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Abstract 14 

Remote sensing is a well-established tool for habitat mapping, but its use is still challenging in heterogeneous landscape 15 

mosaics. Novel approaches to improve classification performance include multi-temporal data and multiple remotely sensed 16 

variables. In this study, an integrated approach was developed to map the natural habitats in Classical Karst eco-mosaic (NE 17 

Italy), by quantifying the importance of Spectral Heterogeneity (SH) measures and providing a robust framework to include 18 

multi-temporal remotely sensed data.  19 

A collection of 12 monthly Sentinel-2 images was retrieved using the Google Earth Engine platform. Vegetation and SH indices 20 

were computed and aggregated in four temporal configurations: (1) monthly layers of vegetation and SH indices; (2) seasonal 21 

layers of vegetation and SH indices; yearly layers of multi-temporal SH indices computed (3) across the months, and (4) across 22 

the seasons. For each temporal configuration, a Random Forest classification was performed, first with the complete set of 23 

input layers and then with a subset obtained by Recursive Feature Elimination. Training and validation points were 24 

independently extracted from field data.  25 

The maximum overall accuracy (OA = 0.72) was achieved with the seasonal temporal configuration, after the number of 26 

habitats was reduced from 26 to 11. SH measures allowed to improve the accuracy of the classification and the spectral 𝛽-27 

diversity was the most important variable in most cases. Spectral 𝛼-diversity and Rao’s Q, on the other side, had a low relative 28 

importance, possibly due to the small spatial extent of the habitats. Regarding the inclusion of multi-temporal data, the 29 

aggregation of monthly data in seasonal median composites proved to be the best approach, since it allowed to reduce the 30 

number of input layers without losing accuracy. The approach developed in this study allows to improve habitat mapping in 31 

complex landscapes in a cost- and time-effective way, suitable for monitoring applications.  32 

 33 
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Highlights 39 

• Spectral heterogeneity measures increase the accuracy of image classifications.  40 

• The most important variable in most classifications is spectral 𝛽-diversity.  41 

• Spectral 𝛽-diversity mainly distinguishes woodlands, grasslands and pine forests.  42 

• Spectral 𝛼-diversity and Rao’s Q index have a lower importance.  43 

• Aggregating data in seasonal composites is a reliable way to reduce dimensionality.  44 

 45 

Abbreviations: 46 

BC  Bray-Curtis dissimilarity 47 

DT  Decision Tree 48 

GNDVI  Green Normalized Difference Vegetation Index  49 

I-0  Grassland encroachment level 0 (pure grassland) 50 

I-1  Grassland encroachment level 1 51 

I-2  Grassland encroachment level 2 52 

IRECI  Inverted Red Edge Chlorophyll Index 53 

LAI  Leaf Area Index 54 

LiDAR  Light Detection And Ranging 55 

NDVI  Normalized Difference Vegetation Index 56 

NDWI  Normalized Difference Water Index  57 

NIR  Near Infra-Red 58 

OA  Overall Accuracy 59 

OOB  Out Of Bag  60 

PA  Producer’s accuracy 61 

PCA Principal Component Analysis 62 

PCoA  Principal Coordinate Analysis 63 

RF  Random Forest 64 

RFE  Recursive Feature Elimination 65 

SH  Spectral heterogeneity 66 

SWIR  Short Wave Infra-Red 67 

UA  User’s accuracy 68 

  69 



1. Introduction 70 

Mapping natural habitats is a fundamental step for the conservation of biodiversity. The Habitats Directive, for example, 71 

requires EU member states to conserve habitats and species “of community interest” and assess their conservation status every 72 

six years, by reporting on parameters such as habitat area, range, indicators of habitat quality and future previsions for habitat 73 

survival (European Commission, 2005). These reports require habitat mapping. However, habitat maps have traditionally been 74 

produced through time-consuming and costly field surveys, that make them unsuitable to regular updates. Thus, more cost- and 75 

time-effective monitoring strategies are required, and remote sensing has become an essential tool for this objective (Corbane 76 

et al., 2015).  77 

Habitat mapping by remote sensing is generally carried out through the process of automatic image classification, in which all 78 

pixels in a remotely sensed image are categorized into classes of ground cover (Borra et al., 2019). Over time, many remote 79 

sensing data have become available, including multispectral and hyperspectral satellite images, and data from active sensors 80 

such as radar (Richards, 2013), while image processing tools have been improved, allowing to map a broad range of habitats, 81 

such as forests, grasslands, heathlands and wetlands (Corbane et al., 2015).  82 

Despite the advances in this field, mapping some types of habitats remains a difficult task, especially in heterogeneous areas. 83 

Mosaics of natural and semi-natural grasslands, for example, are particularly challenging to map, due to the typical small spatial 84 

extent of the habitat patches, their spectral similarity, and the high spatial, structural and temporal variability of the vegetation 85 

(Corbane et al., 2015; Tarantino et al., 2021). This is complicated by the fact that boundaries between the patches are often not 86 

discrete (Rocchini et al., 2013b). Thus, innovative approaches should be tested (Schuster et al., 2015).  87 

The use of multi-temporal data has been proven to facilitate the differentiation of habitats in areas with a seasonal variability 88 

(Rapinel et al., 2019; Schuster et al., 2015). This approach, indeed, accounts for phenological differences among vegetation 89 

types, that can be the key to distinguish spectrally similar habitats, especially when the most appropriate dates are selected 90 

(Senf et al., 2015). However, there are many possible ways to include the multi-temporal information in the classification 91 

process. For example, Schuster et al. (2015) found that the accuracy of a classification in grassland habitats was increased by 92 

the number of used images, but with differences according to the type of data source. Tarantino et al. (2021) compared the 93 

effect of using a time series of a single vegetation index and a set of Sentinel-2 images and found that the first method 94 

outperformed the latter. In another study, multiple Sentinel-2 seasonal composites were compared, and the highest accuracy 95 

was achieved using the summer mean composite (Praticò et al., 2021).  96 

Image classification outcomes can also be improved by the integration of ancillary data, that modern classification algorithms 97 

are able to handle (Wulder et al., 2018). Topographic features such as slope and aspect are often relevant, since they influence 98 

the distribution of natural communities on fine scales (Bhatt et al., 2022). Data on vegetation structure derived from active 99 

sensors like LiDAR (Light Detection And Ranging) can also facilitate habitat mapping, as demonstrated for example for a 100 

semi-arid region of Brazil by da Silveira et al. (2018) and for non-forest Natura 2000 habitats in Poland by Osińska-Skotak et 101 

al. (2021). However, some of the greatest improvements in image classifications are achieved when texture information is 102 



included, as was highlighted in a recent meta-analysis (Khatami et al., 2016). Image texture metrics measure the spatial 103 

arrangement and variation of pixel values, and thus provide valuable information on the homogeneity of areas (Haralick et al., 104 

