Design and pharmacological characterization of $\alpha_{4} \beta_{1}$ integrin cyclopeptide agonists: Computational investigation of ligand's determinants for agonism versus antagonism

Michele Anselmi, ${ }^{\dagger}$ "/ Monica Baiula, ${ }^{\ddagger},{ }^{\ddagger / /}$ Santi Spampinato, ${ }^{\ddagger}$ Roberto Artali, ${ }^{\S}$ Tingting He, ${ }^{\dagger}$ Luca Gentilucci, ${ }^{\dagger}$, ${ }^{*}$ *
†Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
${ }^{¥}$ Health Sciences \& Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia, Italy.
* Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
${ }^{\text {§ }}$ Scientia Advice, 20832 Desio, Monza and Brianza, Italy
*E-mail: luca.gentilucci@unibo.it

Table of contents

Chemistry pS2
Figure S1, enzymatic stability in mouse serum pS4
Table S1 pS5
Cell culture pS6
Figures S2-S7, cell adhesion concentration-response curves pS6
Figures S8-S12, solid-phase binding curves pS9
Figure S13, correlation between adhesion assay-determined potency and ligand binding affinity of LDV CPPs. pS12
VT NMR experiments pS12
Table $\operatorname{S} 2, \Delta \delta / \Delta \mathrm{t}$ values pS13
Tables S3-S7, ROESY cross peaks pS13
Figure S14, views of PDB 3V4V pS18
Figures S15-S21, molecular modelling extras pS19
Figures S22-S33, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra pS23
Figure S34, HPLC analyses pS35

Chemistry

(S)-, (R)-Fmoc-Asp-OBn, (S)-4, (R)-4. A mixture of either (S) or (R)-Fmoc-Asp(OtBu)-OH (1.0 mmol), tetra-butylammonium bromide (1.0 mmol), and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(1.1 \mathrm{mmol})$ in acetonitrile (5 mL) was stirred at RT for 20 min . A solution of benzyl bromide (1.1 mmol) in acetonitrile (4 mL) was then added dropwise under vigorous stirring. The mixture was stirred for 12 h at RT, then the precipitate was filtered off, and the filtrate was evaporated to dryness. The resulting crude material was dissolved in EtOAc, and the organic layer was washed three times with sat. $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and finally the solvent was evaporated at reduced pressure to afford the product as a white solid, used without further isolation. (S)-Fmoc-Asp(OtBu)-OBn $(98 \%, 85 \%$ pure as determined by RP HPLC, General Methods). ESI MS m / z calcd. for $\left[\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{NO}_{6} \mathrm{Na}\right]^{+} 524.2$, found $524.2[\mathrm{M}+\mathrm{Na}]^{+}$. (R)-Fmoc-Asp(OtBu)-OBn $(94 \%, 90 \%$ pure), ESI MS m / z calcd. for $\left[\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{NO}_{6} \mathrm{Na}\right]^{+} 524.2$, found $524.2[\mathrm{M}+\mathrm{Na}]^{+}$.

Either (S) - or $(R)-\mathrm{Asp}(\mathrm{OtBu})-\mathrm{OBn}$ were treated with $25 \% \mathrm{TFA}$ in $\mathrm{DCM}(4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under stirring for 3 h. The solvent was distilled at reduced pressure, then ice-cold water was added to the residue and the suspension was allowed to stir overnight. The resulting precipitate was collected by filtration, dried under high vacuum and used without further purifications. (S)-4 ($98 \%, 89 \%$ pure as determined by RP HPLC, General Methods), ESI MS m / z calcd. for $\left[\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{NO}_{6}\right]^{+} 446.2$, found $446.2[\mathrm{M}+\mathrm{H}]^{+} .(R)-4(95 \%, 92 \%$ pure $)$, ESI MS m / z calcd. for $\left[\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{NO}_{6}\right]^{+} 446.2$, found $446.3[\mathrm{M}+\mathrm{H}]^{+}$.

Scheme S1. (A) Preparation of (S)- or (R)-Fmoc-Asp-OBn, (S)-4 or (R)-4. Reagents and conditions: i) benzyl-Br, $\mathrm{Bu}_{4} \mathrm{NBr}, \mathrm{K}_{2} \mathrm{CO}_{3}$; ii) TFA, DCM, RT. (B) Preparation of (S) - or (R)-Boc-Phu-OH (S)-8 or (R)-8. Reagents and conditions: i) $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HNO}_{3}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; ii) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{O} /$ dioxane, $\mathrm{RT}, 12 \mathrm{~h}$; iii) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, \mathrm{RT}, 3 \mathrm{~h}$; iv) otolyl isocyanate, DMF, RT, 3 h .
$(S)-,(R)-4-\mathrm{NO}_{2}-\mathrm{Phe},(S)-5,(R)-5$. Phenylalanine $(1.0 \mathrm{mmol})$ was added in small portion to conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ $(6.0 \mathrm{mmol})$ until complete dissolution. The mixture was then cooled to $0^{\circ} \mathrm{C}$, and conc. $\mathrm{HNO}_{3}(0.65 \mathrm{mmol})$ was added dropwise. The reaction was stirred for 1 h at $0^{\circ} \mathrm{C}$. Then, ice-cold $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was slowly added to the reaction mixture and stirred for additional 15 min . The mixture was heated to $100^{\circ} \mathrm{C}$ for 1 min and cooled to RT, then pH was corrected to $5-6$ with $28 \% \mathrm{NH}_{4} \mathrm{OH}$. The mixture was concentrated at reduced pressure and kept overnight for crystallization. The crystals were filtered, washed with water (5 mL) and dried under high vacuum to give (S) - or $(R)-5$ as white solids. $(S)-\mathbf{5}(85 \%, 95 \%$ pure as determined by RP HPLC), ESI-MS m / z calcd. for $\left[\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{4}\right]^{+} 211.1$, found $211.2[\mathrm{M}+\mathrm{H}]^{+} .(R)-6(97 \%, 94 \%$ pure), ESI-MS m / z calcd. for $\left[\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{4}\right]^{+} 211.1$, found $211.1[\mathrm{M}+\mathrm{H}]^{+}$.
(S)-, (R)-Boc-4- NO_{2}-Phe, $(S)-\mathbf{6},(R)-6 . \mathrm{Boc}_{2} \mathrm{O}(1.2 \mathrm{mmol})$ was added to a suspension of (S) - or $(R)-5(1.0$ $\mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(2.0 \mathrm{mmol})$ in $1: 1 \mathrm{H}_{2} \mathrm{O} /$ Dioxane $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred overnight at RT. Dioxane was distilled under reduced pressure, the alkaline aqueous layer was adjusted to $\mathrm{pH} 3-4$ with 0.5 M HCl , then the mixture was extracted three times with EtOAc (10 mL). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure, to afford $(S)-$ or (R)-6, which were used without further purifications. (S)-6 $(90 \%, 90 \%$ pure as determined by RP HPLC, General

Methods), ESI-MS m / z calcd. for $\left[\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}\right]^{+} 333.1$, found $333.2[\mathrm{M}+\mathrm{Na}]^{+}$. (R) -6 ($84 \%, 90 \%$ pure), ESI-MS m / z calcd. for $\left[\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}\right]^{+} 333.1$, found $333.1[\mathrm{M}+\mathrm{Na}]^{+}$.
(S)-, (R)-Boc-4- NH_{2}-Phe, $(S)-7,(R)-7$. The nitro group of (S) - or $(R)-6(1.0 \mathrm{mmol})$ was reduced by hydrogenation in MeOH in the presence of $10 \% w / w \mathrm{Pd} / \mathrm{C}$ while stirring for 3 h at RT. The mixture was filtered over a Celite ${ }^{\circledR}$ pad and the solvent was removed under reduced pressure. Then, $\mathrm{Et}_{2} \mathrm{O}$ was added to the residue and the suspension was allowed to stir overnight. The resulting precipitate was collected by filtration, dried under high vacuum and used without further purifications: (S)-7 ($45 \%, 95 \%$ pure as determined by RP HPLC, General Methods), ESI MS m / z calcd. for $\left[\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4}\right]^{+} 281.1$, found $281.1[\mathrm{M}+\mathrm{H}]^{+}$, 181.2 [M$\mathrm{Boc}+\mathrm{H}]^{+}$. $(R)-7(50 \%, 95 \%$ pure $)$, ESI MS m / z calcd. for $\left[\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4}\right]^{+} 281.1$, found $281.1[\mathrm{M}+\mathrm{H}]^{+}$.
(S)-, (R)-Boc-Phu-OH, (S)-8, (R)-8. o-Tolyl isocyanate (1.1 mmol) was added dropwise to a solution of either $(S)-7$ or $(R)-7(1.0 \mathrm{mmol})$ in DMF (3 mL) at RT under N_{2} atmosphere. The mixture was stirred for 3 h , then ice-cold $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added and the precipitate $(S)-\mathbf{8}$ or $(R)-\mathbf{8}$ was collected as a brownish solid by filtration. (S) $\mathbf{8} \mathbf{8}(76 \%, 95 \%$ pure as determined by RP HPLC, General Methods), ESI MS m / z calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Na}\right]^{+} 436.1$, found $436.2[\mathrm{M}+\mathrm{Na}]^{+}, 314.2[\mathrm{M}-\mathrm{Boc}+\mathrm{H}]^{+} .(R)-\mathbf{8}(67 \%, 95 \%$ pure $)$, ESI MS m / z calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Na}\right]^{+} 436.1$, found $436.2[\mathrm{M}+\mathrm{Na}]^{+}$, $314.1[\mathrm{M}-\mathrm{Boc}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSOd $_{6}$) $\sigma 7.63(\mathrm{~d}, 1 \mathrm{H}), 7.43(\mathrm{~d}, 1 \mathrm{H}), 6.85-7.25(\mathrm{~m}, 6 \mathrm{H}), 4.23(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{dd}, 1 \mathrm{H}), 2.9(\mathrm{dd}, 1 \mathrm{H}), 2.3(\mathrm{~s}$, 3 H), 1.4 ($\mathrm{s}, 9 \mathrm{H}$).

