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A B S T R A C T

In this paper, we propose a simple approach to derive a single-surface multi-failure strength domain for
the in-plane behaviour of masonry. The approach, that lays the basis for homogeneous continuum model
developments relies on micro-mechanical analyses employing a block-based model for masonry in which
blocks, modelled as finite strength continuum bodies, interact through zero-thickness interfaces. In order to
derive the strength domain, firstly three failure mechanism typologies are identified, namely crushing failure,
joint failure and mixed joint-block failure. Then, the limit surface for each mechanism is obtained relying
on limit equilibrium considerations, also introducing a novel rational treatment of the mixed mechanism.
Accordingly, a multi-surface strength domain is built by intersecting all the limit surfaces. Finally, such
multi-surface strength domain is reduced to a single-surface one exploiting the RealSoftMax function, which
allows to preserve the multi-failure nature of the approach, i.e. the explicit distinction between all the failure
mechanisms. Following the proposed procedure, the resulting strength domain inherits the material parameters
characterizing the block-based model. A finite element block-based model and available experimental data
are employed to validate the proposed strength domain. The good agreement obtained with reference results
confirms the soundness of the approach.
1. Introduction

Due to its heterogeneous nature, masonry notoriously exhibits a
strongly anisotropic nonlinear behaviour. Accordingly, the analysis of
masonry structures is usually performed relying on numerical models.
For this aim, different approaches are available, ranging from equiv-
alent frames to detailed block-based models. We refer to Roca et al.
(2010) and D’Altri et al. (2020) for a comprehensive review regarding
the available modelling strategies.

Focusing on detailed models, several approaches are available, of-
fering different levels of accuracy and computational cost. Starting from
the most sophisticated approaches, here referred to as detailed block-
based models, they explicitly take into account both blocks and mortar
joints, accurately describing their mechanical properties, arrangement,
and interactions, see e.g. the works by Petracca et al. (2017) and D’Altri
et al. (2018). However, the resulting computational requirements when
dealing with complex structures are often prohibitive, limiting the use
of such models to simple structural cases. Reducing the level of detail,
a typical simplification consists in representing mortar joints as zero-
thickness interfaces. Such approach is here referred to as simplified
block-based modelling and it has been successfully applied in numerous
cases (Pulatsu et al., 2016; D’Altri et al., 2019; Ferrante et al., 2021;
Tran and Barchiesi, 2023), although mainly focusing on small-scale
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structural elements due to the still non-negligible computational time.
Finally, masonry can be further idealized as an equivalent homoge-
neous continuum, leading to numerical models with a computational
burden lower than block-based and multi-scale models, thus well-suited
for application to complex geometries (Silva et al., 2012; Roca et al.,
2013; Akhaveissy and Milani, 2013; Acito et al., 2014; Tiberti et al.,
2016; Castellazzi et al., 2017, 2018; Degli Abbati et al., 2019).

As it is well known, the accuracy of homogeneous continuum-based
models strongly depends on two factors: (i) a strong scale separation
must exist between the size of the blocks and that of the overall
structure and (ii) the homogenized model must be able to reproduce
all relevant features of the overall heterogeneous material behaviour.
While the first condition is typically verified, the second aspect requires
to develop appropriate constitutive laws, able to reproduce both the
elastic and inelastic behaviour of masonry (Pantò et al., 2022).

As regard the elastic behaviour, the interested reader can refer
to (Anthoine, 1995) and (Pande et al., 1989) and the references there
contained. Concerning the inelastic behaviour, an essential step to-
wards a proper representation of the masonry nonlinear behaviour is
in the definition of the strength domain.

On such regard, we here recall the seminal experimental works
presented by Page (1981, 1983) and Dhanasekar et al. (1985), as
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List of symbols

