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IRREDUCIBLE MODULES OVER FINITE SIMPLE LIE

PSEUDOALGEBRAS IV. NON-PRIMITIVE PSEUDOALGEBRAS

ALESSANDRO D’ANDREA

Abstract. Let d ⊂ d′ be finite-dimensional Lie algebras, H = U(d), H′ =

U(d′) the corresponding universal enveloping algebras endowed with the canon-
ical cocommutative Hopf algebra structure. We show that if L is a primitive

Lie pseudoalgebra over H then all finite irreducible L′ = CurH
′

H L-modules

are of the form CurH
′

H V , where V is an irreducible L-module, with a single
class of exceptions. Indeed, when L ' H(d, χ, ω), we introduce non current

L′-modules VH
χ,ω,t,d′ (R) that are obtained by modifying the current pseudoac-

tion with an extra term depending on an element t ∈ d′ \ d, which must satisfy

some technical conditions. This, along with results from [2, 3, 4], completes the

classification of finite irreducible modules of finite simple Lie pseudoalgebras
over the universal enveloping algebra of a finite-dimensional Lie algebra.
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1. Introduction

This is the last issue in a series of papers addressing the structure and represen-
tations of simple Lie pseudoalgebras over a cocommutative Hopf algebra H = U(d),
where d is a finite-dimensional Lie algebra. A classification of finite irreducible mod-
ules over all primitive simple Lie pseudoalgebras has already been achieved in joint
papers with B. Bakalov and V.G. Kac; this paper provides a complete description
of finite irreducible representations of non-primitive simple Lie pseudoalgebras.

The Lie pseudoalgebra language provides a unifying generalization to both Lie
algebras and Lie conformal algebras [7], that are strictly related to algebraic prop-
erties of the Operator Product Expansion in vertex algebras [9]. Finite simple
Lie pseudoalgebras over H = U(d) have been classified in [1]: they all arise from
the so-called primitive simple Lie pseudoalgebra by means of a current construc-
tion. The list of primitive Lie H-pseudoalgebras, up to isomorphism, is given in
Section 4. Apart from simple finite-dimensional Lie algebras, which occur when
d = (0), they all arise as subalgebras of W (d), see Example 4.2, and are denoted by
S(d, χ), H(d, χ, ω),K(d, θ). While W (d) and S(d, χ) exist for all choices of the Lie
algebra d, and non isomorphic examples of S(d, χ) are parametrized by 1-cocycles
χ ∈ d∗, instances of H(d, χ, ω), K(d, θ) depend on more elusive properties that d
must satisfy, see [1, Sections 8.6-8.7].

Representation theory of finite-dimensional simple Lie algebras is certainly well
known. Finite irreducible representations of the Lie pseudoalgebras W (d) and
S(d, χ), H(d, χ, ω), K(d, θ) have been classified in [2, 3, 4] respectively: the main
result is that each irreducible L-module, where L is one of the above Lie pseudoalge-
bras, arises as a quotient of special representations called tensor modules. These are
parametrized by finite-dimensional irreducible representation of a finite-dimensional
Lie algebra associated with L; only finitely many of the above tensor modules fail
irreducibility, and then fit nicely in complexes that provide pseudoalgebraic trans-
lations of differential-geometric constructions such as the de Rham complex, along
with its generalizations by Rumin [13] and Eastwood [8] in the context of contact
and conformally symplectic geometry. The above results are closely connected with
the study of finite height representations of Cartan type Lie algebras undertaken
by Rudakov [11, 12] and Kostrikhin [10].
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It is not difficult to show, as in Corollary 6.1, that if V is an irreducible rep-
resentation of any Lie pseudoalgebra L, then the current construction yields an

irreducible representation CurH
′

H V of the current Lie pseudoalgebra CurH
′

H L. The
converse does not hold in general, as one may verify by choosing L to be an abelian
Lie pseudoalgebra L. However, when L is simple, the only case that has been
investigated, apart from the trivial one H = H ′, is H = k, H ′ = k[∂] from [5],
where it is shown that all finite irreducible representations of the current Lie con-

formal algebra Cur g = Cur
k[∂]
k g arise as currents of irreducible g-modules. It is

thus tempting to conjecture that finite irreducible modules of CurH
′

H L are always
current representations whenever L is a simple primitive Lie pseudoalgebra L.

The present paper shows that this expectation holds, with a single class of excep-

tions: indeed, the simple Lie pseudoalgebra CurH
′

H H(d, χ, ω) may have noncurrent
irreducible representations, that are completely classified. The main result is the
following

Theorem. Let d ⊂ d′ be finite-dimensional Lie algebras, H ⊂ H ′ their universal
enveloping algebras endowed with the canonical cocommutative Hopf algebra struc-
ture. The following is a complete list of finite irreducible representations of the

current Lie pseudoalgebra L′ = CurH
′

H L, where L is a primitive Lie pseudoalgebra:

— CurH
′

H V , where V is a finite irreducible L-module;
— VH

χ,ω,t,d′(R), where L = H(d, χ, ω), R is a finite-dimensional irreducible

representation of d+ ⊕ sp(d, ω), and t ∈ d′ \ d satisfies
(i) adχ t preserves d and lies in sp(d, ω);

(ii) [s, t] = 0, where s satisfies χ = ιsω.

A description of all nontrivial isomorphism between the above irreducible mod-
ules is also provided. Notice that here d+ denotes the extension

0→ kχ → d+ → d→ 0

of d by the one-dimensional abelian ideal of 1-cocycle χ corresponding to the 2-
cocycle ω and adχ t : d → d′ is defined as (adχ t)(∂) := [t, ∂] + χ(∂)t. Noncurrent
representations VH

χ,ω,t,d′(R) are introduced in Section 9. They are obtained by

adding an extra term (t⊗1)⊗H′ (1⊗u) to the expression providing the pseudoaction

e ∗ (1⊗ u) in a current tensor module CurH
′

H VH
χ,ω(R).

The special behaviour of H(d, χ, ω) depends on the presence of nontrivial central
elements in the corresponding annihilation Lie algebra. This fact also plays a major
role in the less standard description from [4] of finite irreducible representations of
H(d, χ, ω) when compared to the more unified treatment of other primitive types.

Unfortunately, many conflicting notations from [2, 3, 4] have to be resolved in
this paper. Explanations are provided in footnotes whenever needed.

2. Hopf algebra preliminaries

2.1. Hopf notation. In this paper all vector spaces, algebras and tensor products
are, unless otherwise specified, over an algebraically closed field k of characteristic
zero. We will deal with pairs d ⊂ d′ of finite dimensional Lie algebras and denote
by H, respectively H ′, the universal enveloping algebra U(d), resp. U(d′). No other
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Hopf algebras will be considered with the exception of such universal enveloping
algebras.

Notice that both H and H ′ are Hopf algebras with respect to the coproduct ∆,
antipode S, and counit ε given by:

∆(∂) = ∂ ⊗ 1 + 1⊗ ∂ , S(∂) = −∂ , ε(∂) = 0 , ∂ ∈ d′ . (2.1)

More precisely, H ⊂ H ′ is a Hopf subalgebra, so that the inclusion ι : H → H ′ is a
Hopf-algebra homomorphism. We will employ the notation:

∆(h) = h(1) ⊗ h(2) = h(2) ⊗ h(1) , (2.2)

(∆⊗ id)∆(h) = (id⊗∆)∆(h) = h(1) ⊗ h(2) ⊗ h(3) , (2.3)

(S ⊗ id)∆(h) = h(−1) ⊗ h(2) , h ∈ H . (2.4)

Then the antipode and counit axioms can be written as follows:

h(−1)h(2) = h(1)h(−2) = ε(h), (2.5)

ε(h(1))h(2) = h(1)ε(h(2)) = h, (2.6)

while the fact that ∆ is a homomorphism of algebras translates as:

(fg)(1) ⊗ (fg)(2) = f(1)g(1) ⊗ f(2)g(2), f, g ∈ H. (2.7)

Eqs. (2.5), (2.6) imply the following useful relations:

h(−1)h(2) ⊗ h(3) = 1⊗ h = h(1)h(−2) ⊗ h(3). (2.8)

Set dim d = N, dim d′ = N + r. If {∂1, . . . , ∂N+r} is a basis of d′, we denote by
{x1, . . . , xN+r} the corresponding dual basis of d′∗. The structure constant ckij of
d′, are defined by

[∂i, ∂j ] =

N+r∑
k=1

ckij∂k , i, j = 1, . . . , N + r . (2.9)

We have a corresponding (reduced) Poincaré-Birkhoff-Witt basis

∂(K) = ∂k11 · · · ∂
kN+r

N+r /k1! · · · kN+r! , K = (k1, . . . , kN+r) ∈ ZN+r
+ (2.10)

of H ′.

Remark 2.1. PBW bases may be used to show that H ′ is free both as a left and as
a right H-module. The embedding ι : H ↪→ H ′ is thus a pure homomorphism.

2.2. Straightening. Let M be a left H-module. The coproduct ∆ : H → H ⊗H
makes H ⊗H into a right H-module, so that it makes sense to consider the tensor
product (H ⊗ H) ⊗H M , which is a left H ⊗ H-module by left multiplication on
the first ⊗H factor. Elements lying in (H ⊗ H) ⊗H M may be expressed in very
many ways, and this can make it difficult to verify whether two distinct expressions
actually describe the same quantity. This problem is solved by the left- and right-
straightening techniques, introduced in [1], that we recall here briefly.

Proposition 2.1. Let M , resp. N , be a right, resp. left, H-module. Then the
assignments

M ⊗N 3 m⊗ n 7→ (m⊗ 1)⊗H n ∈ (M ⊗H)⊗H N (2.11)

M ⊗N 3 m⊗ n 7→ (1⊗m)⊗H n ∈ (H ⊗M)⊗H N (2.12)

extend to linear isomorphisms.
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Proof. One checks easily that the maps

(M ⊗H)⊗H N 3 (m⊗ h)⊗H n 7→ mh(−1) ⊗ h(2)n (2.13)

(H ⊗M)⊗H N 3 (h⊗m)⊗H n 7→ mh(−2) ⊗ h(1)n (2.14)

extend to explicit inverses to (2.11), (2.12). �

Corollary 2.1. Let N be a left H-module. Every element α ∈ (H ⊗H)⊗H N can
be expressed either in the form

α =
∑
i

(hi ⊗ 1)⊗H mi, hi ∈ H,mi ∈ N (2.15)

or in the form

α =
∑
i

(1⊗ ki)⊗H ni, ki ∈ H,ni ∈ N. (2.16)

Similarly, every element in (H ⊗H ⊗H)⊗H N has a unique representative both in
(H ⊗H ⊗ k)⊗H N and in (k⊗H ⊗H)⊗H N .

Proof. Use M = H, resp. H ⊗H, in Proposition 2.1. �

Corollary 2.2. Let N ⊂M be left H-modules, and

α =
∑
i

(hi ⊗ 1)⊗H mi ∈ (H ⊗H)⊗H M =
∑
i

(1⊗ ki)⊗H ni,

where hi, resp. ki, are linearly independent elements in H. Then α lies in (H ⊗
H)⊗H N if and only if mi ∈ N , or equivalently ni ∈ N , for every i.

Remark 2.2. The above corollary shows that there always exists a smallest N ⊂M
such that α ∈ (H ⊗H)⊗H N , which may be computed by taking the left- or right-
straightened expression for α, and considering the H-linear span of all elements on
the right of ⊗H .

Corollary 2.2 also allows one to check equalities in (H⊗H)⊗H N and (H⊗H⊗
H)⊗H N . It is enough to straighten everything, say to the left, and then verify the
equality in the vector spaces H⊗N , H⊗H⊗N respectively, which is a trivial job.

We end this section with a technical statement which can be thought of as a
partial straightening. We split the set Nn of PBW indices for H = U(d) as follows:
elements of R := Nk × {0} ⊂ Nn are supported on the first k indices, whereas
those lying in S := {0} × Nn−k vanish on the first k indices, so that they are
supported on the subsequent n − k ones. Clearly, if Ki ∈ R,Li ∈ S, i = 1, 2, then
K1 + L1 = K2 + L2 if and only if K1 = K2, L1 = L2. Moreover, the sum of two
elements in Nn lies in R (resp. S) if and only if both summands lie in R (resp. S).

Lemma 2.1. Let U ⊂ V be left H-modules. Then the element

α =
∑

K∈R,L∈S
(∂(K) ⊗ ∂(L))⊗H vK+L ∈ (H ⊗H)⊗H V (2.17)

lies in (H ⊗H)⊗H U precisely when all vJ , J ∈ Nn, lie in U .
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Proof. Clearly, if all vK,L lie in U , then α ∈ (H ⊗H) ⊗H U . As for the converse,
assume α ∈ (H ⊗H)⊗H U and left-straighten (2.17) to obtain

α =
∑
K∈R

∑
L1,L2∈S

(∂(K)S(∂(L1))⊗ 1)⊗H ∂(L2)vK+L1+L2 (2.18)

=
∑
K∈R

∑
L1,L2∈S

(∂(K+L1))⊗ 1)⊗H (−1)|L1|∂(L2)vK+L1+L2
(2.19)

=
∑
J∈Zn

(∂(J) ⊗ 1)⊗H
∑
L2∈S

± ∂(L2)vJ+L2 ∈ (H ⊗H)⊗H U, (2.20)

where we set J = K + L1. Then Corollary 2.2 shows that∑
L2∈S

± ∂(L2)vJ+L2
(2.21)

lies in U for each choice of J ∈ Zn, L ∈ S.
Now, proceed by contradiction and assume that J ∈ Zn is (lexicographically)

maximal such that vJ /∈ U . Then (2.21) rewrites as the sum

±vJ +
∑

06=L2∈S

±∂(L2)vJ+L2
∈ U.

However, the summation on the right lies in theH-submodule U ⊂ V by maximality
of J , whence vJ ∈ U , yielding a contradiction. �

Remark 2.3. It is important to stress here that the above Lemma 2.1 may be applied
to any totally ordered basis of a Lie algebra. In particular, it may be applied to any
basis of d′, and not just those where the last elements constitute a basis of d ⊂ d′

as we will consider below; even in this case, k does not need to equal the difference
dim d′ − dim d but may be any number.

Corollary 2.3. Let V be a left H-module. Then equality∑
K∈R,L∈S

(∂(K) ⊗ ∂(L))⊗H uK+L =
∑

K∈R,L∈S
(∂(K) ⊗ ∂(L))⊗H vK+L

holds in (H ⊗H)⊗H V if and only if uN = vN for every N ∈ Nn.

Proof. Use U = 0 in Lemma 2.1. �

2.3. Filtrations. The PBW basis may be used to set up a canonical increasing
filtration of H ′ given by

FpH ′ = spank{∂(K) | |K| ≤ p} , where |K| = k1 + · · ·+ kN+r . (2.22)

This filtration does not depend on the choice of basis of d′, and is compatible
with the Hopf algebra structure of H. We have: F−1H ′ = {0}, F0H ′ = k, and
F1H ′ = k⊕ d′.

