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Abstract. Unoccupied aerial vehicle (UAV) monitoring sur-
veys are used to assess a dune restoration project in the pro-
tected natural area of the Bevano River mouth on the northern
Adriatic coast (Ravenna, Italy). The impacts of the installed
fences to aid dune development are quantified in terms of
sand volume and vegetation cover changes over 5 years using
a systematic data processing workflow based on structure-
from-motion (SfM) photogrammetry and the Geomorphic
Change Detection (GCD) toolset applied to two drone sur-
veys in 2016 and 2021. Accuracy assessment is performed
using statistical analysis between ground-truth and model el-
evation data. Results show that the fence proves to be effec-
tive in promoting recovery and growth since significant sand
deposition was observed along the dune foot and front – a
total area of 3799 m2, volume of 1109 m3, and average depo-
sitional depth of 0.29 m. Progradation of around 3–5 m of the
foredune and embryo development were also evident. There
was a decrease in blowout features of about 155 m2 due to
increased deposition and vegetation colonization. There was
also an average percent increase of 160 % on wave-induced
driftwood and/or debris along the beach and of 9.6 % vegeta-
tion within the fence based on the cover analysis on selected
transects. Erosion of around 1439 m2 is apparent mostly at
the northern portion of the structure, which could be ac-
counted for by the aerodynamic and morphodynamic condi-
tions around the fence and its configuration to trap sediments
and efficiency in doing so. Overall, dune fencing coupled
with limiting debris cleaning along the protected coast was
effective. The proposed workflow can aid in creating trans-
ferable guidelines to stakeholders in integrated coastal zone
management (ICZM) implementation on Mediterranean low-
lying sandy coasts.

1 Introduction

Coastal dunes are significant ecosystems that can provide
flood protection, groundwater storage, salinization preven-
tion, species habitat, and recreation. Their dynamics are
driven by the complex interaction between the controlling
winds, vegetation, and the nearshore-beach geomorphol-
ogy (Sloss et al., 2012; Yousefi Lalimi et al., 2017). Their
highly dynamic nature, in addition to climatic and anthro-
pogenic pressures, makes these landforms extremely vulner-
able. To prevent further degradation, soft or limited engineer-
ing, along with nature-based solutions (NBSs), have been
the preferred intervention strategies for coastal zones as they
enable more dynamic evolution and functioning. In Europe,
coastal foredunes have been stabilized over the past century
by reprofiling, planting vegetation and dune fencing, and/or
beach nourishment (Nordstrom and Arens, 1998; Arens et
al., 2001; Matias et al., 2005; Ruz and Anthony, 2008; De
Vriend and Van Koningsveld, 2012; Laporte-Fauret et al.,
2021).

Surface topography characterization using high-resolution
data and remote sensing such as terrestrial laser scanning
(TLS), light detection and ranging (lidar), and unoccu-
pied aerial vehicles (UAVs) has led to the development of
quantitative methods used for coastal monitoring purposes
(Kasprak et al., 2019). Among these, UAV platforms have
gained more traction due to their affordability and user-
friendly interfaces compared to other surveying counterparts.
The advances in the use of UAV and structure-from-motion
(SfM) photogrammetry have made geomorphic change mon-
itoring and sediment budget estimations become manageable
approaches in research and practice (Wheaton et al., 2009b).
SfM photogrammetry utilizes a structured acquisition of im-
ages to reconstruct 3D scene geometry and camera motion
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based on a new generation of automated image-matching al-
gorithms (Mancini et al., 2013). These images can be used to
create digital elevation models (DEMs) to produce DEM-of-
difference (DoD) maps to estimate the net change in storage
for morphological sediment budgets (Church and Ashmore,
1998; Wheaton et al., 2009b).