𝑐𝑛 Joint normal cohesion
𝑐𝜏 Joint tangential cohesion
𝑓 Bonding ratio
ℎ𝑏 Block height
ℎ𝑐 Cell height
𝐼1 First invariant of the stress tensor
𝐽2 Second invariant of the stress deviator
𝑤𝑖 Weight associated to the mechanism 𝑖
𝛼 Dimensionless parameter of the block limit

surface
𝛽 Dimensionless parameter of the block limit

surface
𝛽𝑐𝑒𝑙𝑙 Block height-to-cell height ratio
𝛾 Dimensionless parameter of the block limit

surface
𝜇 Friction coefficient
𝜌 Dimensionless parameter of the block limit
𝝈 Stress tensor
𝜎𝑚𝑎𝑥 Algebraically maximum principal stress
𝜎∗𝑥 Normal stress acting on blocks in the mixed
𝜏∗𝑥𝑦 Shear stress acting on blocks in the mixed
𝛷𝑖 Limit function for mechanism 𝑖
𝛷𝑀𝑀𝑆𝐷 Limit function for the Multi-failure
𝜑𝑠 Smoothing parameter for the 𝛷𝑀𝑀𝑆𝐷
𝜁𝑏𝑐 Block biaxial compressive strength
𝜁𝑐 Block uniaxial compressive strength
𝜁𝑡 Block uniaxial tensile strength

well as a wide range of numerical models, in which the masonry
strength domain is represented from a phenomenological point of
view (Lotfi and Shing, 1991; Lourénço et al., 1997; Lourenço et al.,
1998; Pelà et al., 2011, 2013; Nodargi and Bisegna, 2019; Shen et al.,
2022; Malena et al., 2022; Sousamli et al., 2022; Chisari et al., 2022;
Gatta and Addessi, 2023), relying on multi-scale methods (Addessi
and Sacco, 2012; Marfia and Sacco, 2012; Leonetti et al., 2018) or
basing on homogenization techniques (Pande et al., 1989; Anthoine,
1995; Hassani and Hinton, 1998; Cecchi and Sab, 2002a,b; Zhou et al.,
2022). Homogenized approaches typically rely on the analysis of block-
based models in which mortar joints are represented as zero-thickness
frictional-cohesive interfaces and the blocks are assumed as rigid (Alpa
and Monetto, 1994; De Buhan and De Felice, 1997; Milani et al.,
2006b; de Felice et al., 2010), linear elastic (Luciano and Sacco, 1997;
Zucchini and Lourenço, 2002; Sacco, 2009; Addessi et al., 2023) or
nonlinear (Gambarotta and Lagomarsino, 1997; Zucchini and Lourenço,
2004).

In general, when developing equivalent homogeneous models, at-
tention is placed on the representation of masonry failure mechanisms.
Typically, the focus is on three failure typologies: crushing failure, joint
failure and mixed joint-block failure, the latter involving simultaneous
failure in blocks and joints. To the authors knowledge, while the
characterization of block and joint failure mechanisms, taken sepa-
rately, is well-established, mixed joint-block failure mechanisms are
typically treated in a simplified way, see for instance (Lourénço et al.,
1997). For example, fictitious diagonal interfaces in the blocks with
Mohr–Coulomb failure criterion are adopted in Milani (2011), Milani
and Taliercio (2015), Bertolesi et al. (2016) and Silva et al. (2017),
whereas predefined potential crack patterns are assumed by Calderini
and Lagomarsino (2006, 2008).

In this framework, a simple approach to derive a single-surface
2

multi-failure strength domain for masonry is here proposed. This work p
is aimed at providing a strength domain to be employed in an ho-
mogeneous continuum model for the analysis of masonry structures.
The approach is based on micro-mechanical analyses which employ a
simplified block-based model for masonry. For sake of conciseness, in
the following we will refer to such simplified block-based model simply
as block-based model. Blocks are represented as continuum bodies char-
acterized by finite strength, while mortar joints are modelled through
zero-thickness frictional-cohesive interfaces.

In order to derive the masonry strength domain, an a priori selec-
ion of possible micro-mechanical failure mechanisms is performed,
onsidering crushing failure, joint failure and mixed joint-block fail-
re. For each failure mechanism, the corresponding limit surface is
erived basing on limit equilibrium, which allows for a simple and
traightforward evaluation of the limit condition (Duncan, 1996; Yu
t al., 1998). The mixed joint-blocks failure is here treated in a novel
ay: relying on assumptions on the stress distribution in the block-
ased model, the failure criteria of the joints and the blocks are
ombined in order to evaluate the limit equilibrium condition. The limit
urfaces for all considered mechanisms are then intersected obtaining
multi-surface strength domain able to characterize an homogeneous