The dual X ′ := Homk(H ′,k) is a commutative associative algebra and inherits
an induced decreasing filtration FiX

′ = (FiH ′)⊥ making it into a linearly compact
vector space. We will identify d′∗ as a subspace of X ′ by letting 〈xi, ∂i〉 = 1 and
〈xi, ∂(I)〉 = 0 for all other basis vectors (2.10). Mapping xi 7→ ti gives rise to an
isomorphism from X to the algebra k[[t1, . . . , tN+r]] of formal power series in N +r
indeterminates. Notice that the above filtration satisfies F−1X

′ = X ′, whereas
F0X

′ is the (maximal) ideal generated by x1, . . . , xN+r. Similarly, FpX
′ coincides

with (F0X
′)p+1.
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Remark 2.4. The choice of indices in the filtration for X ′ is natural, but somewhat
clumsy, and one has (FpX

′)(FqX
′) = Fp+q+1X

′ so that indices do not add up
properly. This will later have consequences in choosing the right indexing of the
filtration of annihilation algebras.

Remark 2.5. If H = U(d), then H ⊗ H = U(d) ⊗ U(d) ' U(d ⊕ d). We will
occasionally denote by Fp(H ⊗ H) the corresponding filtration, which satisfies
Fp(H ⊗H) =

∑
i+j=p FiH ⊗ Fj H.

The Lie algebra d′ has left and right actions on X ′ by derivations, given by

〈∂x, h〉 = −〈x, ∂h〉 , (2.23)

〈x∂, h〉 = −〈x, h∂〉 , ∂ ∈ d′ , x ∈ X ′ , h ∈ H ′ , (2.24)

where ∂h and h∂ are the products in H ′. These two actions coincide only when d′

is abelian, the difference ∂x− x∂ giving the coadjoint action of ∂ ∈ d′ on x ∈ X ′:

〈∂x− x∂, h〉 = −〈x, [∂, h]〉.

2.4. Splitting a projection. Throughout the rest of the paper, we will chose a
basis {∂1, . . . , ∂N+r} of d′ so that the last N elements ∂r+1, . . . , ∂N+r are a basis
of d ⊂ d′. Then the PBW basis of H gets identified to a subset of the PBW basis
of H ′; correspondingly, the subalgebra k[[xr+1, . . . , xN+r]] ⊂ X ′ may be identified
with X. Notice that the inclusion ι : H → H ′ induces a surjective commutative
algebra homomorphism ι∗ : X ′ → X whose kernel we denote by I = ker ι∗, and the
above identification provides a splitting ς : X → X ′ to ι∗, so that X ′ = X + I is
a direct sum decomposition (as vector spaces). More specifically, ι∗ is the unique
homomorphism mapping x1, . . . , xr to 0 and fixing each xr+1, . . . , xN+r; thus, I ⊂
X ′ is the ideal generated by x1, . . . , xr.

Remark 2.6. Denote by H+ the augmentation ideal of H. It is easy to show that the
subalgebra k[[x1, . . . , xr]] ⊂ X ′ equals (H ′H+)⊥ and is thus canonically determined,
and independent of the choice of the basis of d′.

Henceforth, we will denote this canonical subalgebra of X ′ by O, and its unique
maximal ideal by m = 〈x1, . . . , xr〉. Notice that one has an isomorphism X ′ '
O ⊗̂X of linearly compact vector spaces1 , which identifies I with m ⊗̂X.

It is important to highlight the fact that we are provided with two distinct pairs
of left and right actions of d on X: one is as above in the case where r = 0; the other
is obtained by restricting to the subalgebra d the action of d′ on X ' ς(X) ⊂ X ′.
In general, these actions will differ, but they are still nicely compatible.

Proposition 2.2. (i) The right action of d ⊂ d′ on X ′ preserves X ⊂ X ′

and coincides with the natural right action of d on X. Moreover, the right
action of d on x1, . . . , xr is trivial.

(ii) The right action of d on X ′ is O-linear.
(iii) The restriction to X ⊂ X ′ of the left action of d ⊂ d′ on X ′ coincides, up

to elements in I, with the natural left action of d on X.
(iv) I is stabilized by both the left- and right- action of d ⊂ d′ on X ′.

1Recall that the completed tensor product U⊗̂V of linearly compact vector spaces is defined
as (U∗ ⊗ V ∗)∗ where U∗ ⊗ V ∗ is endowed with the discrete topology.
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Proof.

(i) Let ∂ ∈ d. Then by definition 〈xk∂, h〉 = −〈xk, h∂〉. When h ∈ U(d) ⊂
U(d′), then h∂ lies in the augmentation ideal of U(d); consequently, when
h is a member of the PBW basis (2.10) of U(d′), the only contribution
to 〈xk, ∂(K) · ∂〉, where r + 1 ≤ k ≤ N + r, will arise from those K that
are supported in indices r + 1 through N + r. Thus, the right action of
∂ ∈ d, viewed as an element of d′, on xk ∈ X, viewed as an element of
X ′, will coincide with the right action of ∂ on xk. The first claim now
follows by observing that the right action od d′ on X ′ is by (continuous)
derivations, and that xk, r + 1 ≤ k ≤ N + r, are (topological) algebra
generators of X ⊂ X ′, so that the right action of d ⊂ d′ on X ⊂ X ′ is
uniquely determined by its action on elements xk, r + 1 ≤ k ≤ N + r.

As for the second claim, we similarly argue that if k ≤ r and ∂ ∈ d, then
〈xk∂, ∂(K)〉 = −〈xk, ∂(K)∂〉 vanishes, as ∂(K)∂ lies in the left ideal of U(d′)
generated by the augmentation ideal of U(d) ⊂ U(d′), which lies in (xk)⊥.

(ii) Follows immediately from part (i) and continuity of the action of d′ on X ′.
(iii) It is enough to compute 〈∂xk, ∂(K)〉 = −〈xk, ∂∂(K)〉 when r+1 ≤ k ≤ N+r

and K is supported over the same indices, as other choices of K will yield
contributions lying in the ideal I. However, only the structure of d is
involved in the computation of the above expressions 〈xk, ∂∂(K)〉.

(iv) The ideal I = ker ι∗ ⊂ X ′ coincides with H⊥. The claim follows from
the fact that both left- and right- multiplication by elements of d stabilize
H ⊂ H ′.

�

3. Lie pseudoalgebra preliminaries

3.1. Pseudoalgebraic definitions. Let H = U(d). An H-pseudoalgebra is a left
H-module L endowed with an H⊗H-linear pseudoproduct L⊗L→ (H⊗H)⊗H L,
where (H ⊗H)⊗H L is defined as in Section 2.2.

A pseudoproduct is usually denoted by a⊗ b 7→ a∗ b, and one may make sense of
(a ∗ b) ∗ c, a ∗ (b ∗ c) as elements in (H ⊗H ⊗H)⊗H L, as in [1, (3.15)-(3.19)]. Then
a Lie pseudoalgebra is a pseudoalgebra whose pseudoproduct satisfies a pseudo-
version of the skew-symmetry and Jacobi identity axioms for a Lie algebra. In this
context, the pseudoproduct is called Lie pseudobracket and the most usual notation
for it is [a ∗ b]. The correct pseudoalgebraic translation of the axioms is

[a ∗ b] = −(σ ⊗H idL)[b ∗ a]; (3.1)

[a ∗ [b ∗ c]] = [[a ∗ b] ∗ c] + ((σ ⊗ idH)⊗H idL)[b ∗ [a ∗ c]], (3.2)

where a, b, c ∈ L and σ : H ⊗ H → H ⊗ H is the flip map switching the two
tensor factors. If A,B ⊂ L are H-submodules, then it is convenient to define [A,B]
as the smallest H-submodule S ⊂ L such that [a ∗ b] ∈ (H ⊗ H) ⊗H S for all
a ∈ A, b ∈ B. Then A ⊂ L is a subalgebra if [A,A] ⊂ A, and an ideal if [L, I] ⊂ I.
A Lie pseudoalgebra L is abelian if [L,L] = 0 and simple if it is not abelian and its
only ideals are the trivial ones (0), L.

One may similarly define representations of pseudoalgebras. In our setting, if L is
an H-Lie pseudoalgebra and M a left H-module, we may consider a pseudoaction
to be an H ⊗ H-linear map L ⊗ M → (H ⊗ H) ⊗H M that we will denote by
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a⊗m 7→ a ∗m. This defines a Lie pseudoalgebra representation when

[a ∗ b] ∗m = a ∗ (b ∗m)− ((σ ⊗ idH)⊗H idM ) b ∗ (a ∗m), (3.3)

for all a, b ∈ L,m ∈M, and equality is understood to hold inside (H⊗H⊗H)⊗HM
as before. We will also say that M is an L-module.

Remark 3.1. We stress the fact that a pseudoaction of a Lie pseudoalgebra L on the
left H-module M is nothing else than a H⊗H-linear maps L⊗M → (H⊗H)⊗HM .
This only makes M into a Lie pseudoalgebra representation of L when (3.3) is
satisfied.

Once again, if A ⊂ L,N ⊂ M , one may define A · N to be the smallest H-
submodule S ⊂ M such that a ∗ n ∈ (H ⊗ H) ⊗H S for all a ∈ L, n ∈ N . Then
N ⊂M is an L-submodule if L·N ⊂ N andM has a trivial action of L if L·M = (0);
notice that when the action of L on M is trivial, then any H-submodule of M is
automatically an L-submodule.

An L-module M is irreducible if its only L-submodules are (0),M and it does
not have a trivial action of L. An L-submodule N ( M is maximal if the only
submodules of M containing it are N and M ; then M/N is either an irreducible
L-module or it is a simple (nonzero) H-module with a trivial action of L. In
particular, if M/N is an irreducible L-module, then L ·M = M .

Remark 3.2. When A,B ⊂ L, then [A,B] denotes an H-submodules of L, whereas
we reserve the notation [A ∗ B] for the subset of (H ⊗ H) ⊗H L containing all
[a ∗ b], a ∈ A, b ∈ B. The same applies to A · B,A ∗ B, where A ⊂ L,B ⊂ M and
M is a Lie pseudoalgebra representation of L.

3.2. Annihilation algebras. Let L be a Lie pseudoalgebra over H, and denote
as usual by X = H∗ the commutative algebra dual to H. Then L = X ⊗H L may
be endowed with a bilinear product defined by

[x⊗H a, y ⊗H b] =
∑
i

(xhi)(yki)⊗H ci, (3.4)

as soon as the Lie pseudobracket on L satisfies [a ∗ b] =
∑
i(h

i ⊗ ki) ⊗H ci. Then
H-bilinearity along with the pseudoalgebra analogue of skew-symmetry and Jacobi
identity for [ ∗ ] ensure that (3.4) is a Lie bracket on L.

Let now d be a finite-dimensional Lie algebra, H = U(d) the corresponding
universal enveloping algebra, and assume that the finitely generated H-module L
admits a Lie pseudoalgebra structure over H. Then we may use the filtration on
X = H∗ so as to build up a corresponding linearly compact topology on L.

More explicitly, choose a finite dimensional vector subspace S ⊂ L such that
L = HS. If {si} is a basis of S, then

[si ∗ sj ] =
∑
i

(hkij ⊗ kkij)⊗H sk

for some choice of hkij , k
k
ij ∈ H, and one may find ` ∈ N so that hkij⊗kkij ∈ F`(H⊗H)

for all choices of i, j, k.
Setting Li = (Fi+`−1X)⊗H S then provides L with a decreasing filtration

L = L−` ⊃ L−`+1 ⊃ · · · ⊃ L0 ⊃ L1 ⊃ . . . (3.5)

which makes it into a linearly compact vector space, and satisfies [Li,Lj ] ⊂ Li+j
for all i, j. Thus, the Lie bracket is continuous with respect to the topology and
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L is a linearly compact topological Lie algebra. Notice that the filtration depends
on the choice of the generating subspace S, but the topology it induces does not.
Some choices of S allow for more convenient, i.e., lower, values of `. In next section,
we exhibit some convenient choices of S when L is a primitive Lie pseudoalgebra.

Proposition 3.1. The action of H on X is continuous. In particular, both the
right- and the left-action of d on X is by continuous derivations.

Proof. It follows from (FpH).(Fn L) ⊂ Fn−p L and the fact that elements in d ⊂ H
are primitive in H. The right-action case is done in the same way. �

When dealing with representations of the Lie pseudoalgebra L, it is also con-

venient to introduce the so-called extended annihilation algebra L̃. This is the

semi-direct product L̃ := dnL, where the adjoint action of d on L is defined as

[∂, x⊗H a] := (∂x)⊗H a.

Example 3.1. As a trivial example, let us consider the case d = (0), so that H = k.
If L is a finite H-Lie pseudoalgebra, then (H ⊗ H) ⊗H L = (k ⊗ k) ⊗k L can be
canonically identified with L. Thus the Lie pseudobracket is simply a (bilinear) Lie
bracket, and L is a finite-dimensional Lie algebra.

The corresponding annihilation algebra L = X ⊗H L = (k)∗ ⊗k L is canonically
isomorphic to the Lie algebra L. The filtration on both H and X is trivial, and
the corresponding topology on L is discrete; however, the concepts of discrete and
linearly compact topologies coincide for finite-dimensional vectors spaces. As d =

(0), we also get L̃ = L ' L.

The relevance of the extended annihilation algebra lies in the following fact:

Theorem 3.1 ([1, Proposition 9.1]). The notions of Lie pseudoalgebra action of L

on the H-module V is equivalent to that of continuous action of the Lie algebra L̃ on
V endowed with the discrete topology. More specifically, if [a∗v] =

∑
i(f

i⊗gi)⊗Hvi,
then

(x⊗H a).v =
∑
i

〈S(x), f igi(−1)〉g
i
(2)vi.

Conversely, if V is a discrete module over L̃, one may use the d ⊂ L̃-action
on V in order to endow it with an H = U(d)-module structure, and recover the
pseudoaction by

a ∗ v =
∑
i

(S(hi)⊗ 1)⊗H (xi ⊗H a).v,

where {hi} and {xi} are dual bases of H and X.

It is known that the above equivalence preserves the natural notions of irre-
ducibility, so that the study of irreducible representations of a Lie pseudoalgebra
L translates into that of irreducible representations of the corresponding extended

annihilation algebra L̃.
We end this section by recalling a fact stated in [1, Lemma 14.4]2 that we are

going to use multiple times. If V is a Lie pseudoalgebra representation of L, set

• kerV := {v ∈ V |L ∗ v = 0};
• kern V := {v ∈ V | Ln.v = 0},

2Notice that the filtration indices are different here.
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whereas Ln is defined as in (3.5), according to some generating subspace S ⊂ L.
Then

Proposition 3.2. If V is a finite L-module, then the quotient kern V/ kerV is a
finite-dimensional vector space for every choice of n ≥ −`, and it is nonzero when
n is sufficiently large.