A

B

(S)-21

Scheme S2. (A) Preparation of (R)-N-Boc- β^{3}-homoAla 20. Reagents and conditions: i) NMM, ethyl chloroformate, THF, $0^{\circ} \mathrm{C}$ - RT, 15 min , then $\mathrm{NaBH}_{4}, 0^{\circ} \mathrm{C}-\mathrm{RT}, 10 \mathrm{~min}$; ii) PPh_{3}, I_{2}, imidazole, DCM, reflux, 3 h ; iii) KCN, DMSO, 60 ${ }^{\circ} \mathrm{C}, 4 \mathrm{~h}$; $i v$) HCl 3 M , reflux, 12 h ; v) Fmoc-Cl, $\mathrm{Na}_{2} \mathrm{CO}_{3}$, in $1: 1 \mathrm{H}_{2} \mathrm{O} /$ dioxane at RT. (B) Synthesis of Fmoc- (R)-Asppropylamide. Reagents and conditions: i) n-propylamine, EDC•HCl, HOBt, TEA, DM1F/DCM, RT, 3 h ; ii) TFA, DCM, RT, 1 h .
(R)-tBu-(l-hydroxypropan-2-yl)carbamate, 17. To a stirred solution of NMM (1.1 mmol) and Boc-(R)-Ala-OH (1.0 mmol) in dry THF (5 mL), ethyl chloroformate (1.1 mmol) was added dropwise at $0{ }^{\circ} \mathrm{C}$ under inert atmosphere. After 15 min , the solution was filtered and the precipitated was washed with THF (5 mL). The filtrates were collected, and a solution of $\mathrm{NaBH}_{4}(1.25 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was then added dropwise at $0^{\circ} \mathrm{C}$ under stirring. The mixture was risen to RT, and after 10 min the solvent was distilled under reduced pressure. The residue was re-dissolved in EtOAc (30 mL) and the suspension was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine (5 mL each), then dried $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was distilled under reduced pressure, giving $\mathbf{1 7}(89 \%)$ as a yellow oil, which was used without further purifications. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, NH), $3.78-3.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} \alpha), 3.50(\mathrm{dd}, J=13.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} \beta$), 3.26 (dd, $J=12.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} \beta$), $1.43(\mathrm{~s}, 9 \mathrm{H}, \mathrm{tBu}), 1.27\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. ESI-MS m / z calcd. for $\left[\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{NO}_{3}\right]^{+} 176.1$, found 176.2 $[\mathrm{M}+\mathrm{H}]^{+}$.
(R)-tBu-(1-cyanopropan-2-yl)carbamate, 19. To a stirred solution of triphenylphosphine (1.25 mmol) in dry $\operatorname{DCM}(10 \mathrm{~mL}), \mathrm{I}_{2}(1.3 \mathrm{mmol})$ was added at RT under inert atmosphere. After 15 min , imidazole (2.5 $\mathrm{mmol})$ was added and the mixture was stirred for additional 15 min . A solution of the crude $\mathbf{1 7}(1.0 \mathrm{mmol})$ in
dry $\operatorname{DCM}(5 \mathrm{~mL})$, was added and the mixture was heated to reflux for 3 h . Then the mixture was cooled and diluted with $\operatorname{DCM}(40 \mathrm{~mL})$, and washed with 10% aq $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated at reduced pressure. The crude iodide $\mathbf{1 8}$ so obtained was then dissolved in dry DMSO $(30 \mathrm{~mL})$ and $\mathrm{KCN}(2.0 \mathrm{mmol})$ was added in one portion. The mixture was stirred under inert atmosphere at $60^{\circ} \mathrm{C}$ for 4 h . The solution was then poured into water (10 mL), and the mixture was extracted twice with $\operatorname{EtOAc}(40 \mathrm{~mL})$. The organic layer was washed with brine (20 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then evaporated at reduced pressure. The crude residue was purified by flash chromatography over silica gel (eluent cyclohexane/EtOAc 80:20) to give $\mathbf{1 9}$ (52% over two steps).

Fmoc- $(R)-\beta^{3}$-homoAla 20. The nitrile $19(1.0 \mathrm{mmol})$ was dissolved in $6 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$ and heated to reflux for 12 h . The reaction mixture was then cooled at $0^{\circ} \mathrm{C}$ and neutralized with 2 M NaOH solution. The mixture was concentrated under reduced pressure to afford β^{3}-homoAla as HCl salt. The resulting salt was suspended in a mixture of $1: 1 \mathrm{H}_{2} \mathrm{O} /$ dioxane $(5 \mathrm{~mL})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(2.0 \mathrm{~mol})$ and finally $\mathrm{Fmoc}-\mathrm{Cl}(1.0 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$. The reaction was stirred at RT overnight, then the mixture was concentrated under reduced pressure, and the basic aqueous layer was adjusted to $\mathrm{pH} 3-4$ with 0.5 M HCl , and the mixture was extracted three times with $\mathrm{EtOAc}(20 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash chromatography over silica gel (eluent cyclohexane/EtOAc/AcOH 60:40:1) to afford $20(55 \%)$. ESI-MS m / z calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{4}\right]^{+} 326.1$, found $326.2[\mathrm{M}+\mathrm{H}]^{+}$.

Fmoc-(R)-Asp-N-propylamide 21. A mixture of Fmoc-(R)-Asp(OtBu)-OH (1.2 mmol), EDC•HCl (1.5 eq), $\mathrm{HOBt}(1.5 \mathrm{eq})$ and TEA (3.0 eq) in 3:1 DMF/DCM (5 mL) was stirred at RT for 10 min , then n propylamine (1.5 mmol) was added, and the mixture was stirred under N_{2} at RT for 3 h . Then the solvent was distilled at reduced pressure, and the residue was purified by flash chromatography over silica gel (eluent cyclohexane/EtOAc 70:30) to afford Fmoc-(R)-Asp(OtBu)-N-propylamide (69%). ${ }^{1} \mathrm{H}$-NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.60(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$, $7.33(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.47$ (br.t, 1 H , propylNH), 5.97 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{AspNH}$), 4.45 (d, $J=6.8$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{FmocCH}_{2}\right), 4.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{AspH} \alpha), 3.22\left(\mathrm{q}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}\right.$, propylCH$\left._{2}\right), 2.93(\mathrm{dd}, J=17.0,3.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{AspH} \beta), 2.60(\mathrm{dd}, J=17.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{AspH} \beta), 1.57-1.48\left(\mathrm{~m}, 2 \mathrm{H}, \operatorname{propylCH}_{2}\right), 1.46(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.91$ $\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}\right.$, propylCH 3). ESI-MS m / z calcd. for $\left[\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{5}\right]^{+} 453.2$, found $453.0[\mathrm{M}+\mathrm{H}]^{+}$. Removal of $t \mathrm{Bu}$-protecting group was performed with 25% TFA in DCM (4 mL) at $0^{\circ} \mathrm{C}$ under stirring for 3 h . Thereafter the solvent was distilled at reduced pressure and the residue was triturated in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$, giving 21 in quantitative yield, directly used in the next step without further purifications. ESI-MS m / z calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5}\right]^{+} 397.2$, found $397.0[\mathrm{M}+\mathrm{H}]^{+}$.

Figure S1
Degradation of BIO1211, 3a, 3c in mouse serum. Samples were collected from the incubation solution at the indicated times. Peptide stability was determined using an RPHPLC ESI-MS analysis (described in the Methods). Values are presented as mean \pm SD ($\mathrm{n}=3$).

Table S1. RP HPLC and ESI MS analyses of the linear precursors $\mathbf{9}$ and of the cyclopeptides $\mathbf{1 0}$, and reaction yields.

9	Linear peptide sequence ${ }^{\text {a }}$	Yield (\%) ${ }^{\text {b }}$	Purity (\%) ${ }^{c}$	$\begin{aligned} & \text { ESI MS }[\mathrm{M}+1]^{+} \\ & \text {found/calcd. }{ }^{\text {d }} \end{aligned}$	10	Yield (\%) ${ }^{\text {e }}$	Purity (\%)	$\begin{aligned} & \text { ESI-MS }{ }^{[\mathrm{M}+1]^{+}} \\ & \text {found/calcd. }{ }^{\mathrm{d}} \end{aligned}$	CPP ${ }^{\text {g }}$
-	H-isoAsp(OBn)-Phu-Leu-Asp(OBn)-Val-OH	30	76	936.2/936.4 ${ }^{\text {h }}$	a	traces	nd	nd	3 a
-	H-Asp(OBn)-Val-isoAsp(OBn)-Phu-Leu-OH	32	78	936.2/936.4 ${ }^{\text {h }}$	a	traces	nd	nd	3a
a	H-(S)-Phu-Leu-Asp(OBn)-Val-(S)-Asp-OBn	22	80	936.2/936.4 ${ }^{\text {h }}$	a	28	98	918.2/918.4 ${ }^{\text {i }}$	3a
b	H-(S)-Phu-Leu-Asp(OBn)-Val-(R)-Asp-OBn	24	81	936.2/936.4 ${ }^{\text {h }}$	b	19	97	918.2/918.4 ${ }^{\text {i }}$	3b
c	H-(R)-Phu-Leu-Asp(OBn)-Val-(S)-Asp-OBn	34	79	936.2/936.4 ${ }^{\text {h }}$	C	29	97	918.2/918.4 ${ }^{\text {i }}$	3c
d	H-(R)-Phu-Leu-Asp(OBn)-Val-(R)-Asp-OBn	44	85	936.6/936.4 ${ }^{\text {h }}$	d	34	99	918.6/918.4 ${ }^{\text {i }}$	3d
e	H-(S)-Phu-Leu-Asp(OBn)-Val-(R)- β^{3} homoAla-OH	27	75	816.6/816.4 ${ }^{\text {j }}$	e	50	95	798.2/798.4 ${ }^{\text {k }}$	11a
f	H-(S)-Phu-Leu-Ala-Val-(S)-Asp-OBn	46	83	802.6/802.4 ${ }^{1}$	f	37	96	$784.4 / 784.4{ }^{\text {m }}$	12a
g	H-(S)-Phu-Leu-Asp(OBn)-Val-(S)-Asp-nPr ${ }^{\text {a }}$	45	82	887.4/887.4 ${ }^{\text {n }}$	g	27	95	869.2/869.4 ${ }^{\text {o }}$	13
h	H-(R)-Phu-Leu-Asp(OBn)-Val- (R) - β^{3} homoAla-OH	47	78	816.6/816.4 ${ }^{\text {j }}$	h	33	98	$798.2 / 798.4^{\mathrm{k}}$	11c
i	H-(R)-Phu-Leu-Ala-Val-(S)-Asp-OBn	40	79	802.6/802.4 ${ }^{1}$	i	15	97	$784.2 / 784.4{ }^{\text {m }}$	12c
j	H-(S)-Phu-Phe-Asp(OBn)-Val-(S)-Asp-OBn	48	73	970.2/970.4 ${ }^{\text {p }}$	j	25	97	952.2/952.4 ${ }^{\text {q }}$	14
k	H-(S)-Phu-Phe-Ala-Val-(S)-Asp-OBn	36	85	836.2/836.4 ${ }^{\text {r }}$	k	48	98	818.2/818.4 ${ }^{\text {s }}$	15
1	H-(R)-Phu-Leu-Asp(OBn)-Phg-(S)-Asp-OBn	37	74	970.2/970.4 ${ }^{\text {p }}$	1	43	96	952.2/952.4 ${ }^{\text {q }}$	16