ontinuum model equivalent to the micro-mechanical block-based one.
inally, with the aim of obtaining a single-surface strength domain, the
ealSoftMax function (Zhang et al., 2023) is adopted to intersect the
arious limit surfaces. In this way, a single-surface strength domain is
btained, while preserving the distinction between all the considered
ailure mechanisms. In other words, it is possible to easily associate
he various regions of the single-surface strength domain to the various
ailure mechanisms considered. Finally, the obtained strength domain
lso shares the same easy-to-calibrate mechanical parameters charac-
erizing the block-based model, namely masonry compressive strength,
lock tensile strength and masonry joint friction and cohesion. In the
ollowing, we denote the proposed strength domain as Multi-failure
asonry Strength Domain (MMSD). The proposed approach is here

llustrated considering the case of regular periodic masonry under in-
lane loading conditions, but it might be easily extended to include
ther cases.

Results obtained following the proposed approach are finally com-
ared to numerical ones, obtained using an accurate finite element (FE)
lock-based model. Additional comparisons with available experimen-
al results are used to further highlight the soundness of the proposed
pproach.

The paper is organized as follows. Firstly, in Section 2, the block-
ased model used for micro-mechanical analyses is introduced, dis-
ussing the hypotheses which lead to its definition. Subsequently, in
ection 3, the proposed approach is presented and the MMSD derived.
n Section 4, the MMSD is compared to results obtained with an accu-
ate FE block-based model, as well as previous studies and experimental
esults available in the literature. Finally, conclusions are drawn in
ection 5.

. Micro-mechanical block-based model

As anticipated, the starting point to develop the MMSD is the
dealization of masonry according to a block-based model in which
locks interact through zero-thickness interfaces, which represent mor-
ar joints, creating a pattern of weakness surfaces. Such surfaces are
ere assumed to be rigid, in the sense that they do not introduce
dditional compliance to the system. Thus, they manifest themselves
xclusively by slipping or separating when their failure criterion is
iolated. Notice again that the present work is exclusively focused on
he calculation of the strength domains. The homogenization of the
lastic properties of masonry can be obtained basing on well-known
odels already available in the literature Pande et al. (1989), Anthoine

1995) and Drougkas (2023).
A schematic view of the adopted idealization of an elementary

ortion of a masonry wall is reported in Fig. 1. We notice that such
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Table 1
Parameters adopted for the underlying block-based model. The values of 𝛼, 𝛽 and 𝛾 have been obtained
according to Eq. (2) by adopting the default values of 𝜁𝑏𝑐∕𝜁𝑐 = 1.16, 𝜌 = 2∕3 and a tensile strength 𝜁𝑡 = 1.5 MPa.

Bulk mechanical properties (CDP) Interface mechanical properties

𝛼 [–] 𝛽 [–] 𝛾 [–] 𝜁𝑐 [MPa] 𝑐𝜏 [MPa] 𝑐𝑛 [MPa] 𝜇 [–]

0.1212 2.8628 3 6.8 0 0 0.5 (Purely frictional case)
0.5 0.5 0.5 (Frictional-cohesive case)
Fig. 1. Schematic view of the adopted idealization of an elementary portion of
masonry.

idealization is similar to the one adopted by D’Altri et al. (2019). One
advantage of such way of proceeding is that the model is governed by
few empirical parameters, which can be easily deduced experimentally,
and characterize the material composing the blocks and the mortar
joints. Without loss of generality, we assume the blocks to be character-
ized by the well-known and widely adopted Concrete Damage Plasticity
(CDP) model (Lubliner et al., 1989; Lee and Fenves, 1998), whose limit
surface can be expressed as:

𝛷𝐶𝐷𝑃 = 1
1 − 𝛼

[𝛼𝐼1 +
√

3𝐽2 + 𝛽⟨𝜎𝑚𝑎𝑥⟩ − 𝛾⟨−𝜎𝑚𝑎𝑥⟩] + 𝜁𝑐 = 0, (1)

where 𝐼1 is the trace of the stress tensor, 𝐽2 is the second invariant of
the deviatoric stress tensor, while ⟨𝜎𝑚𝑎𝑥⟩ is the maximum between zero
and the maximum principal stress. The model parameters 𝛼, 𝛽, 𝛾 are
defined as:

𝛼 =
𝜁𝑏𝑐∕𝜁𝑐 − 1

2(𝜁𝑏𝑐∕𝜁𝑐 ) − 1
, 𝛽 = (1 − 𝛼)

