA-FL policy over rounds when more efficient devices (Jetson Nano with GPU and Jetson Xavier with GPU) are more likely
(a), equally likely (b) or least likely (c) to be selected.
GPU end up being frequently selected devices, although there are only
a handful of those devices in the federation. Moreover, in the rare setup
it is relevant to notice that the other type of device popularly selected
ends up being the Jetson Orin with GPU which represents the third
most efficient solution according to our measurements. Finally, in all
setups, it is possible to see that the least efficient devices – e.g., Jetson
Orin without GPU and Jetson Nano without GPU – are also the least
popular selections, independently of their proportion.

The results show the superiority of EneA-FL over the standard FL
setups in terms of flexibility against device type distribution. Indeed,
EneA-FL is capable of selecting efficient devices even when such devices
represent a very small component of the federation devices.

7. Conclusion and future work

In this paper, we introduce EneA-FL, a novel serverless comput-
ing framework for FL in fog and constrained environments. In these
environments, the resource management of devices participating in
the learning process represents a fundamental component to take into
account, as possible discharging issues and high-update latency can
hinder the overall optimisation process. To tackle this issue, EneA-
FL presents a promising solution to enhance worker selection in FL
applications focusing on energy awareness, latency reduction and per-
formance improvements. To achieve its goal EneA-FL relies on three
novel components, namely (i) Energon – a novel energy monitoring tool
–; (ii) Furcifer – an ad-hoc orchestrator –; and (iii) Magister—an hybrid
energy management process. EneA-FL’s unique hybrid composition and
energy-conscious approach relies on a reputation system to balance
energy, latency, and performance of each device, by selecting the
most appropriate for each learning step. Extensive experiments show
that EneA-FL yields remarkable results, demonstrating a 30% to 60%
231
reduction in energy consumption, and faster convergence of models
to the target accuracy when compared to available client selection
policies.

In the future, we plan to expand the evaluation of EneA-FL to
encompass diverse learning tasks beyond the ones explored in this
paper. This will involve tackling challenges in graph learning [71,72]
and explainable AI [73,74], thus demonstrating the versatility and
applicability of our framework across various domains and cutting-edge
research areas.

CRediT authorship contribution statement

Andrea Agiollo: Conceptualization, Formal analysis, Investigation,
Methodology, Software, Validation, Visualization, Writing – original
draft, Writing – review & editing. Paolo Bellavista: Supervision, Writ-
ing – review & editing. Matteo Mendula: Conceptualization, Investiga-
tion, Software, Writing – original draft, Methodology, Writing – review
& editing. Andrea Omicini: Supervision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Links to all data and source codes are available in the paper.

Future Generation Computer Systems 154 (2024) 219–234A. Agiollo et al.
Acknowledgments

This paper was partially supported by (i) the CHIST-ERA IV project
‘‘Expectation’’ (CHIST-ERA-19-XAI-005), co-funded by EU and the Ital-
ian MUR; (ii) the ‘‘ENGINES – ENGineering INtElligent Systems around
intelligent agent technologies’’ project (20229ZXBZM) funded by the
PRIN 2022 MUR program; (iii) the ‘‘RESTART’’ project (PE00000001)
under the NRRP MUR program funded by the EU - NGEU; and (iv)
the ‘‘JOULE’’ project (2022TMT4WA) funded by the PRIN 2022 MUR
program.

References

[1] C. Zhang, Y. Xie, H. Bai, B. Yu, W. Li, Y. Gao, A survey on federated
learning, Knowl. Based Syst. 216 (2021) 106775, http://dx.doi.org/10.1016/j.
knosys.2021.106775.

[2] L. Lyu, H. Yu, Q. Yang, Threats to federated learning: A survey, 2020, CoRR
abs/2003.02133. URL: https://arxiv.org/abs/2003.02133.

[3] M. Aledhari, R. Razzak, R.M. Parizi, F. Saeed, Federated learning: A survey
on enabling technologies, protocols, and applications, IEEE Access 8 (2020)
140699–140725, http://dx.doi.org/10.1109/ACCESS.2020.3013541.

[4] A. Agiollo, E. Bardhi, M. Conti, N. Dal Fabbro, R. Lazzeretti, Anonymous
federated learning via named-data networking, Future Gener. Comput. Syst. 152
(2024) 288–303, http://dx.doi.org/10.1016/j.future.2023.11.009.

[5] A. Agiollo, A. Rafanelli, M. Magnini, G. Ciatto, A. Omicini, Symbolic knowledge
injection meets intelligent agents: QoS metrics and experiments, Auton. Agents
Multi-Agent Syst. 37 (2023) 27:1–27:30, http://dx.doi.org/10.1007/s10458-023-
09609-6.

[6] A. Agiollo, A. Rafanelli, A. Omicini, Towards quality-of-service metrics for
symbolic knowledge injection, in: WOA 2022–23rd Workshop from Objects to
Agents, in: CEUR Workshop Proceedings, vol. 3261, RWTH Aachen University,
Sun SITE Central Europe, 2022, pp. 30–47, URL: http://ceur-ws.org/Vol-3261/
paper3.pdf.