${ }^{a}$ isoAsp(OBn) corresponds to Asp-OBn; isoAsp(nPr) corresponds to Asp-nPr. ${ }^{\mathrm{b}}$ based on the estimated loading of the resin. ${ }^{\text {c }}$ Determined by analytical RP HPLC (General methods) on a C18 RP column ($100 \times 3 \mathrm{~mm}, 3 \mu \mathrm{~m}, 110 \AA$), mobile phase from $9: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN} / 0.1 \% \mathrm{HCOOH}$ to $2: 8 \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN} / 0.1 \% \mathrm{HCOOH}$ in 20 min , flow rate of 1.0 mL min ${ }^{-1}$. ${ }^{\mathrm{d}} \mathrm{MS}$ single quadrupole HP 1100MSD detector. ${ }^{\text {e }}$ Determined after semi-preparative RP HPLC (General methods) on a C18 RP column ($21.2 \times 150 \mathrm{~mm}, 7 \mu \mathrm{~m} 80 \AA$), mobile phase from $8: 2$ $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}$ to $100 \% \mathrm{CH}_{3} \mathrm{CN}$ in 10 min , flow rate $12 \mathrm{~mL} \mathrm{~min}^{-1}$ for CPPs $\mathbf{1 0 a - i}$, or on a C18 RP column ($19 \times 150 \mathrm{~mm}, 5 \mu \mathrm{~m} 130 \AA$), isocratic mobile $\mathrm{phase} 1: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN} / 0.1 \%$ TFA in 8 min , followed by $100 \% \mathrm{CH}_{3} \mathrm{CN}$ in 5 min , flow rate $10 \mathrm{~mL} \mathrm{~min}^{-1}$ for CPPs $\mathbf{1 0 j}-\mathbf{l}$, ${ }^{\mathrm{f}}$ Same stationary phase as for ${ }^{\text {c }}$, mobile phase from $9: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}^{2}$ to $2: 8 \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}$ in 20 min , flow rate $1.0 \mathrm{~mL} \mathrm{~min}^{-1} .{ }^{\mathrm{g}}$ Ester deprotection proceeded in nearly quantitative yield; purities are reported in Table 1 and $2 .{ }^{\text {h }} \mathrm{Calcd}^{2}$ for $\left[\mathrm{C}_{50} \mathrm{H}_{62} \mathrm{~N}_{7} \mathrm{O}_{11}\right]^{+} .{ }^{\mathrm{i}} \mathrm{Calcd}^{2}$ for $\left[\mathrm{C}_{50} \mathrm{H}_{60} \mathrm{~N}_{7} \mathrm{O}_{10}\right]^{+} .{ }^{\mathrm{j}}$ Calcd for $\left[\mathrm{C}_{43} \mathrm{H}_{58} \mathrm{~N}_{7} \mathrm{O}_{9}\right]^{+} .{ }^{\mathrm{k}}$ Calcd for $\left[\mathrm{C}_{43} \mathrm{H}_{56} \mathrm{~N}_{7} \mathrm{O}_{8}\right]^{+} .{ }^{1}$ Calcd for $\left[\mathrm{C}_{42} \mathrm{H}_{56} \mathrm{~N}_{7} \mathrm{O}_{9}\right]^{+} .{ }^{\mathrm{m}}$ Calcd for $\left[\mathrm{C}_{42} \mathrm{H}_{54} \mathrm{~N}_{7} \mathrm{O}_{8}\right]^{+} .{ }^{\mathrm{n}}$ Calcd for $\left[\mathrm{C}_{46} \mathrm{H}_{63} \mathrm{~N}_{8} \mathrm{O}_{10}\right]^{+}$. ${ }^{\circ} \mathrm{Calcd}$ for $\left[\mathrm{C}_{46} \mathrm{H}_{61} \mathrm{~N}_{8} \mathrm{O}_{9}\right]^{+} .{ }^{\mathrm{p}}$ Calcd for $\left[\mathrm{C}_{53} \mathrm{H}_{60} \mathrm{~N}_{7} \mathrm{O}_{11}\right]^{+}$. ${ }^{q}$ Calcd for $\left[\mathrm{C}_{53} \mathrm{H}_{58} \mathrm{~N}_{7} \mathrm{O}_{10}\right]^{+}$. ${ }^{\mathrm{r}}$ Calcd for $\left[\mathrm{C}_{45} \mathrm{H}_{54} \mathrm{~N}_{7} \mathrm{O}_{9}\right]^{+}$. ${ }^{\text {s }}$ Calcd for $\left[\mathrm{C}_{45} \mathrm{H}_{52} \mathrm{~N}_{7} \mathrm{O}_{8}\right]^{+}$. nd: not determined.

Cell culture. Jurkat E6.1 (expressing $\alpha_{4} \beta_{1}$ and $\alpha_{L} \beta_{2}$ integrin), K562 (expressing $\alpha_{5} \beta_{1}$ integrin) and HL60 (expressing $\alpha_{M} \beta_{2}$ integrin) cell lines were purchased from ATCC (Rockville, MD, USA); these cells were routinely cultured in RPMI-1640 (Life Technologies) supplemented with glutamine and 10% FBS. RPMI8866 cells were a kind gift from Prof. A. Santoni (Mayo Foundation for Medical Education and Research, Rochester, MN, USA); RPMI8866 cells were routinely grown in RPMI-1640 enriched with 10% FBS, 5 mM Hepes and 0.5 mM sodium pyruvate and usually kept in 50 mL of culture medium and allowed to form large clumps. Cells were grown at $37{ }^{\circ} \mathrm{C}$ under $5 \% \mathrm{CO}_{2}$ humidified atmosphere. 40 h before the adhesion assays, K562 and HL60 cells were treated with 25 nM or 40 nM phorbol 12-myristate 13-acetate (PMA; Sigma-Aldrich), respectively, to induced cell differentiation and to increased $\alpha_{5} \beta_{1}$ or $\alpha_{M} \beta_{2}$ integrin expression on cell surface (Baiula et al., 2016).

Cell adhesion assays. Concentration-response curves, obtained from cell adhesion assays performed in presence of increasing concentrations of LDV-CPPs, are shown in the following figures.

Figure S2 Concentration-response curves obtained from cell adhesion assays: evaluation of CPPs effects on $\alpha_{4} \beta_{1^{-}}$ mediated Jurkat cell adhesion to FN. Values represent the mean \pm SD of three independent experiments carried out in quadruplicate.

Figure S3 Concentration-response curves obtained from cell adhesion assays: evaluation of CPPs effects on $\alpha_{4} \beta_{1^{-}}$ mediated Jurkat cell adhesion to VCAM-1. Values represent the mean \pm SD of three independent experiments carried out in quadruplicate.

Figure S4 Concentration-response curves obtained from cell adhesion assays: evaluation of CPPs effects on $\alpha_{4} \beta_{7}-$ mediated RPMI8866 cell adhesion to MAdCam-1. Values represent the mean \pm SD of three independent experiments carried out in quadruplicate.

Figure S5 Concentration-response curves obtained from cell adhesion assays: evaluation of CPPs effects on $\alpha_{M} \beta_{2^{-}}$ mediated HL60 cell adhesion to FN. Values represent the mean \pm SD of three independent experiments carried out in quadruplicate.

Figure S6 Concentration-response curves obtained from cell adhesion assays: evaluation of CPPs effects on $\alpha_{\mathrm{L}} \beta_{2^{-}}$ mediated Jurkat cell adhesion to ICAM-1. Values represent the mean \pm SD of three independent experiments carried out in quadruplicate.

Figure S7 Concentration-response curves obtained from cell adhesion assays: evaluation of CPPs effects on $\alpha_{5} \beta_{1^{-}}$ mediated K562 cell adhesion to FN. Values represent the mean \pm SD of three independent experiments carried out in quadruplicate.

Solid-Phase Binding Assays. Binding curves deriving from solid-phase binding assays are shown in the following figures.