4. Primitive simple Lie pseudoalgebras

4.1. Examples of primitive simple Lie pseudoalgebras. Let d be a finite
dimensional Lie algebra. In this paper, by primitive Lie pseudoalgebra, we mean a
simple Lie pseudoalgebra over the cocommutative Hopf algebra H = U(d) which
cannot be obtained by means of a non-trivial current construction, see [1, Section
4.2] and Section 6 below. More specifically, they are either finite-dimensional simple
Lie algebras over H = k = U({0}), or one of the primitive pseudoalgebras of vector
fields from [1, Section 8]. Let us review them briefly.

Example 4.1 (Simple Lie algebras). Let g be a finite dimensional simple Lie
algebra over H = k. As in Example 3.1 its Lie bracket may be rewritten in a
pseudoalgebraic fashion as follows:

[a ∗ b] = (1⊗ 1)⊗k [a, b], a, b ∈ g.

Here we like to stress the trivial fact that S = g is a finite-dimensional vector space
with the property that

[S ∗ S] ∈ (1⊗ 1)⊗k S.

We have already seen that the (extended) annihilation algebra of g is g itself.

Example 4.2 (W (d)). Let d be a (nonzero) finite dimensional Lie algebra over k,
H = U(d). Then L = W (d) = H ⊗ d is a simple Lie pseudoalgebra when endowed
with the unique pseudo-Lie bracket H-bilinearly extending

[1⊗a∗1⊗ b] = (1⊗1)⊗H (1⊗ [a, b]) + (b⊗1)⊗H (1⊗a)− (1⊗a)⊗H (1⊗ b), (4.1)

where a, b,∈ d. Then S = k⊗ d ⊂ H ⊗ d is a finite dimensional vector subspace of
L which generates it as an H-module and direct inspection of (4.1) shows that

[S ∗ S] ∈ (d⊗ k + k⊗ d + k⊗ k)⊗H S.

The annihilation algebra W = X ⊗H W (d) is isomorphic, as a Lie algebra, to
the Lie algebra WN from Cartan’s classification [6]. We denote by E ∈ W the

element corresponding to the Euler vector field E =
∑N
i=1 x

i ∂/∂xi ∈ WN under
such isomorphism.

Example 4.3 (S(d, χ)). Let d be a finite dimensional Lie algebra over k, χ ∈ d∗ a
trace form, and set S(d, χ) :=

{∑
i h

i ⊗ ∂i ∈W (d) |
∑
i h

i(∂i + χ(∂i)) = 0
}
. Then

S(d, χ) ⊂W (d) is the H-submodule generated by elements

sab = (a+ χ(a))⊗ b− (b+ χ(b))⊗ a− 1⊗ [a, b], a, b ∈ d,

and is a simple subalgebra of W (d). Lie pseudobrackets between the above elements
may be read off [1, Proposition 8.4]. If we denote by S the k-linear span of elements
sab, a, b ∈ d, then S is a finite-dimensional vector subspace of S(d, χ) generating it
as an H-module, and satisfying

[S ∗ S] ∈ ((d + k)⊗ (d + k))⊗H S.
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The annihilation algebra S = X ⊗H S(d, χ) is isomorphic, as a Lie algebra, to the
Lie algebra SN from Cartan’s list.

Example 4.4 (H(d, χ, ω) and K(d, θ)). Let d be a finite dimensional Lie algebra
over k, and let the rank one free H-module L = He support a Lie pseudoalgebra
structure over H = U(d). Then one may see [1, Section 4.3] that

[e ∗ e] = (r + s⊗ 1− 1⊗ s)⊗H e (4.2)

where r ∈
∧2

d, s ∈ d satisfy opportune conditions, under which

e 7→ −r + 1⊗ s ∈ H ⊗ d 'W (d) (4.3)

extends to an injective homomorphism of Lie pseudoalgebras L ↪→W (d).
We obtain the primitive Lie pseudoalgebras H(d, χ, ω), respectively K(d, θ),

when d is even dimensional and r is non-degenerate, resp. when d is odd dimen-
sional and it is linearly generated by s, along with the support of r. Once again,
choosing S = ke provides a finite-dimensional vector subspace of L satisfying

[S ∗ S] ∈ ((d + k)⊗ (d + k))⊗H S.

The annihilation Lie algebra K = X ⊗H K(d, θ) is isomorphic to the Cartan
type Lie algebra KN , and we denote by E ′ ∈ K the element corresponding to the

Euler vector field E′ = 2x1∂/∂x1 +
∑N
i=2 x

i ∂/∂xi ∈ KN under such isomorphism.
The annihilation algebra H = X ⊗H H(d, χ, ω) is instead isomorphic to the unique
irreducible central extension PN of the Cartan Lie algebra HN .

We may sum up the above examples in the following

Proposition 4.1. Let d be a finite dimensional Lie algebra and L be a simple
primitive Lie pseudoalgebra over the cocommutative Hopf algebra H = U(d) as in
Examples 4.1-4.4. Then there exists a finite dimensional subspace S ⊂ L and ` ∈ N
such that L = HS and

[S ∗ S] ∈ ((d + k)⊗ (d + k) ∩ F`(H ⊗H))⊗H S,

where

— ` = 0 if L = g is a finite-dimensional simple Lie algebra;
— ` = 1 if L = W (d);
— ` = 2 if L = S(d, χ), H(d, χ, ω),K(d, θ).

4.2. Annihilation algebra of primitive Lie pseudoalgebras of vector fields.
In this section, we recall a few facts from [1, Section 6] on infinite-dimensional simple
linearly compact Lie algebras and their irreducible central extensions. Here L is a
primitive simple finite Lie pseudoalgebra over H = U(d), where d is a Lie algebra
of finite dimension N > 0.

We have already seen in Examples 4.2-4.4 that the corresponding annihilation
algebra is isomorphic to one of the linearly compact Lie algebras WN , SN ,KN , PN ,
where PN is the unique irreducible central extension of HN . All such Lie algebras
admit a Z-grading:

— The annihilation algebra W ' WN of W (d) is graded in indices ≥ −1 by
the semisimple adjoint action of the Euler vector field E ∈ W.

— The inclusion S(d, χ) ↪→ W (d) induces an embedding of annihilation alge-
bras S ↪→ W. Then S ' SN is graded in indices ≥ −1 by the semisimple
action of the non-inner derivation ad E , where E ∈ W is as above.
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— The inclusion K(d, θ) ↪→W (d) from (4.3) induces an embedding of annihi-
lation algebras K ↪→ W. Then K ' KN is graded in indices ≥ −2 by the
semisimple adjoint action of the contact Euler vector field E ′ ∈ K.

— The inclusion H(d, χ, ω) ↪→ W (d) from (4.3) induces a non-injective ho-
momorphism of annihilation algebras P ↪→ W, whose kernel equals the
center Z(P). Then P ' PN is graded in indices ≥ −2 by the semisim-
ple action of any lifting of the non-inner derivation ad E ∈ adW acting on
P/Z(P) =: H ' HN ⊂WN , where E ∈ W is as above.

Denote by L the annihilation algebra of our primitive Lie pseudoalgebra L, and set
Li to be the graded part of degree i in L, with respect to the above defined grading.
Then L =

∏
i≥−2 Li and

• [Li,Lj ] ⊂ Li+j ;
• L0 ⊂ L is a reductive subalgebra, isomorphic to glN , slN , spN , cspN−1 =
spN−1 ⊕ k when L = W (d), S(d, χ), H(d, χ, ω),K(d, θ) respectively;
• each Li is a finite-dimensional completely reducible representation of L0.

Central elements from PN all lie in the degree −2 part. We will employ the following
notation:

L>n =
∏
j>n

Lj , L≥n =
∏
j≥n

Lj , L 6=0 =
∏
j 6=0

Lj .

We will also denote by L⊥ the sum of all isotypical L0-components relative to
nontrivial L0-actions. Then L⊥ ⊂ L is a complement to the trivial isotypical L0-
component, and L>0 ⊂ L⊥. In all cases L equals its derived subalgebra, so that
L = [L⊥,L⊥]. Notice that {L≥n}n∈Z is a decreasing filtration of L which coincides
with {Ln}n∈Z when L = W (d), S(d, χ), H(d, χ, ω), see [2, 4].

In the remaining case L = K(d, θ), the two filtrations are distinct but equivalent,
see [3], and they induce the same linearly compact topology. More precisely,

Kn ⊂ K≥n, K≥n ⊂ Kbn−1
2 c

,

so that Kn certainly contains K≥2n+1. Also notice that K0 ⊂ K⊥.

4.3. H(d, χ, ω), d+ and sp(d, ω). Choose r ∈
∧2

d, s ∈ d. Setting

[e ∗ e] = (r + s⊗ 1− 1⊗ r)⊗H e (4.4)

defines a Lie pseudobracket on the free H-module L = He of rank 1 precisely when
identities

[r,∆(s)] = 0 (4.5)

([r12, r13] + r12s3) + (cyclic permutations) = 0 (4.6)

hold, see [1, Equations (4.3)-(4.4)], where as usual r12 = r ⊗ 1, s3 = 1⊗ 1⊗ s, etc.
If r =

∑
ij r

ij∂i⊗∂j is nondegenerate3, then (rij) is an invertible skew-symmetric

matrix, whose inverse we denote by (ωij). Setting ω(∂i ∧ ∂j) then defines a non-
degenerate skew-symmetric 2-form on d, that we may use to set χ = ιsω. Then
L ' H(d, χ, ω) and identities (4.5) are equivalent to

dω + χ ∧ ω = 0; (4.7)

dχ = 0. (4.8)

3Note that r12 ∈ k is not to be confused with r12 ∈ H ⊗H ⊗H from (4.6).
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This means that the 1-cocycle, or traceform, χmay be used to define a 1-dimensional
d-module kχ, and that ω is a 2-cocycle with values in kχ. In other words, we may
set up an abelian extension4

0→ kχ → d+
π→ d→ 0,

whose representations prove useful in the description of H(d, χ, ω)-tensor modules.
Notice that d+ ' d ⊕ kχ as vector spaces: we shall denote the linear generator of
kχ by c and abuse the notation by denoting with ∂ both elements from d and those
from d+. The Lie bracket in d+ then satisfies

[∂, ∂′]+ = [∂, ∂′] + ω(∂ ∧ ∂′)c.

If we set ∂ = ∂−χ(∂), and ∂i =
∑
j r

ij∂j , then ω(∂i ∧∂j) = δij and ∂i =
∑
j ωij∂

j .

Also, (4.4) rewrites as

[e ∗ e] =
∑
k

(∂k ⊗ ∂k)⊗H e. (4.9)

Notice that skew-symmetry of r implies
∑
k ∂k ⊗ ∂k = −

∑
k ∂

k ⊗ ∂k, so that∑
k

∂k∂
k = −

∑
k

∂k∂k =
1

2

∑
k

[∂k, ∂
k]

belongs to [d, d]. This implies that every traceform on d vanishes on the above
element.

One may use the symplectic form ω on d to define the symplectic subalgebra
sp(d, ω) ⊂ gl d. More precisely, φ ∈ gl d lies in sp(d, ω) if and only if

ω(φ(∂) ∧ ∂′) + ω(∂ ∧ φ(∂′)) = 0.

Now define adχ ∂ : d→ d as

(adχ ∂)(∂′) := [∂, ∂′] + χ(∂′)∂.

We will later need the following technical fact:

Lemma 4.1. Let d be an even dimensional Lie algebra, χ ∈ d∗ a traceform on d,
and assume that 2-form ω ∈

∧2
d∗ is nondegenerate and satisfies dω + χ ∧ ω = 0.

Choose s ∈ d so that χ = ιsω. If δ ∈ d, then the following are equivalent:

(1) [s, δ] = 0 and adχ δ ∈ sp(d, ω);
(2) ιδω ∈ d∗ is a traceform and χ(δ) = 0.

Proof. We have s =
∑
k χ(∂k)∂k and χ(s) = ω(s ∧ s) = 0. Identity dω + χ ∧ ω = 0

translates into

ω([a, b]∧c)+ω([b, c]∧a)+ω([c, a]∧b)−χ(a)ω(b∧c)−χ(b)ω(c∧a)−χ(c)ω(a∧b) = 0,
(4.10)

for all choices of a, b, c ∈ d. Substituting a = s into (4.10) then yields

ω([s, b] ∧ c) + ω(b ∧ [s, c]) = 0, (4.11)

as ιsω = χ vanishes on [d, d] and

χ(b)ω(c ∧ s) + χ(c)ω(s ∧ b) = −χ(b)χ(c) + χ(c)χ(b) = 0.

4The Lie algebra d+ is denoted d′ in [4].
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(1) =⇒ (2). If we plug b = δ into (4.11), we obtain ω(δ∧ [s, c]) = 0 for all c ∈ d,
thus showing that the linear functional ιδω ∈ d∗ vanishes on Im ad s. Setting a = δ
in (4.10) and using adχ δ ∈ sp(d, ω) yields

ω([δ, b] ∧ c) + ω([b, c] ∧ δ) + ω([c, δ] ∧ b)
− χ(δ)ω(b ∧ c)− χ(b)ω(c ∧ δ)− χ(c)ω(δ ∧ b) = 0,

ω([δ, b] ∧ c) + ω(b ∧ [δ, c]) + χ(b)ω(δ ∧ c) + χ(c)ω(b ∧ δ) = 0,

which together give

ω(δ ∧ [b, c]) + χ(δ)ω(b ∧ c) = 0. (4.12)

Using b = s in (4.12) then shows that χ(δ)ω(s ∧ c) = 0 for all c ∈ d. As ω
is nondegenerate, this forces χ(δ) = 0, whence ω(δ ∧ [b, c]) = 0 for all b, c ∈ d,
implying ιδω is a trace-form on d.

(2) =⇒ (1). Substitute b = δ in (4.11) to obtain ω([s, δ]∧c)+ω(δ∧[s, c]) = 0. As
ιδω is a traceform, then ω([s, δ]∧ c) = 0 for all c ∈ d. However, ω is nondegenerate,
hence [δ, s] = 0. Now set a = δ in (4.10), and use χ(δ) = 0 along with the fact that
ιδω is a traceform. This gives

ω([δ, b] ∧ c) + ω([c, δ] ∧ b)− χ(b)ω(c ∧ δ)− χ(c)ω(δ ∧ b) = 0. (4.13)

The left hand side now rewrites as

ω(([δ, b] + χ(b))δ ∧ c) + ω(b ∧ ([δ, c] + χ(c)δ)) = 0, (4.14)

thus showing that adχ δ ∈ sp(d, ω). �

We end this section by recalling notation that we will later employ. If V is a
representation of a Lie algebra g, and χ ∈ g∗ is a traceform, then we will denote
by Vχ the tensor product V ⊗ kχ, where kχ is the one-dimensional representation
corresponding to χ : g → k viewed as a Lie algebra homomorphism. Notice that
this notation is compatible with denoting by k the trivial representation of g. Also,
if π : g → h is a Lie algebra homomorphism, and χ is a traceform of h, we will
denote by π∗χ = χ ◦ π the pullback traceform on g.