[7] T. Zhang, L. Gao, C. He, M. Zhang, B. Krishnamachari, A.S. Avestimehr,
Federated learning for the internet of things: Applications, challenges, and
opportunities, IEEE Internet Things Mag. 5 (2022) 24–29, URL: http://dx.doi.
org/10.1109/IOTM.004.2100182.

[8] A. Agiollo, M. Conti, P. Kaliyar, T. Lin, L. Pajola, DETONAR: Detection of routing
attacks in RPL-based IoT, IEEE Trans. Netw. Serv. Manag. 18 (2021) 1178–1190,
URL: https://ieeexplore.ieee.org/document/9415869.

[9] A. Agiollo, A. Omicini, Load classification: A case study for applying neural net-
works in hyper-constrained embedded devices, Appl. Sci. 11 (2021) URL: https:
//www.mdpi.com/2076-3417/11/24/11957, special Issue Artificial Intelligence
and Data Engineering in Engineering Applications.

[10] J. Sevilla, L. Heim, A. Ho, T. Besiroglu, M. Hobbhahn, P. Villalobos, Compute
trends across three eras of machine learning, in: International Joint Conference
on Neural Networks, IJCNN 2022, Padua, Italy, July 18-23, 2022, IEEE, 2022,
pp. 1–8, URL: http://dx.doi.org/10.1109/IJCNN55064.2022.9891914.

[11] O. Rudyy, M. Garcia-Gasulla, F. Mantovani, A. Santiago, R. Sirvent, M. Vázquez,
Containers in HPC: A scalability and portability study in production biological
simulations, in: 2019 IEEE International Parallel and Distributed Processing
Symposium, IPDPS 2019, Rio de Janeiro, Brazil, May 20-24, 2019, IEEE, 2019,
pp. 567–577, URL: http://dx.doi.org/10.1109/IPDPS.2019.00066.

[12] L.P. Dewi, A. Noertjahyana, H.N. Palit, K. Yedutun, Server scalability using
kubernetes, in: 2019 4th Technology Innovation Management and Engineering
Science International Conference (TIMES-ICON), 2019, pp. 1–4, http://dx.doi.
org/10.1109/TIMES-iCON47539.2019.9024501.

[13] Z. Zhong, M. Xu, M.A. Rodriguez, C. Xu, R. Buyya, Machine learning-based
orchestration of containers: A taxonomy and future directions, ACM Comput.
Surv. 54 (2022) URL: http://dx.doi.org/10.1145/3510415.

[14] M.M. Rovnyagin, A.S. Hrapov, A.V. Guminskaia, A.P. Orlov, Ml-based heteroge-
neous container orchestration architecture, in: 2020 IEEE Conference of Russian
Young Researchers in Electrical and Electronic Engineering (EIConRus), 2020,
pp. 477–481, http://dx.doi.org/10.1109/EIConRus49466.2020.9039033.

[15] Z. Zhong, M. Xu, M.A. Rodriguez, C. Xu, R. Buyya, Machine learning-based
orchestration of containers: A taxonomy and future directions, ACM Comput.
Surv. 54 (2022) 217:1–217:35, URL: http://dx.doi.org/10.1145/3510415.

[16] P. Xu, S. Shi, X. Chu, Performance evaluation of deep learning tools in docker
containers, in: 2017 3rd International Conference on Big Data Computing
and Communications (BIGCOM), 2017, pp. 395–403, URL: http://dx.doi.org/10.
1109/BIGCOM.2017.32.

[17] A. Grafberger, M. Chadha, A. Jindal, J. Gu, M. Gerndt, FedLess: Secure and scal-
able federated learning using serverless computing, in: 2021 IEEE International
Conference on Big Data (Big Data), 2021, pp. 164–173, http://dx.doi.org/10.
232

1109/BigData52589.2021.9672067.
[18] P. Singh, M. Masud, M.S. Hossain, A. Kaur, G. Muhammad, A. Ghoneim, Privacy-
preserving serverless computing using federated learning for smart grids, IEEE
Trans. Ind. Inform. 18 (2022) 7843–7852, http://dx.doi.org/10.1109/TII.2021.
3126883.

[19] S. Yi, C. Li, Q. Li, A survey of fog computing: Concepts, applications and
issues, in: Proceedings of the 2015 Workshop on Mobile Big Data, Mobidata
’15, Association for Computing Machinery, 2015, pp. 37–42, URL: http://dx.doi.
org/10.1145/2757384.2757397.

[20] C. Puliafito, E. Mingozzi, F. Longo, A. Puliafito, O. Rana, Fog computing for
the internet of things, ACM Trans. Internet Technol. 19 (2019) 1–41, URL:
http://dx.doi.org/10.1145/3301443.

[21] M. Ghobaei-Arani, A. Souri, A.A. Rahmanian, Resource management approaches
in fog computing: a comprehensive review, J. Grid Comput. 18 (2019) 1–42,
URL: http://dx.doi.org/10.1007/s10723-019-09491-1.

[22] A.M.A. Hamdi, F.K. Hussain, O.K. Hussain, Task offloading in vehicular fog
computing: State-of-the-art and open issues, Future Gener. Comput. Syst. 133
(2022) 201–212, URL: http://dx.doi.org/10.1016/j.future.2022.03.019.