The use of UAV–SfM in monitoring seasonal coastal
changes along the Emilia-Romagna coast has been evident
in the works of Taramelli et al. (2015), Scarelli et al. (2017),
Fernández-Montblanc et al. (2020), Sekovski et al. (2020),
and Fabbri et al. (2021). These studies have noted that ac-
curacy assessment of the surface and elevation models from
UAV–SfM is important before performing further analysis.
Understanding the effect of elevation data uncertainty was
also highlighted in the recent work of Duo et al. (2021),
where UAV-derived data were utilized for the morphodynam-
ics study of a scraped artificial dune beach in Comacchio
using change detection. The availability of UAV–SfM tools
and methods for coastal applications can be further utilized
in other highly dynamic areas like the Ravenna coastline and
its remaining dunes.

Study site information

The dunes along the Ravenna coast (northern Adriatic Sea,
Italy; Fig. 2) have been subjected to degradation due to com-
bined natural, anthropogenic, and climate-induced pressures.
Ravenna is a historical city, known for its beach tourism and
for having one of the largest seaports in Italy. It is part of
the 130 km coastline of Emilia-Romagna that is made up of
a flat, alluvial, sandy system, with a gently sloping seabed
of about 6 m in depth and shallow subtidal sediments from
well-sorted fine to medium sand (Airoldi et al., 2016; Harley
et al., 2016). The local hydrodynamic conditions include ex-
posure to moderate wave action and a microtidal regime that
ranges between 30 and 80 cm between neap and spring tides
(Biolchi et al., 2022). Two wind patterns characterize the re-
gion – the bora wind from the northeast that brings shorter
but energetic waves (dominant wind) and the longwave in-
duced by levant and sirocco (prevailing winds) from the east
and southeast, respectively. The wave climate and current cir-
culation in the northern Adriatic are known to be strongly
influenced by the bora wind given the coast orientation.

According to the 2016–2020 meteo-marine data from the
Hydro-Meteo-Climate Report of the Regional Agency for
Prevention, Environment and Energy of the Emilia-Romagna
region (Arpae, 2020a), the majority of the stronger waves
(0.2 to 4 m) are from the NE and ENE (Fig. 1). Waves blown
from the eastern side are more frequent from 2016 to 2020
but are relatively weak (0.2 to 2.5 m). The number of storm
surges per year ranges from 17 to 24, with an average du-
ration of 12.8 to 27.9 h. Wind and wave data are recorded
from the wave buoy every 30 min and are then archived to the
Arpae service database that can be accessed online through
Dext3r (https://simc.arpae.it/dext3r/, last access: 10 Febru-

ary 2023). Historical records of the storm surge character-
istics from the 2007–2020 observations are summarized in
Table 1.

Significant land subsidence due to tectonic processes and
sediment consolidation has been widespread and has intensi-
fied due to human activity since the second half of the 20th
century (Airoldi et al., 2016). Erosive processes have also
affected 105 km out of the 130 km coastline of the region
during this period – along with the increase in vulnerabil-
ity to storm surge, rapid coastal urbanization, the implemen-
tation of rigid coastal defenses, and massive dune destruc-
tion – igniting the need to implement strategic interventions
to mitigate these problems (Arpae, 2020a). Hard coastal de-
fenses (submerged and emerged breakwaters, groynes, and
revetments) were constructed in the early years (Armaroli et
al., 2019; Perini et al., 2017). However, these infrastructures
had negative environmental impacts including increased sed-
imentation of silts and clay, loss of native habitats, eutroph-
ication, and poor water quality (Airoldi et al., 2016; Preti
and Zanuttigh, 2011; Sekovski et al., 2020). The progressive
transition from hard coastal defenses in the 1970s to more
integrated approaches with soft techniques and NBSs in re-
cent years has been implemented in the region. NBSs and
soft-engineering techniques such as beach nourishment and
dune fence installation were eventually initiated as alterna-
tive solutions in the early 2000s. Collaborations between the
regional environmental agency Arpae, research groups, and
other regional services that deal with coastal management led
to the collection of important databases that aided the imple-
mentation of several policies to address the impending issues
along the Emilia-Romagna coast.