𝜁𝑐
𝜁𝑡

− (1 + 𝛼), 𝛾 =
3(1 − 𝜌)
2𝜌 − 1

(2)

and explicitly depend on the ratio between equi-biaxial and uni-axial
compressive strengths 𝜁𝑏𝑐∕𝜁𝑐 , usually set equal to 1.16 for quasi-brittle
materials, on the ratio between compressive and tensile strengths 𝜁𝑐∕𝜁𝑡,
and on a parameter 𝜌, depending on the ratio between the values of 𝐽2
on the tensile and compressive meridians, typically set equal to 2/3.
The interested reader can refer to Lubliner et al. (1989) and Lee and
Fenves (1998) for further details.

As regards joints, they are characterized by cohesion in the normal
and tangential directions, 𝑐𝑛 and 𝑐𝜏 respectively, and friction coefficient
𝜇. For the sake of simplicity, we assume 𝑐𝑛 = 𝑐𝜏 (Milani, 2011;
Milani et al., 2008). The settings adopted for the CDP model and the
interfaces are selected in accordance with D’Altri et al. (2019), in which
good agreement with full-scale experimental results was obtained. A
summary of the adopted parameters is reported in Table 1.

3. Multi-failure masonry strength domain

In this section, basing on the micro-mechanical block-based model
described in the previous section and assuming some predefined failure
mechanisms, we use limit equilibrium in order to deduce the MMSD
that can be used to characterize an homogeneous continuum equivalent
3

to the block-based model. In the following, no dilatancy has been
considered in masonry joints.

We apply the proposed approach to the case of regular periodic
masonry depicted in Fig. 2, with staggered blocks of width 𝑙𝑏 and
height ℎ𝑏 characterized by the classical aspect ratio 𝑅 = 𝑙𝑏∕ℎ𝑏 = 2 and
bonding ratio, 𝑓 , equal to 0.5. By varying such parameters (𝑅 > 0 and
0 ≤ 𝑓 ≤ 0.5), most of the running bond patterns can be considered.
More specifically, due to periodicity, the unit cell shown in Fig. 2 is
used. Finally, for later convenience, we here introduce the geometric
parameter 𝛽𝑐𝑒𝑙𝑙 = ℎ𝑏∕ℎ𝑐 , being ℎ𝑐 the total cell height (usually ℎ𝑐 =
2ℎ𝑏).

3.1. Failure mechanisms and procedure

The assumed failure mechanisms, sketched in Fig. 3, are classified
according to their typology:

T1 — Crushing failure: compressive failure occurs in the blocks,
without activating the joints;

T2 — Joint failure: failure occurs exclusively in the joints, without
involving the blocks;

T3 — Mixed failure: failure occurs at the same time in the blocks and
in correspondence of joints, leading to a mixed failure.

In the following, masonry is assumed to lay on the 𝑥–𝑦 plane and
limit equilibrium conditions are derived considering the unit cell. An
homogeneous self-equilibrated stress field is applied to the boundary
of the unit cell and, for each considered failure mechanism, limit
equilibrium conditions are calculated as detailed in the following. For
each considered mechanism, a limit surface is obtained and the stress
space is thus subdivided into an admissible and a non-admissible part.
Intersecting all the limit surfaces leads to a multi-surface strength
domain. Finally, a smooth single-surface intersection of all admissible
stress states is obtained relying on the RealSoftMax function.

In general, once an appropriate limit surface for the blocks is
available accounting for T1 failures, the presence of the joints leads to a
reduction of the blocks strength, eliminating stress-states incompatible
with their presence through failure mechanisms of type T2 and T3.

3.1.1. T1
As anticipated, in agreement with the micro-mechanical block-based

model, the behaviour of the blocks is assumed to be ruled by the well-
known CDP model (Lee and Fenves, 1998; Lubliner et al., 1989), whose
limit surface is expressed in Eq. (1) and shown in Fig. 4, considering
the parameters reported in Table 1. We notice that, as the CDP has
been originally developed for isotropic materials, its formulation is
based on the use of principal stresses, 𝜎1, 𝜎2, 𝜎3. However, in the case
of masonry, the anisotropy deriving from the presence of interfaces
suggests to adopt material coordinates for the limit surface definition.
For regular masonry, the coordinate system can be conveniently aligned
with the pattern of joints. The CDP is thus rewritten for plane stress
conditions (i.e. disregarding the 𝑧 oriented stress components) adopting
the material coordinates 𝑥 and 𝑦, leading to the limit surface reported
in Fig. 4(b).

