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and Sonia Silvestri b
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ABSTRACT

Aboveground biomass (AGB) can serve as an indicator when estimating various biogeochemical 
processes in peatlands, an ecosystem which provides countless ecosystem services and plays a key 
role in climate regulation. While remote sensing has been extensively employed to assess AGB 
across vast areas in forested peatlands its application to small and treeless peatlands, which are 
typical of the alpine regions, has been limited. Due to the characteristics of peatlands, innovative 
approaches capable of capturing their fine-scale, highly heterogeneous and short-stature vegeta-
tion cover are needed. Likewise, other key requirements include an ability to overcome site 
accessibility barriers, cost-effective acquisition of datasets and minimizing damage of these pro-
tected habitats. Hence, the utilization of Unmanned Aerial Vehicles (UAVs) offers a viable means for 
mapping AGB in alpine peatlands. In this study, the AGB of the Val di Ciampo alpine peatland 
(Veneto Region, Italy) was estimated by combining datasets derived from in situ vegetation 
samples as well as UAV-based LiDAR, hyperspectral and RGB sensors. A limited number of vegeta-
tion samples were used to reduce the impact of the study on the ecosystem. The results indicate 
that a linear regression can model the relationship between AGB and Leaf Area Index (LAI) with 
a significant explanatory ability (R2 = 0.72; p < 0.001). Several indices derived from digital terrain 
model (DTM) morphologies, hyperspectral data, and orthophotos were tested using a multiple 
regression approach to determine their potential to enhance the model’s performance. Among 
these only the Double Difference (DD) index, derived from hyperspectral data, was found to 
slightly improve the model’s explanatory ability (R2 = 0.76). Overall, the findings of this study 
suggest that UAV LiDAR data provides the most reliable solution for estimating AGB in alpine 
peatlands, while the inclusion of hyperspectral data provides only a minor improvement in 
accuracy.
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Introduction

Aboveground biomass (AGB) is a vegetation cover 
property that is challenging to quantify in a spatially 
accurate manner since the sparse information derived 
from in situ point sampling fails to effectively charac-
terize the complex spatial distribution. Remote sen-
sing has been used for decades to estimate biomass 
spatial patterns (Lu 2006). It provides a fast and cost- 
effective approach to capture large research areas 
and uniform plant phenology states and ensures 
a greater level of repeatability compared to field sam-
pling approaches (Czapiewski and Szumińska 2021). 
The primary difficulty in estimating AGB in alpine 
peatlands stems from their small size and limited 

accessibility. These sites are often smaller than 1 hec-
tare and feature highly complex and heterogeneous 
herbaceous vegetation cover (Bragazza 1996, 2006; 
Bragazza and Gerdol 1999; Bragazza, Rydin, and 
Gerdol 2005; Gerdol and Tomaselli 1984; Gerdol, 
Tomaselli and Bragazza 1994). Therefore, even though 
satellite remote sensing has been widely applied to 
study peatlands in general (Czapiewski and 
Szumińska 2021), very-high to ultra-high spatial reso-
lution remote sensing datasets should be used in the 
case of alpine peatlands to avoid erroneous land-
scape-level estimates of vegetation properties and 
associated biogeochemical processes (Czapiewski  
2022; Räsänen et al. 2020; Steenvoorden, 
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Bartholomeus, and Limpens 2023). Unmanned Aerial 
Vehicles (UAVs) provide an ideal solution to study 
alpine peatlands, not just because of the extremely 
high spatial resolution of the data that they can cap-
ture, but even more importantly because of their 
notable cost-effectiveness when surveying sites 
which are difficult to access and unevenly distributed 
across very large territories.

Characterizing and monitoring aboveground vege-
tation attributes can supply information regarding 
many peatland processes, at a both superficial and 
subsurface level (Bragazza and Gerdol 1999; Bragazza, 
Rydin, and Gerdol 2005; Tuittila et al. 2013; Palozzi and 
Lindo 2017). This ultimately aids the conservation of 
these vitals (Kimmel and Mander 2010) but threa-
tened (Antala et al. 2022; Turetsky et al. 2015; Ward 
et al. 2007; Maljanen et al. 2010) and sparsely mapped 
(FAO 2020; Minasny et al. 2019) ecosystems. For 
instance, according to Räsänen et al. (2020), biomass 
(i.e. total mass of plants) is one of the most important 
vegetation properties linked to biogeochemical pro-
cesses. In particular, AGB in peatlands has been found 
to be related to the water table depth as well as the 
below ground biomass (BGB), a key property which is 
difficult to sample (Murphy, McKinley, and Moore  
2009). Furthermore, AGB can be used as a proxy to 
estimate peatland carbon stock (Lopatin et al. 2019) 
and to evaluate the impacts of anthropogenic man-
agement approaches (Cabezas et al. 2015).

A common method used for estimating AGB from 
remote sensing data is to derive Vegetation Indices 
(VIs) based on combinations of spectral bands. The 
Normalized Difference Vegetation Index (NDVI) is one 
of the most popular VIs (Huang et al. 2021), due to its 
simplicity and long-standing implementation in this 
field of research. Studies have demonstrated that 
NDVI can be effective in estimating AGB both in forest 
(e.g. Zhu and Liu 2015) and herbaceous ecosystems 
(e.g. Gao et al. 2013). In peatlands NDVI has been 
found to be correlated with aboveground carbon 
stock (Cabezas et al. 2015) as well as AGB (Räsänen 
et al. 2020) and has been incorporated into predicting 
models and other research topics (e.g. McPartland 
et al. 2019; Pajula and Purre 2021; Rastogi et al.  
2019; Šimanauskienė et al. 2019). However, NDVI has 
some inherent limitations, such as the well- 
documented saturation effect, and therefore should 
be used with caution (Huang et al. 2021; Huete, Liu, 
and van Leeuwen 1997); this is especially true in 

densely vegetated herbaceous alpine ecosystems, 
where the saturation effect is present even at low 
values of biomass (Vescovo and Gianelle 2008). 
Limitations in the use of NDVI to model AGB in north-
ern herbaceous peatlands and similar systems have 
been demonstrated by several authors (Bratsch et al.  
2017; Cunliffe et al. 2020; Räsänen et al. 2019, 2021). 
Similar limitations for NDVI indices retrieved using 
hyperspectral data have been shown in Räsänen 
et al. 2020), which tests 80 hyperspectral vegetation 
indices using random forests regressions to identify 
those with the greatest ability to estimate AGB in 
a northern peatland. It was found that NDVI scored 
lower than several other analyzed indices, for instance 
the Double Difference (DD) index (le Maire, François, 
and Dufrêne, 2004), the Simple Ratio SR1 (Gitelson 
and Merzlyak 1997), the Simple Ratio SR6 (Zarco- 
Tejada and Miller 1999), Boochs2 (Boochs et al.  
1990), MCARI2 (Wu et al. 2008), OSAVI2 (Wu et al.  
2008), and MCARI2/OSAVI2 (Wu et al. 2008).

Another well-known proxy of AGB is the Leaf 
Area Index (LAI), which is defined as the ratio of 
the one-sided leaf surface area per unit ground 
surface area. LAI is a vegetation parameter that 
characterizes leaf density and canopy structure, 
hence it is strongly related to various biogeochem-
ical parameters (Tang et al. 2022), including bio-
mass (e.g. Aase 1978; Crabbe et al. 2019; Räsänen 
et al. 2020). Field LAI measurements can be accu-
rate, but are labor-intensive, time-consuming, 
expensive, and do not allow spatial repeatability 
over large areas. Therefore, estimating LAI via 
remote sensing appears to be a comparably 
appealing operational choice (Bajocco et al. 2022). 
One of the commonly used approaches is to mea-
sure LAI with LiDAR sensors, which actively probe 
the canopy with narrow laser beams (Wang and 
Fang 2020; Zheng and Moskal 2009). The applied 
methods depend on the type of LiDAR sensor 
(Tian, Qu, and Qi 2021), but one of the most 
common types is gap-fraction. This uses 
a theoretical framework, built on the probability 
of a laser beam penetrating the canopy and reach-
ing the ground, to infer the LAI of the vegetation 
cover (Houldcroft et al. 2005; Richardson, Moskal, 
and Kim 2009). This is similar to the approach 
often taken with passive field devices. An advan-
tage of LiDAR is that it allows simultaneous extra-
polation of both vegetation and geomorphological 
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structures. LiDAR is long established and widely 
applied in the forestry context. Yousefi Lalimi 
et al. (2017) has shown its applicability for herbac-
eous vegetation; nevertheless, LiDAR can give poor 
results if dense, short‐sward vegetation (as found 
in peatlands) disrupts the return of the laser 
beams from the ground surface (Luscombe et al.  
2015). One solution to this problem in short- 
canopy ecosystems is to increase the number of 
beams per square meter. This increases the total 
number of returns and provides more robust sta-
tistics with which to separate the returns coming 
from the ground from those reflected by the 
canopy. LiDAR systems mounted on UAVs repre-
sent a viable and promising solution to increase 
the return density. Moreover, the integration of 
LiDAR technology with other remote sensing data-
sets has the potential to improve the accuracy of 
the AGB results, as shown by Räsänen et al. (2020).

In this study a multisensory approach was used 
to study an alpine peatland located in Italy. The 
primary goal of this research was to explore the 
reliability of UAV spectral and LiDAR data based 
AGB and LAI estimates in alpine peatlands. With 
this end in view, we investigated the performance 
of (i) an approach exclusively based on deriving 
LAI from UAV LiDAR data; (ii) an approach purely 
based on VIs calculated from spectral data (i.e. 
UAV hyperspectral data and RGB aerial photos); 
(iii) an approach based on the combination of 
UAV LiDAR and spectral data. To verify the perfor-
mance of the sensors and assess the accuracy of 
the results, a dataset of field observations was 
collected. The number of vegetation samples was 
minimized in order to reduce impacting or dama-
ging protected flora.