In 2016, the RIGED-RA Project – “Restoration and man-
agement of coastal dunes along the Ravenna coast” – was
able to install a grid of windbreak fences that stretches across
465 m along a portion of the Bevano River dune ridge in Lido
di Classe (Fig. 2) as an intervention strategy to reduce the
vulnerability of the coast and the associated residual dunes in
the area (Giambastiani et al., 2016). The selection of the most
suitable NBS intervention was done after a geographic, en-
vironmental, lithological, hydrogeological, geomorphologi-
cal, and hydrodynamical characterization of the study area
collected during the 3-year project. The Bevano dune–beach
system is a protected natural area with high biodiversity, with
laterally continuous and sub-vertical foredunes. According
to Giambastiani et al. (2016), the area was selected as the
pilot site given that it has the potential for dune accumula-
tion but has limited beach width and unstable sub-vertical
foredune geometry. Blowout patches are also evident along
the frontal dune area of the study site. The installed fences
are called ganivelles – made up of highly resistant chest-
nut wood stakes and poles about 1.20 and 1.80 m in height,
whose purpose is to block the wind loaded with sand and
consequently favor its accumulation to recreate the dune. The
spacing between stakes was set to 10 cm. The first fence was
placed at the dune foot followed by the second fence 2 m sea-
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Figure 1. Significant wave height (SWH in m) and frequency (%) for 2007–2019 (a) and 2020 (b) extracted from the Arpae 2020 report.

Figure 2. Location of the study area in Ravenna (Italy) and the dune fence project planimetry (modified from Giambastiani et al., 2016).
Points A, B, and C represent areas in the back dune, foredune, and beach along a section of the project.
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Table 1. Storm surge characteristics from 2016 to 2020 extracted from the Arpae database. SL denotes sea level.

Year No. of storm Total Avg Normalized Avg SWH Max SWH Max SL during
surges duration (h) duration (h) energy (m2 h−1) (m) (m) storm surge (m)

2016 23 343 14.9 55.1 1.80 3.11 0.93
2017 17 325 19.1 95.9 1.89 3.68 0.87
2018 15 419 27.9 111.4 1.88 3.10 1.06
2019 24 307.5 12.8 41.8 1.67 2.10 1.16
2020 18 340.5 18.9 76.3 1.85 3.11 1.03

wards. The two fences were connected perpendicularly by
8 m fence portions. No planting activities were implemented
due to the high presence of native sand-binding vegetation
species such as psammophilous species. The fence configu-
ration was in accordance with the mathematical model devel-
oped by Hanley et al. (2014) that illustrates the relationship
between brushwood fence size and position and optimum
sand accumulation and is applicable to microtidal environ-
ments.

The availability of repeated UAV topographic surveys af-
ter the fence installation in 2016 and the availability of open-
source tools can address the gaps in quantifying the restora-
tion efficacy. The study aims to provide aid for making in-
formed decisions from quantitative data analysis with the
proposed workflow for UAV data processing and elevation
data analysis suited for sediment volume calculation. Error
analysis was performed to validate the change detection re-
sults produced. Vegetation cover change using orthomosaic
images derived from UAV was also explored to determine
other contributing factors to the overall morphology of the
dune ridge.

2 Materials and methods

The methodological framework (Fig. 3) includes established
workflows for data acquisition, geomorphology modeling,
vegetation change, and geomorphic change detection. An-
nual monitoring campaigns were carried out after the fence
installation in 2016. In this paper, only the first (October
2016) and last (October 2021) UAV and GPS surveys were
selected to assess the dune evolution. GPS data points were
collected using a Leica differential global positioning sys-
tem (DGPS; Viva GNSS GS15 GPS) that worked with a
real-time kinematic (RTK) system to ensure sub-metric ac-
curacy. Collected data points include several profiles across
the beach from the coastline to the back dune with a mea-
suring interval of 1 m. Aerial photographs for the 3D recon-
struction were captured using a DJI Phantom drone, with
flight plans defined and executed in PIX4DCapture. The fly-
ing height used in both surveys are 20 m, with side and front
overlap of 80 %. Ground control points (GCPs) were estab-
lished on site and were geolocated using GPS to georefer-
ence the images and 3D models during the SfM processing

in Agisoft Metashape Professional. The datum used for the
flight plan was WGS 84, and the coordinate system was set
to UTM 32N.