Fig. 5 shows sections of the CDP limit surface for different values
of 𝜏𝑥𝑦. The rotational symmetry along the bisector of the 𝜎𝑥 − 𝜎𝑦 plane
results from the isotropy of the CDP.
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Fig. 2. Periodic masonry unit cell.
Fig. 3. Sketch of the failure typologies.

As anticipated, we here assume the CDP to be representative of
the overall masonry bulk behaviour. Such choice is also functional
to provide a fair comparison with results obtained using block-based
models, reported in Section 4.

Remark. We here highlight that with T1 failure, which involves
crushing failure in the blocks, masonry compressive failure is actually
represented. In facts, the masonry compressive strength is typically
lower than that of the bricks due to the Hilsdorf’s effect (Hilsdorf,
1969). In block-based models, in order to reduce the computational
burden, this aspect is generally accounted for adopting a phenomeno-
logical approach, typically setting the block compressive strength equal
to the masonry compressive strength (Lourenço and Rots, 1997; Ma-
corini and Izzuddin, 2011; Abdulla et al., 2017; Malomo et al., 2018;
D’Altri et al., 2019; Pantò et al., 2022). Complying with the above
4

well-established phenomenological approach, in this work the CDP
parameters are assumed to represent masonry behaviour in compres-
sion and brick behaviour in tension. Accordingly, the T1 mechanism
is substantially distinct from the mixed joint-block failure described in
Section 3.1.5.

3.1.2. T2-Horizontal
By assuming failure in horizontal joints, we obtain the

T2-Horizontal mechanism represented in Fig. 6, which consists of
slipping and opening along horizontal joints (Lourenço and Rots, 1997;
De Buhan and De Felice, 1997). The stress components relevant to this
mechanism are highlighted in Fig. 7. Stress components depicted in red
and having a superscript 𝑖 are those acting on the joints that are active
in the considered mechanism.

The limit surfaces associated to this mechanism are obtained
through limit equilibrium, here imposed adopting the principle of
virtual work. With reference to the horizontal virtual displacement 𝛿𝑥
(see Fig. 6(b)), considering the relevant stress components highlighted
in Fig. 7, the limit equilibrium reads

𝜏𝑥𝑦𝑙𝑏𝛿𝑥 − 𝜏 𝑖𝑦𝑥𝑙𝑏𝛿𝑥 = 0, ∀𝛿𝑥, (3)

where

𝜏 𝑖𝑦𝑥 = −𝜎𝑖𝑦𝜇 + 𝑐𝜏 , (4)

being

𝜎𝑖𝑦 = 𝜎𝑦 (5)

due to the equilibrium in the vertical direction of the upper and lower
portions of the unit cells, see Fig. 7. Using Eqs. (4) and (5), the limit
equilibrium condition can be rewritten as

(𝜏𝑥𝑦 + 𝜎𝑦𝜇 − 𝑐𝜏 )𝑙𝑏𝛿𝑥 = 0, ∀𝛿𝑥, (6)

and, hence, the limit surface can be expressed as

𝛷ℎ
ℎ = 𝜏𝑥𝑦 + 𝜎𝑦𝜇 − 𝑐𝜏 = 0, (7)

which, as expected, coincides with the Mohr–Coulomb failure criterion
adopted for the joints.

Similarly, for the vertical virtual displacement 𝛿𝑦 (see Fig. 6(c)), we
obtain the limit condition

𝛷𝑣
ℎ = 𝜎𝑦 − 𝑐𝑛 = 0, (8)

which introduces an admissibility condition on the values of 𝜎𝑦 in the
form of a tension cap to the Mohr–Coulomb criterion, leading to the
typical low value of the tensile strength of masonry.
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Fig. 4. Concrete Damage Plasticity (CDP): representation of 𝛷𝐶𝐷𝑃 (a) in the Haigh–Westergaard space and (b) in the (𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦) space. Generated with the parameters collected
in Table 1.