[23] M. Hussein, M. Mousa, Efficient task offloading for IoT-based applications in fog
computing using ant colony optimization, IEEE Access 8 (2020) 37191–37201,
URL: http://dx.doi.org/10.1109/ACCESS.2020.2975741.

[24] H. Zhou, T. Wu, X. Chen, S. He, D. Guo, J. Wu, Reverse auction-based
computation offloading and resource allocation in mobile cloud-edge computing,
IEEE Trans. Mob. Comput. 22 (2023) 6144–6159, URL: http://dx.doi.org/10.
1109/TMC.2022.3189050.

[25] F. Shan, J. Luo, J. Jin, W. Wu, Offloading delay constrained transparent
computing tasks with energy-efficient transmission power scheduling in wireless
iot environment, IEEE Internet Things J. 6 (2019) 4411–4422, http://dx.doi.org/
10.1109/JIOT.2018.2883903.

[26] J. Weiner, N. Agarwal, D. Schatzberg, L. Yang, H. Wang, B. Sanouillet, B.
Sharma, T. Heo, M. Jain, C. Tang, D. Skarlatos, TMO: transparent memory
offloading in datacenters, in: ASPLOS ’22: 27th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems,
Lausanne, Switzerland, 28 February 2022 - 4 March 2022, ACM, 2022, pp.
609–621, URL: http://dx.doi.org/10.1145/3503222.3507731.

[27] W. Zhang, Z. Zhang, H. Chao, Cooperative fog computing for dealing with
big data in the internet of vehicles: Architecture and hierarchical resource
management, IEEE Commun. Mag. 55 (2017) 60–67, URL: http://dx.doi.org/
10.1109/MCOM.2017.1700208.

[28] H. Gupta, A. Vahid Dastjerdi, S.K. Ghosh, R. Buyya, IFogSim: A toolkit for
modeling and simulation of resource management techniques in the internet of
things, edge and fog computing environments, Softw. - Pract. Exp. 47 (2017)
1275–1296, URL: http://dx.doi.org/10.1002/spe.2509.

[29] R.N. Calheiros, R. Ranjan, A. Beloglazov, C.A.F.D. Rose, R. Buyya, CloudSim:
a toolkit for modeling and simulation of cloud computing environments and
evaluation of resource provisioning algorithms, Softw. - Pract. Exp. 41 (2010)
23–50, URL: http://dx.doi.org/10.1002/spe.995.

[30] C. Puliafito, D.M. Gonçalves, M.M. Lopes, L.L. Martins, E. Madeira, E. Mingozzi,
O. Rana, L.F. Bittencourt, MobFogSim: Simulation of mobility and migration for
fog computing, Simul. Model. Pract. Theory 101 (2020) 102062, URL: https://
www.sciencedirect.com/science/article/pii/S1569190X19301935, modeling and
Simulation of Fog Computing.

[31] X. Zhao, L. Zhao, K. Liang, An energy consumption oriented offloading algorithm
for fog computing, in: Quality, Reliability, Security and Robustness in Heteroge-
neous Networks - 12th International Conference, QShine 2016, Seoul, Korea, July
7-8, 2016, Proceedings, in: Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering, vol. 199, Springer,
2016, pp. 293–301, URL: http://dx.doi.org/10.1007/978-3-319-60717-7_29.

[32] X. Meng, W. Wang, Z. Zhang, Delay-constrained hybrid computation offloading
with cloud and fog computing, IEEE Access 5 (2017) 21355–21367, http://dx.
doi.org/10.1109/ACCESS.2017.2748140.

[33] S. Ahn, M. Gorlatova, M. Chiang, Leveraging fog and cloud computing for
efficient computational offloading, in: 2017 IEEE MIT Undergraduate Research
Technology Conference (URTC), IEEE, 2017, http://dx.doi.org/10.1109/urtc.
2017.8284203.

[34] D.C. Nguyen, M. Ding, P.N. Pathirana, A. Seneviratne, J. Li, H.V. Poor, Federated
learning for internet of things: A comprehensive survey, IEEE Commun. Surv.
Tutor. 23 (2021) 1622–1658, URL: http://dx.doi.org/10.1109/COMST.2021.
3075439.

[35] A. Imteaj, U. Thakker, S. Wang, J. Li, M.H. Amini, A survey on federated learning
for resource-constrained IoT devices, IEEE Internet Things J. 9 (2022) 1–24,
http://dx.doi.org/10.1109/JIOT.2021.3095077.