For the SfM processing, multiple overlapping photos were
loaded and initial image filtering was performed before the
alignment process. The two datasets have a total of 13 and
15 GCPs, respectively. Each GCP was assigned as either a
control point or a checkpoint – the former is used to refer-
ence the model, while the latter is used to validate the camera
alignment accuracy and optimization procedure results (Ag-
isoft LLC, 2021). The 2016 data have 9 control points and
4 checkpoints, while the 2021 data have 10 and 5. After the
alignment process, a dense point cloud was created and fil-
tered to remove low-confidence points (0 %–5 %).

The dense-point-cloud data were then classified into
ground and non-ground using the automatic ground point
classification tool to remove vegetation points. The classified
points were used as the boundary condition for creating the
RGB orthomosaic with spatial resolution of 0.1m× 0.1m.
Ground points were imported and converted into raster in
ArcMap 10.8.2 to create the DEMs for the change detec-
tion analysis. A concurrency shapefile and spatial resolution
of 0.1m× 0.1m were used in creating the elevation models
to ensure coherence and comparability. The horizontal accu-
racy of the resulting DEMs was assessed using the calculated
root-mean-square error (RMSE) of the checkpoints, while
the vertical accuracy was evaluated by comparing the DEM
values extracted using QGIS Profile Tool plugin version 4.2.0
to the GPS point values. The computed DEM points and the
measured GPS points along each transect were visualized by
a scatterplot in Python 3.9. Statistical measures include R2,
RMSE, the mean absolute error (MAE), and the mean bias
error (MBE).

The morphological assessment was implemented using the
Geomorphic Change Detection (GCD) 7 AddIn tool in Ar-
cMap. This tool was developed by the Riverscapes Consor-
tium using the methodology of Wheaton (2008) and Wheaton
et al. (2009a, b). It can compute for the extent, magnitude,
and landscape form changes that occur within an inter-survey
period to understand the overall sediment budget of the area
of interest (AOI) or the spatial distribution changes of sedi-
ments through time (Grams et al., 2015; Collins et al., 2016;
Sankey et al., 2016). In this study, the AOI included the fore-
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Figure 3. Methodological framework of the study. GSD denotes ground sampling distance.

dune to beach area. Error rasters were created using the re-
ported total RMSE values of the control points, which were
0.046 and 0.032 m, respectively. These values were used to
calculate the propagated error applied to each cell (Eq. 1) and
the t statistics (Eq. 2), adapting the following equations from
Lane et al. (2003):

σc =

√
σ 2

1 + σ
2
2 , (1)

where σc is the root sum of square of uncertainty for each
change interval [m]; σ 2

1 and σ 2
2 are the squares of uncertainty

for the older and newer time steps [m];

t =
zt2− zt1

σc
, (2)

where t is the t statistics and zt2 and zt1 are the elevation of
the raster cell for the newer (t2) an older (t1) time step [m].
The t statistics can be used as a thresholding level of signif-
icant change, where values of t are more than 1.96 with a
mean confidence interval of 95 % for a two-tailed t test. Val-
ues that fell below the confidence threshold were removed
from the output change raster to improve the likelihood that
a significant change was captured (Hilgendorf et al., 2021).
The percent sediment imbalance metric SI was also calcu-
lated to characterize the sediment dynamics using Eq. (3)
(Wheaton et al., 2013; Kasprak et al., 2015, 2019):

SI=
(VDEP−VEROS)

2 · (VDEP+VEROS)
· 100, (3)

where VDEP is the volume of deposition and VEROS is the
volume of erosion [m3].