The methods and results are presented below, 
followed by a discussion on the merits and limita-
tions of the examined approaches. The significance 
of the methodology for the characterization of 
alpine peatlands in general is also discussed, bear-
ing in mind that remote sensing applications in 
peatland studies outside the tropics, the arctic and 
sub-arctic regions are sparse and that new 
approaches are required (Czapiewski and 
Szumińska 2021). To the best of our knowledge, 
this is the first study that estimates herbaceous 
peatland LAI and AGB using UAV LiDAR in alpine 
regions.

Materials and methods

Study area

The Val di Ciampo peatland (135,000 m2) is located in 
the northernmost extent of the Belluno province 
(Veneto region, northeastern Italy) at an altitude 
between 1,358 and 1,425 m a.s.l. It is part of an asso-
ciation of dolomitic pristine peat biotopes in the sur-
roundings of the Danta di Cadore village which form 
a European Community Interest Site (SIC), identified 
by reference number IT320060 (DIR 92/43/CEE). This 
group of peatlands is typical of the Alpine region, 
where peatlands are relict environments on the 
edge of their latitude distributional range 
(Tanneberger et al. 2017), mainly located in small 
valleys created by past glaciers (Gerdol, Tomaselli 
and Bragazza 1994) and usually less than 1 hectare 
in size.

Climate-wise, the area is characterized by a sub- 
arctic climate, typical of the Alpine region, with harsh 
cold winters and cool summers. Over a three-year 
period (2020–2022), average annual temperatures 
varied between 6.6 and 8.0°C, while the winter aver-
age ranged between −4.0 and 1.5°C and the summer 
average ranged between 13.0 and 17.6°C. The total 
annual rainfall was 906–1332 mm spread over 99–113 
rainy days at Casamazzago station (ARPA Veneto  
2023). The snowpack covers the study area from 
approximately October to April.

The selected study site within this peatland has an 
area of 24,000 m2 (Figure 1) and takes the form of an 
herbaceous clearing bordered by a Picea forest. The 
Val di Ciampo peatland has a remarkable heteroge-
neity in its assemblages of plant species which can be 
grouped into three main phytosociological alliances, 
in accordance with the Vegetation Prodrome of Italy 
(Biondi et al. 2014). Specifically, the coexistence of 
species such as Schoenus ferrugineus L., 
Trichophorum alpinum (L.) Pers., Trichophorum cespi-

tosum (L.) Hartm., Eriophorum latifolium Hoppe, 
Tofieldia calyculata (L.) Wahlenb. Or Carex davalliana 

Sm., are attributed to the alliance Caricion davallinae 

Klika 1934, typical of “fen” community. The height of 
the plants forming this community varies between 
0.1 m and 0.9 m (Pignatti 1982). A similar species 
composition was found in a depression in the central- 
east portion of the peatland (Figure 1), where how-
ever, the conspicuous presence of Rhynchospora alba 

(L.) Vahl, Drosera anglica Huds., and Sphagnum majus 
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Figure 1. Study area. The background is the UAV-extracted orthophoto. The grey polygons highlight the core area of the vegetational 
alliances (cd = Caricion davallinae, ra = Rhynchosporion albae, sm = Sphagnion magellanici), while GPS colored crosses indicate the 
morphotypes. The coordinate reference system is WGS 84/UTM zone 33N (EPSG: 32633).
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(Russ.) C. Jens. led us to consider this area as part of 
the Rhynchosporion albae Koch 1926 alliance. The 
central-west portion of the peatland, where hum-
mocks and lawns of Sphagnum magellanicum Brid. 
are covered by Eriophorum vaginatum L., Andromeda 

polifolia L., Calluna vulgaris (L.) Hull, Vaccinium spp., or 
Pinus mugo Turra, was instead attributed to the alli-
ance Sphagnion magellanici Kästner and Flössner 
1933 nom. Mut. Propos. Ex Steiner 1992, which repre-
sents a typical “raised bog” community. The height of 
the herbaceous plants forming this community varies 
between 0.1 m and 0.4 m (Pignatti 1982). In the north-
ernmost and southernmost portions of the peatland, 
both fen and bog communities are partially invaded 
by Phragmites australis (Cav.) Trin. Ex Steud, 
a perennial tall reed (reaching up to a height of 6 m) 
that generates facies with the appearance of 
a reedbed (Figure 1). In this paper the terms “bog” 
and “fen” are, respectively, linked to ombrotrophic 
(i.e., fed by rain) and minerotrophic (i.e. fed by under-
ground water) typical vegetations, as used in the 
“Habitats Directive” (DIR 92/43/CEE). Thus, bogs are 
dome-shaped areas (raised above the surrounding 
water table) with a strongly acidic and nutrient-poor 
environment. Whereas fens grow on flat areas or on 
slightly sloping surfaces whose proximity to the water 
table allows the enrichment of the substrate with 
nutrients but also makes conditions in the root zone 
more anoxic. Fen vegetation tends to be richer in 
species and more productive than bog vegetation, 
but both habitats cause stress to the species growing 
there. Thus, imposing physiological adaptations 
which cost energy and limit the photosynthetic effi-
ciency and productivity.

The peat accumulated at the study site was formed 
above moraine deposits of varying grain size 
(Lithostratigraphic map, scale 1:250k). The remnants 
of genus Pisidium shells and the gyttja found at the 
base of the peatland revealed the presence of 
a paleolake (Poto et al. 2013). Therefore, the genesis 
of this peatland is attributed to terrestrialization, i.e. 
the infilling of a shallow open water body by organic 
sediments (Joosten and Clarke 2002; Lindsay 2018).

Vegetation sampling and aboveground biomass 

measurements

To capture both the ecological and morphological 
heterogeneity, 19 sampling sites were subjectively 

distributed ensuring that at least three plots were 
allocated for each vegetation alliance/morphotype 
as well as including additional plots to improve the 
measurement of spatial variability within each cate-
gory (Figure 1). These sites were geolocated using 
a Topcon Hyper V GNSS system (0.010 m of horizon-
tal accuracy and 0.015 m of vertical accuracy in RTK 
mode). The number of vegetation samples was pur-
posely limited in order to reduce the impact of the 
study on the ecosystem. Only the area without 
arboreal vegetation was considered as part of this 
study, and tall shrubs (i.e. P. mugo and Juniperus 

communis L.) were not sampled even if they were 
present in some locations. Open water vegetated 
sites (e.g. pools) were also excluded because the 
infrared laser beam is absorbed by water (Pope 
and Fry 1997).

In 2021, during the peak growing season (July), 
field sampling was performed using a 0.5 m x 0.5 m 
quadrat within which vegetation cover, vegetation 
height and aboveground biomass were measured. 
The vegetation height was measured at the center 
and also at the four corners of each plot. The 
biomass of vascular plants present within the 
plots was harvested, with the exception of the 
moss layer, which was treated as belowground bio-
mass in accordance to Cabezas et al. (2015). There 
were also technical reasons for this decision: the 
laser is likely to be incapable of penetrating the 
dense layer of Sphagnum spp; hence, the moss 
surface would behave like a ground surface when 
captured by the LiDAR sensor. Moreover, the peat-
land moss layer includes live canopy near the sur-
face, which gradually degrades with depth 
becoming dead biomass. It is therefore unfeasible 
to accurately separate the moss living and dead 
layers. The vegetation cover within the plots was 
attributed by direct observation in the field 
employing percentage terms in intervals of 5% 
(i.e. from 0% to 100%) and considering only the 
vascular flora cover for the reasons mentioned 
above. Biomass samples collected in each plot 
were dried at 70°C for at least 72 h, until a stable 
weight is reached (Cabezas et al. 2015). The bio-
mass produced during the peak growing season is 
a good approximation of the total productivity of 
the ecosystem if all the dominant species reach 
their peak simultaneously (Malone 1968), as is the 
case for alpine peatlands.
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UAV data acquisition and pre-processing

In July 2021, two UAVs were used to fly over the study 
area to collect hyperspectral, LiDAR and aerophoto-
grammetric data, covering a total area of approxi-
mately 160,000 m2. A sunny, dry, windless day was 
selected for the flight as weather conditions can affect 
the quality of the acquired data. It was intended to 
complete the UAV survey before collecting the vegeta-
tion samples, but repeated unfavorable weather con-
ditions caused a delay and the flights were performed 
during the sampling days. Thus, the UAV data were 
partially affected by the presence of the field crew, and 
this aspect will be discussed in depth.

Prior to the flight, seven 0.5 m2 square-shaped 
Ground Control Points (GCPs) were homogeneously 
distributed within the study area, and the position of 
their midpoint was localized with a Topcon HR (0.010  
m of horizontal accuracy and 0.015 m of vertical accu-
racy in RTK mode). The GNSS points were collected 
using the UTM 33 planar system and the calculation of 
the orthometric elevation was derived from the 
Military Geographic Institute (IGM) Grid, which has 
a planimetric accuracy of ±2 cm and an altimetric 
accuracy of ±4 cm with respect to the I-order leveling 
network.

Commercial drones were selected to enhance repro-
ducibility and sustainability, from both a financial and 
computational perspective. It was necessary to balance 
the flight complexity/duration and quality of the UAV 
products with the available financial resources.

The UAV employed was a DJI Matrice 300 RTK quad-
copter equipped with DJI Zenmuse L1, which combines 
a LiDAR sensor (laser wavelength at 905 nm) with a 1’’ 
CMOS camera of 20 MP resolution. This is able to acquire 
both RGB images and a RGB colored LiDAR point cloud. 
The flight was conducted at a speed of 5 m s−1 (18 km 
h−1) and height of 100 m above ground level. These 
parameters were automatically calculated by the flight 
planning application in accordance with the desired 
LiDAR pulse density. Virtual reference station (VRS) – 
Real-time kinematic (RTK) mode (with NTRIP function 
connected to the ITAL-POS Internet service) was acti-
vated in order to achieve the maximum declared 
Hovering (0.1 m both vertical and horizontal) and 
Positioning Accuracy (1 cm + 1 ppm horizontal; 1.5 cm  
+ 1 ppm vertical) of the UAV. The Zenmuse L1 sensor 

has data accuracy of 10 cm horizontal and 5 cm vertical 
(Zenmuse L1 User Manual 2021).