[36] S. Wu, G. Li, F. Chen, L. Shi, Training and inference with integers in deep
neural networks, in: 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3 2018, Conference
Track Proceedings, OpenReview.net, 2018, URL: https://openreview.net/forum?

id#HJGXzmspb.

http://dx.doi.org/10.1016/j.knosys.2021.106775
http://dx.doi.org/10.1016/j.knosys.2021.106775
http://dx.doi.org/10.1016/j.knosys.2021.106775
http://arxiv.org/abs/2003.02133
https://arxiv.org/abs/2003.02133
http://dx.doi.org/10.1109/ACCESS.2020.3013541
http://dx.doi.org/10.1016/j.future.2023.11.009
http://dx.doi.org/10.1007/s10458-023-09609-6
http://dx.doi.org/10.1007/s10458-023-09609-6
http://dx.doi.org/10.1007/s10458-023-09609-6
http://ceur-ws.org/Vol-3261/paper3.pdf
http://ceur-ws.org/Vol-3261/paper3.pdf
http://ceur-ws.org/Vol-3261/paper3.pdf
http://dx.doi.org/10.1109/IOTM.004.2100182
http://dx.doi.org/10.1109/IOTM.004.2100182
http://dx.doi.org/10.1109/IOTM.004.2100182
https://ieeexplore.ieee.org/document/9415869
https://www.mdpi.com/2076-3417/11/24/11957
https://www.mdpi.com/2076-3417/11/24/11957
https://www.mdpi.com/2076-3417/11/24/11957
http://dx.doi.org/10.1109/IJCNN55064.2022.9891914
http://dx.doi.org/10.1109/IPDPS.2019.00066
http://dx.doi.org/10.1109/TIMES-iCON47539.2019.9024501
http://dx.doi.org/10.1109/TIMES-iCON47539.2019.9024501
http://dx.doi.org/10.1109/TIMES-iCON47539.2019.9024501
http://dx.doi.org/10.1145/3510415
http://dx.doi.org/10.1109/EIConRus49466.2020.9039033
http://dx.doi.org/10.1145/3510415
http://dx.doi.org/10.1109/BIGCOM.2017.32
http://dx.doi.org/10.1109/BIGCOM.2017.32
http://dx.doi.org/10.1109/BIGCOM.2017.32
http://dx.doi.org/10.1109/BigData52589.2021.9672067
http://dx.doi.org/10.1109/BigData52589.2021.9672067
http://dx.doi.org/10.1109/BigData52589.2021.9672067
http://dx.doi.org/10.1109/TII.2021.3126883
http://dx.doi.org/10.1109/TII.2021.3126883
http://dx.doi.org/10.1109/TII.2021.3126883
http://dx.doi.org/10.1145/2757384.2757397
http://dx.doi.org/10.1145/2757384.2757397
http://dx.doi.org/10.1145/2757384.2757397
http://dx.doi.org/10.1145/3301443
http://dx.doi.org/10.1007/s10723-019-09491-1
http://dx.doi.org/10.1016/j.future.2022.03.019
http://dx.doi.org/10.1109/ACCESS.2020.2975741
http://dx.doi.org/10.1109/TMC.2022.3189050
http://dx.doi.org/10.1109/TMC.2022.3189050
http://dx.doi.org/10.1109/TMC.2022.3189050
http://dx.doi.org/10.1109/JIOT.2018.2883903
http://dx.doi.org/10.1109/JIOT.2018.2883903
http://dx.doi.org/10.1109/JIOT.2018.2883903
http://dx.doi.org/10.1145/3503222.3507731
http://dx.doi.org/10.1109/MCOM.2017.1700208
http://dx.doi.org/10.1109/MCOM.2017.1700208
http://dx.doi.org/10.1109/MCOM.2017.1700208
http://dx.doi.org/10.1002/spe.2509
http://dx.doi.org/10.1002/spe.995
https://www.sciencedirect.com/science/article/pii/S1569190X19301935
https://www.sciencedirect.com/science/article/pii/S1569190X19301935
https://www.sciencedirect.com/science/article/pii/S1569190X19301935
http://dx.doi.org/10.1007/978-3-319-60717-7_29
http://dx.doi.org/10.1109/ACCESS.2017.2748140
http://dx.doi.org/10.1109/ACCESS.2017.2748140
http://dx.doi.org/10.1109/ACCESS.2017.2748140
http://dx.doi.org/10.1109/urtc.2017.8284203
http://dx.doi.org/10.1109/urtc.2017.8284203
http://dx.doi.org/10.1109/urtc.2017.8284203
http://dx.doi.org/10.1109/COMST.2021.3075439
http://dx.doi.org/10.1109/COMST.2021.3075439
http://dx.doi.org/10.1109/COMST.2021.3075439
http://dx.doi.org/10.1109/JIOT.2021.3095077
https://openreview.net/forum?id#HJGXzmspb
https://openreview.net/forum?id#HJGXzmspb
https://openreview.net/forum?id#HJGXzmspb

Future Generation Computer Systems 154 (2024) 219–234A. Agiollo et al.
[37] P. Jain, A. Jain, A. Nrusimha, A. Gholami, P. Abbeel, K. Keutzer, I.
Stoica, J. Gonzalez, Checkmate: Breaking the memory wall with opti-
mal tensor rematerialization, in: Proceedings of Machine Learning and
Systems 2020, MLSys 2020, Austin, TX, USA, March 2-4, 2020, ml-
sys.org, 2020, URL: https://proceedings.mlsys.org/paper_files/paper/2020/hash/
0b816ae8f06f8dd3543dc3d9ef196cab-Abstract.html.