The vegetation change analysis was performed based
on a statistical approach similar to that of Silvestri et al.
(2022), with some modifications applied. The process in-
cludes shoreline delineation using ISO cluster unsupervised
classification in ArcMap, transect creation based on GPS
profiles, and gridding and centroid creation at 1m× 1m
resolution using the transects as boundary conditions. The
method applied to detect the presence and/or absence of veg-
etation is based on the visual inspection of the centroids of
the grid cells. If the centroid falls on bare soil, there is an ab-
sence of vegetation. Consequently, if it falls on a vegetated
pixel of the photo, there is a presence of vegetation. As the
orthophotos have a resolution of 0.1m× 0.1m, a 1m× 1m
grid resolution allows us to sample 1 pixel (corresponding
to the centroid) every 100 pixels included in each grid cell.
This method is similar to a classic visual ecological survey
performed in the field with 0.1m×0.1m plots placed at a dis-
tance of 1 m from each other along a transect, but in this case
it is performed on an orthophoto instead, with the assump-
tion that the operator has a clear overview of the area and
can clearly distinguish between vegetated and non-vegetated
(with either bare sand or logs and/or debris) pixels. The accu-
racy of the method therefore depends on the ability of the op-
erator as well as on the image quality. Percentage calculation
of the cover types present in each transect was performed to
quantify the change. The assessment of blowout features was
also performed by visual inspection of the 2016 and 2021
orthomosaic images.
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Figure 4. DEM of 2016 (a) and 2021 survey with GPS profiles (b).

3 Results

3.1 DEM development and validation

The DEMs, at 0.1 m× 0.1m resolution, resulting from the
UAV surveys in 2016 and 2021 are shown in Fig. 4. There is
an elevation range of−0.37 to 6.30 m, with the minimum and
maximum values observed along the beach area and the back
dunes. Validation on the transects (Fig. 4b) was performed
using linear regression shown in Fig. 5. Only the 2021 sur-
vey was validated for the vertical accuracy since there are
no ground-truth GPS profiles available for the 2016 dataset.
The R2 values range from 0.97 to 1, while the RMSE values
range from 0.07 to 0.15 m. The MAE and error bias values
range from 0.06 to 0.10 and −0.01 to 0.05 m, respectively.
Elevation difference at the back dune area was observed in
transects 1, 3, 6, and 8. There is also variation observed from
the dune crest and foot in transects 2, 8, and 9. Overall, the
GPS data and model comparison for 2021 have a good fit in
all the sample profiles. In terms of horizontal accuracy, the
reported RMSEs(x,y) of the 2016 and 2021 checkpoints are
0.020 and 0.022 m.

3.2 Geomorphic and vegetation cover changes

The change detection results of the 2021 vs. 2016 DEMs are
shown in Figs. 6 and 7. Considering the total area of 9154 m2,
6020 m2 (66 % of the AOI) had detectable changes after ap-
plying the 95 % confidence interval (CI) threshold; 2221 m2

had erosional change that is equivalent to 584 m3 in volume
and 0.26 m in average depth. On the other hand, 3799 m2 had

depositional change that corresponds to 1109 m3 and 0.29 m.
A net rise of 1692 m3 has been detected, with a net volume
difference of +525 m3. The average total thickness of dif-
ference is 0.18 m, with a net thickness difference of 0.06 m.
Looking at the DEM profile comparison (Fig. 6b), embryo
dune formation is apparent in transects 3, 6, 8, 9, and 10.
There is also a noticeable variation in elevation values in T1;
nonetheless, deposition along the dune foot is still noticeable.
Overall, deposition was mostly observed within the fence and
the beach at the central part of the AOI, while erosion was
mostly at the northern part of the structure and at the beach
part of T10. A tabular summary of the GCD is included in
the Appendix.