1973). For this reason, they can facilitate the differentiation of spectrally similar habitats (e.g. Bhatt et al., 2022).  105 

The spatial variability of the remotely sensed signal is also the basis for the assessment of plant biodiversity from remote 106 

sensing (Rocchini et al., 2010a). The so-called spectral diversity, or spectral heterogeneity, has been directly related to 107 

environmental heterogeneity by the Spectral Variation Hypothesis (Palmer et al., 2002; 2000). Moreover, spectral heterogeneity 108 

can be considered a proxy for species diversity (Rocchini et al., 2010a), because environmentally heterogeneous areas have a 109 

large number of niches available and are expected to host a high species diversity (Stein et al., 2014). The relationship between 110 

spectral heterogeneity and species diversity has proved to be sensitive to many factors (Wang and Gamon, 2019), like spatial 111 

scale (Oldeland et al., 2010; Wang et al., 2018), spectral resolution (Rossi et al., 2021) and temporal scale (Fauvel et al., 2020), 112 

thus it cannot be considered universally valid (Fassnacht et al., 2022). However, spectral heterogeneity can be useful regardless 113 

of its relation with taxonomic diversity, since it encompasses also a functional and a phylogenetic dimension of biodiversity 114 

(Wang and Gamon, 2019).  115 

Many indices have been proposed as measures of spectral heterogeneity (Wang and Gamon, 2019). The most traditional ones 116 

include metrics of variability of single wavebands or vegetation indices such as NDVI (Gillespie, 2005; Levin et al., 2007), 117 

and metrics that condense full-spectrum variability, such as the distance from spectral centroid (e.g. Palmer et al., 2002; 118 

Rocchini, 2007). Recently, two novel approaches have emerged to estimate spectral heterogeneity. The first one relies on 119 

information theory: diversity indices based on information theory are computed from spectral data, generally by applying the 120 

moving window approach (Rocchini et al., 2013a). The most common of these indices is Shannon entropy (Shannon, 1948), 121 

computed by considering the relative abundance and richness of reflectance values. However, indices that consider also the 122 

spectral distance among pixel values have some advantages, as was recently highlighted by Thouverai et al. (2021). Rao’s 123 

quadratic entropy has been proposed for this reason and proved to perform well in natural areas (Rocchini et al., 2021a).  124 

The second novel and powerful approach to estimate spectral heterogeneity is based on “spectral species”, i.e. spectral types 125 

considered as proxies for biological species (Féret and Asner, 2014). Following this approach, each pixel of the image is 126 

assigned to a spectral species, generally through unsupervised k-means clustering, thanks to the fact that pixels from the same 127 

species tend to converge to the same cluster (Féret and Asner, 2014). The spatial variation in spectral species is then used to 128 

infer metrics of 𝛼- and 𝛽-diversity (Féret and Boissieu, 2020). So far, the spectral species method has been applied to tropical 129 

forests, based on very high-resolution airborne imaging spectroscopy (Féret and Asner, 2014), to low-resolution MODIS 130 

images of the entire Europe (Rocchini et al., 2021c), and recently also to Sentinel-2 data (Féret and Boissieu, 2020) to assess 131 

biodiversity changes in secondary forests (Chraibi et al., 2021) and to estimate plant diversity in an ecological network (Liccari 132 

et al., 2022).  133 

In this light, measures of spectral heterogeneity have the potential to improve habitat mapping frameworks. Indeed, when 134 

vegetation types share similar spectral reflectance characteristics, considering additional levels of information may facilitate 135 

their differentiation (e.g. Bhatt et al., 2022). The variability of taxonomic, functional and phylogenetic traits, as expressed by 136 



spectral heterogeneity (Wang and Gamon, 2019), may be such a type of information. Thus, including spectral heterogeneity 137 

measures in image classification procedures could increase their robustness and accuracy, especially in complex landscape 138 

mosaics. However, very few studies have tried to incorporate these measures (e.g. Marzialetti et al., 2020).  139 

Interestingly, both Rao’s entropy and spectral species-based metrics can be assessed in the temporal dimension. If a multi-140 

temporal stack is provided as input instead of a multi-spectral image, in fact, temporal diversity will be computed (Marzialetti 141 

et al., 2020). This spectral temporal diversity will likely be useful to assess biodiversity, since differences in phenology can be 142 

important to estimate plant diversity (Fauvel et al., 2020).  143 

Moving forward from these premises, the aim of this study was to test and discuss an integrated approach to map a complex 144 

mosaic of natural and semi-natural habitats through remote sensing, using the Classical Karst as case study. Specifically, the 145 

main objectives were:  146 

1) quantify the importance of measures of spectral heterogeneity for habitat classification;  147 

2) provide a robust framework to include multi-temporal remotely sensed data for habitat classification.  148 

To achieve these goals, multiple sets of remote sensing derived variables, namely vegetation indices and spectral heterogeneity 149 

indices, along with their variation over one year, were computed based on a series of Sentinel-2 images covering the period 150 

March 2021 - February 2022. These variables were aggregated in four temporal configurations, for which separate 151 

classifications were performed. Classification accuracies were compared to find the most reliable approach.  152 

 153 

2. Materials and methods 154 

2.1. Study area 155 

The study was carried out in the Italian part of the Classical Karst, a limestone plateau, with altitudes ranging from 0 to 600 m, 156 

located in the provinces of Trieste and Gorizia within Friuli-Venezia Giulia region (NE Italy; Fig. 1). Seven different territorial 157 

disjunct patches were considered, that cover a total surface of 60 ha and are involved in a restoration project called “Ecomosaico 158 

del Carso” (Appendix). These areas are partially included in two Natura 2000 sites: the special area of conservation “Carso 159 

Triestino e Goriziano” (IT3340006) and the special protection area “Aree carsiche della Venezia Giulia” (IT3341002).  160 

Land cover is characterized by a fine mosaic of natural and semi-natural habitats, created by the long-lasting human presence 161 

in the region. The main vegetation types are grassland, downy oak woodland and black pine plantation. Karst grassland is an 162 

extremely species-rich gramineous herbaceous formation that evolved with the millenary action of grazing and is now being 163 

replaced by shrublands and woodlands due to pasture abandonment. Downy oak woodlands are expanding in abandoned 164 

pastures and cover 70% of the Karst nowadays. Black pine has been planted since the mid 19th century for reforestation purposes 165 

and from then on has spontaneously expanded creating species-poor pine forests (Poldini, 2009, 1989). Many conservation 166 

projects are being developed in recent years to maintain and restore Karst grassland (Marin and Altobelli, 2021), that is also a 167 

habitat of community interest (code 62A0 “Eastern sub-Mediterranean dry grasslands (Scorzoneratalia villosae)” in Annex I 168 

of the Habitat Directive; European Commission, 1992).  169 



The climate is transitional between Mediterranean and continental (Poldini, 1989). The average rainfall is 1200 mm/year, and 170 

the mean annual temperature is 12.5°C, although there are large differences due to elevation and slope exposure (OSMER, 171 