[38] T. Chen, B. Xu, C. Zhang, C. Guestrin, Training deep nets with sublinear memory
cost, 2016, CoRR abs/1604.06174. URL: http://arxiv.org/abs/1604.06174.

[39] H. Cai, C. Gan, L. Zhu, S. Han, TinyTL: Reduce memory, not parameters for effi-
cient on-device learning, in: Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, Virtual, 2020, URL: https://proceedings.neurips.cc/
paper/2020/hash/81f7acabd411274fcf65ce2070ed568a-Abstract.html.

[40] S. Trindade, L.F. Bittencourt, N.L.S. da Fonseca, Management of resource at
the network edge for federated learning, 2021, CoRR abs/2107.03428. URL:
https://arxiv.org/abs/2107.03428.

[41] Z. Yang, M. Chen, W. Saad, C.S. Hong, M. Shikh-Bahaei, Energy efficient
federated learning over wireless communication networks, IEEE Trans. Wireless
Commun. 20 (2021) 1935–1949, URL: http://dx.doi.org/10.1109/TWC.2020.
3037554.

[42] C.W. Zaw, C.S. Hong, A decentralized game theoretic approach for energy-aware
resource management in federated learning, in: IEEE International Conference
on Big Data and Smart Computing, BigComp 2021, Jeju Island, South Korea,
January 17-20, 2021, IEEE, 2021, pp. 133–136, URL: http://dx.doi.org/10.1109/
BigComp51126.2021.00033.

[43] J.F. Nash Jr., Equilibrium points in n-person games, Proc. Natl. Acad. Sci. 36
(1950) 48–49.

[44] Y. Xu, Y. Liao, H. Xu, Z. Ma, L. Wang, J. Liu, Adaptive control of local
updating and model compression for efficient federated learning, IEEE Trans.
Mob. Comput. (2022) URL: http://dx.doi.org/10.1109/TMC.2022.3186936.

[45] Y. Cui, K. Cao, G. Cao, M. Qiu, T. Wei, Client scheduling and resource
management for efficient training in heterogeneous IoT-edge federated learning,
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 41 (2022) 2407–2420, URL:
http://dx.doi.org/10.1109/TCAD.2021.3110743.

[46] F. Lai, X. Zhu, H.V. Madhyastha, M. Chowdhury, Oort: Efficient federated
learning via guided participant selection, in: 15th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2021, July 14-16, 2021,
USENIX Association, 2021, pp. 19–35, URL: https://www.usenix.org/conference/
osdi21/presentation/lai.

[47] A. Arouj, A.M. Abdelmoniem, Towards energy-aware federated learning on
battery-powered clients, 2022, CoRR abs/2208.04505. URL: http://dx.doi.org/
10.48550/arXiv.2208.04505.

[48] Y.J. Cho, J. Wang, G. Joshi, Client selection in federated learning: Convergence
analysis and power-of-choice selection strategies, 2020, CoRR abs/2010.01243.
URL: https://arxiv.org/abs/2010.01243.

[49] Y.G. Kim, C. Wu, AutoFL: Enabling heterogeneity-aware energy efficient feder-
ated learning, in: MICRO ’21: 54th Annual IEEE/ACM International Symposium
on Microarchitecture, Virtual Event, Greece, October 18-22, 2021, ACM, 2021,
pp. 183–198, URL: http://dx.doi.org/10.1145/3466752.3480129.

[50] S. Wang, T. Tuor, T. Salonidis, K.K. Leung, C. Makaya, T. He, K. Chan, Adaptive
federated learning in resource constrained edge computing systems, IEEE J. Sel.
Areas Commun. 37 (2019) 1205–1221, http://dx.doi.org/10.1109/JSAC.2019.
2904348.

[51] C. He, E. Ceyani, K. Balasubramanian, M. Annavaram, S. Avestimehr, Spread-
GNN: Serverless multi-task federated learning for graph neural networks, 2021,
CoRR abs/2106.02743. URL: https://arxiv.org/abs/2106.02743.

[52] B. Rabenstein, J. Volz, Prometheus: A next-generation monitoring system (talk),
in: SRECon15 Europe, USENIX Association, Dublin, 2015, URL: https://www.
usenix.org/conference/srecon15europe/program/presentation/rabenstein.

[53] E.K. Lua, J. Crowcroft, M. Pias, R. Sharma, S. Lim, A survey and comparison
of peer-to-peer overlay network schemes, IEEE Commun. Surv. Tutor. 7 (2005)
72–93.

[54] P. Bellavista, C. Giannelli, M. Mamei, M. Mendula, M. Picone, Application-driven
network-aware digital twin management in industrial edge environments, IEEE
Trans. Ind. Inform. 17 (2021) 7791–7801, http://dx.doi.org/10.1109/TII.2021.
3067447.

[55] F. Meneghello, M. Calore, D. Zucchetto, M. Polese, A. Zanella, Iot: Internet of
threats? A survey of practical security vulnerabilities in real iot devices, IEEE
Internet Things J. 6 (2019) 8182–8201, URL: http://dx.doi.org/10.1109/JIOT.
2019.2935189.