Figure S8 Binding assay curves for $\alpha_{4} \beta_{1} /$ FN in presence of increasing concentrations of LDV CPPs. Values represent the mean \pm SD of three independent experiments carried out in triplicate.

Figure S9 Binding assay curves for $\alpha_{4} \beta_{7} /$ MAdCAM-1 in presence of increasing concentrations of LDV CPPs. Values represent the mean \pm SD of three independent experiments carried out in triplicate.

Figure S10 Binding assay curves for $\alpha_{M} \beta_{2} /$ fibrinogen in presence of increasing concentrations of LDV CPPs. Values represent the mean \pm SD of three independent experiments carried out in triplicate.

Figure S11 Binding assay curves for $\alpha_{\mathrm{L}} \beta_{2} /$ ICAM-1 in presence of increasing concentrations of LDV CPPs. Values represent the mean \pm SD of three independent experiments carried out in triplicate.

Figure S12 Binding assay curves for $\alpha_{5} \beta_{1} / F N$ in presence of increasing concentrations of LDV CPPs. Values represent the mean $\pm \mathrm{SD}$ of three independent experiments carried out in triplicate.

Correlation between adhesion assay-determined potency and ligand binding affinity of LDV CPPs.

The correlation was calculated on the basis of experimental data obtained for the LDV CPPs whose ligand binding affinities and potencies were obtained by solid-phase binding assays and cell adhesion assays, respectively. This evaluation was performed only for $\alpha_{4} \beta_{1} /$ FN, $\alpha_{4} \beta_{1} /$ VCAM -1 and $\alpha_{L} \beta_{2} /$ ICAM -1 having sufficient active compounds to conduct a proper analysis.

Figure S13 Relation between experimentally determined potencies ($\mathrm{IC}_{50} / \mathrm{EC}_{50}$ deriving from cell adhesion assays) and ligand binding affinities (IC_{50} deriving from solid-phase binding assays) of the LDV CPPs. The $\mathrm{IC}_{50} / \mathrm{EC}_{50}$ values \pm S.E. are obtained by Tables 1-3. Correlation was measured using Pearson (r_{P}) correlation coefficient.

Variable temperature (VT) analysis of the CPPs. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ experiments in DMSO- $d_{6} / \mathrm{H}_{2} \mathrm{O}$ (8:2) were recorded at diverse temperatures to determine if the amide protons were involved in intramolecular hydrogen bonding or were solvent exposed (Table S2). Generally, hydrogen bonded amide NH signals display comparatively lower $\Delta \delta / \Delta \mathrm{T}$ values, $|\Delta \delta / \Delta \mathrm{T}|<2.0 \mathrm{ppb} \mathrm{K}^{-1}$, as compared to solvent-exposed amide. Since the viscosity of the cryo-mixture is temperature-dependent, the conformational equilibrium could change at diverse temperatures, altering the resonance pattern. However, as showed by ${ }^{1} \mathrm{H}$-NMR spectra, the CH resonances were perfectly maintained over the range of temperatures suggesting that the global conformations were not significantly altered. As reported in the Table, 3a showed much lower $|\Delta \delta / \Delta \mathrm{T}|$ values for $\mathrm{Val}^{4} \mathrm{NH}$ and isoAsp ${ }^{5} \mathrm{NH}$, suggesting that these amide protons could be involved in strong hydrogen bonds $\left(|\Delta \delta / \Delta \mathrm{T}|<1 \mathrm{ppb} \mathrm{K}^{-1}\right)$. The analysis of $\mathbf{3 b}$ (Table 2) supported the presence of weak hydrogen bonds on $\mathrm{Val}^{4} \mathrm{NH}\left(\Delta \delta / \Delta \mathrm{t}=-1.9 \mathrm{ppb} \mathrm{K}^{-1}\right)$ and isoAsp ${ }^{5} \mathrm{NH}\left(\Delta \delta / \Delta \mathrm{t}=-2.2 \mathrm{ppb} \mathrm{K}^{-1}\right)$. For $\mathbf{3 c}($ Table S2), the very scarce dependence of chemical shifts from temperature supported a strong hydrogen bond on $\operatorname{Asp}^{3} \mathrm{NH}\left(\Delta \delta / \Delta \mathrm{t}=-0.3 \mathrm{ppb} \mathrm{K}^{-1}\right)$. Finally, the VT NMR parameters of $\mathbf{3 d}$ led to predict a very strong hydrogen bond on $\operatorname{Asp}^{3} \mathrm{NH}\left(\Delta \delta / \Delta \mathrm{t}=+0.4 \mathrm{ppb} \mathrm{K}^{-1}\right)$, and possibly a weaker hydrogen bonds for $\mathrm{Phu}^{1} \mathrm{NH}$ and $\mathrm{Leu}^{2} \mathrm{NH}$ ($\Delta \delta / \Delta \mathrm{t}=-2.1$ and $-2.9 \mathrm{ppb} \mathrm{K}^{-1}$, respectively).

The analysis of remaining CPPs showed the same trends of $\Delta \delta / \Delta \mathrm{t}$ parameters as the parent peptides, suggesting that the hydrogen-bonding patterns and secondary structure elements were maintained. The CPPs 11a, 12a and 13, showed comparatively lower $|\Delta \delta / \Delta T|$ values for $V a{ }^{4}{ }^{4} \mathrm{NH}$ and for the amide proton of the β amino acid at position 5 , which is quite similar to the parent peptide 3a. And the VT NMR parameters suggested the formation of extra hydrogen bonds involving Asp ${ }^{3} \mathrm{NH}\left(\Delta \delta / \Delta \mathrm{T}=-2.2 \mathrm{ppb} \mathrm{K}^{-1}\right)$, Ala ${ }^{3} \mathrm{NH}(\Delta \delta / \Delta \mathrm{T}$ $\left.=+1.6 \mathrm{ppb} \mathrm{K}^{-1}\right)$ and Phu ${ }^{1} \mathrm{NH}\left(\Delta \delta / \Delta \mathrm{T}=-1.7 \mathrm{ppb} \mathrm{K}^{-1}\right)$ in CPPs 11a, 12a and $\mathbf{1 3}$ respectively. The VT-NMR analyses of $\mathbf{1 1} \mathbf{c}$ and $\mathbf{1 2 c}$ confirmed the hydrogen bonding network as for the parent $\mathbf{3 c}$, albeit with slightly different $\Delta \delta / \Delta \mathrm{T}$ values (for 11c $\mathrm{Asp}^{3} \mathrm{NH} \Delta \delta / \Delta \mathrm{T}=-0.7 \mathrm{ppb} \mathrm{K}^{-1}$, for $\mathbf{1 2 c} \mathrm{Ala}^{3} \mathrm{NH} \Delta \delta / \Delta \mathrm{T}=-2.2 \mathrm{ppb} \mathrm{K}^{-1}$). The VT-NMR analyses of CPPs $\mathbf{1 4}$ and $\mathbf{1 5}$ were consistent with parent peptide 3a, supported again the presence of strong hydrogen bonds on $\mathrm{Val}^{4} \mathrm{NH}$ and isoAsp ${ }^{5} \mathrm{NH}$. For peptide 16, the VT-NMR results indicated the similar hydrogen bonding network on $\mathrm{Asp}^{3} \mathrm{NH}$ as for the parent $\mathbf{3 c}$, albeit with a much weaker hydrogen bond ($\left.\Delta \delta / \Delta \mathrm{T}=-2.6 \mathrm{ppb} \mathrm{K}^{-1}\right)$.

Table S2. $\Delta \delta / \Delta \mathrm{t}$ values ($\mathrm{ppb} \mathrm{K}^{-1}$) of amide protons for LDV CPPs (CPPs) 3a-d, and of the correlated 11a, 11c, 12a, 12c, 13-16 by VT NMR spectroscopy, determined at $400 \mathrm{MHz}(\mathbf{3 a - d}, 11 \mathrm{a}, 11 \mathrm{c}, \mathbf{1 2 a}, \mathbf{1 2 c}, \mathbf{1 3})$ or at $600 \mathrm{MHz}(\mathbf{1 4 - 1 6})$ in DMSO- $d_{6} / \mathrm{H}_{2} \mathrm{O}$ (8:2) over the range 298-318 K.

CPP	Sequence	Phu ${ }^{1}$ NH	$\mathrm{AA}^{2} \mathrm{NH}$	$\mathrm{AA}^{3} \mathrm{NH}$	$\mathrm{AA}^{4} \mathrm{NH}$	isoAsp ${ }^{5} \mathrm{NH}$
3a	$c[(S)$-Phu-LDV-(S)-isoAsp]	-5.0	-7.0	-4.0	-0.8	-0.5
3b	$c[(S)$-Phu-LDV-(R)-isoAsp]	-4.9	-3.5	-3.7	-1.9	-2.2
3c	$c[(R)$-Phu-LDV-(S)-isoAsp]	-5.5	-5.3	-0.3	-7.9	-5.5
3d	$c[(R)$-Phu-LDV-(R)-isoAsp]	-2.1	-2.9	+0.4	-3.0	-3.5
11a	$c\left[(S)\right.$-Phu-LDV-(R)- β Ala $\left.{ }^{5}\right]$	-4.5	-4.1	-2.2	-0.6	-1.1
12a	$c\left[(S)\right.$-Phu-LAV-(S)-isoAsp $\left.{ }^{5}\right]$	-5.4	+1.6	-4.4	-0.5	0.0
13	$c[(S)$-Phu-LDV-(S)-isoAsp(NHPr)]	-1.7	-4.8	-4.9	-0.9	-0.2
11c	$c[(R)$-Phu-LDV-(R)- β Ala]	-6.0	-3.9	-0.7	-6.4	-2.5
12c	$c[(R)$-Phu-LAV-(S)-isoAsp]	-3.7	-4.2	-2.2	-6.0	-6.0
14	$c[(S)$-Phu-FDV-((S)-isoAsp]	-3.5	-4.8	-3.7	-0.8	0.0
15	$c[(S)$-Phu-FAV-(S)-isoAsp]	-4.2	-5.8	-3.8	-0.6	+0.6
16	$c[(R)$-Phu-LD-Phg-(S)-isoAsp]	-5.7	-3.9	-2.6	-4.6	-4.6

Table S3. ROESY cross peaks for $\mathbf{3 a}$ in $8: 2 \mathrm{DMSOd}_{6} / \mathrm{H}_{2} \mathrm{O}$; vs $=$ very strong, $\mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=$ weak.