Finally, if V,W are Lie algebra representations of the Lie algebras g, h respec-
tively, then V �W is the corresponding tensor product representation of the direct
sum Lie algebra g⊕ h. Notice that every irreducible g⊕ h-module is isomorphic to
V �W for a suitable choice of irreducible g-, resp. h-, modules V,W .

5. Tensor modules of primitive Lie pseudoalgebras

Each finite irreducible representations of a primitive Lie pseudoalgebra L as in
Examples 4.2-4.4 arises as a quotient of an opportune L-module from a special
class of representations called tensor modules, that are parametrized by (finite-
dimensional irreducible) Lie algebra representations of the direct sum of L0 and a
Lie algebra isomorphic either to d in types W, S, K, or d+ in type H. this section,
we recall their definition from [2, 3, 4]. As usual, dim d = N and {∂1, . . . , ∂N} is a
basis of d.
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5.1. Tensor modules for W (d). When L = W (d), the degree zero component
L0 of the annihilation algebra is isomorphic to gl d ' glN . Let {∂i|1 ≤ i ≤ N} be
a basis of the Lie algebra d and R = (Π � U, ρ) be an irreducible representation
of d ⊕ gl d. Then there is a Lie pseudoalgebra action of W (d) = H ⊗ d on H ⊗ R
defines by

(1⊗ ∂i) ∗ (1⊗ v) =

N∑
j=1

(∂j ⊗ 1)⊗H (1⊗ ρ(eji )v) (5.1)

+ (1⊗ 1)⊗H (1⊗ ρ(∂i + ad ∂i)v − ∂i ⊗ v),

where v ∈ R and eji ∈ gl d denotes the elementary matrix satisfying eji (∂j) = ∂i.
The notation for this W (d)-module from [2, Definition 6.2] is V(R) = V(Π, U), but
we will add a W superscript to distinguish it from tensor modules over primitive
Lie pseudoalgebras of other types.

Notice that VW(Π, U) is irreducible unless U is isomorphic to
∧n

d for some
0 ≤ n < N , in which case it has a unique nontrivial maximal W (d)-submodule.
The corresponding quotient is thus a finite irreducible W (d)-module, with the single
exception of the case n = 0, when it has a trivial W (d)-action.

5.2. Tensor modules for S(d, χ). In this case, L0 ' sl d ' slN . Recall that
S(d, χ) has a unique Lie pseudoalgebra embedding in W (d), so that every W (d)-
tensor modules as in (5.1) becomes an S(d, χ)-module by restriction. Then a rep-
resentation of S(d, χ) is a tensor module if it is the restriction of a W (d)-tensor
module; notice that each S(d, χ)-tensor module arises as such a restriction in more
than one way, and that a tensor module is reducible if and only if it is the restriction
of at least one reducible W (d)-tensor module.

If R = (Π � U, ρ) is an irreducible representation of d ⊕ sl d, we denote by
VS
χ(R) = VS

χ(Π, U) the tensor module5 obtained by restricting the W (d)-tensor

module VW(Π, U0), where U0 is the gl d-module obtained by extending the sl d-
action on U so that id ∈ gl d = sl d⊕ k id acts trivially.

Once again, the S(d, χ)-tensor module VS
χ(Π, U) is irreducible unless U is either

trivial or isomorphic to one of the fundamental representations
∧n

d, 0 < n < N .
In the latter cases, there is a unique maximal submodule which yields an irreducible
quotient, whereas when U is the trivial sl d-module, the corresponding quotient has
a trivial S(d, χ)-action.

5.3. Tensor modules for K(d, θ). If d0 = ker θ, then dθ is a symplectic form
on d0, and L0 ' csp(d0,dθ) = sp(d0,dθ) ⊕ kc ' spN−1 ⊕ k. Here, elements

∂1, . . . , ∂N−1 form a basis of d0 and ∂N = s as in (4.2). Elements ∂k are defined as
in Section 4.3. We similarly raise indices by introducing elements eij ∈ gld0 that
satisfy eij∂k = δjk∂

i. The Lie subalgebra sp(d0,dθ) is then generated by elements

f ij = −1

2
(eij + eji), 1 ≤ i ≤ j ≤ N − 1.

Notice that differences eij − eji span a (skew-symplectic) complement to sp(d0,dθ)
in gl d0, so that one may consider the projection πsp to the symplectic summand.
Then we denote by adsp(∂) the expression πsp(ad ∂ − ∂N · ι∂ω).

5This is denoted Vχ(R) = Vχ(Π, U) in [2, Definition 7.2].
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If R = (Π�U, ρ) is a finite-dimensional irreducible representation of d⊕sp(d0,dθ)
then

e ∗ (1⊗ v) =

2n∑
i,j=1

(∂i∂j ⊗ 1)⊗H (1⊗ ρ(f ij)v) (5.2)

−
N−1∑
k=1

(∂k ⊗ 1)⊗H (1⊗ ρ(∂k + adsp(∂k))v − ∂k ⊗ v)

+
1

2
(∂N ⊗ 1)⊗H (1⊗ ρ(c)v)

+ (1⊗ 1)⊗H (1⊗ ρ(∂N + ad ∂N )v − ∂N ⊗ v),

where v ∈ R and c denotes the central element in csp(d0,dθ) = sp(d0,dθ) ⊕ kc,
defines a Lie pseudoalgebra action of L = K(d, θ) = He on H ⊗ R, that we will
denote6 by VK

θ (R) = VK
θ (Π, U). The K(d, θ)-tensor module VK

θ (Π, U) is irreducible
unless either the csp(d0,dθ)-action on U is trivial; or U is the p-th fundamental rep-
resentation of sp(d0,dθ) and c acts via scalar multiplication by either p or N+1−p.
Whenever VK

θ (Π, U) is reducible, it has a unique maximal K(d, θ)-submodule yield-
ing an irreducible K(d, θ)-module, unless when U is the trivial sp(d0,dθ)-module,
in which case the K(d, θ)-action on the quotient is trivial.

5.4. Tensor modules for H(d, χ, ω). As χ is a 1-cocycle on d, we set ∂ = ∂ −
χ(∂). Then ∂ 7→ ∂ extends to an algebra automorphism of the universal enveloping
algebra H = U(d).

Here d+ = d + kc is the abelian extension of d corresponding to the 2-cocycle ω
with values in kχ, and L0 ' sp(d, ω) ' spN . For each choice of ∂ ∈ d, we denote
by adχ ∂ ∈ gl d the map x 7→ [∂, x] + χ(x)∂; we also set7 adsp

χ (∂) = πsp(adχ ∂). If
R = (Π+ � U, ρ) is a finite-dimensional irreducible representation of d+ ⊕ sp(d, ω),
then

e ∗ (1⊗ v) =

N∑
i,j=1

(∂i∂j ⊗ 1)⊗H (1⊗ ρ(f ij)v) (5.3)

−
N∑
k=1

(∂k ⊗ 1)⊗H (1⊗ ρ(∂k + adsp
χ (∂k))v − ∂k ⊗ v)

+(1⊗ 1)⊗H (1⊗ ρ(c)v)

defines a Lie pseudoalgebra representation of H(d, χ, ω) = He on H ⊗ R, that we
denote8 by VH

χ,ω(R) = VH
χ,ω(Π+, U). The tensor module VH

χ,ω(Π+, U) is irreducible
unless:

— either U is trivial and ρ(c) = 0;
— or U is one of the fundamental representations of sp(d, ω).

When VH
χ,ω(Π+, U) is reducible, it has a unique maximal submodule if ρ(c) = 0,

when the corresponding quotient has a nontrivial H(d, χ, ω)-action unless U is the
trivial sp(d, ω)-module. When instead ρ(c) 6= 0, each reducible tensor modules
decomposes into the direct sum of its two irreducible maximal submodules.

6This is denoted V(R) = V(Π, U) in [3, Definition 5.3].
7This is denoted adsp ∂ in [4].
8This is denoted V(R) = V(Π+, U) in [4, Definition 6.2].
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6. The current functor

Let H ⊂ H ′ be our usual Hopf algebras. One may use the inclusion homomor-
phism ι : H → H ′ to define a scalar extension functor H ′⊗H which associates with
each left H-module M the corresponding left H ′-module H ′ ⊗H M . As H ′ is free
as a right H-module, the above functor is exact.

When L is an H-Lie pseudoalgebra, the associated left H ′-module H ′⊗H L may
be endowed with a corresponding H ′-Lie pseudoalgebra structure, which is uniquely
determined by setting

[1⊗H a ∗ 1⊗H b] =
∑
i

(fi ⊗ gi)⊗H′ (1⊗H ci),

whenever a, b ∈ L and [a ∗ b] =
∑
i(fi ⊗ gi) ⊗H ci. This Lie H ′-pseudoalgebra is

usually denoted by CurH
′

H L and called current Lie pseudoalgebra of L. It follows

from the structure theory developed in [1] that CurH
′

H L is simple whenever L is
simple, and that all finite simple Lie pseudoalgebras are obtained in this way from
one of the primitive Lie pseudoalgebras listed above in Section 4.

The current functor H ′⊗H may also be applied to L-modules, and similarly

yields Lie pseudoalgebra representations of CurH
′

H L, as it will be made explicit in
Section 6.2 below. We will later see that irreducibility of modules behaves well with
respect to the current functor.

Remark 6.1. Recall that the injection ι : H → H ′ is pure, so that

M 3 m 7→ 1⊗H m ∈ CurH
′

H M

is always injective. In other words, every left H-module M embeds H-linearly into

its current module CurH
′

H M

6.1. Current simple Lie pseudoalgebras. Let L be a Lie pseudoalgebra over H,

and L′ = CurH
′

H L := H ′⊗HL its current pseudoalgebra over H ′. Then L = X⊗HL
is the annihilation algebra of L and

L′ = X ′ ⊗H′ (H ′ ⊗H L) ' X ′ ⊗H L

is the annihilation algebra of L′; one has therefore a natural surjection

ι∗ ⊗H idL : L′ ' X ′ ⊗H L→ X ⊗H L ' L.
Recall that the Lie bracket (3.4) of a Lie pseudoalgebra over H is obtained by

rephrasing the Lie pseudobracket in terms of the right action of H on its dual X.
As the right d-action on X ⊂ X ′ coincides with the natural right d-action on X,
then the map

L ' X ⊗H L→ X ′ ⊗H L ' L′

is a continuous Lie algebra homomorphism and provides a(n injective) splitting
ς⊗H idL to ι∗⊗H idL. Notice that X ′ = O⊗X and we may use Proposition 2.2 (ii)
in order to conclude that the Lie bracket on L′ extends O-linearly the Lie bracket
on the subalgebra L ⊂ L′.

Lemma 6.1. Let L be a primitive simple Lie pseudoalgebra of vector fields, and
denote by L0 denote the reductive Lie subalgebra of the annihilation algebra L con-
sisting of degree 0 element according to the grading recalled in Section 4.2. Then
the only trivial summands for the adjoint action of L0 on L are

— kE when L = W (d);
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— the center Z(L) when L = H(d, χ, ω);
— kE ′ when L = K(d, θ),

whereas there is no such trivial summand when L = S(d, χ).

Proof. When L = W (d), resp. K(d, θ), then the grading on L is given by the
eigenspace decomposition of the inner derivation ad E , resp. ad E ′. Consequently,
all trivial summands for the adjoint action of L0 must lie in degree 0. As L0 '
glN = slN ⊕ k, resp. cspN−1 = spN+1 ⊕ k, the adjoint action of L0 is trivial on
Z(L0), that is on kE , resp. kE ′.

When L = H(d, χ, ω), [1, Lemma 6.3 (iii)] shows that each graded summand
Ln ⊂ L is an irreducible representation of L0, which is only trivial when n = −2.
Notice that L−2 coincides with the center Z(L), as the L0 action on Z(L) is trivial
and dimZ(L) = dimL−2.

Absence of trivial L0-summand in the L = S(d, χ) case follows from [1, Lemma
6.3 (ii)]. �

As we have identified L with a subalgebra of L′, L0 ⊂ L also arises as a subalge-

bra of the annihilation algebra L′ of the current Lie pseudoalgebra L′ = CurH
′

H L.
In this setting

Proposition 6.1. The trivial isotypical component corresponding to the adjoint
action of L0 ⊂ L ⊂ L′ on L′ = O ⊗̂L is

— O ⊗ kE, where E ∈ W is the Euler vector field, when L = W (d); moreover
m⊗ kE ⊂ [O ⊗̂W>0,m ⊗̂W⊥].

— (0) when L = S(d, χ).
— O⊗ kE ′, where E ′ ∈ K is the contact Euler vector field, when L = K(d, θ);

moreover m⊗ kE ′ ⊂ [O ⊗̂K>0,m ⊗̂K⊥].
— O⊗Z(P) when L = H(d, χ, ω); moreover m2 ⊗Z(P) ⊂ [m ⊗̂ P⊥,m ⊗̂ P⊥].

Proof. The Lie bracket on L′ = O ⊗̂L is O-bilinear, so that if U ⊂ L is an ir-
reducible L0-summand, then O ⊗̂U is U -isotypical with respect to the action of
L0 ⊂ L ⊂ L′. Then the description of the trivial isotypical component follow from
Lemma 6.1.

As for m⊗ kE ⊂ [O ⊗̂L>0,m ⊗̂ L⊥] when L = W (d), resp. K(d, θ), it suffices to
prove that E , resp. E ′, lies in [L>0,L⊥]. This follows from the last claim in each
of [1, Lemmas 6.1, 6.3], as the semisimple Lie subalgebra of L denoted there by p
equals its derived subalgebra.

Lastly, when L = H(d, χ, ω), L = P ' PN is an irreducible central extension of
P/Z(P) = H ' HN , so that P equals its derived subalgebra. However [1, Lemma
6.3 (iii)] implicitly states that P⊥ = P≥−1 is a complement, as vector spaces,
to the center Z(P), so that [P⊥,P⊥] contains Z(P). The claim m2 ⊗ Z(P) ⊂
[m ⊗̂ P⊥,m ⊗̂ P⊥] now follows byO-bilinearity of the Lie bracket of L′ ' O ⊗̂P. �

A further description of L′, which is valid for all current Lie pseudoalgebra
and not only for simple ones, is in order. We have set up an explicit splitting
ς : X → X ′ to ι∗ : X ′ → X. As I := ker ι∗, we obtain the direct sum decomposition
X ′ = ς(X)⊕ I as right H-modules. Then correspondingly

L′ = (X + I)⊗H L = X ⊗H L⊕ I ⊗H L ' L+ I,
where we have set I := I ⊗H L. Under the identification L′ ' O ⊗̂L, one has
I = m ⊗̂ L so that this reads as L′ ' k ⊗̂ L+ m ⊗̂ L = L+ m ⊗̂ L.



20 A. D’ANDREA

In other words, L′ = Ln I is the semidirect sum of the subalgebra L with
the ideal I, yielding the isomorphism L′/I ' L of topological Lie algebras. By
Proposition 2.2 (iii), we argue that the above isomorphism generalizes to extended

annihilation algebras L̃′/I ' L̃.