[56] H. Wu, P. Wang, Node selection toward faster convergence for federated learning
on non-IID data, IEEE Trans. Netw. Sci. Eng. 9 (2022) 3099–3111, URL: http:
//dx.doi.org/10.1109/TNSE.2022.3146399.

[57] Y.J. Cho, J. Wang, G. Joshi, Client selection in federated learning: Convergence
analysis and power-of-choice selection strategies, 2020, CoRR abs/2010.01243.
233

URL: https://arxiv.org/abs/2010.01243.
[58] H. Wu, P. Wang, Fast-convergent federated learning with adaptive weighting,
IEEE Trans. Cognit. Commun. Netw. 7 (2021) 1078–1088, http://dx.doi.org/10.
1109/TCCN.2021.3084406.

[59] G. Rjoub, O.A. Wahab, J. Bentahar, A. Bataineh, Trust-driven reinforcement
selection strategy for federated learning on IoT devices, Computing (2022) URL:
http://dx.doi.org/10.1007/s00607-022-01078-1.

[60] C. Mazzocca, N. Romandini, M. Mendula, R. Montanari, P. Bellavista, TruFLaaS:
Trustworthy federated learning as a service, IEEE Internet Things J. (2023) 1,
http://dx.doi.org/10.1109/JIOT.2023.3282899.

[61] X. Shen, Z. Li, X. Chen, Node selection strategy design based on reputation
mechanism for hierarchical federated learning, in: 18th International Conference
on Mobility, Sensing and Networking, MSN 2022, Guangzhou, China, Decem-
ber (2022) 14-16, IEEE, 2022, pp. 718–722, URL: http://dx.doi.org/10.1109/
MSN57253.2022.00117.

[62] M. Aloqaily, I.A. Ridhawi, M. Guizani, Energy-aware blockchain and federated
learning-supported vehicular networks, IEEE Trans. Intell. Transp. Syst. 23 (2022)
22641–22652, URL: http://dx.doi.org/10.1109/TITS.2021.3103645.

[63] M. Mendula, P. Bellavista, Energy-aware edge federated learning for enhanced
reliability and sustainability, in: 7th IEEE/ACM Symposium on Edge Computing,
SEC 2022, Seattle, WA, USA, December 5-8, 2022, IEEE, 2022, pp. 349–354,
http://dx.doi.org/10.1109/SEC54971.2022.00051.

[64] B. McMahan, E. Moore, D. Ramage, S. Hampson, B.A. y Arcas, Communication-
efficient learning of deep networks from decentralized data, in: Proceedings
of the 20th International Conference on Artificial Intelligence and Statistics,
AISTATS 2017 20-22 April 2017, Fort Lauderdale, FL, USA, in: Proceedings
of Machine Learning Research, vol. 54, PMLR, 2017, pp. 1273–1282, URL:
http://proceedings.mlr.press/v54/mcmahan17a.html.

[65] K. Pillutla, S.M. Kakade, Z. Harchaoui, Robust aggregation for federated learning,
IEEE Trans. Signal Process. 70 (2022) 1142–1154, URL: http://dx.doi.org/10.
1109/TSP.2022.3153135.

[66] X. Ma, J. Zhang, S. Guo, W. Xu, Layer-wised model aggregation for personalized
federated learning, in: IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2022, New Orleans, la, USA, June 18-24, 2022, IEEE, 2022,
pp. 10082–10091, URL: http://dx.doi.org/10.1109/CVPR52688.2022.00985.

[67] S. Caldas, P. Wu, T. Li, J. Konečný, H.B. McMahan, V. Smith, A. Talwalkar,
LEAF: A benchmark for federated settings, 2018, CoRR abs/1812.01097. URL:
http://arxiv.org/abs/1812.01097.

[68] Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai, D. Breitenbacher,
Y. Elovici, N-baIoT - network-based detection of IoT botnet attacks using deep
autoencoders, IEEE Pervasive Comput. 17 (2018) 12–22, http://dx.doi.org/10.
1109/MPRV.2018.03367731.

[69] R.J. Tallarida, R.B. Murray, Area under a curve: Trapezoidal and simpson’s
rules, in: Manual of Pharmacologic Calculations, Springer, 1987, pp. 77–81,
http://dx.doi.org/10.1007/978-1-4612-4974-0_26.

[70] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E.Z. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, Pytorch: An
imperative style, high-performance deep learning library, in: Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, 2019, pp. 8024–8035, URL: https://proceedings.neurips.cc/paper/2019/
hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

[71] A. Agiollo, A. Omicini, GNN2GNN: Graph neural networks to generate neural
networks, in: Uncertainty in Artificial Intelligence, in: Proceedings of Machine
Learning Research, vol. 180, ML Research Press, 2022, pp. 32–42, URL: https:
//proceedings.mlr.press/v180/agiollo22a.html, proceedings of the Thirty-Eighth
Conference on Uncertainty in Artificial Intelligence, UAI 2022 1-5 August 2022,
Eindhoven, The Netherlands.

[72] A. Agiollo, E. Bardhi, M. Conti, R. Lazzeretti, E. Losiouk, A. Omicini, GNN4ifa:
Interest flooding attack detection with graph neural networks, in: 2023 IEEE
8th European Symposium on Security and Privacy (EuroS & P), IEEE Computer
Society, 2023, pp. 615–630, URL: https://www.computer.org/csdl/proceedings-
article/eurosp/2023/651200a615.