Being aware of the challenges faced when scan-
ning a short and dense canopy, the LiDAR sensor was 
set up to obtain a cloud with a very high point resolu-

tion (Table 3). Thus, it was enabled to collect up to 
three discrete returns (i.e. the maximum number pos-

sible) with a pulse repetition rate of 160 Hz (i.e. the 
highest possible rate when capturing three returns) 

resulting in an expected pulse density of 250–300 per 
square meter. Moreover, the non-repetitive scan 

mode was selected as this can increase the level of 
detail recorded for objects in the Field of View (FoV) 

by integrating the continuous scans in the time 
domain (Lai et al. 2022) as well as statistically increas-

ing the probability of penetrating vegetation. The 
lateral flight overlap was set at 30%, a compromise 

to balance precision and noise in the LiDAR data. 
A greater lateral overlap guarantees a greater number 

of beams with smaller return angles of incidence, but 
the overlapping areas present greater inconsistencies 

in terms of point placement in the LiDAR cloud. Two 
datasets were produced and compared. The first data-
set is referred to as “Raw” and is the point cloud 

resulting from the alignment and optimization of 
scanning strips (based on tie-line position and overlap 

points) processed with DJI Terra Pro software (v. 3.6.2) 
to resolve heading, roll, pitch and elevation parameter 

flaws. The data were georeferenced in UTM 33 via the 
“shift” algorithm of the TerraMatch software included 

in the Spatix Platform (v. 22.07). This linearly calibrates 
the horizontal and vertical positioning of the cloud 

based on the GCPs positions, without deforming the 
cloud (average Dz = 0.000 ± 0.074 m; min Dz = −0.090  

m; max Dz = +0.107). The second dataset analyzed is 
referred to herein as the “Pre-processed” point-cloud. 

In this version the overlap point removal function was 
applied to the Raw dataset using the TerraScan soft-

ware included in Spatix Platform (v. 22.07).
A total of 434 RGB frames were collected in auto-

matic shooting mode with a frontal and lateral over-
lap of 80% (i.e. the maximum recommended overlap 
in the device user manual) to maximize the number of 
tie-points. Images were aligned and georeferenced in 
UTM 33, corrected by means of GCPs (2 cm of average 
horizontal accuracy; 3 cm of average vertical 
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accuracy), to produce an orthomosaic with a 2 cm x 2  
cm pixel resolution. In addition, the Structure from 
Motion (SfM) technique (Iglhaut et al. 2019) was 
applied to extract a three-dimensional (3D) point 
cloud that was transformed into a 10 cm x 10 cm 
pixel resolution Digital Surface Model (DSM). All 
these operations were performed using the Agisoft 
Metashape software (v. 1.8.4).

In order to acquire the hyperspectral images, a DJI 
Matrice 600 hexacopter was equipped with a Nano 
Hyperspec sensor that can collect 273 spectral bands 
within the visible and NIR spectral ranges (from 400 to 
1,000 nm). The flight was conducted at a speed of 6.5  
m s−1 (about 23 km h−1) and a height of 80 m above 
ground level. In total 33 images with a 2.5 cm x 2.5 cm 
pixel resolution were collected in pushbroom linear 
scanning mode with a 40% frontal and lateral flight 
overlap, following the same rationale as for the RGB 
sensor. Two 9 m2 square-shaped white and gray 
targets were placed in the field to allow for the 
post-processing radiometric correction of the hyper-
spectral dataset and the retrieval of the spectral 
reflectance (as per procedure described in the sensor 
manual). The hyperspectral images were georefer-
enced in UTM33, and a single mosaic was created 
using the Seamless Mosaic tool provided in ENVI 
(v. 5.3).

GPS sampling points

In order to verify elevation accuracy of the remotely 
sensed data, the XYZ location of a total of 529 points 
were determined with a Leica Viva GS15 (0.008 m of 
horizontal accuracy and 0.015 m of vertical accuracy 
in RTK mode). Two hundred and forty-three out of the 
529 points were located along flat or sub-flat artificial 
surfaces (a boardwalk and a wooden platform built for 
tourism purposes), while the remaining 286 were ran-
domly distributed among different patches of vegeta-
tion alliances (Figure 1).

Data analyses

LAI estimation

The “lidR” package (Roussel et al. 2020) in the 
R environment (v. 4.2.2) was utilized for the LiDAR 
data processing. The main objective of the LiDAR 
data analyses is the extraction of LAI. The approach 
applied in this study is based on gap probability, i.e. 

the probability that a laser beam penetrates the 
canopy to reach the ground (Houldcroft et al. 2005; 
Richardson, Moskal, and Kim 2009; Yousefi Lalimi et al.  
2017): 

P θð Þ ¼ exp
�G θð ÞLAI

cos θ

� �

(1) 

where θ is the view zenith angle and G(θ) describes 
leaf clumping and the mean leaf projection in the 
direction θ. G(θ) varies between 0 and 1.

To estimate LAI from Equation (1) the LiDAR data 
must be first gridded so that P(θ) can be approxi-
mated for each grid cell, using the fraction of LiDAR 
returns reflected by the ground (Rg) with respect to 
the total number of returns in that cell (Rt). The 
assumptions made are: (i) a random foliage orienta-
tion (Yousefi Lalimi et al. 2017), which implies G(θ) =  
0.5 (Campbell 1986) and (ii) a negligible effect of the 
scan angle on P(θ), particularly for small θ values, 
which allows us to assume θ = 0 for all returns. In 
order to meet the second assumption, a thorough 
analysis of the scan angles of the returns provided 
by the sensor was fundamental.

The implementation of this method encompasses 
six steps, as described in the flowchart of Figure 2: 1) 
removal of duplicate points; 2) detection of the max-
imum acceptable scan angle and elimination of all the 
returns with angles in exceedance of this; 3) detection 
and elimination of outliers; 4) selection of the ground 
points and DTM extraction; 5) computation of the LAI 
by inverting Equation (1); 6) detection of the scan 
angle effect on LAI and the elimination of any higher 
scan angle cells which are affected.

The processing was initiated with the removal of 
duplicate points (i.e. points that share the same x, y, 
and z coordinates with others); however, they were 
present in irrelevant number (n = 19). The second step 
involved the removal of returns from points with scan 
angles larger than a set threshold. The threshold was 
defined analyzing the magnitude of effect which vary-
ing scan angles had on the results. While the scan 
angle effect can be ignored when it is small (e.g. <10° 
in Richardson, Moskal, and Kim 2009), a high scan 
angle can bias the LAI computation (e.g. a scan 
angle higher than 23 degrees in Liu et al. 2018). This 
is because increasing the length of the laser path 
through the canopy reduces the probability that the 
beam actually reaches the ground (Lovell et al. 2005). 
To understand how this could affect our data and 
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results, the relationship between mean scan angle 
and point density for a grid with 0.5 m cells was 
investigated using a linear b-spline placed every 5° 
intervals. Based on this, it was decided to retain only 
points which have a scan angle modulus less than 24° 
(83% of the dataset), representative of the least 
restrictive threshold capable of stabilizing the effect 
of the angle on point density (Figure S4 and S5). It was 

taken into account that the observed relationship 
may be spurious since it could result from the greater 
presence of trees, whose greater vertical occupancy 
of space means they are more likely to collect extreme 
angles and thus a greater number of points per unit 
area. However, the removed points (Figure S5) were 
always located within the areas affected by the flight 
overlap stripes (Figures S3), leading to the assumption 

Figure 2. Steps used to estimate LAI using the LiDAR point-cloud.
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that these points represent a overlap artifact. 
Although the 24° threshold initially appeared to func-
tion well, the calculation of the LAI using Equation (1) 
provided poor results for angles between 24° and 20° 
(Figure S6). Therefore, finally only cells with mean 
scan angle modulus between 0° and 20° were 
retained.

The dataset density was further reduced through 
de-noising algorithms applied to decrease errors of 
vertical point placement caused by an imperfect stabi-
lization of the inertial measurement unit (IMU) of the 
UAV. The methods provided with the R lidR package 
were not effective in homogeneously removing noise 
(Table S1), so as an alternative noise removal method 
all the points not included within the 1.5 times inter-
quartile range above the upper quartile and below the 
lower quartile with a point-to-raster approach (Roussel 
et al. 2020) were removed. Since the product is cell-size 
dependent, the algorithm was tested on grids of 0.1, 
0.2, 0.5, and 1 m resolution. The best performing reso-
lutions (i.e. 0.2 and 0.5 m), the 0.5 m resolution was 
selected because it retained more data and coincides 
with the resolution at which the vegetation plots were 
sampled. The use of this process allowed the preserva-
tion of 96.6% of the dataset and considerably reduced 
the range of vertical variability of the cloud at flat 
reference surfaces (see paragraph 3.2). To verify the 
accuracy of the method, the outlier removal process 
was repeated and no improvement in the vertical 
accuracy was found (Table S2). Hence, the result of 
a single noise filtering is considered sufficient.

Two alternative methods were examined for 
ground-point classification: the Progressive 
Morphological Filter (PMF) (Zhang et al. 2003) and the 
Cloth Simulation Filter (CSF) (Zhang et al. 2016). The 
outputs of these methods were compared visually. The 
most satisfactory classification was obtained using the 
PMF method (Figure 3a), parameterized with incre-
mental size windows (0.25, 0.50, 2, 5, and 10 m) and 
highly restrictive elevation thresholds (0.02, 0.05, 0.50, 
1.5, and 3.5 m), which was possible due to the nearly 
flat morphologies of the study area (Navarro et al.  
2020). Alternative ground-point classification 
approaches such as the Excessive Greenness approach 
proposed by Anders et al. (2019) which is based on 
point cloud RGB coloring was also explored but was 
found to not be applicable in such a densely vegetated 
environment.