Crosspeak	Intensity	Crosspeak	Intensity
PhuNHb-PhuMe	W	PhuArH2',6'-LeuHp	W
PhuNHb-LeuHa	W	PhuArH2',6'-PhuMe	w
LeuNH-LeuMe	m	PhuArH2',6'-isoAspH $\beta_{2.6}$	w
LeuNH-LeuH γ	m	PhuArH2',6'-PhuH $3_{2.7}$	w
LeuNH-LeuH $\beta_{1.5}$	w	PhuArH2',6'-PhuH32.9	w
LeuNH-LeuH $\beta_{1.7}$	m	PhuArH2',6'-PhuH ${ }^{\prime}$	w
LeuNH-PhuHß2.9	m	PhuArH3',5'-3,5-LeuMe	m
LeuNH-LeuH α	vs	PhuArH3',5'-3,5-LeuHY	w
LeuNH-PhuHa	S	PhuArH3',5'-3,5-LeuHß	w
LeuNH-PhuArH3',5'	m	PhuArH3',5'-3,5-PhuMe	w
LeuNH-AspNH	S	PhuArH3',5'-3,5-PhuHa	vS
AspNH-LeuMe	w	PhuArH3',5'-3,5-isoAspH $\beta_{2.6}$	w
AspNH-LeuHY	w	isoAspNH-ValMe	m
AspNH-LeuH $\beta_{1.5}$	S	isoAspNH-PhuMe	w
AspNH-LeuH $\beta_{1.7}$	S	isoAspNH-ValH β	W
AspNH-AspH32.9	W	isoAspNH-isoAspH $\beta_{2.6}$	m
AspNH-AspH33.0	W	isoAspNH-isoAspH $3_{2.7}$	W
AspNH-LeuH α	S	isoAspNH-ValHa	S
AspNH-ValHa	w	isoAspNH-AspHa	W

AspNH-AspH α	vs	isoAspNH-isoAspH α	s
AspNH-ValNH	s	isoAspHo-ValMe	w
PhuNH-isoAspH $3_{2.6}$	s	isoAspH α-isoAspH $\beta_{2.6}$	m
PhuNH-isoAspH $3_{2.7}$	S	isoAspH α-isoAspH ${ }_{2.7}$	w
PhuNH-PhuH32.7	vs	PhuH α-PhuH $\beta_{2.7}$	m
PhuNH-PhuH32.9	m	PhuH α-PhuH $\beta_{2.9}$	s
PhuNH-PhuH α	m	AspH α-AspH ${ }_{2.9}$	m
PhuNH-isoAspH α	m	AspH α-AspH $3_{3.0}$	m
PhuNH-isoAspNH	m	ValH α-ValMe	vs
PhuNH-PhuArH3',5'	s	ValH α-ValH β	s
PhuNHa-LeuMe	w	ValH α-AspH $\beta_{2.9}$	w
PhuNHa-LeuH $\beta_{1.7}$	w	LeuH α-LeuMe	vs
PhuNHa-LeuH α	w	LeuH α-LeuH γ	m
PhuNHa-PhuHa	w	LeuH α-LeuH $\beta_{1.5}$	s
PhuNHa-PhuMe	vs	LeuH α-LeuH $\beta_{1.7}$	m
PhuNHa-PhuNHb	vs	PhuH $\beta_{3.0}$-LeuH γ	m
ValNH-ValMe	vs	PhuH $\beta_{3.0}$-LeuH $\beta_{1.5}$	w
ValNH-LeuH $\beta_{1.7}$	w	AspH $\beta_{2.8}$-LeuH $\beta_{1.5}$	w
ValNH-ValH β	m	AspH32.9-LeuMe	m
ValNH-AspH $\beta_{2.9}$	m	PhuH $\beta_{2.7}$-LeuH γ	w
ValNH-ValH α	s	PhuMe-LeuMe	m
ValNH-AspH α	m	PhuMe-LeuHy	w
ValNH-isoAspH α	w	PhuMe-LeuH $\beta_{1.5}$	w
ValNH-isoAspNH	s	PhuMe-LeuH $\beta_{1.7}$	w
PhuArH2',6'-LeuMe	m		

Table S4. ROESY cross peaks for $\mathbf{3 b}$ in $8: 2 \mathrm{DMSOd}_{6} / \mathrm{H}_{2} \mathrm{O}$; vs $=$ very strong, $\mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=$ weak.

Crosspeak	Intensity	Crosspeak	Intensity
NHb-LeuMe	w	isoAspNH-isoAspH α	m / s
NHb-PhuH α	w	PhuNHa-ValMe	w
NHb-PhuMe	w	PhuNHa-PhuMe	s/vs
AspNH-Val/LeuMe	w	PhuArH6-LeuMe	w
AspNH-LeuH $\gamma /$ LeuH $_{1.5}$	s	PhuArH2',6'-LeuMe	w/m
AspNH-LeuH31.7	m	PhuArH2',6'-LeuHy/LeuH $\beta_{1.7}$	w
AspNH-AspH3x2	m	PhuArH2',6'-LeuH31.5	vw
AspNH-LeuH α	w	PhuArH2'6'-PhuH $\beta_{2.7}$	w
AspNH-AspH α	vs	PhuArH2',6'-Phu $3_{3.0}$	vw
AspNH-ValNH	w	PhuArH2',6'-Phua	vw
AspNH-LeuNH	w	PhuArH3',5',3,5-LeuMe	m/w
LeuNH-LeuMe	m	PhuArH3',5',3,5-LeuHY/LeuH31.7	w
LeuNH-LeuHy/LeuH $\beta_{1.5}$	m / s	PhuArH3',5',3,5-LeuH3 ${ }_{1.5}$	w

LeuNH-LeuHß1.7	m	PhuArH3',5',3,5-PhuH32.7	S
LeuNH-PhuH $\beta_{2.7}$	W	PhuArH3'5',3,5-PhuH $3_{3.0}$	S
LeuNH-PhuH $\beta_{3.0}$	w/m	PhuArH3'5',3,5-PhuHa	S
LeuNH-LeuH α	S	AspHo-LeuH $\gamma /$ LeuH $\beta_{1.7}$	w
LeuNH-PhuHa	m	AspH $\alpha-A s p H \beta \times 2$	vs
PhuNH-isoAspH $3_{2.2}$	vw	AspHo-ValHa	w
PhuNH-PhuH $\beta_{2.7}$	s/vs	PhuH α-PhuH $\beta_{2.7}$	m
PhuNH-isoAspH $3_{2.8}$	s/vs	PhuH $\alpha-$ PhuH $\beta_{3.0}$	vs
PhuNH-PhuH $\beta_{3.0}$	w	isoAspH α-isoAspH $\beta_{2.4}$	vS
PhuNH-PhuHa	m	isoAspHo-isoAspH $\beta_{2.8}$	w
PhuNH-PhuAr3',5'	m / s	isoAspHo-ValHa	w
ValNH-ValMe	S	LeuHa-LeuMe	vs
ValNH-LeuH $/$ /LeuH β	w,w	LeuH α-LeuH $\beta_{1.7} / \mathrm{H} \gamma$	s/vs
ValNH-ValHß	m	LeuH α-LeuH $\beta_{1.5}$	w/m
ValNH-AspH β	m	ValHo-LeuMe	vs
ValNH-ValHa	m	ValH $\alpha-\mathrm{ValH} \beta$	VS
ValNH-AspH α	m/w	PhuH $\beta_{3.0}$ LeuH $\beta_{1.7} / \mathrm{H} \gamma$	W
isoAspNH-ValMe	W	PhuH $\beta_{3.0-L e u M e ~}^{\text {a }}$	w
isoAspNH-ValHß	m / s	PhuHß ${ }_{2.7}$-LeuMe	W
isoAspNH-isoAspH $3_{2.8}$	m / s	AspH 3×2-LeuH $\beta_{1.7} / \mathrm{H} \gamma$	W
isoAspNH-ValHa	w/m	AspH $\beta \times 2$-LeuH $\beta_{1.5}$	w

Table S5. ROESY cross peaks for $\mathbf{3 c}$ in 8:2 $\mathrm{DMSOd}_{6} / \mathrm{H}_{2} \mathrm{O}$; vs $=$ very strong, $\mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=$ weak.