Fig. 5. Limit surface 𝛷𝐶𝐷𝑃 = 0 at: (a) 𝜏𝑥𝑦 = 0 MPa, (b) 𝜏𝑥𝑦 = 1 MPa, (c) 𝜏𝑥𝑦 = 2 MPa and (d) 𝜏𝑥𝑦 = 3 MPa. Generated with the parameters collected in Table 1.
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Fig. 6. T2-Horizontal mechanism: (a) failure path, (b) horizontal displacement 𝛿𝑥, (c) vertical displacement 𝛿𝑦.
Fig. 7. T2-Horizontal mechanism: relevant stress components.

The limit surfaces 𝛷ℎ
ℎ = 0 and 𝛷𝑣

ℎ = 0 are shown in Fig. 8(a) while
sections are reported in Figs. 8(b) and 8(c) for the purely frictional case
and the frictional-cohesive case, respectively.

3.1.3. T2 -Diagonal
The T2-Diagonal mechanism involves both horizontal and vertical

joints and is shown in Fig. 9. The stress components relevant to this
mechanism are shown in Fig. 10.

Considering the horizontal virtual displacement 𝛿𝑥 (see Fig. 9(b)),
the principle of virtual work yields the limit equilibrium in the hori-
zontal direction in the form

𝜏𝑥𝑦
𝑙𝑏
2
𝛿𝑥 + 𝜎𝑥ℎ𝑏𝛿𝑥 − 𝜎𝑖𝑥ℎ𝑏𝛿𝑥 − 𝜏 𝑖𝑦𝑥

𝑙𝑏
2
𝛿𝑥 = 0, ∀𝛿𝑥, (9)

where

𝜎𝑖𝑥 = 𝑐𝑛, 𝜏 𝑖𝑦𝑥 = −𝜎𝑖𝑦𝜇 + 𝑐𝜏 , (10)

and, due to the equilibrium in the vertical direction of the parts of unit
cell depicted in Fig. 10,

𝜎𝑖𝑦 = 𝜎𝑦 + 𝜏𝑥𝑦
2ℎ𝑏
𝑙𝑏

− 𝜏 𝑖𝑥𝑦
2ℎ𝑏
𝑙𝑏

. (11)

Inspecting Eq. (11), it can be noted that the term containing 𝜏 𝑖𝑥𝑦
acts as a stabilizing contribution. In general, 𝜏 𝑖𝑥𝑦 depends on 𝜎𝑖𝑥 by
means of the friction coefficient, as well as the cohesion 𝑐 . However, in
6

𝜏

limit conditions associated to the horizontal displacement 𝛿𝑥, it can be
written 𝜎𝑖𝑥 = 0 and, thus, 𝜏𝑖𝑥𝑦 ≤ 𝑐𝜏 . For the sake of simplicity, due to its
usual small value, in first approximation it is possible to disregard such
contribution so that, using Eqs. (10) and (11), the limit equilibrium
condition can be written as:

𝜏𝑥𝑦
𝑙𝑏
2
𝛿𝑥 + 𝜎𝑥ℎ𝑏𝛿𝑥 − 𝑐𝑛ℎ𝑏𝛿𝑥 −

{

−
[

𝜎𝑦 +
2ℎ𝑏
𝑙𝑏

𝜏𝑥𝑦
]

𝜇 + 𝑐𝜏
} 𝑙𝑏
2
𝛿𝑥 = 0, ∀𝛿𝑥 (12)

or, equivalently, as

𝛷ℎ
𝑑 = 𝜏𝑥𝑦 +

[

𝜎𝑦 +
2ℎ𝑏
𝑙𝑏

𝜏𝑥𝑦
]

𝜇 − 𝑐𝜏 +
2ℎ𝑏
𝑙𝑏

(𝜎𝑥 − 𝑐𝑛) = 0. (13)

We notice that such mechanism implies an increase of volume due
to the activation of the joints and, accordingly, the contribution related
to 𝜎𝑥 can be seen as a dilatancy term opposing such volume increase.

In a similar fashion, for the vertical virtual displacement (see
Fig. 9(c)) we obtain the following limit surface

𝛷𝑣
𝑑 = 𝜏𝑥𝑦 +

[

𝜎𝑥 +
𝑙𝑏
2ℎ𝑏

𝜏𝑥𝑦
]

𝜇 − 𝑐𝜏 +
𝑙𝑏
2ℎ𝑏

(𝜎𝑦 − 𝑐𝑛) = 0. (14)

The limit surfaces 𝛷ℎ
𝑑 and 𝛷𝑣

𝑑 are depicted in Fig. 11(a) while
sections of 𝛷ℎ

𝑑 = 0, 𝛷𝑣
𝑑 = 0, as well as the resulting 𝛷𝑑 = 0 for 𝜎𝑥 = 0

are represented in Figs. 11(b) and 11(c).