Based on the PMF results, the Digital Terrain Model 
(DTM) was created by assigning to each cell of a 0.5 m 
resolution grid the lowest elevation value of the ground- 
points falling therein (Yousefi Lalimi et al. 2017). This 
method was applied to maximize the probability of 
selecting an elevation value that actually reached the 
ground. Alternative approaches based on ground-point 
interpolation (TIN, IDW, and Kriging) were discarded 
because they produced positive elevation deformations 
in correspondence to vegetation patches, 
a phenomenon absent in the gridded minimum point 
DTM. Moreover, the range of vertical variability of the 
ground-points suggested a weak distinction between 
ground and non-ground points (see results chapter for 
further detail). Holes in the DTM were not filled with 
interpolative algorithms because the LAI equation used 
in this work (Equation 1) would produce values of infi-
nity in almost all of these cells. To estimate the accuracy 
of the terrain model, summary statistics of the deviations 
between the elevations of GPS measurements and the 
respective cell value, for each morphotype, were pro-
duced. Accuracy was evaluated based on the R2 of the 
linear regression between DTM and GPS as well as DTM 
and DSM elevations extracted from SfM.

The direct use of the number of ground points to 
calculate the LAI using Equation (1) was not imple-
mented due to the excessive range of vertical varia-
bility of the ground-points cloud compared to the 
vertical variability range of the cloud observed on 
flat reference surfaces. Lidar returns were instead con-
sidered to be generated by ground reflections if the 
height, relative to the local ground elevation (i.e. DTM 
cell value) at which the reflection occurred is below 
a fixed threshold (Yousefi Lalimi et al. 2017). This 
threshold was set at 5 cm, which is equivalent to the 
median range of vertical variability of the cloud on the 
flat and bare reference surfaces. Note that the median 
value was preferred to the mean value due to the 
highly asymmetric distribution of the data.

Extracting morphological metrics

Five basic terrain indices were extracted from the 
DTM using the “Basic terrain analysis” algorithms 
included in SAGA GIS software (v. 8.5.0). These 
included: Slope and Topographic Position Index (TPI) 
to describe small-scale morphologies; Topographic 
Wetness Index (TWI) and Channel Network Distance 
(CND) to model the effect of water at small scales; and 
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Valley Depth (VD) to combine topological and moist-
ure information to create a large-scale smoothed pat-
tern. The single required input parameter was left as 
default (channel density = 5).

Extracting spectral indices

A variety of hyperspectral indices were found in the 
literature, but the focus was placed on the six best 
performing indices ranked by (Räsänen et al. 2020) 
for a peatland environment similar to that of this 

study, i.e. DD (le Maire et al. 2004), SR1 (Gitelson 
and Merzlyak 1997), SR6 (Zarco-Tejada and Miller  
1999), Boochs2 (Boochs et al. 1990), MCARI2 (Wu 
et al. 2008), OSAVI2 (Wu et al. 2008), MCARI2/ 
OSAVI2 (Wu et al. 2008). Moreover, also indices 
calculated using wavelengths larger than 800 nm 
(not present in the analyses performed by Räsänen 
et al. 2020) were included alongside some indices 
specifically created for this study (Table 1). Some 
indices (i.e. SR1, SR6, Boochs2, and MCARI2) proved 

Figure 3. DTM colored by elevation gradient (quantiles) with overlaid 20 cm contour lines (c); transects (T1, T2, T3) derived from PMF 
classification of the point cloud (green dots = nonground-points; brown dots = ground-points; red dots = lowest ground-point 
contained in each cell of a grid of 0.5 m resolution) (a). Graph showing the linear relationship between DTM cells and the 
corresponding orthophoto-derived DEM cells on the flat reference surfaces (b).

Table 1. Details of the high spectral resolution vegetation indices calculated for the hyperspectral data.

Index Equation Reference

Hyperspectral-derived
HNDVI (ρ830- ρ665)/(ρ830+ ρ665) This study (using Sentinel-2 central wavelengths of NIR and RED bands)
NDWI (ρ560- ρ830)/(ρ560+ ρ830) McFeeters (1996) using Sentinel-2 central wavelengths of GREEN and NIR bands
Wet (ρ831- ρ970)/(ρ831+ ρ970) This study
DD (ρ749- ρ720)-(ρ701- ρ672) le Maire et al. (2008)
OSAVI2 (1 + 0.16)×(ρ750- ρ705)/(ρ750+ ρ705 + 0.16) Wu et al. (2008)

Orthophoto-derived
ExGR 2*g-r-b - (1.4*r - g) Meyer and Neto (2008)
NGRDI (G-R)/(G+R) Gilalbert et al. (2002)

Notes: ρ = hyperspectral reflectance at a specific wavelength; R = digital number of the camera red band; G = digital number of the camera green band; B = 
digital number of the camera blue band; r = R/(R+G+B); g = G/(R+G+B); b = B/(R+G+B).
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to be excessively noisy and were ultimately 
excluded from the analysis.

Two orthophoto-derived indices identified by Niu 
et al. (2019) - the Normalized Green-Red Difference 
Index (NGRDI) and the Excess Green minus excess Red 
index (ExGR) – were extracted using the Raster 
Calculator tool provided in QGIS (v. 3.28.3). Each raster 
was then up scaled to match the DTM 0.5 m resolu-
tion on SAGA GIS with the Mean Value (cell area 
weighted) method of grid resampling. Detailed infor-
mation regarding the seven spectral indices analysis 
can be found in Table 1.

AGB estimation

Given the small size of the field biomass dataset 
available (due to the protected status of the study 
area any invasive activities are limited), a linear regres-
sion between observed AGB and UAV’s vegetation 
indices was considered the best model option to 
explore correlations between these parameters. The 
UAV indices’ values are the arithmetic averages of an 
orthophoto-based expert selection of 20 0.5 m cells 
located nearby each of the sampling sites (avoiding 
the cells disturbed by sampling activity). A random 
test was also conducted to define the minimum num-
ber of cells that would allow the linear relationship to 
be stabilized: the Pearson correlation coefficient was 
calculated from the arithmetic averages of the LAI 
values (taken as a reference) of n-cells (with n from 1 
to 20), randomly extracted from each plot, for k-times 
(k = 10,000).

In addition, three sets of 20 cells chosen on bare 
artificial surfaces (i.e. with AGB = 0) were included to 
improve the dataset and a linear regression 
between the variables and the AGB values was 
then performed using R software (v. 4.2.2). 
Analyzing the multiple regressions, each indepen-
dent variable with Variance Inflation Factor (VIF) > 
5 (Fox and Monette 1992; package “car”) was 
removed to avoid multicollinearity and the best 
model was chosen by combining the Akaike 
Information Criterion (AIC) selection with 
a backward stepwise algorithm and the consecutive 
validation with Fisher’s F-test.

Hypothesis tests

A pairwise Wilcoxon Rank Sum Test for independent 
samples (Bauer 1972) with the Benjamini and 
Hochberg (1995) p-value correction was performed 

to test for differences in vegetation attributes 
between sites grouped by alliance and vegetation 
morphotypes. For the comparisons, only cells falling 
in open herbaceous areas, away from tree shadows 
and totally contained within the polygons of Figure 1 
were considered; a random selection of 1,000 cells for 
each group was then made in order to standardize 
the sample size.

The Pearson’s product moment correlation coeffi-
cient was tested with a t-test with n-2 degrees of 
freedom.

In linear regression, Fisher’s F-test was used both to 
test the significance of the model against the null 
model and to test the significance of the contribution 
of the individual variables. Residuals Normality and 
homoscedasticity (i.e. “same variance”) were checked, 
respectively, with the Shapiro-Wilk Normality Test 
(Royston 1982) and the Breusch–Pagan test (Breusch 
and Pagan 1979; “lmtest” package).

All the tests were performed using R software (v. 
4.2.2). The significance threshold adopted was 0.05 
unless otherwise indicated.

Results

Field observations

In the 19 plots sampled, the average vegetation height 
of vascular plants varies between 8.6 and 62.4 cm (µ =  
32.2 cm; σ = 16.3). The AGB varies between 88.88 and 
501.16 g/m2 (µ = 271.65 g/m2; σ = 87.21). The two vari-
ables show a strong positive linear correlation (r = 0.81; 
p < 0.001). Vegetation cover varies between 50 and 
100% (µ = 83%; σ = 13%) and is linearly correlated 
with both vegetation height (r = 0.50, p = 0.031) and, 
above all, AGB (r = 0.74, p < 0,001).

Significant differences were found for AGB and 
vegetation height between the different vegetation 
categories, but not for vegetation cover (Table 2). The 
morphotype classification allows us to emphasize the 
biometric differences, especially for the high produc-
tivity of P. australis whose facies show a significant 
increase in both biomass and height in respect to the 
surrounding. The bog vegetation shows a high intra- 
class variability, reflecting the heterogeneity of the 
sampled microhabitats (Sphagnum-dominated hum-
mocks; hummocks colonized by small moorland 
shrubs; Sphagnum carpets covered by Cyperaceae). 
Due to this variability, no significant differences are 
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found compared to the fen vegetation, which shows 
higher average values. In contrast, no differences 
emerge by grouping sites by alliances (i.e. by ecolo-
gical characters), but this is also because the presence 
of Phragmites increases the variability of Caricion 

davallinae and Sphagnion mgellanici.

LiDAR data filtering and classification

The main statistics describing the distribution of 
return echoes in the three datasets considered are 
shown in Table 3. The higher density of the raw 
point cloud is due to the overlapping strips, which 
also generates high heterogeneity in the density dis-
tribution of points (Fig. S3). Therefore, the removal of 
overlapping points has been applied.