2015). The dry and cold Bora from NE contributes to desiccation and soil erosion (Poldini, 1989).  172 

 173 

2.2. Field data collection 174 

Field surveys were carried out between March and May 2022. Habitats present in the intervention areas of “Ecomosaico del 175 

Carso” project were identified on the field. In a first phase, habitats were identified as vegetation types with a high level of 176 

detail, in most cases as associations, according to the phytosociological types described for Classical Karst by Poldini (1989; 177 

2009). In a second phase, habitats were defined on the basis of their structural-physiognomic and ecological characteristics, 178 

and some of the previous classes were aggregated into coarser classes. The two classifications account respectively for 26 and 179 

11 habitat classes. Specifically, for the first classification process, different classes of grassland were distinguished according 180 

to the following criteria:  181 

1) type of grassland: thermophilous, mesophilous, on flysch; 182 

2) degree of felting (i.e., presence of Sesleria autumnalis): pure grassland (no S. autumnalis), first degradation stage 183 

(few patches of S. autumnalis), second degradation stage (mosaic with ca. 50% grassland elements and 50% S. 184 

autumnalis), third degradation stage (felted grassland, completely covered by S. autumnalis); 185 

3) stage of vegetational succession: no bushes (zero encroachment level, I-0), few bushes with low height (ca < 1.5 m) 186 

and widely spaced (first encroachment level, I-1), medium height bushes (ca 3-4 m) relatively close to each other 187 

(second encroachment level, I-2). 188 

In the second classification, only the last criterion was considered, while shrublands, initially differentiated according to the 189 

vegetation type, were aggregated into a single class. The two classes of downy oak woodland – namely, a young class with low 190 

height individuals, and a mature class with individuals higher than 6 m – were also merged. Groves with Ailanthus altissima 191 

and Robinia pseudoacacia were aggregated into an invasive alien species class, while sessile oak woodlands, black pine 192 

plantations, hay meadows and pasture-grasslands were kept as separate classes. Finally, a grassland-woodland mosaic was 193 

defined as a dynamic stage with patches of grassland and well-spaced patches of woodland. The complete list of habitat classes 194 

considered in this study is in Table A2. Two areas were excluded from the analysis since vegetation could not be classified 195 

according to the defined scheme: area n.17, where vegetation was cut before field surveys, and a portion of area n.6, where a 196 

fire occurred on 14/08/2021. 197 

The habitats present in the study areas were manually mapped based on field collected data using QGIS 3.16.14 software (QGIS 198 

Development Team, 2022). Maps of vegetation height derived from LiDAR data were used as a base for polygon drawing. 199 

LiDAR RAFVG survey has been conducted in Friuli-Venezia Giulia region in the years 2017-2020 by aerial means. LiDAR 200 

point clouds, that have an average density of 16 points/m2, were downloaded from Eagle FVG portal 201 

(https://eaglefvg.regione.fvg.it). Each point includes a classification field (1 – unclassified, 2 – ground, 3 – low vegetation, 4 – 202 

medium vegetation, 5 – high vegetation): points belonging to “Ground” class were extracted and interpolated to create a plan, 203 

https://eaglefvg.regione.fvg.it/eagle/main.aspx?configuration=guest


then the distance of the vegetation points from the plan was computed and maps of vegetation height were produced. 204 

Elaboration was performed in CloudCompare 2.11.1 (Cloud Compare, 2021).  205 

 206 

2.3. Satellite data collection and processing 207 

The workflow applied to manage satellite data and to derive input variables for classification is represented in Fig. 2. First, 208 

Sentinel-2 images were retrieved using Google Earth Engine platform (Gorelick et al., 2017). The Sentinel-2 level-2A image 209 

collection (“COPERNICUS/S2_SR_HARMONIZED”) was filtered by date (from 2021-03-01 to 2022-02-28), by area (the 210 

Trieste and Gorizia Karst) and by cloud coverage (cloudy pixel percentage < 50%). The less cloudy image of each month was 211 

manually selected, to produce a collection of 12 monthly images covering a whole year. 212 

Then, the 12 Sentinel-2 images were divided into four seasonal groups: spring (March 2021-May 2021), summer (June 2021-213 

August 2021), autumn (September 2021-November 2021), and winter (December 2021-February 2022). Each group was 214 

reduced to a single image by computing the median of each spectral band, so that, at each location in the output image, the 215 

pixel value of a band is the median of all pixel values of that band in the input group. 216 

 217 

2.4. Vegetation indices  218 

Vegetation indices were preferred over the original Sentinel-2 spectral bands as inputs for the classification because they allow 219 

to reduce the dimensionality of the dataset while being more strongly related to the temporal variation of vegetation (Coppin 220 

et al., 2004). Four vegetation indices were derived from each Sentinel-2 image (Table 1): Normalized Difference Vegetation 221 

Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), Normalized Difference Water Index (NDWI) and 222 

Inverted Red Edge Chlorophyll Index (IRECI). 223 

NDVI (Rouse et al., 1975) includes the red and NIR bands, respectively sensitive to chlorophyll content and leaf structure. It 224 

has been proven to be correlated to biomass, LAI and photosynthetic activity (Gamon et al., 1995). GNDVI is an alternative to 225 

NDVI, with the green band instead of the red band, that has been proposed to avoid saturation in case of high chlorophyll 226 

content (Gitelson et al., 1996). NDWI, including the NIR and SWIR bands, is sensitive to water content and can be useful in 227 

assessing vegetation water status (Chen et al., 2005). Finally, IRECI uses Sentinel-2 red and red-edge bands and is very sensitive 228 

to LAI parameter and canopy chlorophyll content (Frampton et al., 2013).  229 

These indices were computed from each image in the monthly dataset and then aggregated into seasonal median composites, 230 

following the same procedure used for Sentinel-2 reflectance bands. These operations were performed in Google Earth Engine. 231 

 232 

2.5. Metrics of spectral heterogeneity and diversity 233 

Rao’s quadratic entropy (Rao’s Q; Rao, 1982) is a diversity index that considers both relative abundances of pixel values (𝑝𝑖, 234 