[73] T.T. Huong, P.B. Ta, H. Kieu, N.V. Hoang, N.X. Hoang, N.T. Hung, K.P.
Tran, Federated learning-based explainable anomaly detection for industrial
control systems, IEEE Access 10 (2022) 53854–53872, http://dx.doi.org/10.
1109/ACCESS.2022.3173288.

[74] A. Agiollo, L.C. Siebert, P.K. Murukannaiah, A. Omicini, The quarrel of local post-
hoc explainers for moral values classification in natural language processing, in:
D. Calvaresi, A. Najjar, A. Omicini, R. Aydoǧan, R. Carli, G. Ciatto, Y. Mualla,
K. Främling (Eds.), Explainable and Transparent AI and Multi-Agent Systems,
in: Lecture Notes in Computer Science, vol. 14127, Springer, 2023, pp. 97–115,
http://dx.doi.org/10.1007/978-3-031-40878-6_6.

https://proceedings.mlsys.org/paper_files/paper/2020/hash/0b816ae8f06f8dd3543dc3d9ef196cab-Abstract.html
https://proceedings.mlsys.org/paper_files/paper/2020/hash/0b816ae8f06f8dd3543dc3d9ef196cab-Abstract.html
https://proceedings.mlsys.org/paper_files/paper/2020/hash/0b816ae8f06f8dd3543dc3d9ef196cab-Abstract.html
http://arxiv.org/abs/1604.06174
http://arxiv.org/abs/1604.06174
https://proceedings.neurips.cc/paper/2020/hash/81f7acabd411274fcf65ce2070ed568a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/81f7acabd411274fcf65ce2070ed568a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/81f7acabd411274fcf65ce2070ed568a-Abstract.html
http://arxiv.org/abs/2107.03428
https://arxiv.org/abs/2107.03428
http://dx.doi.org/10.1109/TWC.2020.3037554
http://dx.doi.org/10.1109/TWC.2020.3037554
http://dx.doi.org/10.1109/TWC.2020.3037554
http://dx.doi.org/10.1109/BigComp51126.2021.00033
http://dx.doi.org/10.1109/BigComp51126.2021.00033
http://dx.doi.org/10.1109/BigComp51126.2021.00033
http://refhub.elsevier.com/S0167-739X(24)00007-4/sb43
http://refhub.elsevier.com/S0167-739X(24)00007-4/sb43
http://refhub.elsevier.com/S0167-739X(24)00007-4/sb43
http://dx.doi.org/10.1109/TMC.2022.3186936
http://dx.doi.org/10.1109/TCAD.2021.3110743
https://www.usenix.org/conference/osdi21/presentation/lai
https://www.usenix.org/conference/osdi21/presentation/lai
https://www.usenix.org/conference/osdi21/presentation/lai
http://arxiv.org/abs/2208.04505
http://dx.doi.org/10.48550/arXiv.2208.04505
http://dx.doi.org/10.48550/arXiv.2208.04505
http://dx.doi.org/10.48550/arXiv.2208.04505
http://arxiv.org/abs/2010.01243
https://arxiv.org/abs/2010.01243
http://dx.doi.org/10.1145/3466752.3480129
http://dx.doi.org/10.1109/JSAC.2019.2904348
http://dx.doi.org/10.1109/JSAC.2019.2904348
http://dx.doi.org/10.1109/JSAC.2019.2904348
http://arxiv.org/abs/2106.02743
https://arxiv.org/abs/2106.02743
https://www.usenix.org/conference/srecon15europe/program/presentation/rabenstein
https://www.usenix.org/conference/srecon15europe/program/presentation/rabenstein
https://www.usenix.org/conference/srecon15europe/program/presentation/rabenstein
http://refhub.elsevier.com/S0167-739X(24)00007-4/sb53
http://refhub.elsevier.com/S0167-739X(24)00007-4/sb53
http://refhub.elsevier.com/S0167-739X(24)00007-4/sb53
http://refhub.elsevier.com/S0167-739X(24)00007-4/sb53
http://refhub.elsevier.com/S0167-739X(24)00007-4/sb53
http://dx.doi.org/10.1109/TII.2021.3067447
http://dx.doi.org/10.1109/TII.2021.3067447
http://dx.doi.org/10.1109/TII.2021.3067447
http://dx.doi.org/10.1109/JIOT.2019.2935189
http://dx.doi.org/10.1109/JIOT.2019.2935189
http://dx.doi.org/10.1109/JIOT.2019.2935189
http://dx.doi.org/10.1109/TNSE.2022.3146399
http://dx.doi.org/10.1109/TNSE.2022.3146399
http://dx.doi.org/10.1109/TNSE.2022.3146399
http://arxiv.org/abs/2010.01243
https://arxiv.org/abs/2010.01243
http://dx.doi.org/10.1109/TCCN.2021.3084406
http://dx.doi.org/10.1109/TCCN.2021.3084406
http://dx.doi.org/10.1109/TCCN.2021.3084406
http://dx.doi.org/10.1007/s00607-022-01078-1
http://dx.doi.org/10.1109/JIOT.2023.3282899
http://dx.doi.org/10.1109/MSN57253.2022.00117
http://dx.doi.org/10.1109/MSN57253.2022.00117
http://dx.doi.org/10.1109/MSN57253.2022.00117
http://dx.doi.org/10.1109/TITS.2021.3103645
http://dx.doi.org/10.1109/SEC54971.2022.00051
http://proceedings.mlr.press/v54/mcmahan17a.html
http://dx.doi.org/10.1109/TSP.2022.3153135
http://dx.doi.org/10.1109/TSP.2022.3153135
http://dx.doi.org/10.1109/TSP.2022.3153135
http://dx.doi.org/10.1109/CVPR52688.2022.00985
http://arxiv.org/abs/1812.01097
http://arxiv.org/abs/1812.01097
http://dx.doi.org/10.1109/MPRV.2018.03367731
http://dx.doi.org/10.1109/MPRV.2018.03367731
http://dx.doi.org/10.1109/MPRV.2018.03367731
http://dx.doi.org/10.1007/978-1-4612-4974-0_26
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.mlr.press/v180/agiollo22a.html
https://proceedings.mlr.press/v180/agiollo22a.html
https://proceedings.mlr.press/v180/agiollo22a.html
https://www.computer.org/csdl/proceedings-article/eurosp/2023/651200a615
https://www.computer.org/csdl/proceedings-article/eurosp/2023/651200a615
https://www.computer.org/csdl/proceedings-article/eurosp/2023/651200a615
http://dx.doi.org/10.1109/ACCESS.2022.3173288
http://dx.doi.org/10.1109/ACCESS.2022.3173288
http://dx.doi.org/10.1109/ACCESS.2022.3173288
http://dx.doi.org/10.1007/978-3-031-40878-6_6