In all three datasets the incidence of pulses that 
produced only one return (i.e. single returns) is very 
high, although it decreases as processing increases 
(82% in the raw cloud; 80% in the pre-processed 
cloud; 77% in the fully processed cloud). This result 
highlights the difficulties experienced by the laser 
scanner of collecting more than one return in herbac-
eous and low-shrub vegetation (Fig. S1 and S2).

The collected UAV data cover the area of interest in 
three survey strips in a north–south direction (Fig. S4). 
In the pre-processed cloud, 19% of that area was 
scanned near NADIR (i.e. almost perpendicular to the 
ground) with a scan angle between 0 and 5°; 39% of 

that area was scanned with an angle between 5 and 
15° and the remaining 42% of the area with angle 
between 15 and 35°. Filtering the cloud for only those 
returns with a modulus of scan angle less than 24° 
essentially nullifies the effect of scan angle on point 
density (compare Fig. S4 and S5) leaving the points 
that are essential to the analysis. In fact, the resulting 
cloud retained 83% of the data, without affecting 
areas of herbaceous vegetation and minimally affect-
ing the crowns of the trees, which are not considered 
in this study (Fig. S4 and S5). The density of this cloud 
(256.8 points/m2) is only slightly higher than that of 
the fully processed de-noised cloud; the latter, how-
ever, has an average vertical range on flat reference 
surfaces of 0.09 m ±0.23 (n = 181; median value =  
0.05), while the non-de-noised cloud has an average 
vertical range of 0.23 m ±0.41 (n = 181; median value  
= 0.11). Therefore, the fully processed cloud was con-
sidered the most suitable dataset of the three to use 
for calculating LAI using equation (1).

The PMF classification system identified 
3.23 million points (27% of the total) as ground- 
points. The vertical range of the ground-points cloud 
(0.11 ± 0.08; n = 139,984) was significantly greater 
than the vertical range of the cloud on the flat refer-
ence surfaces. This result suggests that the algorithm 
provides an imperfect distinction between ground 
and non-ground points. The use of more restrictive 
thresholds in the algorithm, however, led to the 

Table 2. Vegetation variables grouped by alliances and morphotypes. Averages ±  
standard deviation are reported. Same superscripted letters indicate no significant 
differences according to pairwise Wilcoxon rank sum tests (significance threshold 
p ≤ 0.05).

Vegetation types Height (cm) AGB (g/m2) Cover (%)

Alliances
Caricion davallinae 41.6a ± 13.2 300.29a ± 38.90 87a ± 7
Rhynchosporion albae 25.8a ± 6.8 249.13a ± 46.98 87a ± 3
Sphanion magellanici 25.3a ± 16.8 251.44a ± 125.67 78a ± 18

Morphotypes
Bog 20.9a ± 12.3 215.78a ± 80.92 74a ± 16
Fen 29.6a ± 8.7 264.24a ± 38.11 89a ± 4
Phragmites 51.7b ± 8.7 360.25b ± 82.79 87a ± 10

Table 3. Main descriptive statistics of the three analyzed LiDAR datasets.

Variables Meas. units Raw point cloud Pre-processed point cloud Fully processed point cloud

Pulse density No./m2 431.18 282.83 219.8
Point density No./m2 474.94 321.08 248.12
Total points Million No. 23.07 15.06 12
Single returns Million No. 19.01 11.99 9.33
Second and last returns Million No. 1.79 1.53 1.1
Third and last returns Million No. .17 .16 .12
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elimination of entire micro-morphologies (not shown 
data). This finding justified the use of the method of 
taking the minima for when creating the DTM, as 
described in the Methods section.

DTM information and its reliability

The DTM produced (Figure 3) represents the best 
estimate of the actual ground position in each 0.5 m 
x 0.5 m cell of the grid. Based on this it was possible to 
observe the geomorphology of the study area, which 
is a sub-flat basin characterized by the following con-
figurations: (i) a northern portion marked by a modest 
slope falling in the north–south direction (approxi-
mately 3.5 decimal degrees, on average); (ii) 
a depression in the central-western portion, which 
has a complex micromorphology of ridges and 
depressions (stretched out perpendicularly to the 
main slope direction) bordered by forested surfaces 
that are gently sloping (by about 1 decimal degree, on 

average) toward the peatland; (iii) and a southern 
portion that shows both a moderate north-south or 
east–west slope (about 3 decimal degrees, on aver-
age) toward the mouth of the main channel that 
emerges above the surface at the southernmost 
point of the study area and drains water from the 
entire basin.

The DTM on flat reference surfaces (i.e. boardwalk 
and platform) proved to be accurate both when com-
pared with the orthophoto-derived DEM elevations and 
the GPS measurements. Respectively, the R2 indicator 
takes values of 0.999 (Figure 3b) and 0.997 (n = 243; p <  
0.001). Nevertheless, when the DTM is compared to the 
GPS values collected across the peatland, the accuracy 
decreases in the vegetated areas and the DTM over-
estimates the actual ground elevation (Figure 4). This 
result confirms that the laser pulse struggled to pene-
trate the vegetation across the entire peatland, espe-
cially for areas dominated by P. australis, which is 
notably dense and tall (i.e. 51.7 cm on average).

Figure 4. Gap between DTM-estimated elevation and actual ground elevation for different landscape elements. Red dots indicate the 
average value. The black dotted line marks the actual terrain level. Round brackets indicate the sample size. The blue crossed circles 
represent the average vegetation height observed in the field.
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Estimated AGB

In order to assess the efficacy of using different sen-
sors, the results obtained for the estimation of the 
AGB are shown for three cases: (i) using exclusively 
LiDAR, (ii) using exclusively hyperspectral and RGB 
data, and (iii) using both LiDAR and spectral data.

LiDAR data

The main statistics of the DTM derived metrics at the 
peatland scale are summarized in Table 4.

The relationships of these metrics to each other 
and to the observed AGB are listed in Table 5 (and 
depicted in Fig. S9). The four indices TPI (r = −0.59; p =  
0.0038; n = 22), TWI (r = 0.59; p = 0.0040; n = 22), CND 
(r = −0.49; p = 0.0194; n = 22), and LAI (r = 0.85; p <  
0.001; n = 22), taken individually, correlate with the 
AGB values.

According to both the AIC indicator and Fisher’s 
test, LAI is the only independent variable retained in 
the regression model since it incorporates the contri-
bution of the other variables. Thus, it was found that 
when using exclusively the average LAI in the model, 
the AGB (R2 = 0.72, F[1, 20] = 51.324; p < 0.001) 
(Figure 5a) can be significantly explained. The resi-
duals were normally distributed (W = 0.98146, p =  
0.9579) and had a constant variance (BP = 0.11338, 
df = 1, p = 0.8991).

Observing Figure 5a, certain vegetation patches 
could be recognized based on the LAI values. The 
highest values were observed in some areas occupied 
by P. australis as well as the wooded areas and the 
individual P. mugo shrubs. Considering only cells in 
open herbaceous areas, the estimated LAI values in 

the reedbed areas are clearly higher than those of the 
other categories (Tab S3).

Hyperspectral and RGB data

The key statistics of hyperspectral and orthophoto- 
derived vegetation indices (VIs) at the peatland scale 
are summarized in Table 6. The relationships of these 
indices to each other and also to the observed AGB 
are listed in Table 7 (and depicted in Fig. S10). All 
indices are highly intercorrelated (0.71 <|r|< 0.99; p  

< 0.001; n = 22). Among these, the indices that are 
least correlated to the observed AGB are Wetness 
index (r = 0.64; p = 0.001; n = 22), NGRDI (r = 0.67; p <  
0.001; n = 22) and ExGR (r = 0.67; p < 0.001; n = 22). On 
the other hand, HNDVI, DD, NDWI, and OSAVI2 pro-
vide approximately the same level of information 
(0.77 <|r|< 0.80; p < 0.001; n = 22).

HNDVI, NDWI, and OSAVI2 contain overlapping 
information. Thus, multicollinearity (VIF >5) can 
occur when these are combined in the same regres-
sion model. Therefore, HNDVI was selected from 
among the three indices because of its clear physi-
cal link to plant biomass (Huang et al. 2021). HNDVI 
significantly explained AGB (R2 = 0.61, F[1, 20] =  
31.668; p < 0.001) (Figure 4b) with normally distrib-
uted residuals (W = 0.94443, p = 0.244) and 
a constant variance (BP = 1.3308, df = 1, p = 0.2487). 
The same level of deviance was explained by the 
model based on the DD index alone (R2 = 0.62, F[1, 
20] = 32.052; p < 0.001) (Figure 4d) and an assump-
tion that there is normality of the residuals (W =  
0.9587, p = 0.4634) and that homoscedasticity (BP =  
0.024485, df = 1, p = 0.8757) is respected. Moreover, 

Table 4. Main statistics of DTM derived metrics across the study area.

Index Min 1st Qu Median Mean ± St. Dev. 3rd Qu Max

Slope 0.00 2.76 5.76 7.13 ± 6.76 9.24 83.05
TPI −50.22 −0.62 −0.20 −0.03 ± 1.26 0.46 50.19
CND −0.23 0.01 0.09 0.80 ± 1.55 0.81 14.35
TWI −2.80 1.98 3.39 4.03 ± 2.82 5.50 17.02
VD 0.00 0.60 1.04 1.07 ± 0.72 1.45 6.26
LAI 0.00 1.62 2.51 2.99 ± 1.92 3.86 12.36

Table 5. Pearson’s correlation matrix with significance thresholds (* < 0.05; ** < 0.01; *** < 0.001) 
between LiDAR metrics and observed AGB (n = 22).