Orthomosaic images from 2016 and 2021 were used in the
vegetation cover change assessment (Fig. 8). Considering the
average percent change of all the transects, there was an over-
all increase in the cover extent of vegetation (9.6 %) and ar-
eas with logs or debris (160 %) and, consequently, an obvious
decrease in the bare-sand extent (26 %). The highest positive
percent changes for vegetation increase were in transects 2,
3, 8, and 9. An increase in logs and debris was more evident
in transects 2, 3, 6, 8, and 9 (Fig. 9). There is also an evident
decrease in blowout features on some transects located along
the fence close to the dune foot, which has a total area of
155 m2. In Fig. 10, the blowout patterns close to transects 2,
3, and 8 have been covered by sand and vegetation over time
and are comparable to the deposition patterns in Fig. 6.
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Figure 5. GPS vs. DEM profile comparison for 2021.

4 Discussion

4.1 Change detection – geomorphic and vegetation
cover

Within the littoral cell where the study site is located, sand
accumulation and shoreline advancement by 15–20 m were
observed in 2018 in comparison to the 2012 baseline data
(Arpae, 2020b). The 2018 report on the coastal state of
Emilia-Romagna mentioned defense intervention as one of

the factors that could have influenced this change. The re-
sult of the 2021 vs. 2016 GCD further establishes the ef-
ficacy of the dune fencing since significant deposition – in
terms of area, average depth, and volume along the dune foot
and a portion of the beach – was evident. Progradation of
around 3 to 5 m from the foredune is apparent, and some pro-
files exhibit embryo development (Fig. 6b; profiles 3, 6, 8,
and 9). Profiles with significant deposition were the ones lo-
cated at the middle and the southern part of the AOI. Embryo
foredunes are formed due to sand deposition within clumps
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Figure 6. Change detection result of 2021 vs. 2016 DEMs (a); DEM transect profile comparison (b).

Figure 7. Summary of the areal (a), volumetric (b), and elevation changes (c).

of vegetation, individual plants, or driftwood and/or log de-
bris (Hesp, 2002; van Puijenbroek et al., 2017). An increase
in vegetation and wave-transported driftwood has been ob-
served within and near the fence (Fig. 8). Most of the veg-
etation change appeared in between the fences as pioneer
species colonized the pillow sand deposits. No vegetation
change on the more stabilized back dune was observed. The
increase in vegetation colonization contributed to the stabi-
lization of sand accumulation within the dunes over 5 years.
The result is comparable to the study of van Puijenbroek et al.
(2016) regarding the effect of vegetation on embryo dune de-
velopment in the Netherlands. Tolerant vegetation facilitates
sand deposition and aids in increasing the stabilization and
growth of dune systems (Laporte-Fauret et al., 2021; Woot-

ton et al., 2016). The result is also in agreement with the pub-
lished work of Dong et al. (2008) and Hesp (2002), where it
was mentioned that the establishment of vegetation on bare
sand or beach forms a roughness element that may allow lo-
calized sand deposition and reduced erosion.

An erosional pattern is apparent in the northern beach por-
tion towards the northern head of the structure (Fig. 6a),
which may be accounted for by the aerodynamic and mor-
phodynamic conditions around the dune fence, the efficiency
of the fence, and its configuration to trap sediments. The ef-
fects of sand-trapping fences are primarily determined by
their geometry, orientation relative to the main wind direc-
tion, aerodynamic roughness of the wind profile, undisturbed
flow, and shelter distance (Eichmanns et al., 2021). Their in-
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Figure 8. Vegetation cover change maps between 2016 (a) and 2021 (b).

Figure 9. Percentage cover comparison (a) and percent change (b).

fluence is dependent on the given sediment boundary con-
ditions and the wind field. In this case, the northern beach
portion and the fence peripheries have less debris and vege-
tation change, which could have caused the erosion along the
beach.

No significant increase in the foredune heights is evident in
all the profiles (Fig. 6b). Similar findings have been observed
in the study of Itzkin et al. (2020), where new embryo dunes
were created seawards of the original dune following the em-

placement of sand fences, but this impeded additional sedi-
ment being received by the natural foredune. Hence, dune
fencing may not always be the best singular management ac-
tion as it can also prevent deposition to the natural dune be-
hind the fence that could limit vertical growth.