𝑝𝑗) and spectral distances among them (𝑑𝑖𝑗): 235 



𝑄 =∑∑𝑑𝑖𝑗 × 𝑝𝑖 × 𝑝𝑗

𝑁

𝑗=1

𝑁

𝑖=1

 236 

In this study, spectral Rao’s Q layers were separately obtained from each vegetation index raster through package rasterdiv 237 

(Rocchini et al., 2021c; Thouverai et al., 2021) in R software (R Core Team, 2022). Following the function specifications, each 238 

input raster layer was first rescaled in 8-bit and the moving window was set to 3. 239 

Then, Rao’s Q was computed also in the multi-temporal dimension, by setting a “multidimension” method. In this case, the 240 

distances among pixel values are calculated considering more than one layer. For each vegetation index, two layers of multi-241 

temporal Rao’s Q were produced, one from the stack of 12 monthly images and the other from the stack of 4 seasonal 242 

composites. 243 

Spectral 𝛼- and 𝛽-diversity metrics were calculated following the spectral species concept proposed by Féret and Asner (2014), 244 

using the R package biodivMapR (Féret and Boissieu, 2020). The used algorithm includes several steps: first, the multi-245 

spectral images are filtered to remove irrelevant pixels (non-vegetated, shady, or cloudy). Then, a principal component analysis 246 

(PCA) is performed, and the relevant principal components (PCs) are manually selected based on visual analysis. Spectral 247 

species mapping is based on k-means clustering. A subset of pixels is randomly extracted from the image and used to define k 248 

clusters (i.e., “spectral species”). The number of clusters was set to 20 in this study as it was suggested as the optimal for 249 

moderately diverse temperate sites (Féret and Boissieu, 2020). Then, clustering is applied to the whole image, so that each 250 

pixel is assigned to a cluster. Finally, 𝛼- and 𝛽-diversity maps are produced, basing on the distribution of spectral species in 251 

the window size, that was set to 3x3 pixels in this case, since habitat patches were small. Shannon index was chosen as indicator 252 

of 𝛼-diversity, while 𝛽-diversity was derived from a pairwise Bray-Curtis (BC; Bray and Curtis, 1957) dissimilarity matrix 253 

obtained from the spectral species map. The BC matrix was then subjected to an ordination (Principal Coordinate Analysis, 254 

PCoA) to project it into a 3-dimensional space and obtain a visual representation of the results (larger BC dissimilarity between 255 

pixels corresponds to larger color differences in the RGB space). 256 

This algorithm was applied on each Sentinel-2 monthly and seasonal image, to obtain maps of 𝛼- and 𝛽-diversity for each 257 

month and season. Then, this procedure was applied on a multi-temporal level, using stacks of vegetation indices covering a 258 

whole year as input. For each vegetation index, a stack of 12 layers (each corresponding to a month) and then a stack of 4 layers 259 

(each corresponding to a season) were used as input. In this way, two sets of multi-temporal 𝛼- and 𝛽-diversity maps were 260 

obtained for each vegetation index, one based on monthly values (multi-temporal monthly) and the other based on seasonal 261 

values (multi-temporal seasonal). 262 

 263 

2.6. Satellite image classification 264 

The remote sensing variables produced through the processing steps outlined before were aggregated in four temporal 265 

configurations, as listed in Table 2, that were used as input for distinct classifications.  266 



Reference data for image classification were derived from field surveys. Training points were randomly extracted from a set 267 

of training areas selected on the field, outside the polygons of “Ecomosaico del Carso” project when possible, and mapped by 268 

acquiring their GPS location. Validation points, on the other hand, were randomly launched in the whole set of polygons created 269 

in QGIS after excluding the training areas. Through this procedure, training and validation points can be considered as 270 

independent. 271 

Image classification was performed using a Random Forest (RF) classification algorithm. Random Forest (Breiman, 2001) is 272 

an ensemble machine-learning classifier that builds a large number of decision trees (DTs), each based on a random subset of 273 

the training data and of the predictor variables. The training data not used to build the model (i.e., the out-of-bag data, OOB) 274 

are used to evaluate the model performance. The results of the different DT models are then averaged to assign each pixel to a 275 

class. In this way, the overall result is more reliable than the one obtained from an individual DT and is less affected by 276 

correlation among predictors (Maxwell et al., 2018). The relative importance of the predictor variables is computed using the 277 

OOB data, by systematically comparing the performance of the DTs that include specific variables and of those that do not: 278 

variables with high importance have a positive effect on the prediction accuracy (Breiman, 2001).  279 

For each temporal configuration, two alternative pathways were followed. In one case, the whole set of variables was used as 280 

input for the classification. In the other case, a subset of variables was extracted through Recursive Feature Elimination (RFE; 281 

(Guyon et al., 2002). RFE is a common feature selection algorithm based on backward elimination, that uses a RF classifier to 282 

determine variables permutation importance and remove the less important variables. The importance measures are updated 283 

after each deletion, making the method suitable also to highly correlated variables (Gregorutti et al., 2017).  284 

In this study, RF classification was performed using R caret package (Kuhn, 2021). Training data were randomly partitioned 285 

into a training and a testing set, with respectively 80% and 20% of the data. The mtry parameter (the number of randomly 286 

selected predictors used at each node) was optimized through a 5-fold cross-validation, while the relative importance of 287 

variables was calculated with varImp function. 288 

The accuracy of each classification procedure was evaluated using a set of validation points independent from the training data. 289 

A confusion matrix was computed, and the proportion of correctly classified pixels (overall accuracy, OA) was derived. OA is 290 

preferable to other common metrics such as the Kappa coefficient because it is easier to understand and more suited for 291 

comparisons (Foody, 2004). Performances for individual classes were also assessed by considering User's accuracy (UA) and 292 

Producer’s accuracy (PA). For a given class i, UA is the proportion of pixels classified as i that have reference class i, while 293 

PA is the proportion of pixels of reference class i that are classified as i (Borra et al., 2019). Both metrics vary between 0 and 294 

1. The significance of differences in classification accuracy among the different pathways was tested with McNemar’s test, as 295 

suggested by Foody (2004).  296 

After the classifications were performed as described above and the best input configuration was identified, another 297 

classification was carried out using only vegetation indices as input, to assess the effect of excluding spectral heterogeneity on 298 

the results. 299 

All classifications and accuracy assessment analyses were performed in R software (R Core Team, 2022).  300 