Crosspeak	Intensity	Crosspeak	Intensity
PhuNHb-LeuMe ${ }_{0.6}$	w	PhuNHa-LeuMe 0.7	W
PhuNHb-LeuMe ${ }_{0.7}$	m	PhuNHa-Phu(2-Me)	vs
PhuNHb-ValMeo.8	w	PhuNHa-ValH α	W
PhuNHb-Phu(2-Me)	w	PhuArH6-LeuMeo.6	w
PhuNHb-LeuNH	w	PhuArH6-LeuMe ${ }_{0.7}$	w
PhuNHb-PhuNH	w	PhuArH6-Phu(2-Me)	W
PhuNHb-ValNH	W	AspNH-LeuH β	m
PhuNH-ValMeo.8	w	AspNH-AspH $\beta_{2.6}$	m
PhuNH-isoAspH β	vs	AspNH-AspH $\beta_{2.8}$	m
PhuNH-PhuH β	vS	AspNH-LeuH α	S
PhuNH-PhuH α	S	AspNH-PhuH α	W
PhuNH-isoAspH α	W	AspNH-AspH α	S
PhuNH-PhuArH3', ${ }^{\prime}$	m	PhuArH2', 6'-LeuMe ${ }^{\prime}{ }^{\prime}$	m
PhuNH-AspNH	W	PhuArH2', 6'-LeuMe ${ }^{\text {a }} 7$	W
PhuNH-ValNH	W	PhuArH2', ${ }^{\prime}$ '-ValMe ${ }^{\text {a }}$ \%	W
isoAspNH-ValMeo.8	w	PhuArH2', 6'-LeuH γ	m
isoAspNH-ValH β	m	PhuArH2',6'-PhuH α	W

isoAspNH-isoAspH β	w	PhuArH3', 5^{\prime}-LeuMe 0.6	m
isoAspNH-ValH α	s	PhuArH3', 5^{\prime}-LeuMe ${ }_{0.7}$	w
isoAspNH-isoAspH α	m	PhuArH3',5'-ValMe ${ }_{0.8}$	w
isoAspNH-AspH α	w	PhuArH3',5'-LeuH γ	m
isoAspNH-LeuH α	w	PhuArH3', ${ }^{\prime}$-LeuH β	w
LeuNH-LeuMe ${ }_{\text {O.6 }}$	w	PhuArH3', ${ }^{\prime}$ - ValH β	w
LeuNH-LeuMe ${ }_{0.7}$	w	PhuArH3', 5^{\prime}-isoAspH β	w
LeuNH-LeuH γ	s	PhuArH3', 5^{\prime}-LeuH α	w
LeuNH-LeuH β	vs	PhuArH3', 5^{\prime}-isoAspH α	w
LeuNH-AspH $\beta_{2.6}$	m	PhuArH3',5'-PhuH α	s
LeuNH-PhuH β	m	AspHα-ValMe 0.7	w
LeuNH-ValH α	w	AspH α-AspH ${ }_{2.6}$	S
LeuNH-LeuH α	s	AspH α-AspH ${ }_{2.8}$	s
LeuNH-isoAspH α	w	AspH α-ValH α	w
LeuNH-PhuH α	vs	AspH α-LeuH α	w
LeuNH-PhuArH3',5'	w	PhuH α-PhuH β	vs
LeuNH-AspNH	s	isoAspH α-isoAspH β	m
ValNH-ValMeo.8	m	LeuH α-LeuMe ${ }_{\text {. }} 6$	vs
ValNH-ValMeo.9	w	LeuH α-LeuMe ${ }_{\text {. }} 7$	m
ValNH-ValH β	m	LeuH α-LeuH γ	m
ValNH-AspH $\beta_{2.6}$	w	LeuH α-LeuH β	vs
ValNH-AspH $\beta_{2.8}$	m	ValH α-ValMeo.7	s
ValNH-ValH α	vs	ValH α-ValMeo.8	s
ValNH-AspH α	s	ValH α-ValH β	m
ValNH-AspNH	w	PhuH β-LeuH γ	w

Table S6. ROESY cross peaks for $\mathbf{3 d}$ in 8:2 $\mathrm{DMSOd}_{6} / \mathrm{H}_{2} \mathrm{O}$; vs $=$ very strong, $\mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=$ weak.

Crosspeak	Intensity	Crosspeak	Intensity
PhuNHb-LeuMeo.6	w	PhuNHa-PhuMe	vs
PhuNHb-LeuMeo.7	w	PhuNHa-PhuArH6	vs
ValNH-ValMe	s	AspNH-LeuMe 0.6	m
ValNH-ValH β	w	AspNH-LeuMe 0.7	m
ValNH-AspH $\beta_{2.8}$	w	AspNH-LeuH γ	m
ValNH-ValHa	s	AspNH-AspH3 2.5	w
ValNH-AspH α	s	AspNH-AspH3 ${ }_{2.8}$	w
ValNH-AspNH	w	AspNH-LeuH α	w
ValNH-isoAspNH	w	AspNH-AspH α	m
PhuNH-LeuHy	w	PhuArH2',6'-PhuH α	w
PhuNH-isoAspH $\beta_{2.7}$	s	PhuArH3',5'-LeuMe ${ }_{\text {O }}$ 6	w
PhuNH-PhuH32.8	s	PhuArH3',5'-LeuH γ	w
PhuNH-PhuH α	m	PhuArH3',5'-LeuH α	w

PhuNH-PhuArH3',5'	W	PhuArH3',5'-PhuH α	S
PhuNH-PhuNHa	w	AspHo-LeuH γ	W
PhuNH-LeuNH	m	AspH α-AspH $\beta_{2.5}$	S
PhuNH-isoAspNH	m / s	AspHo-AspHß2.8	m
isoAspNH-ValHß	w	AspHo-LeuH α	w
isoAspNH-isoAspH $3_{2.6}$	m	isoAspH α-isoAspH $\beta_{2.6}$	m
isoAspNH-ValHa	w	isoAspH α-isoAspH $\beta_{2.7}$	m
isoAspNH-isoAspHa	m	PhuHa-PhuArH3',5'	m
isoAspNH-ValMe	W	PhuHa-LeuNH	VS
isoAspNH-AspNH	w	LeuHo-LeuMe0.6	S
isoAspNH-LeuNH	w	LeuHo-LeuMe0.7	W
LeuNH-LeuMeo.6	w	LeuHa-LeuHy	w
LeuNH-LeuMe ${ }_{0.7}$	w	LeuH α-LeuH $\beta_{1.4}$	m
LeuNH-LeuHy	m	LeuH $\alpha-V \mathrm{ValH} \alpha$	W
LeuNH-LeuH $\beta_{1.3}$	m	ValHo-ValMe	VS
LeuNH-LeuH α	m	LeuH $\beta_{1.4}$-LeuMe ${ }_{0.6}$	W
LeuNH-PhuHa	VS	LeuH $\beta_{1.4}$-LeuMe ${ }_{0.7}$	W
LeuNH-AspNH	S	LeuH $\beta_{1.3}$-LeuMe0.6	W
PhuNHa-PhuNHb	vS		

Table S7. ROESY cross peaks for 12a in 8:2 $\mathrm{DMSOd}_{6} / \mathrm{H}_{2} \mathrm{O}$; vs $=$ very strong, $\mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=$ weak.

Crosspeak	Intensity	Crosspeak	Intensity
LeuNH-LeuMeo.5	m	PhuArH3',5'- LeuH $\beta_{1.8}$	W
LeuNH-LeuH α	S	PhuArH3', ${ }^{\prime}$ '-PhuH $\beta_{2.6}$	vS
LeuNH-PheH α	vs	PhuArH3',5'- PhuH $\beta_{2.8}$	S
PhuNHb-LeuMe0.7	w	PhuArH3', ${ }^{\prime}$ - PhuH α	vs
PhuNH-ValMe1.1	w	isoAspNH-isoAspH α	s
PhuNH-isoAspH $\beta_{2.6}$	m	isoAspNH-ValHa	m
PhuNH-PheH $\beta_{2.8}$	S	ValH α-ValMe 0.9	S
PhuNH-isoAspH $\beta_{2.9}$	S	ValH α-ValMe ${ }_{1.1}$	m
PhuNH-PhuH α	m	ValH α-ValH β	vs
AlaNH-LeuH $\beta_{1.2}$	S	isoAspH α-isoAspH $\beta_{2.6}$	m
AlaNH-AlaMe	S	isoAspH α-isoAspH $\beta_{2.9}$	vs
AlaNH-LeuH $\beta_{1.8}$	S	PheH α-PheH $\beta_{2.6}$	m
AlaNH-AlaH α	m	PheH α-PheH $\beta_{2.8}$	S
AnaNH-ValNH	m	LeuH α-LeuMe ${ }_{0.5}$	vs
PhuNHa-Phu(2-Me)	VS	LeuH α-LeuMe ${ }_{0.7}$	m
ValNH-ValMeo.9	m	LeuH α-LeuH $\beta_{1.2}$	VS
ValNH-ValMe1.1	S	PhuH $\beta_{2.8}$-LeuH $\beta_{1.2}$	W
ValNH-AlaH α	m	LeuH $\beta_{1.8}$-LeuMe ${ }_{0.5}$	S
ValNH-ValHa	m	LeuH $\beta_{1.8}$-LeuMe0.7	S

ValNH-isoAspNH	vs	LeuH $\beta_{1.8}$-LeuH γ	w
PhuArH2',6'-LeuMe ${ }_{0.5}$	m	AlaMe-LeuMe $_{0.5}$	w
PhuArH2',6'-LeuMe 0.7	AlaMe-LeuMe 0.7	w	
PhuArH3',5'-LeuMe 0.5	m	LeuH $\beta_{1.2}$-LeuMe ${ }_{0.5}$	m
PhuArH3',5'-LeuMe 0.7	LeuH $\beta_{1.2}$-LeuMe 0.7	s	
PhuArH3',5'-LeuH $\beta_{1.2}$	w	LeuH $\beta_{1.2}$-LeuH γ	m

Figure S14. PDB 3V4V, crystal structure of $\alpha_{4} \beta_{7}$ headpiece complexed with RO0505376; left, the integrin is represented as molecular solvent-excluded surfaces (SES) and colored using Coulombic electrostatic potential (ESP). RO0505376 is rendered in sticks, while metal ions were rendered as green spheres.

Figure S15. In-solution (top) and receptor-bound (bottom) structures of 3a, 3c showing hydrogen-bonded secondary structure elements (dotted lines). The structures differ only by the inversion of stereochemistry at Phu ${ }^{1}$. β_{1} :Tyr ${ }^{133}$ and cations of the adhesion sites are shown for better comparison.