6.2. Current representations. Let L be a Lie pseudoalgebra over H and ∗ :
L ⊗ V → (H ⊗ H) ⊗H V be a pseudoaction of L on the left H-module V . If

H ⊂ H ′, then we may construct both the current Lie pseudoalgebra L′ = CurH
′

H L

and the corresponding current H ′-module V ′ = CurH
′

H V := H ′ ⊗H V .

Proposition 6.2. There exists a unique pseudoaction of L′ on V ′ extending H ′-
bilinearly

(1⊗H a) ∗ (1⊗ v) =
∑
i

(fi ⊗ gi)⊗H′ (1⊗H vi), (6.1)

where a ∈ L, v ∈ V, fi, gi ∈ H and

a ∗ v =
∑
i

(fi ⊗ gi)⊗H vi. (6.2)

Then (6.1) defines a Lie pseudoalgebra representation of L′ on V ′ if and only if
(6.2) gives a Lie pseudoalgebra representation of L on V .

Proof. The fact that if V is a representation of L then V ′ is a representation of L′

is a trivial check. The converse depends on the fact that

(H ′ ⊗H ′ ⊗H ′)⊗H′ V ′ ' (H ′ ⊗H ′ ⊗H ′)⊗H′ (H ′ ⊗H V ) ' (H ′ ⊗H ′ ⊗H ′)⊗H V,

and the linear isomorphism

(H ′ ⊗H ′ ⊗H ′)⊗H′ V ′ 7→ H ′ ⊗H ′ ⊗ V ′

described in Corollary 2.1, under such identification, restricts on (H⊗H⊗H)⊗H′V
to the analogous isomorphism

(H ⊗H ⊗H)⊗H V → H ⊗H ⊗ V
for V , so that checking that (6.1) satisfies the axioms of a Lie pseudoalgebra rep-
resentation — on the set of H ′-linear generators of the form 1 ⊗H a, a ∈ L, and
1 ⊗H v, v ∈ V — is the same as checking that (6.2) does. However the axioms for
an H ′-Lie pseudoalgebra representations are invariant under H ′-linear combination,
and we are done. �

Remark 6.2. In simpler words, if V is a Lie pseudoalgebra representation of L, the

CurH
′

H L-module CurH
′

H V is obtained via extending by H ′-bilinearity the pseudoac-
tion (6.1) obtained by replacing ⊗H with ⊗H′ in each a ∗ v, where a ∈ L, v ∈ V .

If we choose, as usual, a basis {∂1, . . . , ∂r, ∂r+1, . . . , ∂N+r} of d′ in such a way
that {∂r+1, . . . , ∂N+r} is a basis of d ⊂ d′, then we may use the PBW basis of H ′

to uniquely express each element v ∈ CurH
′

H V as

v =
∑

K∈Zr×{0}⊂ZN+r

∂(K) ⊗H vK ,

as the d-components in elements of the PBW basis may be moved on the right of ⊗H
and H ′ is a free right H-module generated by elements ∂(K),K ∈ Zr×{0} ⊂ ZN+r.
Notice that coefficients vK ∈ V depend on the choice of the basis, but their H-linear
span only depends on v.
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If M ⊂ V ′ is an L′-submodule, denote now by M0 the H-submodule of V
generated by all coefficients mK of elements m ∈M .

Lemma 6.2. M0 is an L-submodule of V satisfying H ′ ⊗H (L · M0) ⊂ M ⊂
H ′ ⊗H M0.

Proof. Every m ∈ M is an H ′-linear combination of its coefficients, thus M ⊂
H ′ ⊗H M0. As for the other inclusion, express m ∈M in the form

m =
∑

L∈Zr×0⊂ZN+r

∂(L) ⊗H mL,

where L = (l1, . . . , lr, 0, . . . , 0) ∈ ZN+r and mL ∈ V . If a ∈ L satisfies

a ∗mL =
∑

K∈0×ZN⊂ZN+r

(∂(K) ⊗ 1)⊗H uK+L,

where, as before, K = (0, . . . , 0, kr+1, . . . , kN+r), we want to show that all elements
of the form 1⊗H uK+L lie in M . This follows immediately by computing

(1⊗ a) ∗m =
∑
K,L

(∂(K) ⊗ ∂(L))⊗H′ (1⊗H uK+L),

and using Lemma 2.1, along with Remark 2.3.
This shows that 1⊗H (L ·M0) ⊂M , so that also H ′⊗H (L ·M0) ⊂M . However

1⊗H (L ·M0) ⊂M implies L ·M0 ⊂M0, so that M0 ⊂ V is an L-submodule. �

Corollary 6.1. Let V be an irreducible L-module with a non-trivial L-action. Then

V ′ = CurH
′

H V is an irreducible L′ = CurH
′

H L-module.

Proof. Let (0) 6= M ⊂ V ′ be a submodule, M0 ⊂ V its coefficient submodule.
Then M0 is a nonzero L-submodule of V , so that M0 = V . Thus, by Lemma 6.2,
H ′ ⊗H (L · V ) ⊂ M ⊂ H ′ ⊗H V . However, L · V ⊂ V is an L-submodule of V ,
which cannot equal (0) as the L-action of V is non-trivial. Then L · V = V and
M = H ′ ⊗H V = V ′. �

Remark 6.3. Notice that if M0 ⊂ V is a maximal L-submodule such that the action

of L on V/M0 is non-trivial, then H ′ ⊗H M0 is maximal in CurH
′

H V = H ′ ⊗H V .

Indeed, CurH
′

H (V/M0) is irreducible by the above corollary; as the functor CurH
′

H is

exact, it commutes with taking quotient. Then CurH
′

H (V/M0) ' V ′/(H ′ ⊗H M0),
whence maximality of H ′ ⊗H M0 in V ′.

Corollary 6.2. Let M ( CurH
′

H V = V ′ be a maximal L′-submodule. Then

— either M0 ⊂ V is a maximal L-submodule and M = H ′ ⊗H M0;
— or M0 = V and the action of L′ on V ′/M is trivial.

Proof. If M0 ⊂ V is a proper non-maximal L−submodule, then we may locate
M0 ( M1 ( V , and M ⊂ H ′ ⊗H M0 ( H ′ ⊗H M1 ( V ′, thus showing M is not
maximal.

Viceversa, assume that M0 ( V is a maximal L−submodule. Then M ⊂ H ′⊗H
M0 ( V . By maximality of M , we get M = H ′ ⊗H M0. If instead M0 = V , then
H ′ ⊗H (L · V ) ⊂ M ( V ′. Then L · V ( V , so that the action of L on V/L · V is

trivial. However, V ′/M is a quotient of H ′ ⊗H V/L · V = CurH
′

H V/L · V showing
the action of L′ on V ′/M is trivial. �
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Our goal in this paper is figuring out to what extent the only irreducible repre-

sentations of CurH
′

H L are obtained by taking currents of irreducible representations
of L, when L is a simple primitive Lie pseudoalgebra.

7. An exceptional representation of CurH
′

H H(d, χ, ω)

Let L′ = CurH
′

H L where L = H(d, χ, ω) = He satisfies

[e ∗ e] =
∑
k

(∂k ⊗ ∂k)⊗H e. (7.1)

Here ∂ = ∂ − χ(∂), and we will be using the notation introduced in Sections 4.3
and 5.4. Notice that L′ = H ′ ⊗H He may (and will) be identified with H ′e.

Now assume that R = (Π+�U, ρ) is a finite-dimensional irreducible d+⊕sp(d, ω)-
module. We aim to find conditions characterizing the values of t ∈ d′ making the
following modification of the tensor module pseudoaction given in (5.3):

e ∗t (1⊗ v) =
∑
ij

(∂i∂j ⊗ 1)⊗H′ ((1⊗ ρ(f ij)v) (7.2)

−
∑
k

(∂k ⊗ 1)⊗H′ (1⊗ ρ(∂k + adsp ∂k)v − ∂k ⊗ v)

+ (1⊗ 1)⊗H′ (1⊗ ρ(c)v),

+ (t⊗ 1)⊗H′ (1⊗ v),

into a Lie pseudoalgebra representation of L′ = CurH
′

H L. Clearly, removing the last
summand in the right-hand side, i.e. setting t = 0, yields the current L′-module

CurH
′

H VH
χ,ω(R).

In analogy with Section 5.4, use the definition (adχ x)(∂) := [x, ∂] + χ(∂)x to
extend adχ to a map d′ → Hom(d, d′). Recall that s =

∑
k χ(∂k)∂k.

Proposition 7.1. Let t ∈ d′. Expression (7.2) defines a Lie pseudoalgebra repre-
sentation of L′ precisely when

• [t, s] = 0 and
• adχ t preserves d and lies in sp(d, ω).

Proof. We shall explicitly compute

e ∗t (e ∗t (1⊗ v))− (σ ⊗ idH)⊗H e ∗t (e ∗t (1⊗ v))− [e ∗ e] ∗t (1⊗ v) (7.3)

using [1, (3.15)-(3.19)], as this must vanish in order for ∗t to be a Lie pseudoalgebra
action of H(d, χ, ω). Recall that e ∗t (1⊗ v) = e ∗ (1⊗ v) + (t⊗ 1)⊗H′ (1⊗ v). As

[e ∗ e] =
∑
k(∂k ⊗ ∂k)⊗H′ e, then

[e ∗ e] ∗t (1⊗ v) = [e ∗ e] ∗ (1⊗ v) +
∑
k

(∂kt⊗ ∂k ⊗ 1 + ∂k ⊗ ∂kt⊗ 1)⊗H′ (1⊗ v).
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The computation of e ∗t (e ∗t (1⊗ v)) yields

e ∗t (e ∗t (1⊗ v)) = e ∗ (e ∗ (1⊗ v))

+
∑
i,j

(t⊗ ∂i∂j ⊗ 1 + ∂i∂j ⊗ t⊗ 1)⊗H′ (1⊗ ρ(f ij)v)

−
∑
k

(t⊗ ∂k ⊗ 1 + ∂k ⊗ t⊗ 1)⊗H′ (1⊗ ρ(∂k + adsp
χ (∂k))v)

+ (t⊗ 1⊗ 1 + 1⊗ t⊗ 1)⊗H′ (1⊗ ρ(c)v)

+
∑
k

(
t⊗ ∂k∂k ⊗ 1 + t⊗ ∂k ⊗ ∂k + ∂k∂

k ⊗ t⊗ 1

+ ∂k ⊗ t∂k ⊗ 1 + ∂k ⊗ t⊗ ∂k
)
⊗H′ (1⊗ v)

+ (t⊗ t⊗ 1)⊗H′ (1⊗ v).

When we use the above expressions in the computation of (7.3), all terms cancel
out, with the exception of∑

k

((
∂k ⊗ ([t, ∂k] + χ(∂k)t) + ([t, ∂k] + χ(∂k)t)⊗ ∂k

)
⊗ 1
)
⊗H′ (1⊗ v), (7.4)

which thus equals 0. Equation (7.4) forces

0 =
∑
k

(
∂k ⊗ ([t, ∂k] + χ(∂k)t) + ([t, ∂k] + χ(∂k)t)⊗ ∂k

)
(7.5)

− 1⊗
∑
k

χ(∂k) · ([t, ∂k] + χ(∂k)t) (7.6)

−
∑
k

χ(∂k) · ([t, ∂k] + χ(∂k)t)⊗ 1.

The three summands lie in d′⊗ d′,k⊗ d′, d′⊗k respectively, so they need to vanish
separately. The summand in (7.5) equals

0 =
∑
k

(
∂k ⊗ (adχ t)(∂

k) + (adχ t)(∂k)⊗ ∂k
)
, (7.7)

showing that adχ t preserves d and lies in sp(d, ω). The summand in (7.6) only
vanishes if

[t,
∑
k

χ(∂k)∂k] +
∑
k

χ(∂k)χ(∂k)t = 0. (7.8)

However the second term cancels as
∑
k ∂k ⊗ ∂k = −

∑
k ∂

k ⊗ ∂k so that (7.6)
rephrases as [t, s] = 0. The third summand is now dealt with similarly and cancels
out. �

Remark 7.1. When χ = 0, the above conditions translate into the fact that s
normalizes d and ad s ∈ sp(d, ω).

Example 7.1. Let d ⊂ d′ be abelian Lie algebras, χ = 0. Then [t, s] = 0 and
adχ t = 0 ∈ sp(d, ω) hold for every t ∈ d′. In particular (7.2) defines a Lie pseu-
doalgebra representation for every t ∈ d′.

Example 7.2. Let h, e, f be the standard generators of d′ = sl2, and choose
d = 〈h, e〉. Then [1, Example 8.1] shows that the H-linear span of

(2− h)⊗ e+ e⊗ h ∈W (d)
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is a subalgebra isomorphic to H(d, χ, ω), where ω(e ∧ h) = 1 and χ = ι2eω.
The only elements in d′ commuting with s = 2e are multiples of e, so there

is no t ∈ d′ \ d satisfying [t, s] = 0. Consequently, (7.2) does not define a Lie
pseudoalgebra representation for any choice of t ∈ d′ \ d, and all finite irreducible

CurH
′

H H(d, χ, ω)-modules are, in this case, current representations.

Whenever t ∈ d′ satisfies the conditions of Proposition 7.1, we shall denote by
VH
χ,ω,t,d′(R) = VH

χ,ω,t,d′(Π+, U) the corresponding Lie pseudoalgebra representation

of CurH
′

H H(d, χ, ω).

Theorem 7.1. Let t, t′ ∈ d′, with t− t′ ∈ d, be elements satisfying the conditions of
Proposition 7.1 and Π+, U be representations of the Lie algebras d+, sp(d, ω) respec-
tively. Also denote by π : d+ → d the canonical projection. Then VH

χ,ω,t′,d′(Π+, U)

and VH
χ,ω,t,d′((Π+)π∗(ιt′−tω), U) are isomorphic CurH

′

H H(d, χ, ω)-modules.

Proof. Set t′ = t + δ. As [s, t] = [s, t′] = 0, then [s, δ] = 0. Also, adχ t
′ and adχ t

both lie in sp(d, ω), hence adχ δ ∈ sp(d, ω) by linearity of adχ. Thus δ satisfies
conditions (1) of Lemma 4.1, which forces ιδω to be a traceform of d and χ(δ) = 0.
As

δ =
∑
k

ω(δ ∧ ∂k)∂k = −
∑
k

ω(δ ∧ ∂k)∂k,

then

(δ ⊗ 1)⊗H′ (1⊗ v) = −
∑
k

(∂k ⊗ 1)⊗H′ ((ιδω)(∂k)⊗ v) (7.9)

= −
∑
k

((∂k + χ(∂k))⊗ 1)⊗H′ ((ιδω)(∂k)⊗ v)

= −
∑
k

(∂k ⊗ 1)⊗H′ ((ιδω)(∂k)⊗ v)− (1⊗ 1)⊗H′ (((ιδω)(
∑
k

χ(∂k)∂k))⊗ v)

= −
∑
k

(∂k ⊗ 1)⊗H′ ((ιδω)(∂k)⊗ v),

as
(ιδω)(

∑
k

χ(∂k)∂k) = ω(δ ∧ s) = −χ(δ) = 0.