 301 

3. Results  302 

3.1. Accuracy of image classification 303 

The values of overall accuracy (OA) and Kappa obtained from the RF classifications are presented in Table 3. The OA was 304 

significantly higher when 11 habitat classes were considered of 26 (p-value < 0.05; Fig. 3a), while there was no significant 305 

difference when the number of input variables was reduced through RFE (Fig. 3b). The use of different temporal configurations 306 

only had a slight effect on accuracy (Fig. 3c): in particular, there were no significant differences between the monthly and the 307 

seasonal configurations, while there were significant differences between each configuration and its respective multi-temporal 308 

version (p-value < 0.05).  309 

An OA higher than 70% was achieved only with the monthly and the seasonal configurations, considering 11 habitat classes. 310 

For each of these configurations, an additional classification was performed after removing spectral heterogeneity layers (i.e., 311 

with only vegetation indices). In both cases, the resulting accuracy was significantly lower (0.65 vs. 0.72 for the seasonal 312 

configuration, p-value < 0.05; 0.69 vs. 0.73 for the monthly configuration, p-value < 0.05).  313 

The classifications that achieved an OA > 70% did not differ significantly among them. Thus, the seasonal configuration was 314 

chosen as the best one based on a simplicity criterion, since it had a lower number of predictors, especially after RFE (34 315 

predictors). This classification will be referred to as the “best classification” and explored in the next paragraphs, while the 316 

results of the other classifications are reported in the Appendix.  317 

The habitat map resulting from the best classification is represented in Fig. 4. The most common habitat inside the study areas, 318 

as resulting from field surveys, is downy oak woodland (27.94%), followed by grasslands at successional stages I-2 (20.95%) 319 

and I-1 (11.97%). In the best RF classified map, on the other hand, grassland I-2 (24.80%) is more common than downy oak 320 

woodland (21.70%), and is followed by shrubland (16.10%), grassland-woodland mosaic (13.38%) and grassland I-1 (12.89%).  321 

The confusion matrix for the best classification is reported in Table 4. The rows of the matrix represent the results obtained 322 

from the classification, while the columns represent the validation data used as reference; the diagonal contains the correctly 323 

classified pixels. Class-specific accuracy parameters derived from the confusion matrix are reported in Table 5.  324 

Black pine plantation was the class for which the best results were achieved considering both Producer’s accuracy (PA = 0.88) 325 

and User’s accuracy (UA = 0.92), followed by downy oak woodland (PA = 0.74, UA = 0.86). Among the grassland classes, 326 

pure grassland and grassland I-1 achieved relatively high UA (respectively 0.80 and 0.78) and PA (respectively 0.71 and 0.68), 327 

and most of the errors occurred with grassland-I2 and downy oak woodland. For grassland I-2, PA was relatively low (0.64) 328 

because some pixels were misclassified as grassland-woodland mosaic, while the UA (0.69) was mainly affected by some 329 

pixels belonging to grassland-1 and downy oak woodland. For shrublands, higher values were obtained for PA (0.57) than for 330 

UA (0.21), since many pixels classified as shrubland belonged to grassland I-2 and downy oak woodland. A similar result was 331 

found for hay meadow (PA = 0.71, UA = 0.59), that was mainly confused with grassland I-2. For pasture-grassland, UA (1.00) 332 

was higher than PA (0.13), and most pixels were misclassified as hay meadow. For grassland-woodland mosaic, both UA and 333 



PA were quite low (0.28 and 0.72), and most of the errors occurred for pixels that either belonged to or were misclassified as 334 

grasslands and downy oak woodlands. The lowest values of accuracy were obtained for sessile oak woodlands (UA = 0.36, PA 335 

= 0.27), that were mainly confused with downy oak woodlands, and for invasive species groves, for which all validation pixels 336 

were misclassified as shrublands, downy oak woodlands or grassland-I1 (UA = 0.00, PA = 0.00). 337 

 338 

3.2. Variable importance 339 

The relative importance of the variables used as input for the best classification is shown in Fig. 5. The most important variable, 340 

present in every RF model, is the PCo2 of the 𝛽-diversity computed from the autumn composite (100.00%). Other important 341 

variables are, in order, PCo1 of the winter 𝛽-diversity (94.19%), PCo1 of the autumn 𝛽-diversity (88.93%), GNDVI and IRECI 342 

of the summer (respectively 79.39% and 72.29%).  343 

In the other classifications, the most important variable is almost always a 𝛽-diversity, with the only exception of the monthly 344 

classification with 11 classes, in which vegetation indices are at the first places. The relative importance of 𝛼-diversity and 345 

Rao’s Q indices is low in all the classifications: the maximum values are respectively 42.56% for 𝛼-diversity (in the monthly 346 

26-classes classification) and 64.91% for Rao’s Q (in the monthly 11-classes classification). A detailed description of the input 347 

variables is presented in the Appendix. 348 

 349 

4. Discussion 350 

4.1. Accuracy of image classification  351 

In this study, multiple RF classifications were performed to test different combinations of vegetation and spectral heterogeneity 352 

indices, using as study area a complex mosaic of habitats in Classical Karst. The small spatial extent of the habitat patches, 353 

combined with their spectral similarity and the high variability of vegetation, make this type of landscape particularly 354 

challenging to map from remote sensing (Corbane et al., 2015; Tarantino et al., 2021). The maximum overall accuracy achieved 355 

in this study was thus relatively low (0.73 for the 11-class classifications and 0.65 for the 26-class classifications). However, 356 

other studies using similar types of data did not achieve much higher levels of accuracy. For example, Rapinel et al. (2019) 357 

managed to map seven wet grassland plant communities with an accuracy of 0.78, by using Sentinel-2 time series and a SVM 358 

classifier. Tarantino et al. (2021) achieved an accuracy of 0.95, by using a SVM classifier and a set of input variables that 359 

included multi-seasonal Sentinel-2 images, a time series of MSAVI index and a DTM. However, they only mapped four 360 

Mediterranean grassland types. Bhatt et al. (2022), that used very high-resolution imagery (60 cm) to map nine heterogeneous 361 

habitats going from forests to open water, only reached a maximum accuracy of 0.79.  362 