Figure S16. Left. Rendering of $\alpha_{4} \beta_{1}$ integrin model used in this work, with evidenced the β-propeller (α_{4}), Thigh (α_{4}), $\beta I\left(\beta_{1}\right)$, Hybrid (β_{1}) and PSI (plexin-semaphorin-integrin, β_{1}) domains. The α_{4} subunit is colored in blue and represented as solid ribbon, with key residues at the α_{4} / β_{1} interface in stick. The β_{1} subunit is represented as gray CPK , with key residues at the α_{4} / β_{1} interface in pink. (A) Close look of the interface between the β-propeller (α_{4}) and β I (β_{1}) domains. The α_{4} residues are shown in stick representation and colored in blue (black labels), while the β_{1} residues are represented in CPK, with key residues colored in pink (white labels). (B) Particular of the interface between Thigh (α_{4})
and PSI $\left(\beta_{1}\right)$ domains. Again, the α_{4} residues are represented as blue sticks (black labels), while the β_{1} residues are represented in CPK, with key residues colored in pink (white labels). Molecular graphics and analyses performed with UCSF ChimeraX.

Figure S17. The agonist 3a, c[(S)-Phu-LDV-(S)-isoAsp], makes many interactions with α_{4} subunit. Phu ${ }^{1} \mathrm{MePh}$ group interacts with $\alpha_{4}: \mathrm{F}^{214}\left(\pi-\pi\right.$ stacking), Phu ${ }^{1} \mathrm{Ph}$ interacts with $\alpha_{4}: \mathrm{F}^{214}\left(\pi-\pi\right.$ T-shaped interaction), and with $\alpha_{4}: \mathrm{Y}^{187}(\pi-\pi$ stacking). UreaC=O makes a hydrogen bond with $\alpha_{4}: \mathrm{K}^{213}(2.31 \AA)$. $\mathrm{Phu}{ }^{1} \mathrm{C}=\mathrm{O}$ establishes intramolecular hydrogen bonds with $\mathrm{Asp}^{3} \mathrm{NH}(1.72 \AA)$ and $\mathrm{Val}^{4} \mathrm{NH}(2.30 \AA)$. The hydrophobic side chain of Leu^{2} is included within a cavity delimited by $\alpha_{4}: \mathrm{K}^{157}, \beta_{1}: \mathrm{L}^{225}$, and $\alpha_{4}: \mathrm{Y}^{187}$, while $\mathrm{Leu}^{2} \mathrm{NH}$ group makes a hydrogen bond with $\beta_{1}: \mathrm{N}^{224} \mathrm{O}(1.84 \AA)$. Asp ${ }^{3} \mathrm{COO}^{-}$makes a salt bridge with $\alpha_{4}: \mathrm{K}^{157} \mathrm{~N} \zeta^{+}(1.63 \AA)$, while $\mathrm{Asp}^{3} \mathrm{C}=\mathrm{O}$ gives rise to an hydrogen bond with $\beta_{1}: \mathrm{Q}^{191} \mathrm{CONH}_{2}(1.78 \AA) . \mathrm{Val}^{4} \mathrm{C}=\mathrm{O}$ is hydrogen bonded to $\beta_{1}: \mathrm{S}^{134} \mathrm{OH}(1.97 \AA)$. The isopropyl of Val ${ }^{4}$ is pseudo axial, therefore it does get in touch with any residues of β_{1} subunit. Finally, isoAsp ${ }^{5} \mathrm{COO}^{-}$is coordinated to Mg^{2+} in MIDAS, with Mg^{2+} that exhibits a slightly distorted coordination geometry (RMSD 0.12). Two hydrogen bonds are formed with water (W) W1 (2.86 \AA) and W3 ($2.67 \AA$), an hydrogen bond with $\beta_{1}: Y^{133} \mathrm{NH}(1.97 \AA)$ and an hydrogen bond with $\beta_{1}: \mathrm{N}^{224} \mathrm{NH}(2.75 \AA)$.

The antagonist 3c, c[(R)-Phu-LDV-(S)-isoAsp], differs from the all-S configured 3a for the inverted stereochemistry at Phu^{1}. The most noticeable effect is represented by a greater interaction with β_{1} subunit. Phu ${ }^{1} \mathrm{MePh}$ makes a $\pi-\pi$ stacking interaction with $\beta_{1}: \mathrm{F}^{321}$. UreaNH makes a hydrogen bond with $\beta_{1}: \mathrm{S}^{227} \mathrm{OG}(2.11 \AA)$, and $\mathrm{Phu}{ }^{1} \mathrm{Ph}$ interacts with the peptide bond between $\beta_{1}: D^{226}$ and $\beta_{1}: S^{227}$ (amide- π stacking). The side chain of Leu^{2} is included within the cavity formed by $\alpha_{4}: \mathrm{K}^{157}, \alpha_{4}: \mathrm{Y}^{187}, \beta_{1}: \mathrm{L}^{225}$. Leu ${ }^{2} \mathrm{C}=\mathrm{O}$ makes an hydrogen bond with $\beta_{1}: \mathrm{K}^{182} \mathrm{NH} \zeta^{+}(1.77 \AA)$, which in turn interacts with $\mathrm{Asp}^{3} \mathrm{COO}^{-}$by a salt bridge ($1.62 \AA$). Val ${ }^{4} \mathrm{C}=\mathrm{O}$ makes two hydrogen bonds with $\beta_{1}: \mathrm{S}^{134} \mathrm{OH}(1.97 \AA)$ and $\beta_{1}: S^{134} \mathrm{NH}(1.52 \AA)$. In contrast to $\mathbf{3 a}$, the isopropyl of Val^{4} is in contact with $\beta_{1}: \operatorname{Tyr}^{133}(\pi-\mathrm{alkyl}, 4.76 \AA)$. Finally, isoAsp ${ }^{5} \mathrm{COO}^{-}$is coordinated with Mg^{2+}. In this complex, the cation show a distorted octahedral coordination geometry (RMSD 0.17); isoAsp ${ }^{5} \mathrm{COO}^{-}$makes also other interacts: with $\beta_{1}: \mathrm{S}^{132}$ (O-HC, $2.46 \AA$), two hydrogen bonds with W^{1} (2.60 \AA) and $\mathrm{W}^{3}(2.66 \AA)$, hydrogen bond with $\beta_{1}: \mathrm{N}^{224} \mathrm{NH}(1.92 \AA)$.

Molecular graphics and detailed analysis of the interactions between ligands and integrin $\alpha_{4} \beta_{1}$ receptor

 model. The following figures show the best binding conformation of the ligands within $\alpha_{4} \beta_{1}$ integrin binding site, represented as molecular solvent-excluded surfaces (partially transparent), colored using Coulombic electrostatic potential (ESP), with default coloring ranging from red for negative potential through white to blue for positive potential. Ligands are rendered in sticks, while metal ions belonging to MIDAS and ADMIDAS are rendered as green colored spheres. Key receptor residues in thick sticks. Molecular graphics and analyses were performed with Biovia Discovery Studio visualizer.

Figure S18. The CPPs 12a, $c\left[(S)\right.$-Phu-LAV- (S)-isoAsp], maintains the same stereochemistry as 3a, but Asp ${ }^{3}$ is replaced by Ala^{3}. Phu ${ }^{1} \mathrm{MePh}$ group is in contact with $\beta_{1}: \mathrm{F}^{321}$ through a $\pi-\pi$ stacking interaction and $\alpha_{4}: \mathrm{K}^{213} \mathrm{NH} \zeta^{+}$through a π cation interaction ($2.12 \AA$). UreaC= $=O$ makes a conventional hydrogen bond with $\beta_{1}: S^{227} \mathrm{OH}(2.21 \AA)$. Phu ${ }^{1} \mathrm{Ph}$ interacts with $\alpha_{4}: \mathrm{F}^{214}$ through $\pi-\pi$ T-shaped interaction and with $\alpha_{4}: \mathrm{Y}^{187}$ through a stacked $\pi-\pi$ interaction. Phu ${ }^{1} \mathrm{C}=\mathrm{O}$ makes two intramolecular hydrogen bonds with $\mathrm{Ala}^{3} \mathrm{NH}(1.78 \AA)$ and $\mathrm{Val}^{4} \mathrm{NH}(2.91 \AA)$. Leu ${ }^{2} \mathrm{NH}$ give rise to a hydrogen bond with $\beta_{1}: \mathrm{N}^{224} \mathrm{O}(1.76 \AA)$, while Leu ${ }^{2} \mathrm{C}=\mathrm{O}$ makes a hydrogen with $\beta_{1}: \mathrm{K}^{182} \mathrm{NH} \zeta^{+}(2.01 \AA)$. In addition to the intramolecular bond with $\mathrm{Phu}{ }^{1} \mathrm{C}=\mathrm{O}, \mathrm{Ala}^{3}$ shows an additional hydrogen bond between $\mathrm{Ala}^{3} \mathrm{C}=\mathrm{O}$ and $\beta_{1}: \mathrm{N}^{191} \mathrm{H} \varepsilon(1.89 \AA)$. The methyl of Val 3 nicely packs against methyl of $\beta_{1}: T^{188}$. Val ${ }^{4} \mathrm{C}=\mathrm{O}$ makes two hydrogen bonds, with $\beta_{1}: \mathrm{S}^{134} \mathrm{NH}(2.95 \AA)$ and $\beta_{1}: S^{134} \mathrm{OH}(1.69 \AA)$. isoAsp ${ }^{5}$ residue coordinates Mg^{2+} (RMSD 0.11). Furthermore, isoAsp ${ }^{5} \mathrm{COO}^{-}$is involved in a hydrogen bonds network with $\mathrm{W}^{1}(2.83 \AA)$, $\mathrm{W}^{3}(2.72 \AA), \beta 1: \mathrm{Y}^{133} \mathrm{NH}(2.45 \AA), \beta_{1}: \mathrm{N}^{224} \mathrm{NH}(2.08 \AA)$ and $\beta_{1}: \mathrm{N}^{224} \mathrm{NH} \delta 21$ ($2.55 \AA$).