We may now rewrite the action of CurH
′

H H(d, χ, ω) on VH
χ,ω,t′,d′(Π+, U) as follows:

e ∗t′ (1⊗ v) = e ∗t (1⊗ v) + (δ ⊗ 1)⊗H′ (1⊗ v) (7.10)

= e ∗t −
∑
k

(∂k ⊗ 1)⊗H′ ((ιδω)(∂k)⊗ v)

=
∑
ij

(∂i∂j ⊗ 1)⊗H′ ((1⊗ f ij .v)

−
∑
k

(∂k ⊗ 1)⊗H′ (1⊗ ((∂k.v + (ιδω)(∂k) v) + (adsp ∂k).v))− ∂k ⊗ v)

+ (1⊗ 1)⊗H′ (1⊗ c.v),

+ (t⊗ 1)⊗H′ (1⊗ v).

As ιδω is a traceform on d, and the action of c ∈ d+ is left unchanged, the con-
tribution (ιδω)(∂k) may be absorbed in the d+ representation, thus yielding the

pseudoaction of CurH
′

H H(d, χ, ω) on VH
χ,ω,t,d′((Π+)π∗(ιδω), U). �
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8. Irreducible representations of current Lie pseudoalgebras not of
type H

The usual strategy towards describing irreducible representations of a simple Lie
pseudoalgebra L is by locating singular vectors for the action of the corresponding
annihilation algebra, i.e., vectors that are killed by the action of L>0. In this paper,
our point of view is that, as far as reasonable, the action of L′ is recovered from
that of L ⊂ L′, and singular vectors for the two actions coincide: in order for this
philosophy to hold, one must introduce a few tweaks for current Lie pseudoalgebras
of type H, so that we will treat other cases first. Throughout this section, L will be

a primitive Lie pseudoalgebra from Examples 4.1-4.4, and L′ = CurH
′

H L its current
pseudoalgebra.

We choose S ⊂ L, ` ∈ N, as in Section 4 and endow the annihilation algebra
L with the filtration Ln = Fn+`−1X ⊗H S. As S ⊂ L ' 1 ⊗H L ⊂ H ′ ⊗H L =

CurH
′

H L = L′ still generates L′ as an H ′-module, we may choose it in order build
up a similar filtration for its annihilation algebra L′ = X ′⊗H′L′, that we will freely
identify with X ′ ⊗H L.

Notice that the value of ` ≤ 2 is the same for L and L′ and that I = I ⊗H L =
I ⊗H S ⊂ L′1−` ⊂ L′−1, as I ⊂ F0X

′. We will employ the notation Ii = Ii ⊗H L =

Ii ⊗H S ⊂ L′, i ≥ 0, where Ii is the i-fold power of the ideal I ⊂ X ′, so that
I0 = L′, I1 = I.

The computation of the normalizer of Ln in L̃ is accomplished in [2, 3, 4]. Our

present goal is to find a large subalgebra N ′ ⊂ L̃′ normalizing L′n, n ≥ 0. We
already know that [L′0,L′n] ⊂ L′n.

8.1. I normalizes L′n.

Proposition 8.1. Ii is an ideal of L′. Also [Ii, Ij ] ⊂ Ii+j and Ii ⊂ L′i−s.

Proof. Structure constants in Lie pseudobracket of L only involve elements in H.
As (I).d ⊂ I, then also (Ii).H ⊂ Ii, thus proving the first two claim. The last
claim is clear, as Ii ⊂ Fi−1X

′. �

Proposition 8.2. I = I1 normalizes L′n for each n.

Proof. By Proposition 4.1, S has been chosen in such a way that structure constants
are contained in (d+k)⊗(d+k). Notice that (I).d ⊂ I, and (FkX

′).d ⊂ (FkX
′).d′ ⊂

Fk−1X. Thus

[I,L′n] = [I ⊗H S,Fn+`−1X
′ ⊗H S] ⊂ (I · Fn+`−2X ′)⊗H S.

However, this lies in Fn+`−1X
′ ⊗H S = L′n as I ⊂ F0X

′, see Remark 2.4. �

8.2. Some normalizing elements not contained in L′. We will henceforth
assume that L is not isomorphic to H(d, χ, ω).

We have seen above that we have a surjective homomorphisms algebras ι∗⊗H idL :
L′ → L along with a splitting ς ⊗H idL : L → L′. Moreover, L′ may be identified
with O ⊗ L, where O = k[[x1, . . . , xr]], and the Lie bracket of L′, under these
identification, extends O-bilinearly that of L.

As L is a primitive Lie H-pseudoalgebra, which is not isomorphic to H(d, χ, ω),
then L is simple, so that

Der(O⊗̂L) = (DerO ⊗ idL)n(O ⊗̂DerL),
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see for instance [1, Proposition 6.4(ii)]. Here L is the annihilation algebra of one of
the primitive Lie pseudoalgebras, so DerL equals

— k ad E + adL when L = S(d, χ).
— adL ' L in all other cases.

Notice that L is isomorphic to g, when L is a simple finite-dimensional Lie algebra
over g, whereas L ' WN , (resp. KN ) when L = W (d) (resp. K(d, θ)). Further-
more, the non-inner derivation E stabilizes adL and provides an explicit splitting
of DerL/ adL ' kE . Set D to equal E when L = S(d, χ) and 0 when L = W (d) or
K(d, θ). Then we may summarize the above information in the following

Proposition 8.3. Let L 6= H(d, χ, ω) be a primitive simple Lie pseudoalgebra,

L′ = CurH
′

H L, and denote by L,L′ the corresponding annihilation Lie algebras.
Then

DerL′ = ((DerO ⊗ idL) + (O⊗D))n(O ⊗̂ adL). (8.1)

Let ∂ ∈ d ⊂ d′ ⊂ dnL′ = L̃′. Then the adjoint action of ∂ on L′ is a derivation
of L′, and we may consider its projection π1(ad ∂) ∈ (DerO⊗ idL) +O⊗D on the
first summand of the above decomposition. As (8.1) is a semidirect sum, then π1
is a Lie algebra homomorphism, whence d 3 ∂ 7→ π1(ad ∂) is as well. When ∂ ∈ d,

denote now by ∂̂ the element ∂− [π2(ad ∂)] ∈ L̃′, where we denote by [π2(ad ∂)] the
unique element in L′ inducing the inner derivation π2(ad ∂) ∈ O ⊗̂ adL = adL′.
The action of ∂̂ on L′ coincides with π1(ad ∂), so that

η : d 3 ∂ 7→ ∂̂ ∈ (DerO ⊗ idL) +O ⊗D

is a Lie algebra homomorphism. We denote by d̂ the Lie subalgebra consisting of

all ∂̂, ∂ ∈ d.

Remark 8.1. Of course, when L ' g is a simple Lie algebra over k, then d = (0),
and η is the trivial map.

Remark 8.2. The special case H = H ′, L = L′ has already been treated in [2, 3, 4].

Here O = k, so that DerO = 0 and elements from d̂ act on L as multiples of D.

— d̂ coincides with d̃ ⊂ L̃ from [2, 3] when L equals either W (d) or K(d, θ).

As D = 0, the subalgebra d̂ ⊂ L̃ centralizes L.

— d̂ is the same as d̂ ⊂ L̃ in [2] when L = S(d, χ).

As I ⊂ L′ is an ideal, and the left action of d on L′ stabilizes I, we conclude

that all elements ∂̂, ∂ ∈ d, stabilize I. Then

Proposition 8.4. Denote by (DerO)0 the family of all derivations of O mapping

O to its maximal ideal m. Then the adjoint action of ∂̂ ∈ L̃ on L lies in (DerO)0⊗
idL+O ⊗D for all ∂ ∈ d.

Proof. The derivationD stabilizes I = m ⊗̂ L. Furthermore, elements in DerO⊗idL
stabilize I iff the corresponding derivation stabilizes I. �

Corollary 8.1. Elements in d̂ normalize L′n and centralize L0.
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Proof. Identify L′ with X ′⊗HS ' (O ⊗̂X)⊗HS ' O ⊗̂L. Under this identification
L′n = Fn+`−1X

′ ⊗H S corresponds to∑
i+j=n

mi ⊗̂ Lj .

Now, D stabilizes each Lj , so that O ⊗ D stabilizes all of the above summands.
Elements from (DerO)0 stabilize mi and do nothing on the tensor factor lying in

L, so that they also stabilize all of the above summands. As the adjoint action of d̂
on L′ lies in (DerO)0⊗ idL+O⊗D, and D centralizes L0, the claim is proved. �

Theorem 8.1. For each n ≥ 0, the normalizer of L′n in L̃′ contains L≥0 + I + d̂.

Proof. We have proved above that the normalizer contains L′0 + I + d̂. When

L = W (d), S(d, χ), then L′0 =
∑
j m

j ⊗̂ L−j so that this equals L0 + I + d̂, and

L0 = L≥0.
When L = K(d, θ), recall that the filtrations {Ln} and {L≥n} do not coincide.

However, the normalizer of L′n also contains 1 ⊗ E ′. Now use L≥0 = L0 + E ′ to

obtain 1⊗ E ′ + L′0 + I + d̂ = L≥0 + I + d̂. �

8.3. Finite-dimensional irreducible representations of (L≥0 +I+ d̂)/L′n. As

N ′ = L≥0 + I + d̂ normalizes L′n in L̃′, if V ′ is an L̃′-module and R ⊂ V ′ is a
finite-dimensional subspace killed by L′n, then the action of N ′ must stabilize R.
However, if the action of N ′ on R is irreducible, a large part of N ′ will have to act
trivially on R.

Proposition 8.5. When n ≥ 0, the subalgebra (L>0 + I + L′n)/L′n is a solvable
ideal of N ′/L′n.

Proof. First of all,

L′n ⊂ L′0 ⊂ L0 + I ⊂ L≥0 + I ⊂ N ′,
so that L′n is an ideal of N ′. We already know that I is an ideal of the whole

L̃′, so I + Ln is an ideal of N ′ as well. Furthermore, [Ij , Ik] ⊂ Ij+k forces the
lower central sequence of I to lie in In+1 ⊂ L′n+2−` ⊂ L′n after n+ 1 steps, so that
(I + L′n)/L′n is a nilpotent, hence solvable, ideal of N ′/L′n. We are thus left with
showing that L>0 projects to a solvable ideal of N ′/(I + L′n).

Now, L>0 is a subalgebra of L ⊂ L′ and the adjoint action of L≥0 + I + L′n
maps it to L>0 + I +L′n, whence L>0 projects to an ideal of N ′/(I +L′n). Again,
[L≥j ,L≥k] ⊂ L≥j+k and L≥i ⊂ Lb(i−1)/2c, forces the lower central sequence of L>0

to lie inside Ln ⊂ L′n ⊂ I +L′n within 2n+ 1 steps. Thus L′n projects to a solvable
ideal of N ′/(I + L′n), proving the claim. �

Proposition 8.6. Let R be a finite-dimensional irreducible N ′-module, with a
trivial action of L′n, where n ≥ 0. Then L>0 + I acts trivially on R.

Proof. We already know that L>0 + I projects to a solvable ideal of the finite-
dimensional Lie algebraN ′/Ln. Then we may use Proposition 6.1 and the argument
in [2, Lemma 3.4] applied to both the semisimple part and the center of the reductive
Lie algebra L0 ⊂ N in order to show that (L>0 + I) ∩ O ⊗̂L⊥ acts trivially on R.

However, both L>0 and m ⊗̂ L⊥ lie inside O ⊗̂L⊥, so they need to act trivially
on R. Recall now that I = m ⊗̂ L⊥ + m ⊗ D. We may then use Proposition 6.1
to argue that elements from m ⊗ D ⊂ [O ⊗̂L>0,m ⊗̂ L⊥] arise as Lie brackets of
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elements acting trivially on R. We thus conclude that both L>0 and I act trivially
on R. �

8.4. Irreducible representations and tensor modules. As usual, L is a prim-

itive simple Lie H-pseudoalgebra not isomorphic to H(d, χ, ω) and L′ = CurH
′

H L is
the corresponding current simple Lie pseudoalgebra.

Let V ′ be a finite irreducible representation of L, which has a nontrivial pseu-
doaction by definition. Then kern V

′ := {v ∈ V ′ | L′nv = 0} is a finite dimensional
vector space for all choices of n, and is nonzero for sufficiently large values of n, as
V ′ is a discrete continuous representation of L′. As N ′ normalizes L′n, its action
on V ′ preserves kern V

′. Pick a minimal nonzero, hence irreducibile, N ′-submodule
R ⊂ V ′. Then the action of N ′ = L≥0 + I + d̂ factors through the quotient
N ′/(L>0 + I) ' (d̂+L≥0)/L>0, which is isomorphic to the direct sum Lie algebra
d ⊕ L0 by Corollary 8.1. In particular, L′1 ⊂ L>0 + I acts trivially on R, showing
R ⊂ ker1 V

′.

Theorem 8.2. Let V ′ be a finite irreducible representation of L′ = CurH
′

H L, where
L 6= H(d, χ, ω) is a primitive finite simple Lie pseudoalgebra. Then there exists

an irreducible finite-dimensional d̂⊕L0-module R such that V ′ is a quotient of the

current tensor module CurH
′

H V(R) by a maximal submodule, where V(R) is a tensor
module for L as in Sections 5.1-5.3 or a finite-dimensional representation of the
Lie algebra L when d = (0).

Proof. We only deal with the d 6= (0) case, as the Lie algebra case is completely
analogous. Recall that ker1 V

′ is finite-dimensional. If 0 6= R ⊂ ker1 V
′ is a

minimal, hence irreducible, N ′-submodule, then the induced module IndL̃N ′ R maps

surjectively on V ′ by irreducibility. As L̃′ = d + N ′, then IndL̃N ′ R ' U(∂′) ⊗ R,
and it is thus a finite left H ′-module by multiplication on the first tensor factor.