Moreover, some additional factors increased the complexity of the classification in the present work. Firstly, the analyzed areas 363 

are distributed over a relatively wide region (the Italian part of the Classical Karst), where the differences in altitude and 364 

substrate composition increase intra-habitat variability (Poldini, 1989). Villoslada et al. (2020) found that the spectral 365 

heterogeneity of the training samples can affect the accuracy of the classification, and that generally homogeneous classes are 366 



more accurately mapped. The results observed for Classical Karst seem in line with this finding, since the best performances 367 

were observed for the most spectrally homogeneous habitats, namely black pine plantations and downy oak woodlands. Finally, 368 

most habitat patches in the study area had a small spatial scale, thus the proportion of mixed pixels was probably high, and this 369 

complicated habitat class separation (Rocchini et al., 2013b). The lowest class-specific accuracy, indeed, was found for invasive 370 

alien species groves, that were present in the smallest areas. Mapping invasive alien species from remote sensing is generally 371 

a challenging task, and the most promising results have been obtained using hyperspectral instead of multispectral imagery, to 372 

facilitate the differentiation of target species from others (He et al., 2011; Rocchini et al., 2015). For these reasons, the accuracy 373 

achieved in this study can be considered relatively high. 374 

Spectral heterogeneity measures had an important role in improving the capacity of classifying habitats from satellite data. The 375 

classifications performed without spectral heterogeneity measures (maximum OA = 0.69) were significantly less accurate than 376 

the others (maximum OA = 0.73), and the resulting maps also had a noisier aspect. Spectral heterogeneity is mainly investigated 377 

nowadays for its relationship with species richness, that has been tested in many environments (Wang and Gamon, 2019), but 378 

it has rarely been used as an additional level of information for the classification of habitats. The results obtained in this study 379 

suggest that image classification frameworks could benefit from the inclusion of spectral heterogeneity measures, although 380 

with caution about which type of metric is being used, as will be discussed below.  381 

The most important variables in almost all the classifications were metrics of spectral 𝛽-diversity. In this study, the spectral 𝛽-382 

diversity was referred to the pairwise Bray-Curtis dissimilarity computed from the distribution of spectral species, as defined 383 

by Féret and Asner (2014). Spectral species are distinct spectral entities, that can be considered as proxies for individual plant 384 

species only with very high-resolution remote sensing data (Féret and Asner, 2014). In case of coarser spatial resolutions, such 385 

as the ones used in this study, spectral species can be related to higher levels of biological organization, such as plant 386 

communities or habitats (Rocchini et al., 2021c). Although both 𝛼- and 𝛽-diversity in this study were based on the spectral 387 

species approach, the latter was far more important than the former for habitat classification. This can be explained considering 388 

what these metrics represent: 𝛼-diversity measures the diversity within a single community, while 𝛽-diversity represents the 389 

degree of differentiation between communities, or their compositional dissimilarity (Whittaker, 1960). Different habitats can 390 

share a similar 𝛼-diversity despite having different species; on the other hand, 𝛽-diversity allows more easily to differentiate 391 

habitats based on their dissimilarity. Here, the values of spectral 𝛽-diversity projected in the PCoA space clearly separated the 392 

three main groups of habitats present in Karst eco-mosaic: habitats dominated by woody deciduous plants (woodlands and 393 

shrublands), habitats dominated by herbaceous plants (grasslands and meadows) and habitats dominated by evergreens (pine 394 

forests).  395 

The use of metrics based on the spectral species approach has some additional advantages. One of the first steps in the algorithm, 396 

indeed, is a PCA (Féret and Asner, 2014), that is one of the most widely used methods in image classifications to reduce feature 397 

dimensionality while maximizing spectral separability (Richards, 2013). Then, a k-means clustering is performed to distinguish 398 

and map the so-called spectral species. To some extent, this procedure is equivalent to a hybrid classification approach, in 399 

which an unsupervised classification is carried out before the application of supervised algorithms, to identify the main groups 400 



of pixels basing only on their spectral similarity (Borra et al., 2019). Usually, this step is applied to choose appropriate classes 401 

and guide the collection of training samples (e.g. Lane et al., 2014). This procedure has some advantages: the full spectral 402 

information of satellite is exploited (Baldeck and Asner, 2013), and spectrally extreme pixels do not unproportionally affect 403 

the results, but are simply grouped into separate classes (Fassnacht et al., 2022). Moreover, the computation of spectral 𝛽-404 

diversity requires another ordination (a PCoA), that further maximizes the separation of groups of similar pixels. 405 

Moreover, the relationship between spectral and species diversity can be different for 𝛼- and 𝛽- components. In many studies, 406 

the estimation of 𝛼-diversity from remote required very high-resolution data (e.g. 1 m2 in Wang et al. 2016a). In this study, for 407 

example, the spectral 𝛼-diversity was similar in black pine plantations and pasture-grasslands, although they have very different 408 

species richnesses (Poldini, 1989). A study by Fassnacht et al. (2022) also pointed out that, at the spatial resolution of Sentinel-409 

2 images, intensively used agricultural patches can show higher spectral diversity compared to species-rich grasslands. For 𝛽-410 

diversity, on the other hand, a good agreement between spectral and field-based metrics was obtained also at relative coarse 411 

spatial resolution (e.g. Rocchini et al., 2010b), although few studies focused on this component of biodiversity (Wang & Gamon 412 

2019). For example, Rocchini et al. (2010) found that the relation between field and spectral 𝛽-diversity is even greater at larger 413 

grain sizes (20x50 m instead of 10x10 m). In another study (Hoffmann et al., 2019), most of the 𝛽-diversity of different plant 414 

communities distributed along an elevational gradient could be explained using Sentinel-2 data with 10 m spatial resolution. 415 

Thus, the link between species and spectral diversity seems to be generally stronger for 𝛽- than for 𝛼-diversity.  416 

The other spectral heterogeneity index considered in this study, spectral Rao’Q, had a low relative importance in all the 417 

classifications. This index is a measure of the heterogeneity of a pixel with respect to its surroundings (Thouverai et al., 2021), 418 

and has been proven to match species diversity in natural areas but not in agricultural lands with high heterogeneity (Rocchini 419 

et al., 2021b). In this study, the lowest Rao’s Q values were found for black pine plantations and downy oak woodlands, that 420 

do host a low species diversity, while the highest values were found for pasture-grasslands and pure grasslands, that are species-421 

rich habitats (Poldini, 2009). However, high values of Rao were found also for invasive species groves, thus the relation 422 

between spectral Rao’s Q and species diversity was not clear. One possible reason is related to the spatial extent of the habitat 423 

patches: in this study, Rao’s Q was computed with moving windows of 3x3 pixels (900 m2), thus, the habitats present in smaller 424 

patches were more likely to border with other habitats inside this window, resulting in higher spectral heterogeneity (i.e., high 425 

Rao’s Q values). Using remote sensing data with higher spatial resolutions would probably improve this aspect.  426 

However, the approach used to calculate Rao’s Q may itself be a problem, since it highlights the differences among close 427 

pixels, and thus maximizes the noise, instead of minimizing it. Therefore, while the Rao’s Q index can be used to estimate 428 

species diversity in some cases (Rocchini et al., 2021b), it might be less useful in the context of habitat mapping.  429 

The results of this study show that some spectral heterogeneity metrics might be more useful than others in the context of 430 

habitat mapping. The relationship between spectral and species diversity is still not clear in many cases, but, as pointed out by 431 