Future Generation Computer Systems 154 (2024) 219–234A. Agiollo et al.
Andrea Agiollo received the Bachelor of Information En-
gineering degree from the University of Padua, Italy, in
2018, the first master’s degree in information and com-
munication technologies for Internet and multimedia from
the University of Padua in 2020, and the second master’s
degree in communication engineering from National Taiwan
University, Taiwan, in 2020. He is currently pursuing the
Ph.D. degree in computer science and engineering with the
University of Bologna, Italy, in collaboration with Electrolux
Professional S.P.A. From October 2022 to February 2023, he
was with Delft University of Technology in the Netherlands
as a visiting Ph.D. student, and from August 2023 to
November 2023 he joined Purdue University with the same
position. His research interests include machine learning in
resource-constrained environments, neuro-symbolic artificial
intelligence, explainable artificial intelligence, and network
security.

Paolo Bellavista received the Ph.D. degree in computer
science engineering from the University of Bologna, Italy, in
2001. He is currently a Full Professor with the University
of Bologna. His research interests include middleware for
mobile computing, QoS management in the cloud contin-
uum, infrastructures for big data processing in industrial
environments, and performance optimisation in wide-scale
and latency-sensitive deployment environments. He serves
on the Editorial Boards of IEEE Communications Surveys
and Tutorials, IEEE Transactions on Network and Service
Management, IEEE Transactions on Service Computing,
ACM CSUR, ACM TIOT, and PMC (Elsevier). He is the
Scientific Coordinator of the H2020 IoTwins Project (https:
//www.iotwins.eu).
234
Matteo Mendula received the M.Sc. degree in software
engineering at the University of Bologna, Italy, in 2020. He
is currently enrolled as a Ph.D. student at the Department of
Computer Science and Engineering, University of Bologna.
His main research interests include Big Data processing
and distributed learning on the edges of the network. In
particular, his research relates to architectural aspects and
Machine Learning enhanced techniques in fog computing
scenarios.

Andrea Omicini is Full Professor of the Alma Mater
Studiorum–Universitá di Bologna, and holds a Ph.D. in
Computer & Electronic Engineering. He has published over
350 articles on multi-agent systems, intelligent systems
engineering, computational logic, explainable AI, agreement
technologies, self-organising systems, simulation, and per-
vasive systems. He is currently teaching intelligent systems
engineering, multi-agent systems, and distributed systems.

https://www.iotwins.eu
https://www.iotwins.eu

	EneA-FL: Energy-aware orchestration for serverless federated learning
	Introduction
	Related work
	FL Energy Consumption Modelling in Fog Deployment Environments
	The EneA-FLserverless middleware
	Serverless Computing and Energy Awareness in Constrained Scenarios
	EneA-FL architecture
	Energon for transparent energy awareness
	Furcifer : Container orchestrator for IoT devices
	Magister for fog-oriented context switch decision making

	Experimentation Testbed and Experiment Preliminaries
	FL training process and model complexity
	Container vs. Operating System FL training execution
	Container startup latency assessment
	Energy consumption and training execution time on IoT devices

	EneA-FL performance results and discussion
	Experiments setup
	Ablation study
	α and β values
	k values

	Resources budget
	Number of clients
	Device discharge
	Impact of device type heterogeneity

	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