LAI CND Slope TPI TWI VD

CND −0.50*
Slope 0.04 0.13
TPI −0.59** 0.68*** .14
TWI 0.62** −0.36 −.35 −.45*
VD −0.24 −0.16 −.02 −.15 0.05
AGB 0.85*** −0.49* −.03 −.59** 0.59** −0.17
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DD turned out to be the more reliable index due to 
its high correlation in the interval 85–550 g/m2 AGB. 
Further information regarding this will be discussed 
in the next section.

The best performing orthophoto-derived model 
was produced based on NGRDI (R2 = 0.45, F[1, 20] =  
16.414; p < 0.001) (Figure 4d), with normally distribu-
ted residuals (W = 0.96733, p = 0.6494) and a constant 

variance (BP = 0.30049, df = 1, p = 0.5836). This model 
was preferable over ExGR despite the identical R2 

since the former fits the AGB values better within 
the range of 85–550 g/m2 (R2 = 0.55 vs R2 = 0.35).

The model performance when using indices 
obtained from both orthophoto and hyperspectral 
data was also tested. When both NDGRI and HNDVI 
were considered, no significant improvement was 

Figure 5. A selection of the UAV indices obtained from LiDAR (a), hyperspectral (b & c), and orthophoto (d) alongside their univariate 
linear relationship with the observed AGB.

Table 6. Mean statistics of the chosen spectral indices across the entire study area.

Index Min 1st Qu Median Mean ± St. Dev. 3rd Qu Max

Hyperspectral
HNDVI −0.34 0.80 0.86 0.85 ± 0.91 0.91 1.00
NDWI −1.00 −0.76 −0.71 −0.72 ± 0.09 −0.66 0.96
DD −0.02 0.00 0.04 0.05 ± 0.06 0.09 0.33
OSAVI2 −0.02 0.31 0.39 0.38 ± 0.13 0.47 0.69
Wetness −0.61 −0.03 0.00 0.04 ± 0.13 0.05 1.00

Orthophoto
ExGR −0.60 −0.05 0.16 0.16 ± 0.19 0.28 1.56
NGRDI −0.259 0.05 0.09 0.10 ± 0.08 0.14 0.84

GISCIENCE & REMOTE SENSING 15



observed (F = 0.1734; p = 0.6818). A similar finding 
was also observed when both ExGR and DD were 
used in the model (F = 2.245; p = 0.1535). The other 
combinations examined cause multicollinearity 
according to the VIF indicator.

As shown in Figure 5, NGRDI, HNDVI, and DD are in 
accord when attributing high values (NGRDI >0.15, 
HNDVI > 0.9, DD > 0.1) to the areas occupied by 
P. australis and in locating a higher biomass in the 
reedbed compared to the other categories (Tab. S4 
and S5), areas also identified with high LiDAR LAI 
values. High contrast values are also identified along 
the numerous ridges that make up the depressed 
central part of the peatland in all the three indices. 
Furthermore, there is agreement in assigning low 
values (NGRDI <0.05, HNDVI < 0.8, DD < 0.01) to 
pools. High values of HNDVI (>0.9) and low values of 
DD (<0.03) were found only in areas shaded by trees. 
High values of DD (>0.1) and low values of HNDVI 
(<0.8) were mainly found in areas of more sparsely 
colonization by P. australis.

LiDAR and spectral data combined

When NGRDI and HNDVI were added to the LAI model 
to improve its explanatory power of AGB, it was demon-
strated that neither of these two indices was able to 
increase the performance (respectively: F = 1.5608, p =  
0.2267; F = 3.1382, p = 0.0925). Instead, it was only the 
DD index that was found to have a significant additional 
contribution (F = 5.6704, p = 0.0279) which improved 
the model performance (F = 14.333, p = 0.0012). Thus, 
the best model was generated by the integration of 
LiDAR and hyperspectral data, and it was able to explain 
a substantial fraction of the AGB variability (Adj. R2 =  
0.76, F [2, 19] = 33.88; p < 0.001). The final fitted linear 
regression model was: AGB = 9.786 + 106.996*LAI 
+1239.529*DD. Residuals were normally distributed (W  
= 0.95687, p = 0.4288) and had a constant variance (BP  
= 1.2851, df = 2, p = 0.5259).

The AGB map based on this model is shown in 
Figure 6. Considering only the 75,556 cells (18,889  
m2) entirely contained within the study area peri-
meter, the estimated AGB varies between 0 to 
1,314.35 g/m2. The mean value was 321.58 ± 217.29  
g/m2, and the median value was 309.10 g/m2. 
Approximately 75% of the data are contained within 
the range 0–450 g/m2. Values greater than 750 g/m2 

were only exhibited on the reedbed areas, shrubs, or 
around the no data gaps (i.e. in the immediate proxi-
mity of dense tree vegetation). Values greater than 
1,000 g/m2 are extremely rare in open herbaceous or 
low shrub vegetation.

Considering 1,000 pixels randomly selected as 
described in the Methods section, Figure 7 shows 
that the estimated AGB in the different vegetation 
categories for the herbaceous area reflects what was 
observed in the field (see paragraph 3.1). In the stu-
died peatland, classification using morphotypes 
proved to be the most suitable method for highlight-
ing biometric diversity. Many positive outliers were 
also present in each considered category, which sug-
gests the presence of noise in the independent vari-
ables chosen to constrain the model.

Discussion

Performance of tested AGB variables

The primary objective of this study was to combine 
multi-source remotely sensed datasets to estimate 
the AGB spatial patterns across an herbaceous alpine 
peatland, calibrating these datasets by means of mini-
mal ground-truth samples in order to limit the vege-
tation harvesting required. Another objective of our 
study was to compare the results obtained using 
LiDAR and optical data to determine which dataset 
yields the best performance with the least investment 
of effort and resources.

Table 7. Pearson’s correlation matrix with significance thresholds (* < 0.05; ** < 0.01; *** < 0.001) between hyperspectral/ 
optical indices and observed AGB (n = 22).

ExGR NGRDI DD HNDVI NDWI OSAVI2 Wet

NGRDI 0.96***
DD 0.83*** 0.89***
HNDVI 0.90*** 0.81*** 0.80***
NDWI −0.88*** −0.79*** −0.81*** −1.00***
OSAVI2 0.91*** 0.87*** 0.92*** 0.97*** −0.97***
Wet 0.71*** 0.71*** 0.84*** 0.73*** −0.75*** 0.83***
AGB 0.67*** 0.67*** 0.78*** 0.78*** −0.77*** 0.80*** 0.64**
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Figure 6. AGB map produced by combining LiDAR and hyperspectral information. The orthomosaic-derived DEM serves as the base 
map. The coordinate reference system is WGS 84/UTM zone 33N (EPSG: 32633).
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Our results indicate that if only one sensor is to be 
selected for assessing peatland AGB, the optimal 
choice would be a LiDAR sensor. The LiDAR-derived 
LAI proved to be the variable with the highest expla-
natory power for AGB, which allowed us to explain 
over 70% of its variability (R2 = 0.72, Figure 5a). The 
inclusion of non-vegetated plots was an essential step 
to improve the calibration of the model, especially 
considering that in herbaceous ecosystems there is 
a limited range of AGB values (85–550 g/m2 in this 
case study). In fact, if the model is trained exclusively 
using AGB values between 85 and 550 g/m2 the 
explanatory ability decreases (R2 = 0.41, Fig. S11). 
Moreover, only the model with zero-AGB values 
returns an intercept that is not significantly different 
from zero (p = 0.499).

Other studies have demonstrated that LiDAR- 
derived LAI is highly correlated to AGB, including 
other non-forest ecosystems characterized by short 
vegetation such as dunes (Yousefi Lalimi et al. 2017). 
The main concern when using this methodology on 
dense and short peatland vegetation (Table 2) was 
related to the poor penetration of the laser beams 

through the canopy, thus limiting its ability to reach 
the ground (Luscombe et al. 2015). Our results 
showed that the number of laser beams intercepted 
by the vegetation is higher for tall and dense plants, 
as is the case for P. australis which reduced the ability 
of the model to detect the ground surface. In fact, 
although the DTM shows good levels of precision and 
accuracy on flat artificial surfaces (i.e. boardwalk and 
platform) (Figures 3 and 4), the accuracy decreases in 
vegetated areas and the DTM overestimates the 
actual ground elevation. The overestimation appears 
to be positively correlated to the vegetation height 
(Figure 4), and only a few beams seem to have been 
able to reach the ground in areas covered by dense 
and tall vegetation. However, when comparing the 
average gap of the DTM relative to the ground with 
the average vegetation height measured in the field 
in those specific vegetation types (Figure 4), it can be 
seen that the penetration of the laser increases as the 
average vegetation height increases. Thus, the beam 
tends to stop almost immediately in the bog vegeta-
tion, after a few centimeters in the fen vegetation and 
after a few tens of centimeters in the reeds. It follows 

Figure 7. Comparison between the observed AGB in the field and the AGB estimated by the multiparametric linear model, grouped by 
vegetation type. Red dots indicate the average value. Round brackets indicate the sample size. In square brackets, the outcome of the 
Kruskal-Wallis test is summarized (different letters indicate significant differences; threshold: p < 0.05).
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that the LAI values correlate better with the mean 
vegetation height (r = 0.86, p < 0.001, n = 22) than 
with the percentage cover (r = 0.76, p < 0.001, n =  
22). The close relationship that has been observed 
between AGB and the mean height rather than 
between AGB and the canopy percentage cover (r =  
0.81 vs r = 0.74) supports the good performance of 
the LiDAR LAI as a proxy of AGB in this ecosystem, 
despite the poor penetrability of the laser beam in the 
peatland vegetation.

The decent performance of the LiDAR data was not 
unexpected. Unlike passive remote sensing, which 
records an integrated signal from reflected energy, 
LiDAR provides a chance to characterize the canopy 
in 3D with a high level of detail in the vertical axis 
(Tian, Qu, and Qi 2021). Moreover, the gap fraction 
model based on the Beer-Lambert law has been pro-
ven useful to estimate LAI in other studies (Tian, Qu, 
and Qi 2021). Finally, the linear relationship between 
LAI and AGB could also be anticipated based on pre-
vious literature (Crabbe et al. 2019).