Fassnacht et al. (2022), these measures can be useful regardless of their link with actual species diversity, since they allow to 432 

exploit the main strength of remote sensing: measures can be repeated over time, to capture habitat specific variations and 433 

monitor landscape evolution. 434 



 435 

4.2. Importance of vegetation indices 436 

Vegetation indices were the most important variables after 𝛽-diversity metrics in all the monthly and seasonal classifications. 437 

In particular, summer GNDVI, summer IRECI and autumn NDVI were the most important vegetation indices in the best 438 

classification. NDVI, with its variant GNDVI, is the most commonly used index and has been found useful in many studies 439 

(e.g. Schuster et al., 2015).  440 

IRECI is the only index considered in this study that includes the Red Edge Sentinel-2 bands and has a strong linear relationship 441 

with canopy chlorophyll content and LAI (Frampton et al., 2013). The results presented here seem to confirm this relationship. 442 

Indeed, the temporal variation of IRECI follows the expected seasonal changes of canopy chlorophyll content, with an increase 443 

in spring, a maximum in summer and a decrease in autumn (Gara et al., 2019). In summer, the highest values were found for 444 

downy oak woodlands, in agreement with the fact that broadleaves species have a higher chlorophyll content compared to 445 

conifers (Li et al., 2018). Conversely, in winter IRECI was relatively high only for the evergreens black pine plantations. 446 

Moreover, the differences of IRECI among habitats might also reflect the variation of LAI across ecosystems: mean LAI 447 

generally increases from grasslands (1.7 ± 1.2) and shrublands (2.1 ± 1.6), to temperate deciduous broadleaves (5.1 ± 1.6) and 448 

evergreen needleleaves (5.5 ± 3.4) forests (Asner et al., 2003). Optical traits like chlorophyll content can improve the estimation 449 

and mapping of species composition over space, as demonstrated by Feilhauer et al. (2017) in semi-natural temperate 450 

grasslands. Although IRECI itself has not been tested much in the context of habitat mapping, other indices using the Red Edge 451 

spectrum have been shown to be useful for this purpose. For example, Schuster et al. (2012) found that the Red Edge channel 452 

of the RapidEye satellite had a positive influence on the overall accuracy of a land cover classification in a mosaic of natural 453 

and agricultural areas in Germany, especially for the bush vegetation and dry grassland classes. In another study, Alpine 454 

grasslands were distinguished from shrublands relying on the Sentinel-2 Red Edge bands, by detecting the seasonal anthocyanin 455 

accumulation in the shrub species (Bayle et al., 2019). A Red Edge-based index was also found to be more useful than NDVI 456 

to map plant communities in coastal meadows (Villoslada et al., 2020). These examples are in line with the results of this study, 457 

that confirm the role of the Red Edge spectrum for the distinction of habitats. 458 

 459 

4.3. Inclusion of multi-temporal data 460 

The aggregation of monthly data in seasonal composites using the median statistical operator allowed to reduce the number of 461 

input layers without losing information. The levels of accuracy achieved with the monthly and the seasonal temporal 462 

configurations, indeed, were not significantly different, while the number of input layers was reduced from 144 to 48. This 463 

method of reducing data dimensionality can be complemented with variable selection through RFE, that did not have a 464 

significant effect on accuracy. The use of seasonal composites for habitat mapping is known to be useful because it reduces the 465 

problem of cloudy images but maintains the advantage given by multi-temporal data (Kollert et al., 2021). In a recent work by 466 

(Praticò et al., 2021), the mean turned out to produce slightly better results than other statistical operators such as the median. 467 



In this study the median was chosen because it is less sensitive to outliers and is generally the most common way to perform 468 

image reduction (Kollert et al., 2021), but other statistical operators could be investigated.  469 

The multi-temporal configurations generally led to worse results than the other configurations, as was evident both from the 470 

accuracy values (mean OA = 0.59 for 26 classes and 0.65 for 11 classes) and from the visual assessment of the classified maps. 471 

The temporal Rao’s Q computed for different vegetation indices over a year was successfully used by Marzialetti et al. (2020) 472 

to map coastal dune habitats, but also the mean, the 10th and the 90th percentiles of vegetation indices were included in that 473 

case. In this study, only temporal heterogeneity layers were used as input in the multi-temporal configurations, and this may 474 

have reduced the capacity of distinguishing habitats. Including other measures that summarize the annual variation of 475 

vegetation indices could be a possible improvement. 476 

The most relevant seasons for distinguishing vegetation types in Karst eco-mosaic were summer, autumn and winter, as was 477 

found by comparing the most important variables for the seasonal classifications. Spring, however, appeared among the most 478 

important variables in some classifications, and the month of May was important in multiple monthly classifications. This 479 

suggests that there is not one single period better than the others, and that multiple seasons should be considered. The advantage 480 

of using multi-temporal data for habitat classification has been proven in many cases, because data from different seasons 481 

provide different information (e.g. Feilhauer et al., 2013; Rapinel et al., 2019; Schuster et al., 2015). For example, Soubry and 482 

Guo (2021) found that the best season to distinguish shrubs in grasslands changed according to the spectral bands considered. 483 

In spring the most important bands were the red and blue bands, because the peak in growth was reached by shrubs but not by 484 

grasses; in summer a good separation was achieved only in the NIR region, due to the differences in leaf structures typical of 485 

woody and herbaceous plants; in autumn the most important bands were the SWIR and red, related to greenness and moisture. 486 

In the case of Karst eco-mosaic, autumn and winter generally allowed to distinguish evergreens from deciduous plants, while 487 

in summer there was the greatest separation among the different deciduous habitats especially with the NDVI and IRECI 488 

indices. 489 

 490 

Conclusion 491 

In this study, novel spectral heterogeneity indices were tested in a multi-temporal classification framework, and their potential 492 

to improve habitat mapping in complex landscapes was demonstrated, using the Classical Karst as testing area. 493 

The aim of the study was generally achieved, but several improvements could be made. For example, different remote sensing 494 

data sources could be used, including hyperspectral sensors, active sensors such as LiDAR and radar, or sensors with very high 495 

spatial resolutions (Nagendra et al., 2013). In this way, the estimation of spectral heterogeneity could be improved. Moreover, 496 

input variables have been combined in a limited number of ways in this study and testing other configurations can possibly 497 

produce better results. 498 



The framework presented here was applied to some areas of Classical Karst, but could be extended to test its validity on a 499 

larger scale. This approach based on remote sensing cannot replace field work and requires field data for training and validation, 500 

though it can be a valid tool to map habitats in a cost- and time-effective way that is very well suitable for monitoring purposes.  501 