Human disturbances by mass tourism and coastal ur-
banization have a detrimental impact on pioneer vegeta-
tion species and can prejudice the sustainability of foredune
restoration especially in the Mediterranean (Della Bella et al.,

https://doi.org/10.5194/bg-20-4841-2023 Biogeosciences, 20, 4841–4855, 2023
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Figure 10. Sample blowout patterns observed by comparing the 2016 and 2021 orthomosaic images.

2021). The fence has halted human trampling on dune veg-
etation that had limited the formation of erosional features
such as blowouts. The enforcement of limited human distur-
bance and the fact that the location is part of a protected area
supported the restoration efficacy and the spontaneous recov-
ery of the dunes. Compared to beaches that are mechanically
cleaned for recreational purposes, driftwood that was not re-
moved in this area acted as a form of passive restoration as
well. These soft-engineering approaches and NBSs were able
to induce sand accretion and vegetation colonization that can
be considered ecologically sustainable, technologically fea-
sible, and economically viable. The fence configuration used
was overall effective in trapping sediments along the dune
foot and within its central bounds. However, the possibility
of the fences being washed away or degraded over time due
to storm impacts should still be considered; hence, continu-
ous monitoring and maintenance must be ensured to guaran-
tee long-term efficiency. Given the results, dune fencing and
limiting debris cleaning can also be implemented along other
coastal zones of Emilia-Romagna and other low-lying sandy
coasts as they can aid the sediment exchange system over
time since both sediment contribution from the nearshore to
the dunes and accretion rates in the foredune are vital in a
beach–dune system. Sand reservoirs and driftwood within
and surrounding the fence can act as barriers to dissipate en-
ergy further offshore in case of major storm surge events.

4.2 Error analysis

The accuracy of the change detection model heavily depends
on the quality of the input DEMs. Precision issues with the
SfM-derived DEM and GPS have been encountered due to
target data quality and systemic issues. The model fitting
statistics of the 2021 dataset show a good fit within 0.96
to 0.99. However, a slight shift in values in the back dune
is evident, which can be attributed to human error during
the GPS survey as the pole can be dragged a few centime-
ters from the ground. Possible variance between beach sur-
faces, systematic collection inconsistencies related to survey
setup, and susceptibility to external factors such as possi-
ble digging around the pole and wind speed influence may
be encountered in beach environment surveys (Talavera et
al., 2018; Casella et al., 2020; Hilgendorf et al., 2021). Mis-
classification of vegetation as ground points may have also
affected the accuracy of the surface reconstruction of the
DEMs. Drone-based topographic reconstructions of beach
environments tend to exhibit higher inaccuracies compared
to other environments such as outcrops due to the low tex-
ture and contrast of sand surfaces, making photogrammet-
ric methods, such as feature matching, difficult (Eltner et al.,
2016; Casella et al., 2020). Another probable source of error
is the lack of validation information for the vertical accuracy
of the 2016 data. The GCP configurations and the number
used may have also contributed to the overall model error.
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Notwithstanding this, the results show that assessing the
spatio-temporal evolution of the erosional and depositional
processes on the Bevano dune ridge is possible using multi-
temporal drone data. Elevation model accuracy on the order
of ∼ 5 to 8 cm has been achieved. The results of the study
may be further improved by ensuring consistency in camera
and build parameters for the elevation and change detection
models. Classifying the area of interest into geomorphic units
can also be done to enhance the geomorphic change detection
result.

5 Conclusion

A dune restoration project on the northern Adriatic coast
(Ravenna, Italy) was assessed using UAV monitoring sur-
veys. SfM photogrammetry, elevation differencing, and sta-
tistical analysis were utilized to quantify dune development
in terms of sand volume and vegetation cover change over
time.

Despite the natural factors affecting the overall deposition
dynamics in the area, results show that dune fencing proved
to be an effective intervention to prevent dune erosion since
significant geomorphological changes and vegetation colo-
nization occurred in the 2016–2021 interval time. The main
sand accumulation was observed along the dune foot where
the wood fences were established. The following changes
have also been observed: progradation of the front dune, de-
velopment of embryo dunes, decrease in blowout features on
the frontal dune area due to increase in vegetation coloniza-
tion, and increase in vegetation and debris cover within and
near the fences.