We know by Proposition 8.6 that L>0 + I acts trivially on R, so we may use
Theorem 3.1 to write down the Lie pseudoalgebra action of L′ on H ′ ⊗ R. This
yields

(1⊗H s) ∗ (1⊗ u) =
∑

K∈NN+r

(S(∂(K))⊗ 1)⊗H′ (1⊗ (xK ⊗H′ s) · u) (8.2)

=
∑

K∈0×NN
(S(∂(K))⊗ 1)⊗H′ (1⊗ (xK ⊗H′ s) · u), (8.3)

where s ∈ S, u ∈ R and S ⊂ L is as in Section 4. As the only S(∂(K)) involved in
(8.3) lie in d, and the corresponding Fourier coefficients xK ⊗H′ s all lie in L ⊂ L′,
we may use Proposition 6.2 to conclude that the pseudoaction

s ∗ (1⊗ u) =
∑
K∈NN

(S(∂(K))⊗ 1)⊗H (1⊗ (xK ⊗H′ s) · u)

defines a Lie pseudoalgebra representation of L on H⊗R, which coincides with the
corresponding L-tensor module V(R). Then the L′-representation defined by (8.2)

coincides with CurH
′

H V(R). �

Corollary 8.2. Every finite irreducible representation of L′ = CurH
′

H L, where

L 6= H(d, χ, ω) is a primitive Lie pseudoalgebra, is of the form CurH
′

H V , for some
finite irreducible L-module V .
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Proof. By Theorem 8.2, every finite irreducible L′-module V ′ arises as a quotient

of CurH
′

H V(R) for an opportune choice of a tensor module V(R) for the primitive

Lie pseudoalgebra L. If V(R) is irreducible, then CurH
′

H V(R) is irreducible as well

by Corollary 6.1. Thus V(R) ' CurH
′

H V(R) and we are done.
If V(R) is not irreducible, then we may find a maximal L′-submodule M ⊂

CurH
′

H V(R) such that V ′ ' V(R)/M . As the L′-action on V ′ is nontrivial, we may

apply Corollary 6.2 and conclude that M = CurH
′

H M0, where M0 ⊂ V(R) is a

maximal L-submodule. Then V ′ = (CurH
′

H V(R))/(CurH
′

H M0) ' CurH
′

H (V(R)/M0)
and V := V(R)/M0 is an irreducible L-module. Finiteness, i.e, Noetherianity, of V
follows easily from finiteness of V ′ and exactness of the current functor. �

9. Irreducible representations of current Lie pseudoalgebras of
type H

In this section, we review the strategy of Section 8 in the case of the simple Lie

pseudoalgebra CurH
′

H H(d, χ, ω), highlighting the relevant differences, which depend
on the presence of nontrivial central elements in the corresponding annihilation
algebras. Once again, we employ the notation introduced in Sections 4.3 and 5.4,
so that L = H(d, χ, ω) = He satisfies

[e ∗ e] =
∑
k

(∂k ⊗ ∂k)⊗H e.

Its annihilation algebra P ' PN is an irreducible central extension of the simple
linearly compact Lie algebra HN from the Cartan list. More precisely, Z(P) is
one-dimensional, spanned by e−χ ⊗H e, and H := P/Z(P).

9.1. Derivations of O ⊗̂PN . It is well known that DerH = k ad E + adH, where
ad E is the semisimple derivation of HN inducing the standard grading. As P ' PN
is itself a graded Lie algebra, and its grading is compatible with that of its quotient
HN , we will also denote by ad E the corresponding derivation of PN . Then

Proposition 9.1. One has DerP = k ad E n adP. Furthermore,

Der(O ⊗̂P) = (DerO⊗ idP)n(O ⊗̂ DerP) = (DerO⊗ idP nO⊗ad E)nO ⊗̂ adP.

Lemma 9.1. Let g be a Lie algebra, d ∈ Der g a derivation whose image is con-
tained in the center Z(g). If g = [g, g], then d = 0.

Proof. One has d[x, y] = [d(x), y] + [x, d(y)]. As Im d ⊂ Z(g), then d[x, y] = 0 for
every x, y ∈ g. �

Proof of Proposition 9.1. As H ' HN is a linearly compact simple Lie algebra, we
know from [1, Proposition 6.4(ii)] that Der(O ⊗̂H) = DerO ⊗ idH+O ⊗̂ DerH.

Let δ ∈ Der(O ⊗̂P). Every derivation of a Lie algebra stabilizes its center,

so δ induces a derivation δ̃ of (O ⊗̂P)/Z(O ⊗̂P) ' O ⊗̂H. Then there exist d ∈
DerO, w ∈ H, c ∈ k, such that

δ̃(φ⊗ x) = d(φ)⊗ x+ φ⊗ ([w, x] + c ad E(x)),

Choose a lifting w ∈ P of w ∈ H. Then

δ(φ⊗ x) ≡ d(φ)⊗ x+ φ⊗ ([w, x] + c ad E(x)) mod Z(O ⊗̂P),
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so that δ− (d⊗1 +φ⊗ (adw+ c ad E)) is a derivation of O ⊗̂P mapping everything
to the center. However, P equals its derived Lie algebra, so the same holds of O ⊗̂P
and we may use Lemma 9.1 to conclude. The case r = 0,O = k takes care of the
first claim. �

9.2. The normalizer of P ′n, n > 0, in P̃ ′. Let L = H(d, χ, ω), L′ = CurH
′

H L
and denote by P,P ′ the corresponding annihilation algebras. We have seen that
ι∗ : X ′ → X induces a projection P ′ → P which admits a splitting; we thus obtain a
subalgebra P ⊂ P ′ and the Lie bracket on P ′ ' O ⊗̂P, where O = (H ′H+)⊥ ⊂ X ′,
extends O-bilinearly that of P. If I = (H ′H)⊥, then X ′ = X + I and P ′ = P n I,
where I = I ⊗H L. Notice that I corresponds to m ⊗̂P under the identification
P ′ ' O ⊗̂P. As usual, we denote by {Pj}, {P ′j} the filtrations of P,P ′ defined as
in Section 3.2, see also the beginning of Section 8. We already know that I and
P ′0 both normalize each P ′n. We also denote by Pk the graded component of P of
degree k ≥ 2.

Choose ∂ ∈ d ⊂ d′ ⊂ dnP ′ =: P̃ ′. Then the adjoint action of ∂ on P ′ defines
a derivation of P ′ ' O ⊗̂P. Using Proposition 9.1 we understand that projecting
DerO ⊗̂P on the first summand of the semidirect decomposition

Der(O ⊗̂P) = (DerO ⊗ idP +O ⊗ ad E)nO ⊗̂ adP

defines a Lie algebra homomorphism, so that we may find γ(∂) ∈ P ′ so that the

adjoint action of the difference ∂̂ = ∂ − γ(∂) ∈ P̃ ′ on P ′ = O ⊗̂P is induced by
an element of DerO acting on the first tensor factor plus a suitable O-multiple of
ad E . Notice that γ(∂) is only determined modulo Z(P ′) = O⊗Z(P), but we may

choose it in a unique way if we demand that γ(∂) ∈ O ⊗̂L−1. Denote by d̂ the Lie

subalgebra of L̃′ generated by elements ∂̂, ∂ ∈ d. Notice that this is not k-linearly
generated by the above elements.

Proposition 9.2. The adjoint action of d̂ on P ′ normalizes P and centralizes P0.

The map d 3 ∂ 7→ [∂̂] ∈ d̂/(d̂ ∩ Z(P ′)) is a Lie algebra isomorphism.

Proposition 9.3. The Lie algebra N ′ = d̂ + P≥0 + I + Z(P ′) normalizes P ′n for
every n > 0.

Proof. We know that P ′0, I, d̂ and Z(P ′) all normalize P ′n, so that their sum does so
too. However, from P ′ = P+I follows P ′0 ⊂ P0 +I. As the filtration on P induced
by the grading coincide with our standard filtration, see Section 4.2, we also obtain
P0 = P≥0. We conclude that N ′ = d̂ +P ′0 + I +Z(P ′) = d̂ +P≥0 + I +O ⊗̂Z(P)
normalizes P ′n. Notice that P0 = P≥0 ⊂ P ′ is a subalgebra and that I, Z(P ′) are

ideals, so the sum P≥0 + I + Z(P ′) is a subalgebra of P ′. Also, d̂ is a subalgebra

of P̂ ′ and normalizes P≥0 + I + Z(P ′), so that N ′ is a subalgebra of P̃ ′. �

Lemma 9.2. The sum

N ′ = (d̂ + P0 + (spank〈1, x1, . . . , xr〉 ⊗ Z(P))⊕ (P>0 + m ⊗̂ P⊥ + m2 ⊗̂Z(P))

is a direct sum decomposition as vector subspaces. Moreover, the second sum-
mand on the right-hand side is an ideal of N ′. The quotient N ′/(P>0 +m ⊗̂ P⊥ +
m2 ⊗̂Z(P)) is thus isomorphic to

(d̂ + P0 +O ⊗̂Z(P))/(m2 ⊗̂Z(P)).
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Proof. Equality follows from P≥0 = P0 +P>0 and I = m ⊗̂ P = m ⊗̂ (P⊥ +Z(P))
by noticing that Z(P ′) = O ⊗̂Z(P) and O = spank〈1, x1, . . . , xr〉+ m2.

The second summand on the right-hand side is a subalgebra of P ′ as P⊥ = P≥−1.
It is an ideal of N ′ since P>0,P⊥, Z(P) are all homogeneous for the grading, and

are thus d̂ + P0-stable. �

Remark 9.1. Recall that d̂ = D + [D,D], where D = spank〈∂, ∂ ∈ d〉. The Lie

algebra d̂ is thus a finite-dimensional subalgebra of d + O ⊗̂Z(P) ⊂ dnP ′ ⊂
d′nP ′ =: P̃ ′. We know that d̂ centralizes P0, so that d̂ + P0 = d̂ ⊕ P0 is a
direct sum of Lie algebras. However, d̂ does not necessarily centralize P ′ = O ⊗̂P,
though it normalizes each mj ⊗̂ Pk.

Lemma 9.3. Let L = H(d, χ, ω), L′ = CurH
′

H L, and P̃ = dnP, P̃ ′ = d′nP ′ be
the corresponding extended annihilation algebras. Then the quotient Lie algebra

N ′k := (d̂ + P0 +O ⊗̂Z(P))/(mk ⊗̂Z(P))

is isomorphic to

— d⊕ sp(d, ω) when k = 0;
— d+ ⊕ sp(d, ω) when k = 1,

Thus, N ′2 is an abelian extension of both N ′0 and N ′1, and the intersection [N ′2,N ′2]∩
(O/m2) ⊗̂Z(P) is only contained in (m/m2) ⊗̂Z(P) when χ = 0 and ω is exact.

Proof. Case k = 0: First of all, the sum d̂ + P0 is a direct sum of Lie algebras, as
d̂ centralizes P0. Its intersection with O ⊗̂Z(P) may only lie in d̂, as Z(P) lies in
degree −2, and is therefore trivial. The statement then follows from Remark 9.1.
Case k = 1 follows from Proposition 2.2 (iii). The last claim is then immediate. �

The following consequence of the Cartan-Jacobson theorem is well known.

Lemma 9.4. Let

0→ a
i→ e

π→ g→ 0 (9.1)

be an extension of the Lie algebra g by the abelian ideal a. If (V, ρ) is a finite-
dimensional irreducible representation of e, then there exists a splitting (as vector
spaces) s : g→ e such that ρ ◦ s : g→ gl(V ) is a Lie algebra homomorphism.

Proof. By the Cartan-Jacobson theorem, each element from a ∈ i(a) act on V via
multiplication by a scalar ξ(a), thus yielding a linear form ξ : a → k whose kernel
ker ξ = a∩ ker ρ has codimension at most 1 in a. If we set a = a/ ker ξ, e = e/ ker ξ,
then e is an extension of g by the abelian ideal a, and ρ factors through e with a
nontrivial action of a on V .

If a = 0, or equivalently ξ = 0, then choose any section s : g → a as vector
spaces. Then [s(g), s(h)] = s([g, h]) mod a for every g, h ∈ g, and as a ⊂ ker ρ we
obtain that ρ ◦ s : g→ gl(V ) is a Lie algebra homomorphism.

We may thus assume without loss of generality that ξ 6= 0 and dim a = 1.
Nonzero elements in a act via multiplication by nontrivial scalars on V , so they
cannot be commutators in e; this forces the adjoint action of e on a to be trivial, so
that e is a central extension of g, and [e, e] to intersect a trivially, so that the central
extension is not irreducible, and must admit a Lie algebra splitting s : g→ e. Any
lifting s : g → e of s will then satisfy [s(g), s(h)] = s([g, h]) mod ker ξ, whence
φ = ρ ◦ s : g→ gl(V ) is a Lie algebra homomorphism. �
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Remark 9.2. If s : g→ e is a splitting of (9.1), then every g ∈ e may be decomposed
as

g = s(π(g)) + (g − s(π(g))),

where g − s(π(g)) ∈ i(a). When φ = ρ ◦ s : g → gl(V ) is a Lie algebra homomor-
phism, then

ρ(g) = φ(π(g)) + ξ(i−1(g − s(π(g)))) idV .

In other words, each finite-dimensional irreducible representation V of an abelian
extension e of g may only differ from an opportune irreducible action of g on V by
multiples of idV .

9.3. Finite dimensional irreducible representations of N ′/Pn, n ≥ 0. Our

setting is as in Section 7. L = H(d, χ, ω), L′ = CurH
′

H L and P̃, P̃ ′ are the cor-
responding extended annihilation algebras. V ′ is an irreducible representation of
L′, so that the L′-action on V ′ is non-trivial and kern V

′ = {v ∈ V ′ | P ′nv = 0}
is a nonzero finite-dimensional vector subspace of V ′ when for sufficiently large
values of n. Then N ′ stabilizes kern V

′, as N ′ normalizes P ′n. If R is a nonzero

N ′-submodule of kern V
′, then IndP̃

′

N ′ R projects to V ′. Without loss of generality,
we may assume R to be N ′-irreducible. The following fact is then going to prove
useful.

Lemma 9.5. Let R be an irreducible finite-dimensional N ′-module with a trivial
action of P ′n. Then P>0 + m ⊗̂ P⊥ + m2 ⊗̂Z(P) acts trivially on R.

Proof. The descending central series of all three summands eventually sits inside
P ′n, so that their sum is an ideal, by Lemma 9.2, projecting to the radical of
N ′/P ′n. However, the adjoint action of P0 on the first two summands decomposes
as a sum of nontrivial irreducible representations, whereas the third summand lies
in [m ⊗̂ P⊥,m ⊗̂ P⊥]. We may then use [2, Lemma 3.4] to conclude. �

Proposition 9.4. Let R be an irreducible finite-dimensional N ′-module with a
trivial action of P ′n. Then the action of N ′ on R factors through

N ′/(P>0 + m ⊗̂ P⊥ + m2 ⊗̂Z(P)) ' (d̂⊕ P0) + (O/m2) ⊗̂Z(P) = N ′2.

If ρ : N ′2 → gl(R) denotes the above action, one may find an irreducible action
φ : N ′1 → gl(R) such that ρ(x) − φ(x + m ⊗̂Z(P ′)) is a scalar multiple of idR for
every x ∈ N ′2.

We may summarize the last proposition as follows: if V ′ is a finite irreducible
representation of the Lie pseudoalgebra L′, then one may find a finite dimensional

irreducible N ′-module R such that V ′ is a quotient of IndP̃
′

N ′ R, and the action of
N ′ on R is uniquely described by that of d⊕P0, along with a suitable scalar action
of the abelian ideal (m/m2) ⊗̂Z(P), which however does not affect irreducibility of
R.

As P̃ ′ = d′ +N ′, then IndP̃
′

N ′ R is isomorphic to U(d′) ⊗ R, where the d′-action
is obtained by left multiplication on the first tensor factor.