  502 
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Table Captions 703 

Table 1: List of vegetation indices used for the analysis. 704 

Table 2: Input variables configurations used for image classification. 705 

Table 3: Overall accuracy (OA) and Kappa values obtained from the different classification pathways. 706 

Table 4: Confusion matrix for the best classification (seasonal classification performed with 11 classes). The rows represent 707 

the results obtained from the classification, while the columns represent the reference data. The values on the matrix diagonal 708 

are the correctly classified pixels. Habitats are abbreviated as follows: Shrubland (Shr), Downy oak woodland (DOW), Sessile 709 

oak woodland (SOW), Invasive alien species (IAS), Pure grassland (Gr_I0), Grassland at successional stage 1 (Gr_I1), 710 

Grassland at successional stage 2 (Gr_I2), Grassland-woodland mosaic, Black pine plantation, Hay meadow, Pasture-grassland. 711 

Table 5: Class-specific accuracy parameters (UA: user’s accuracy, PA: producer’s accuracy) obtained for the seasonal 712 

classification performed with 11 classes. Accuracy was assessed using independent validation data. 713 
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Tables 715 

Table 1 716 

Index Formula Reference 

𝐍𝐃𝐕𝐈 (NIR(B8) − Red(B4)) (NIR(B8) + Red(B4))⁄  Rouse et al., 1975 

𝐆𝐍𝐃𝐕𝐈 (NIR(B8) − Green(B3)) (NIR(B8) + Green(B3))⁄  Gitelson et al., 1996 

𝐍𝐃𝐖𝐈 (NIR(B8) − SWIR(B11)) (NIR(B8) + SWIR(B11))⁄  Chen et al., 2005 

𝐈𝐑𝐄𝐂𝐈 ((RedEdge(B7) − Red(B4)) ((RedEdge(B5) RedEdge(B6)⁄ )⁄ ) × 10000 Frampton et al., 2013 

 717 
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Table 1  719 

Temporal 

configuration 

Input variables Number of 

input layers 

Monthly  Vegetation indices: 4 layers per month (NDVI, GNDVI, NDWI, IRECI) 

Rao’s Q: 4 layers per month (NDVI, GNDVI, NDWI, IRECI) 

𝛼-diversity: 1 layer per month 

𝛽-diversity (first 3 PCoA axes): 3 layers per month 

144 

Seasonal Vegetation indices: 4 layers per season (NDVI, GNDVI, NDWI, IRECI) 

Rao’s Q: 4 layers per season (NDVI, GNDVI, NDWI, IRECI) 

𝛼-diversity: 1 layer per season 

𝛽-diversity (first 3 PCoA axes): 3 layers per season 

48 

Multi-temporal 

monthly 

Multi-temporal Rao’s Q: 4 layers per year (NDVI, GNDVI, NDWI, IRECI) 

Multi-temporal 𝛼-diversity: 4 layers per year (NDVI, GNDVI, NDWI, IRECI) 

Multi-temporal 𝛽-diversity (first 3 PCoA axes): 3x4 layers per year 

20 

Multi-temporal 

seasonal 

Multi-temporal Rao’s Q: 4 layers per year (NDVI, GNDVI, NDWI, IRECI) 

Multi-temporal 𝛼-diversity: 4 layers per year (NDVI, GNDVI, NDWI, IRECI) 

Multi-temporal 𝛽-diversity (first 3 PCoA axes): 3x4 layers per year 

20 
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Table 3 722 

 723 

 724 

  725 

N° of classes Input configuration N° of predictors OA Kappa 

26 Monthly 144 0.65 0.58 

+ RFE 48 0.63 0.56 

Seasonal 48 0.63 0.56 

+ RFE  46 0.62 0.54 

Multi-temporal monthly 20 0.62 0.54 

+ RFE 20 0.61 0.53 

Multi-temporal seasonal 20 0.57 0.50 

+ RFE  20 0.58 0.51 

11 Monthly 144 0.73 0.65 

+ RFE 100 0.73 0.65 

only vegetation indices 48 0.69 0.59 

Seasonal 48 0.72 0.64 

+ RFE 34 0.72 0.64 

only vegetation indices 16 0.65 0.56 

Multi-temporal monthly  20 0.66 0.57 

+ RFE 14 0.67 0.57 

Multi-temporal seasonal 20 0.64 0.55 

+ RFE 17 0.64 0.55 



Table 4 726 

 Shr DOW SOW IAS Gr_I0 Gr_I1 Gr_I2 GWM BPP HM PG 

Shr 8 6  2  2 20  1   

DOW 2 156 10 1   1 1 9 1  

SOW  7 4         

IAS  4  0   1  1   

Gr_I0  2  1 12       

Gr_I1 1     21 5     

Gr_I2 1 5 1  3 7 51 3  2 1 

GWM 1 22   2 1 2 13 4 1  

BPP 1 7      1 107   

HM  1        10 6 

PG           1 

 727 
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Table 5 729 

Class UA PA 

Shrubland 0.21 0.57 

Downy oak woodland 0.86 0.74 

Sessile oak woodland 0.36 0.27 

Invasive species 0.00 0.00 

Grassland I0 0.80 0.71 

Grassland I1 0.78 0.68 

Grassland I2 0.69 0.64 

Grassland-woodland mosaic 0.28 0.72 

Black pine plantation 0.92 0.88 

Hay meadow 0.59 0.71 

Pasture-grassland 1.00 0.13 
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Figure Captions 732 

Figure 1: Location of the study area, represented on the Sentinel-2 median composite of summer 2021. 733 

Figure 2: Workflow synthesizing the approach used to map natural habitats through a Random Forest classification and 734 

multiple combinations of input layers (vegetation and spectral heterogeneity indices). 735 

Figure 3: Comparison of the overall accuracy achieved by considering different numbers of habitat classes (a), by performing 736 

or not a variable selection step through RFE (b), and by using different input variables configurations (c).  737 

Figure 4: Habitat map resulting from the RF classification based on seasonal layers of vegetation and spectral heterogeneity 738 

indices. Among all the possible classifications, the selected is the one that resulted in the highest accuracy while minimising 739 

the amount of input layers. A total of 11 habitat classes was considered, based on structural-physiognomic and ecological 740 

characteristics. The areas are located in Monfalcone (a), Case Coisce (b), Opicina (c), Aurisina (d), San Lorenzo (e), San 741 

Giuseppe (f) and Bagnoli (g). 742 

Figure 5: Relative importance of the variables used as input for the seasonal classifications with 11 classes. Classifications 743 

were performed with the whole set of input variables (a) and with a subset obtained by RFE (b). Only the first 20 variables are 744 

shown. 745 
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Figures 747 

Figure 1 748 
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