The strong and significant correlation between the 
LAI derived by LiDAR and the AGB makes this index 
the most reliable single UAV system-based variable 
for explaining the peatland vegetation biomass varia-
bility. However, the low penetrability of the laser 
beams has important implications on the application 
of Equation (1) to derive the LAI. For the model devel-
oped by Houldcroft et al. (2005) and then by 
Richardson et al. (2009) to derive realistic values of 
LAI, it requires a realistic portioning of the beams 
reaching and not reaching the ground. If, as in our 
case, the number of beams that could reach the 
ground is smaller than the actual value, the LAI will 
be overestimated. Only a few studies have measured 
LAI directly on peatland vegetation in temperate or 
boreal belts (i.e. where the vegetation is similar to that 
of our study area). Rastogi et al. (2018; Rastogi et al.  
2022) measured the LAI of vascular plants in a Polish 
peatland and recorded values ranging between 0.4 
and 2.5 m2 m−2. Similar values were reported for an 
ombrotrophic peatland in Ontario by Moore et al. 
(2002). Mohammedshum and Kooistra (2015) mea-
sured LAI directly in a Dutch peatland, focusing only 
on tree vegetation, and obtained values between 0.3 
and 1.2 m2 m−2. Räsänen et al. (2020) collected sam-
ples and determined the LAI by means of a laboratory 
scanner, obtaining an average LAI of 0.465 m2 m−2, 
a value significantly lower than ours (2.99 m2 m−2). 

Garisoain et al. (2022) collected samples of sphagnum 
mosses in a peatland in the French Pyrenees and then 
in the laboratory ascertained values of LAI as high as 
6 m2 m−2. However, this type of vegetation is so dense 
and impenetrable that we consider it to behave simi-
lar to the ground surface. Taking the aforementioned 
studies into account, the LAI values derived from 
LiDAR data in the present study are disproportio-
nately high and should not be considered as true 
LAI values but as a proxy. In the case that a true LAI 
estimation based on LiDAR data is needed, an ad hoc 

calibration using field measurements should be 
applied (Tian, Qu, and Qi 2021).

Despite these remarks, it must be underlined that 
LiDAR data may also provide valuable information 
about the peatland morphology and possible impacts 
or links with the ecosystem characteristics in general. 
In this study, LiDAR-derived morphological metrics 
highlight a trend where a greater AGB is detected in 
areas with increased proximity to water (high TWI, low 
CND, and low TPI). This aspect could be explained by 
a higher affinity for water adjacent habitats by 
P. australis. This species is considered an indicator 
species for a marsh or fen water’s edge (Rydin and 
Jeglum 2006) and furthermore its presence signifi-
cantly increases the AGB (Table 2).

The results show that morphological metrics 
based on LiDAR may provide interesting ecological 
insights, even though their contribution did not 
improve the AGB mapping ability. In fact, these 
metrics correlate weakly or insignificantly in the 
range 85–550 g/m2, and in the regression model, 
their effects are discarded according to AIC indica-
tor and Fisher’s test. This result was in part unex-
pected because in this ecosystem the distance from 
the water table is considered the most important 
factor determining the different species associations 
(Gerdol, Tomaselli and Bragazza 1994; Bragazza  
1996; Bragazza and Gerdol 1999), which are in 
turn, indicators of AGB spatial variability. As already 
hypothesized for the LAI retrieval, it appears that 
the poor penetration of the laser into the canopy 
played a major role in negatively affecting the abil-
ity to describe the general microtopography.

Analyzing the performances of specific indices, 
derived from an RGB camera and a hyperspectral sen-
sor, showed that common optical data acquired with 
a UAV three-band camera does not provide indices 
which can improve the performances of the model. 
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Not surprisingly, among the spectral indices, the 
hyperspectral ones showed higher explanatory 
power when compared to the RGB camera indices. 
VIs are developed to maximize sensitivity to vegeta-
tion characteristics while minimizing confounding 
factors such as soil background reflectance, direc-
tional, or atmospheric effects. It is well known that 
these conditions are satisfied above all others by the 
information contained within the red and near- 
infrared (NIR) bands (Fang and Liang 2014). Despite 
containing these important red and NIR bands, the 
hyperspectral indices gave mediocre performances. 
The HNDVI index, as well as the other indices closely 
related to it (NDWI and OSAVI2), is clearly affected by 
the saturation effect (Figure 5). Fig. 5.2 clearly shows 
that HNDVI retains a satisfactory level of explanatory 
capacity (R2 = 0.62) only when the zero-AGB values 
are included (i.e. from the non-vegetated plots), 
whereas, if only the AGB range 85–550 g/m2 was 
used, the performance of the model would drop dras-
tically (R2 = 0.08, Fig. S11). On the contrary, the DD 
index showed a high explanatory ability (R2 = 0.62) 
and did not seem to be affected by the saturation 
problem (Figure 5 and Fig. S11). Thus, the DD index 
can be judged as the best explanatory variable within 
the set of spectral indices considered. This result 
agrees with Räsänen et al. (2020), who place the DD 
index at the top of a ranking of importance for 
a peatland AGB assessment where only hyperspectral 
variables were employed. Nonetheless, the use of DD 
alone as the sole independent variable (like the other 
hyperspectral indices) provides results that are less 
reliable than the LAI from LiDAR, probably because 
of its sensitivity to the optical properties of the soil 
background. These optical properties are affected by 
shadows and humid depressions, resulting in very 
contrasting LAI values being attributed at the margins 
and along the system of riffles and pools in the center 
of the peatland (Figure 5).

Testing the model using several combinations of 
indices extracted from the data collected by three 
sensors, it was found that the most reliable and robust 
model combines indices retrieved from both LiDAR 
and hyperspectral data (AGB = 9.786 + 106.996*LAI 
+1239.529*DD). This provides a higher explanatory 
power (i.e. Adj. R2 = 0.76) and an intercept even closer 
to zero with respect to the model with solely LAI. One 
possible explanation for the strong performance of 
the model combining LAI and DD lies in its high 

sensitivity to the background setting. Hence, the DD 
index seems to have a greater ability to identify low 
AGB in sparsely vegetated temporary pools in com-
parison to the LAI, which instead reported increased 
levels of noise. Therefore, the DD index may contri-
bute to the model by better defining the presence of 
bare soil. Not by chance, the DD index correlates 
slightly better with the percentage cover (r = 0.72, p  

< 0.001, n = 22) than with the mean vegetation height 
(r = 0.70, p < 0.001, n = 22). However, it should be 
pointed out that the increase of R2 is very limited, 
from 0.72 to 0.76. The limited improvement provided 
by the DD index is even more evident if the model 
was only trained for the 85–550 g/m2 AGB range, in 
which case the DD index does not even significantly 
improve the performance (F = 3.0827; p = 0.09825). It 
follows that in this range the additive effect of DD 
decreases the explanatory power of the model (R2  

= 0.63).
In general, the AGB predicted with the model that 

combines LAI and DD agrees well with the field obser-
vations. Specifically, the field measurements of AGB 
vary in the range 89–501 g/m2 with an average value 
of 271.65 ± 87.21 g/m2, that is in line with previous 
literature data for boreal peatlands (Moore et al. 2002; 
Murphy, McKinley, and Moore 2009; Räsänen et al.  
2020), but the differing nature of the northern peat-
lands makes a valid comparison difficult to make. The 
AGB estimated with the model varies across the 
marsh in the range of 13.48–1,123.46 g/m2 with an 
average value of 319.56 ± 136.83 g/m2. Looking at the 
sampled plots, estimated AGB values have high stan-
dard deviations, both overall and in between vegeta-
tion categories (Figure 7), including some anomalous 
and meaningless values. Variables retained in the 
model – but also those excluded – cause large varia-
bility (see Tab S3, S4, and S5). Moreover, in the applied 
sampling scheme, shrubs were not considered, which 
prevented the calibration of the regression model for 
large values. Therefore, it is possible that the equation 
applied in this study may have underestimated the 
AGB in the area occupied by P. mugo.

In general, the AGB statistics produced in this study 
confirms the well-known trophic trend of peatlands 
vegetation (Rydin and Jeglum 2006), since the nutri-
ent-poor bogs have a lower biomass than the more 
nutrient-rich fens (Figure 7). Moreover, the AGB map 
(Figure 6) shows areas characterized by a greater bio-
mass in some parts of the reedbed (as well as near 
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trees and shrubs), where the presence of P. australis 

alters both the parameters biomass and height 
(Table 2). In particular, the highest AGB values (<600  
g/m2) are registered in the central-southern portion 
of the study area, in the middle of the P. australis 

southern patch. It should be pointed out that all 
maps in Figure 5 detect high AGB values in that 
area. The same result was also obtained by calculating 
the difference between the 10 cm resolution DEM 
derived from SfM and the DTM extracted from LiDAR 
data with an equal resolution (data not shown).