GCD can be an effective monitoring tool for coastal dunes
for as long as the sources of uncertainties are considered. The
results of the study can supplement the showcasing of the im-
portance of implementing dune fencing and limiting debris
cleaning as nature-based solutions in preventing dune degra-
dation along the coastal zones of Emilia-Romagna. The pro-
posed systematic workflow developed within this research
can be transferred to other similar coastal zones and imple-
mented into guidelines for integrated coastal zone manage-
ment (ICZM).
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Appendix A

Table A1. Tabular summary of the change detection analysis.

Attribute Raw Thresholded DoD estimate: Description

Areal Areal metrics

Total area of surface lowering
(m2)

4168 2221 The amount of area experiencing a lowering in surface eleva-
tions

Total area of surface raising (m2) 4986 3799 The amount of area experiencing an increase in surface ele-
vations

Total area of detectable change
(m2)

n/a 6020 The sum of areas experiencing detectable surface elevation
changes

Total area of interest (m2) 9154 n/a The total amount of area under analysis (including detectable
and undetectable)

Percent of area of interest with
detectable change

n/a 66 % The percent of the total area of interest with detectable
changes (i.e., either exceeding the minimum level of detec-
tion or with a probability greater than the confidence interval
chosen by user)

Volumetric ± Error % Error Volumetric metrics
volume

Total volume of surface lowering
(m3)

696 584 ± 124 21 % On a cell-by-cell basis, the DoD surface-lowering depth (e.g.,
erosion, cut, or deflation) multiplied by cell area and summed

Total volume of surface raising
(m3)

1177 1109 ± 213 19 % On a cell-by-cell basis, the DoD surface-raising (e.g., de-
position, fill, or inflation) depth multiplied by cell area and
summed

Total volume of difference (m3) 1873 1692 ± 337 20 % The sum of lowering and raising volumes (a measure of total
turnover)

Total net volume difference (m3) 481 525 ± 247 47 % The net difference in erosion and deposition volumes (i.e.,
deposition minus erosion)

Vertical averages ± Error % Error Volumetric metrics normalized
thickness by area

Average depth of surface lowering
(m)

0.17 0.26 ± 0.06 21 % The average depth of lowering (surface-lowering volume di-
vided by surface-lowering area)

Average depth of surface raising
(m)

0.24 0.29 ± 0.06 19 % The average depth of raising (surface-raising volume divided
by surface-raising area)

Average total thickness of
difference (m) for area of interest

0.20 0.18 ± 0.04 20 % The total volume of difference divided by the area of interest
(a measure of total turnover thickness in the analysis area)

Average net thickness difference
(m) for area of interest

0.05 0.06 ± 0.03 47 % The total net volume of difference divided by the area of in-
terest (a measure of resulting net change within the analysis
area)

Average total thickness of
difference (m) for area with
detectable change

n/a 0.28 ± 0.06 20 % The total volume of difference divided by the total area of de-
tectable change (a measure of total turnover thickness where
there was detectable change)

Average net thickness difference
(m) for area with detectable
change

n/a 0.09 ± 0.04 47 % The total net volume of difference divided by the total area of
detectable change (a measure of resulting net change where
the was detectable change)

Percentages (by volume) Normalized percentages

Percent elevation lowering 37 % 34 % Percent of total volume of difference that is surface lowering

Percent surface raising 63 % 66 % Percent of total volume of difference that is surface raising

Percent imbalance (departure from
equilibrium)

13 % 16 % The percent departure from a 50 %–50 % equilibrium
lowering–raising (i.e., erosion–deposition) balance (a nor-
malized indication of the magnitude of the net difference)

Net-to-total volume ratio 26 % 31 % The ratio of net volumetric change to total volume of change
(a measure of how much the net trend explains the total
turnover)

n/a: not applicable
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