Figure S19. Detail of the upper region of the binding site of $\alpha_{4} \beta_{1}$ integrin hosting 12a, $c[(S)$-Phu-LAV-((S)-isoAsp]. Receptor residues in contact with the cyclopeptide are rendered as CPK models; residues of α_{1} subunit are highlighted in yellow. The sequence $\mathrm{A}^{181}-\mathrm{K}-\mathrm{L}-\mathrm{R}-\mathrm{N}-\mathrm{P}-\mathrm{C}-\mathrm{T}^{188}$ of the β_{1} subunit is replaced by S^{191}-K-L-R-H-P-C-P ${ }^{198}$ in β_{7} subunit. In the $\alpha_{4} \beta_{1}-\mathbf{1 2 a}$ complex, the side chain of Thr^{188} of β_{1} subunit invades the space of Val ${ }^{3}$, so that the methyl of the latter nicely packs against the methyl of Thr ${ }^{188}$. In the β_{7} subunits, this residue is mutated for Pro ${ }^{198}$.

Figure S20. The CPPs 12c, $c[(R)$-Phu-LAV- (S)-isoAsp], is an analogue of $\mathbf{3 c}$, sharing the same stereochemistry array, in which Asp 3 is replaced by Ala^{3}. This cyclopeptide shows interactions with both α_{4} and β_{1} subunits. MePh group of Phu^{1} is in contact with $\alpha_{4}: \mathrm{K}^{213}$ (π-cation interaction with $\mathrm{NH} \zeta^{+}, 3.76 \AA$, plus π-alkyl, $3.76 \AA$) and with $\beta_{1}: \mathrm{F}^{321}(\pi$-alkyl, $4.37 \AA)$. UreaC $=\mathrm{O}$ is hydrogen bonded to $\alpha_{4}: \mathrm{K}^{213} \mathrm{NH} \zeta^{+}(1.84 \AA)$, while both ureaNHs are hydrogen bonded to $\beta_{1}: \mathrm{Glu}^{320} \mathrm{COO}^{-}(1.94 \AA, 2.90 \AA)$. The side chain of Leu^{2} is inserted within the cavity delimited by $\beta_{1}: \mathrm{L}^{225}, \alpha_{4}: \mathrm{K}^{157}$, $\alpha_{4}: \mathrm{Y}^{187}$, making hydrophobic interactions. Ala ${ }^{3} \mathrm{NH}$ is involved in a intramolecular hydrogen bond with isoAspC=O $(2.03 \AA), \mathrm{Ala}^{3} \mathrm{C}=\mathrm{O}$ makes a hydrogen bond with $\beta_{1}: \mathrm{N}^{191} \mathrm{CONH}_{2}(2.19 \AA)$, while Ala ${ }^{3}$ methyl is close to $\beta_{1}: \mathrm{T}^{188}$ methyl (alkyl interaction). $\mathrm{Val}^{4} \mathrm{NH}$ is involved in a intramolecular hydrogen bond with isoAspC=O (1.81 \AA), $\mathrm{Val}^{4} \mathrm{C}=\mathrm{O}$ is hydrogen bonded to $\beta_{1}: S^{134} \mathrm{NH}\left(2.79 \AA\right.$), but Val ${ }^{4}$ isopropyl is directed perpendicularly above the molecular plane, therefore making very little contacts with any residues of β_{1} subunit. Finally, isoAsp ${ }^{5} \mathrm{COO}^{-}$is coordinated to Mg^{2+} in MIDAS.

Figure S21. The CPP 15 was obtained from 3a by replacing Leu ${ }^{2}$ with Phe^{2} and Asp^{3} with Ala^{3}. The Phu ${ }^{1} \mathrm{MePh}$ group is located between the residues $\beta_{1}: \mathrm{F}^{321}$ and $\alpha_{4}: \mathrm{K}^{213}$, with which it interacts giving rise to a $\pi-\pi$ stacking interaction and a π-cation interaction ($3.19 \AA$). UreaC $=O$ makes a conventional hydrogen bond with $\beta_{1}: \mathrm{S}^{227} \mathrm{OH}(2.05 \AA)$, while Phu PH makes a $\pi-\pi$ stacking interactions with $\alpha_{4}: \mathrm{Y}^{187}$. Phu ${ }^{1} \mathrm{C}=\mathrm{O}$ makes two intramolecular hydrogen bonds with $\mathrm{Ala}^{3} \mathrm{NH}(1.72$ \AA) and $\mathrm{Val}^{4} \mathrm{NH}(2.15 \AA)$. Phe ${ }^{2} \mathrm{NH}$ makes two hydrogen bonds with $\beta_{1}: \mathrm{N}^{224} \mathrm{O}(2.87 \AA)$ and with $\beta_{1}: \mathrm{L}^{225} \mathrm{O}(2.14 \AA)$, while $\mathrm{Phe}^{2} \mathrm{Ph}$ is hold in position by a π-cation interaction with $\beta_{1}: \mathrm{K}^{182} \mathrm{~N} \zeta^{+}(4,01 \AA)$. In addition to the intramolecular hydrogen bonds with Phu^{1}, Ala ${ }^{3}$ residue makes an hydrogen bond between $\mathrm{C}=\mathrm{O}$ and $\beta_{1}: \mathrm{Gln}^{191} \mathrm{H} \varepsilon 22$ ($1.89 \AA$), while the Val $^{4} \mathrm{C}=\mathrm{O}$ forms an hydrogen bond with $\beta_{1}: \mathrm{S}^{134} \mathrm{OH}(1.85 \AA)$. The carboxyl group of the isoAsp ${ }^{5}$ residue makes two water-hydrogen bonds with $\mathrm{W}^{1}(2.84 \AA)$ and $\mathrm{W}^{3}(2.70 \AA)$, an hydrogen bond with $\beta 1: \mathrm{Y}^{133} \mathrm{NH}(2.12 \AA)$ and an hydrogen bond with $\beta_{1}: \mathrm{N}^{224} \mathrm{NH}(2.30 \AA)$. isoAsp COO^{-}coordinates the magnesium ion in MIDAS (RMSD 0.15).

Figure S22. ${ }^{1} \mathrm{H}$ NMR (8:2 $\mathrm{DMSOd}_{6} / \mathrm{H}_{2} \mathrm{O}$ at 400 MHz) and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DMSOd}_{6}, 100 \mathrm{MHz}\right)$ of 3a.

Figure S23. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(8: 2 \mathrm{DMSOd}_{6} / \mathrm{H}_{2} \mathrm{O}\right.$ at 400 MHz$)$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSOd}_{6}, 100 \mathrm{MHz}\right)$ of $\mathbf{3 b}$.

Figure S24. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(8: 2 \mathrm{DMSOd}_{6} / \mathrm{H}_{2} \mathrm{O}\right.$ at 400 MHz$)$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSOd}_{6}, 100 \mathrm{MHz}\right)$ of $\mathbf{3 c}$.

Figure S25. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(8: 2 \mathrm{DMSOd}_{6} / \mathrm{H}_{2} \mathrm{O}\right.$ at 400 MHz$)$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSOd}_{6}, 100 \mathrm{MHz}\right)$ of 3d.

Figure S26. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(8: 2 \mathrm{DMSOd}_{6} / \mathrm{H}_{2} \mathrm{O}\right.$ at 400 MHz$)$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSOd}_{6}, 100 \mathrm{MHz}\right)$ of $\mathbf{1 1 a}$.

Figure S28. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(8: 2 \mathrm{DMSOd}_{6} / \mathrm{H}_{2} \mathrm{O}\right.$ at 400 MHz$)$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSOd}_{6}, 100 \mathrm{MHz}\right)$ of $\mathbf{1 2 a}$.

Figure S30. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(8: 2 \mathrm{DMSOd}_{6} / \mathrm{H}_{2} \mathrm{O}\right.$ at 400 MHz$)$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSOd}_{6}, 100 \mathrm{MHz}\right)$ of $\mathbf{1 3}$.

Figure S31. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(8: 2 \mathrm{DMSOd}_{6} / \mathrm{H}_{2} \mathrm{O}\right.$ at 600 MHz$)$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSOd}_{6}, 150 \mathrm{MHz}\right)$ of 14.

Figure S32. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(8: 2 \mathrm{DMSOd}_{6} / \mathrm{H}_{2} \mathrm{O}\right.$ at 400 MHz) and ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSOd}_{6}, 100 \mathrm{MHz}\right)$ of $\mathbf{1 5}$.

Figure S33. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(8: 2 \mathrm{DMSOd}_{6} / \mathrm{H}_{2} \mathrm{O}\right.$ at 400 MHz) and ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSOd}_{6}, 100 \mathrm{MHz}\right)$ of 16.

Figure S34. RP HPLC analyses performed on a column Phenomenex mod. Gemini $3 \mu \mathrm{~m} \mathrm{C}_{18} 110 \AA 100 \times 3.0 \mathrm{~mm}$; mobile phase from $9: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN} / 0.1 \% \mathrm{HCOOH}$ to $2: 8 \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN} / 0.1 \% \mathrm{HCOOH}$ in 20 min , flow rate of 1.0 mL min^{-1}. DAD 254 nm , unless otherwise specified. For peptide 14, the analytical flow rate is $0.5 \mathrm{~mL} \mathrm{~min}^{-1}$.

Figure S34-follows. RP HPLC analyses performed on a column Phenomenex mod. Gemini $3 \mu \mathrm{~m} \mathrm{C}_{18} 110 \AA 100 \times 3.0$ mm ; mobile phase from 9:1 $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN} / 0.1 \% \mathrm{HCOOH}$ to $2: 8 \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN} / 0.1 \% \mathrm{HCOOH}$ in 20 min , flow rate of 1.0 $\mathrm{mL} \mathrm{min}^{-1}$. DAD 254 nm , unless otherwise specified. For peptide 14, the analytical flow rate is 0.5 mL min .