Considerations on merits and limitations of LiDAR 

data acquisition and processing

The LiDAR data acquisition phase using UAV systems 
is an essential step for the success of the applied 
methodology. The gap probability approach used to 
extract the LAI requires a high point-density cloud 
and information on the vertical structure of individual 
plants to perform at its maximum potential. Although 
mounting LiDAR systems on UAVs allows these statis-
tics to be maximized, one must be aware that the 
application of LiDAR in short-canopy systems such 
as peatlands means taking the sensors to the limit of 
their discriminatory skills. Therefore, it is necessary to 
accurately examine the available acquisition methods 
and select the one that increases the number of 
beams per square meter and enables the greatest 
vegetation penetrability. In this study, the DJI 
Zenmuse L1 sensor was functioning at its maximum 
capacity (i.e. 3 returns at 160 Hz) and retrieved a high- 
density cloud with 321 points/m2 on average (pre- 
processed point cloud). Moreover, a non-repetitive 
acquisition scheme which is unique to the L1 sensor’s 
LiDAR technology was selected, wherein a very large 
vertical FoV is employed (greater than the horizontal 
FoV thus generating a near-circular FoV) such that the 
point density should significantly increase even after 
0.3 s of integration time. This scanning mode reveals 
more detailed information regarding the surround-
ings in comparison to a traditional scanning pattern 
(see L1 sensor’s User Manual for more details). Despite 
using this scanning advancement, the results show 
a prevalence of the first-return group (Table 3) and no 
points belonging to the second- and third-return 
groups were recorded within the study area, only in 
the surrounding areas characterized by the presence 
of trees and shrubs (Fig. S2). According to Sofonia 

et al. (2019) statistics related to key UAV LiDAR point 
cloud metrics can be accurately predicted before the 
flight. Thus, improved flight design can increase the 
performance of the sensor. For example, the best 
overall performance of UAV LiDAR density and accu-
racy occurs at relatively low flight altitudes (<30 m) 
and when flight time is increased over the target area 
(“cross-flight”) (Sofonia et al. 2019). The latter is also 
suggested based on the results of Qin et al. (2017) 
that showed how overlapping strips of different scan 
angles (up to 25°) could improve the reconstruction of 
the leaf profile. Moreover, general trends indicate that 
speed is inversely proportional to density. The results 
of this study may reflect a current intrinsic limitation 
of the available technology (see, for example, over-
lap). But the use of waveform LiDAR instead of dis-
crete LiDAR returns seems a promising solution for 
the problem (e.g. Miura et al. 2019), although this 
would increase the complexity of dataset analysis.

The flip side of using the non-repetitive acquisition 
scheme is that, along flight strips (Fig. S3), the point- 
cloud is less homogeneous: the sensor explores the 
FoV with flower petal-shaped scans, which by conver-
ging toward the center generate a higher point- 
density within a radius of 10° of the center of the 
FoV (i.e. from the nadir). Thus, a fundamental aspect 
to consider is whether this non-uniformity generates 
biases in deriving the LAI or the DTM for specific scan 
angle ranges. Based on the results, scan angles of 20° 
should not be exceeded (Fig. S7). This threshold is 
more conservative than the one adopted by Yousefi 
Lalimi et al. (2017) in a similar study, but is in line with 
the findings of Liu et al. (2018) and – partially– Dayal 
et al. (2020) for airborne forestry applications. The 
parallelism with the latter research is corroborated 
by simulations of Qin et al. (2017), which showed 
that flight height does not affect the choice of the 
best scan angle.

To extract the DTM from the LiDAR cloud, the 
method proposed by Roussel et al. (2020) was slightly 
modified. Noise removal based on the interquartile 
range (IQR) was used, as it proved effective on this 
data set (Tab. S1) and performed better than the 
methods included in the “liDR” package proposed 
by Roussel et al. (2020), i.e. SOR and IVF algorithms. 
The SOR method was parameterized to function for 
contours comprising the average number of points 
within 0.5 m2 (to emulate our approach; but also simi-
lar to the choice of Zeybek and Şanlıoğlu 2019) and 
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with standard deviation intervals of 3 and 2 to have 
a high level of certainty of not committing a Type II 
error. The IVF method was parameterized as both 
stringent (classifying returns as outliers when they 
have at most 1 other neighbor return within 0.1 m 
resolution contours) and lenient (5 neighbors within 
1 m resolution voxels). Both SOR and IVF proved to 
over-penetrate the considerable vertical range, i.e. 
detecting outliers only on trees (or even on shrubs 
and reeds when parameterized in an stringent way). 
Therefore, both methods failed to filter within the 
small vertical ranges imposed by short-canopy vege-
tation, which are only partially penetrated by the 
laser. In the case of the SOR, this could be due to 
the standard deviation value, wherein the algorithm is 
methodologically based and is influenced by the out-
liers themselves (whereas this is not the case using 
position indices such as the interquartile range). 
Regarding the IVF method, the 27 voxels (3 × 3 x 3) 
imposed may encompass too wide a neighborhood. 
Therefore, this study entails limited conditions for the 
applicability of methods created to work effectively in 
forest canopies such as those implemented in the 
“lidR” package. The IQR method proved to be the 
most effective probably because the target vegeta-
tion shows a threadlike, dense and rather homoge-
neous development within short distances. Therefore, 
the subset of data on which the algorithm works is 
also rather coherent. On the other hand, the proposed 
method might be too strict in the case of vertically 
stratified vegetation, such as in forest ecosystems. 
Hence, forested areas surrounding the study site 
were not considered.

Our results also showed that ground-point classifica-
tion may be an unreliable method for the creation of the 
DTM. As described in the previous chapters, the mini-
mum value within each cell of a grid system (as per 
Yousefi Lalimi et al. 2017) was selected because the 
vertical range of the ground-points seemed dispropor-
tionate compared to the same range measured on flat 
surfaces. Despite the reliability of the results obtained, 
one difficulty encountered was evaluating the perfor-
mance of different methods and different parameteriza-
tions objectively and in a timely manner. Zeybek and 
Şanlıoğlu (2019) have proposed an analytical approach 
but it relies on having a reference dataset previously 
classified by an operator. More often, therefore, one 
settles for a visual transect inspection approach 
(Navarro et al. 2020). In the case of this study, the PMF 

method was preferred. For this method, the selection of 
the window size and elevation difference threshold 
when applying filter is critical to achieve good results. 
Zhang et al. (2003) suggested the use of simple equa-
tions to increase both parameters in a standard way 
after choosing the first value (i.e. the most restrictive). 
However, these equations are not solvable in the case of 
windows of less than one unit (i.e. 1 m in this case). 
Despite this, windows of less than 1 unit seem to be 
an indispensable condition when working with ultra- 
high resolution data. We have considerably widened 
the range of possible parameter combinations, which 
complicates the search for the most suitable one. A valid 
selection of many ground-points would have been pre-
ferable to the few selected points in discrete intervals 
used to construct the DTM. Just as it would have been 
preferable to directly apply ground and non-ground 
classification for the calculation of the gap fraction to 
extract the LAI instead of applying a uniform threshold 
throughout the cloud. However, a combination of para-
meters capable of satisfactorily reducing the average 
vertical range without removing entire micromorphol-
ogy (i.e. the various riffles in the center of the peatland) 
was difficult to obtain.

As previously mentioned, the UAV surveys were 
performed during the sampling days instead of prior 
to, a consequence of repeated unfavorable weather 
conditions. For this reason, the data collected by 
drone in the immediate vicinity of the sampling sites 
(radius of about 1 m) had to be masked. As described in 
the Methods section, this issue was resolved by select-
ing a set of 20 cells in the vicinity of each sampling site 
that we considered to be representative of the vegeta-
tion and topographical characteristics of the reference 
site. The appropriateness of this selection was based on 
orthophotos and depth knowledge of the study area. 
To validate this, the LAI was used as the reference 
variable and the random test was performed. The 
results (Fig. S8) demonstrate that both average 
Pearson’s correlation coefficient and its standard devia-
tion range maintain positive values across the entire 
range of abscissae, i.e. selecting from 1 to 20 cells per 
site. Since LAI is being used as a proxy for AGB, this 
result is reassuring in terms of the goodness of the 
chosen cells. It should also be noted that one of the 
randomized combinations of three cells would max-
imize the correlation (r = 0.92), although only the use 
of > 10 cells guarantees a stable correlation. Thus, the 
results show that n = 20 is far too conservative a choice.
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Conclusions

Our results suggest that the AGB of herbaceous peat-
lands can be accurately mapped by calculating the 
LAI from UAV LiDAR data and then using the LAI in 
a linear regression model. In our study we obtained 
a significant explanatory power (R2 = 0.72) using 
solely UAV LiDAR data collected on a typical alpine 
peatland covered with dense and highly heteroge-
neous herbaceous vegetation. When hyperspectral 
data are also available, spectral vegetation indices 
may add explanatory power to the model, even 
though their contribution is limited to only marginally 
improving the model’s explanatory ability. In our case, 
combining the LiDAR-derived LAI with the DD index 
calculated using hyperspectral data increased the R2 

to 0.76. Finally, our results show that when the regres-
sion is attempted using exclusively spectral indices 
obtained from hyperspectral data, the explanatory 
power of the model is lessened.

The results obtained from this research highlight 
both the positive aspects and the limitations of the 
examined approaches. The use of LiDAR as a single 
sensor simplifies the data collection phase and reduces 
the costs, especially if one considers the limited gen-
eral availability of hyperspectral sensors. Another posi-
tive aspect is that LiDAR sensors can be operated in 
poor visibility conditions. On the other hand, the 
methodology customized for this study is greatly 
dependent upon the presence of a highly dense 
point cloud, thereby exhibiting great sensitivity to 
the characteristics of the LiDAR sensor and the acquisi-
tion geometry. Moreover, the parameters chosen for 
processing the LiDAR data in this research are primarily 
based on an intense and laborious empirical process 
and there is a need to validate the replicability of the 
method in other peatlands or similar ecosystems.

The limited contribution offered by hyperspec-
tral-derived vegetation indices investigated in this 
research confirms the outcomes of prior studies 
conducted on herbaceous peatlands. This poses 
the challenge of finding novel methods to exploit 
the potential of hyperspectral and multispectral 
data for estimating vegetation aboveground bio-
mass (AGB) in alpine peatlands.

Our study stimulates two lines of ongoing research. 
The first investigates how to best retrieve LAI in her-
baceous ecosystems using UAV LiDAR data, testing 
among other aspects different flight parameters and 

sensor types. The second line of research includes the 
testing of other hyperspectral sensors that contain 
more NIR bands and possibly also SWIR (Short Wave 
InfraRed) bands, since unfortunately the sensor used 
in this study could only sample up to 1000 nm.
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