Theorem 9.1. Let V ′ be a finite irreducible representation of the current Lie pseu-

doalgebra L′ = CurH
′

H H(d, χ, ω). Then there exists a finite-dimensional irreducible
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d+ ⊕ sp(d, ω)-module R = Π � U such that V ′ is a quotient of the left H ′-module
H ′ ⊗R, endowed with the pseudoaction

e ∗ (1⊗ v) =
∑
ij

(∂i∂j ⊗ 1)⊗H′ (1⊗ f ij .v)

−
∑
k

(∂k ⊗ 1)⊗H′ (1⊗ (∂k + adsp(∂k)).v − ∂k ⊗ v)

+ (1⊗ 1)⊗H′ (1⊗ c.v)

+ (t⊗ 1)⊗H′ (1⊗ v).

where v ∈ R and t may be chosen so that either t = 0 or t ∈ d′ \ d.

Proof. Let R ⊂ ker1 V
′ be a (finite-dimensional) irreducible N ′-summand. Then

the N ′-action on R factors through the quotient N ′2, and one may use Lemma 9.4
to find a section of N ′1 in N ′2 in order to express the above N ′2-action on R by means
of an irreducible action of N ′1 ' d+ ⊕ sp(d, ω), at least up to adding multiples of
idR. One may then proceed similarly to [4, Proposition 6.3], while expressing the
action of N ′2 on v ∈ R as the sum of the N ′1-action and scalar multiples of v. The
extra terms that arise, with respect to the ordinary tensor module pseudoaction,
are of two kinds: first, there are terms of the form

r∑
i=1

(S(∂i)⊗ 1)⊗H′ (1⊗ (xi ⊗ c).v), (9.2)

where c = e−χ⊗H e ∈ P ∈ Z(P) is the linear generator of the center of P, that occur
because of the possibly nontrivial (scalar) action of (m/m2)⊗Z(P) on R. Secondly,
there are extra scalar terms which originate from expressing the N ′2-action via an
irreducible N ′1-action. Adding things up yields a total contribution of the form

(t⊗ 1)⊗H′ (1⊗ v),

where t is an element of d′ whose projection to the vector space quotient d′/d
provides a complete description of the central action of (m/m2) ⊗ Z(P) by means
of a linear functional on m/m2 ' (d′/d)∗.

Notice that when m ⊗̂Z(P) acts trivially, then both extra terms vanish and we
may choose t = 0. If instead the m ⊗̂Z(P) is nontrivial, then the second summation
lies in (d⊗ 1)⊗H′ (1⊗ v), and cannot cancel with the first contribution. �

We denote the above L′-module by VH
χ,ω,t,d′(R).

Remark 9.3. If t = 0, then VH
χ,ω,0,d′(R) ' CurH

′

H VH
χ,ω(R), where VH

χ,ω(R) is as in

Section 5.4. When t 6= 0, then adχ preserves d and lies in sp(d, ω). In particular
t := kt + d is a Lie subalgebra of d′ strictly containing d, and VH

χ,ω,t,d′(R) =

CurH
′

U(t) VH
χ,ω,t,t(R).

10. Singular vectors and irreducibility

Let L be one of the finite primitive simple Lie pseudoalgebras listed in Section
4, and consider a finite representation V ′ of the current Lie pseudoalgebra L′ =

CurH
′

H L. We know that kern V
′ ⊂ V ′ is nonzero for sufficiently large values of n

and is stabilized by the action of N ′ = d̂ + L≥0 + I ⊂ L̃′. Moreover, every finite-
dimensional irreducible N ′-submodule of kern V

′ lies in ker1 V
′ and has a trivial
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action of the ideal Z = L>0 + m⊗L⊥ + mk ⊗L, where k = 2 when L = H(d, χ, ω)

and k = 1 otherwise. If L 6= H(d, χ, ω), then N ′/Z ' d̂⊕ L0 is isomorphic to

— d⊕ gl d when L = W (d);
— d⊕ sl d when L = S(d, χ);
— d⊕ sp(ker θ,dθ) when L = K(d, θ).

When L = H(d, χ, ω), instead, N ′/Z is an abelian extension of d+ ⊕ sp(d, ω).

Definition 10.1. Let V ′ be a representation of a simple current Lie pseudoalgebra
L′. An element v ∈ V ′ is a singular vector if Z.v = 0. The set of all singular vectors
sing V ′ := {v ∈ V ′ | Z.v = 0} ⊂ ker1 V

′ is a subspace of V ′.

We have already showed that sing V ′ is a finite-dimensional N ′-submodule of V ′

as soon as V ′ is a finite representation of L with a nontrivial action, e.g., when V ′

is a finite irreducible L′-module.

Proposition 10.1. Let L be a primitive Lie pseudoalgebra, and S ⊂ L, ` ∈ N, as

in Section 4. If V ′ is a finite Lie pseudoalgebra representation of L′ = CurH
′

H L,
then

(1⊗H S) ∗ (sing V ′) ⊂ (F`H ⊗k)⊗H′ (F1H) · (sing V ′) +

r∑
k=1

(∂i⊗ 1)⊗H′ (sing V ′),

and the second summand is possibly nonzero only when L = H(d, χ, ω).

Proof. Follows by using Theorem 3.1 with a PBW basis of H ′ corresponding to a
basis {∂1, . . . , ∂N+r} of d′ such that ∂r+1, . . . , ∂N+r is a basis of d. �

We have already seen that IndL̃
′

N ′ R ' H ′ ⊗ R is a finite L′-module projecting

to V ′. It is (isomorphic to) a current representation CurH
′

H V(R) when the second
summand vanishes, and to Vt,d′(R), t ∈ d′ \ d, otherwise.

10.1. Singular vectors in current modules. Whenever V is an L-module, we
set kerV := {v ∈ V |L ∗ v = 0}. It is clearly an H-submodule of V . Here we

compute singular vectors in the current representation CurH
′

H V of CurH
′

H L. It is
convenient to treat the case L = H(d, χ, ω) separately.

Proposition 10.2. Let L 6= H(d, χ, ω) be a primitive Lie pseudoalgebra as in

Section 4. If V is an L-module, then sing CurH
′

H V = 1⊗H sing V +H ′ ⊗H kerV .

Proof. Let u =
∑
K∈Nr×0 ∂

(K) ⊗H uK ∈ H ′ ⊗H V . If a ∗ uK =
∑
L∈0×NN (∂(L) ⊗

1)⊗H vK+L, then

(1⊗H a) ∗ u =
∑
K,L

(∂(L) ⊗ ∂(K))⊗H′ vK+L.

Using Proposition 10.1 and Corollary 2.3, we argue that if u is singular, then
vK+L = 0 whenever K 6= 0 or, equivalently, uK ∈ kerV ; similarly, u0 ∈ sing V . �

We may now step on to the case L = H(d, χ, ω).

Lemma 10.1. Let V be a Lie pseudoalgebra representation of L = H(d, χ, ω) = He.
Then C(V ) := {v ∈ V | e ∗ v ∈ (1⊗ 1)⊗H V } equals kerV .



IRRED. MODULES OF CURRENT SIMPLE LIE PSEUDOALGEBRAS 35

Proof. Clearly, C(V ) ⊂ sing V , as u ∈ V is singular precisely when e ∗ u ∈ (F2H ⊗
k) ⊗H V . Then u ∈ C(V ) implies sp(d, ω).u = 0 and ∂u − ∂.u = 0 for all ∂ ∈ d,
where ∂.u denotes the action of ∂ ∈ d+ on u ∈ sing V . However ∂.u = ∂u for every
∂ ∈ d implies

([∂, ∂′]+ω(∂∧∂′)c).u = [∂, ∂′]+.u = ∂.(∂′.u)−∂′.(∂.u) = ∂(∂′u)−∂′(∂u) = [∂, ∂′]u,

that is ω(∂ ∧ ∂′)c.u = 0 for all ∂, ∂′ ∈ d. As ω is nondegenerate, this forces c.u = 0,
whence e ∗ u = 0. �

Proposition 10.3. Let V be a Lie pseudoalgebra representation of H(d, χ, ω).

Then sing CurH
′

H V = 1⊗H sing V +H ′ ⊗H kerV .

Proof. We shall prove sing CurH
′

H V = 1 ⊗H sing V + d′ ⊗H C(V ) + H ′ ⊗H kerV .
Then the claim follows using the previous lemma. First of all, Proposition 10.1
implies

(1⊗H e) ∗ (sing V ′) ⊂ ((F2H ⊗ k) + (k⊗ d′))⊗H′ V ′.
Now proceed as in Proposition 10.2 and compute (1 ⊗H e) ∗ u. If {εi, 1 ≤ i ≤ r}
denotes the standard canonical basis of Nr, then Corollary 2.3 yields uεi ∈ C(V ),
and a ∗ uK = 0 if K 6= 0, εi, whence uK ∈ kerV . Similarly, u0 ∈ sing V . �

Corollary 10.1. Let V be a finite irreducible module over the primitive Lie pseu-

doalgebra L. Then sing CurH
′

H V = 1⊗H sing V .

Proof. Follows from kerV = 0. �

Remark 10.1. Recall that the embedding ι : H → H ′ is a pure ring homomorphism,

so that m 7→ 1⊗Hm provides an injective H-linear homomorphism M → CurH
′

H M
for every left H-module M . Thus each Lie H-pseudoalgebra embeds H-linearly in
the corresponding current Lie pseudoalgebras, and similarly for representations.

In particular, the subspace 1 ⊗H sing V in the previous corollary is isomorphic
to sing V , both as a vector space and as a d ⊕ L0-module (resp. d+ ⊕ L0-module
when L is of type H).

10.2. Irreducibility of VH
χ,ω,t,d′(R). Let VH

χ,ω,t,d′(R), t ∈ d′ \ d, be a Lie pseudoal-

gebra representation of L′ = CurH
′

H H(d, χ, ω) as introduced in Section 7. We will
now investigate irreducibility of VH

χ,ω,t,d′(R) by explicitly computing its singular
vectors.

Theorem 10.1. Let d ⊂ d′ be Lie algebras, and t ∈ d′ \ d an element satisfying the
conditions of Proposition 7.1. Then singVH

χ,ω,t,d′(R) = k ⊗ R. As a consequence,

the L′-module VH
χ,ω,t,d′(R), t ∈ d′ \ d, is irreducible as soon as R is an irreducible

d+ ⊕ sp(d, ω)-module.

Proof. The representation VH
χ,ω,t,d′(R) = H ′⊗R of L′ = CurH

′

H H(d, χ, ω) is defined
by the Lie pseudoalgebra action

e ∗t (1⊗ v) =
∑
ij

(∂i∂j ⊗ 1)⊗H′ (1⊗ f ij .v) (10.1)

−
∑
k

(∂k ⊗ 1)⊗H′ (1⊗ (∂k + adsp ∂k).v − ∂k ⊗ v)

+ (1⊗ 1)⊗H (1⊗ c.v) + (t⊗ 1)⊗H′ (1⊗ v).
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Expression (10.1) may be right-straightened to

e ∗t (1⊗ v) =
∑
i,j

(1⊗ ∂i∂j)⊗H′ (1⊗ f ij .v) (10.2)

+
∑
k

(1⊗ ∂k)⊗H′ (1⊗ (∂k + adsp(∂k)).v − ∂k ⊗ v)

− (1⊗ t)⊗H′ (1⊗ v)

+ terms in (k⊗ F1H)⊗H′ (F1H ′ ⊗ V ).

Now pick a basis t = ∂1, . . . , ∂N+r of d′ so that ∂r+1, . . . , ∂N+r is a basis of d. Use
the corresponding PBW basis to express

0 6= u =
∑

L∈ZN+r

∂(L) ⊗ uL. (10.3)

Plugging (10.3) into e∗tu yields a right-straightened expression. If n is the maximal
value of |L| such that uL 6= 0, choose among all such L = (l1, l2, . . . , lN+r) with
|L| = n one with the highest value of l1. Then the term multiplying 1 ⊗ t∂(L) in
e∗tu equals 1⊗uL. If u is singular and L 6= 0, this must vanish by Proposition 10.1,
leading to a contradiction. We conclude that singVt,d′ = k ⊗ R. The remaining
claim follows easily. �

11. Classification of finite irreducible modules over non primitive
simple Lie pseudoalgebras

We summarize all previous results in the following theorem

Theorem 11.1. Let d ⊂ d′ be finite-dimensional Lie algebras, H ⊂ H ′ their uni-
versal enveloping algebras endowed with the canonical cocommutative Hopf algebra
structure. The following is a complete list of finite irreducible representations of the

current Lie pseudoalgebra L′ = CurH
′

H L, where L is a primitive Lie pseudoalgebra:

— CurH
′

H V , where V is a finite irreducible L-module;
— VH

χ,ω,t,d′(R), where L = H(d, χ, ω), R is a finite-dimensional irreducible

representation of d+ ⊕ sp(d, ω), and t ∈ d′ \ d satisfies
(i) adχ t preserves d and lies in sp(d, ω);

(ii) [s, t] = 0, where s satisfies χ = ιsω.

The only nontrivial isomorphisms between the above irreducible modules are those
described in Theorem 7.1.

Proof. We are only left with proving that representations in the list are pairwise
non-isomorphic. This is done by comparing the N ′-actions on the space of singular
vectors contained in each representation.

First of all, sing CurH
′

H V = sing V , and irreducible representations of a simple
primitive Lie pseudoalgebra are all told apart by their singular vectors, viewed as
a d⊕ L0-module. This takes care of the cases L = W (d), S(d, χ),K(d, θ).

When L = H(d, χ, ω), no current irreducible representation is isomorphic to
a non-current one as the action of central elements lying in m ⊗̂Z(L) is trivial
in the former case and nontrivial in the latter. Furthermore, any isomorphism
VH
χ,ω,t,d′(R1) ' VH

χ,ω,t,d′(R2) induces an isomorphism of the corresponding sin-

gular vectors, viewed as a d+ ⊕ sp(d, ω)-module. However, singular vectors are
all constant and lie in a single d+ ⊕ sp(d, ω)-component, which is isomorphic to
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R1, R2, respectively. Thus, for equal values of t, the CurH
′

H H(d, χ, ω)-modules
VH
χ,ω,t,d′(R1),VH

χ,ω,t,d′(R2) are isomorphic precisely when R1, R2 are isomorphic rep-

resentations of d+ ⊕ sp(d, ω).
Finally recall that the action on VH

χ,ω,t,d′(R) of central elements lying in m ⊗̂Z(L)

is via multiplication by scalars, and defines a linear functional m/m2 → k. However,
m/m2 ' (d′/d)∗ and this linear functional corresponds to a unique class in the vector
space quotient d′/d, which coincides with [t]. This shows that if VH

χ,ω,t,d′(R) and

VH
χ,ω,t′,d′(R

′) are isomorphic, then elements t, t′ project to the same class of the

quotient d′/d. Then their difference δ = t′− t ∈ d satisfies the conditions in Lemma
4.1, so that Theorem 7.1 yields VH

χ,ω,t′,d′(R
′) = VH

χ,ω,t,d′(R
′ ⊗ (kπ∗(ιδω) � k)), and

one falls back to the previous case. �
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