3.1.4. T2-Vertical
Choosing the mechanism reported in Fig. 12, an additional interface

failure mode, the T2-Vertical, can be obtained. In this case, only the
horizontal limit equilibrium is considered, being the only kinematically
admissible one.

Basing on the relevant stress components shown in Fig. 13 and
following the same procedure outlined in the previous cases, the limit
surface can be written as:

𝛷𝑣 = 𝜎𝑥 − 𝑐𝑛 + (𝜎𝑦𝜇 − 𝑐𝜏 )
𝑓𝑙𝑏
2ℎ𝑏

= 0. (15)

It is noticed that 𝛷𝑣 consists of a term, 𝜎𝑥 − 𝑐𝑛, which resembles
Eq. (8), complemented with terms depending on the bonding ratio 𝑓 .
Therefore, in the limit case of stack masonry (𝑓 = 0), cohesion becomes
the only resistant action to tensile stresses 𝜎𝑥.

In Fig. 14, the limit surface 𝛷𝑣 = 0 is reported. Consistently with
Eq. (15), the limit surface is a plane, whose slope in the (𝜎𝑥, 𝜎𝑦) plane
depends on the cell geometry and on the friction coefficient 𝜇.

3.1.5. T3-Vertical
We now proceed to describe the T3-Vertical mechanism, for which

a novel treatment is here proposed. As shown in Fig. 15, we consider
the T3-Vertical mechanism characterized by a vertical failure path
comprising both joints and blocks.

Let us assume that the unit cell is initially in a state of null stress
and that stresses are then increased. Since the failure path is mixed,
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Fig. 8. Limit surface for T2-Horizontal mechanism: (a) 𝛷ℎ
ℎ = 0 and 𝛷𝑣

ℎ = 0 in the (𝜎𝑥 , 𝜎𝑦 , 𝜏𝑥𝑦) space for the frictional-cohesive case and isolines at 𝜎𝑥 = 0 for (b) purely frictional
and (c) frictional-cohesive joints. Generated with the parameters collected in Table 1.
Fig. 9. T2-Diagonal mechanism: (a) failure path, (b) horizontal displacement 𝛿𝑥, (c) vertical displacement 𝛿𝑦.
two possible scenarios can be identified. In particular, (i) the failure
criterion of the blocks is violated first or (ii) the failure criterion of the
joints is violated first.

In case (i), the failure involves only the blocks and the presence of
the joints can be neglected, leading to a T1 type failure. Conversely, in
case (ii) the joints fail, but the mechanism cannot be activated if blocks
do not fail in shear. As a result, block failure has to be reached, which
shall be evaluated based on the stress state expected in the blocks and
in agreement with the failure criterion adopted for their material.

In order to evaluate a stress state representative of the one in the
blocks in correspondence of the failure path, we assume sufficient
ductility of the joints: as the stress increases, the stress transmitted by
the joints reaches the maximum value allowed by their failure criterion,
while the excess is redistributed within the blocks.
7

We thus start from the mechanism reported in Fig. 15(b) and
consider the normal stresses 𝜎𝑏𝑥, i.e. the normal stress in the block,
and 𝜎𝑥, reported in Fig. 16. Starting from a null stress state, it results
𝜎𝑥 = 𝜎𝑖𝑥 = 𝜎𝑏𝑥 up to failure of the joints (which occurs at 𝜎𝑥 = 𝑐𝑛), as
indicated by line I in Fig. 17.

When 𝜎𝑥 > 𝑐𝑛, the interface fails. However, thanks to the assumed
ductility, the interface continues to transmit a stress equal to 𝑐𝑛, while
the exceeding stress 𝜎𝑥 − 𝑐𝑛 must be provided by the block in order to
ensure equilibrium. However, since the block occupies only a portion
𝛽𝑐𝑒𝑙𝑙 of the failure path, its state of stress increases proportionally to
1∕𝛽𝑐𝑒𝑙𝑙 (line (II) in Fig. 17). Considering the limit equilibrium we thus
obtain

[𝜎 − 𝑐 (1 − 𝛽 ) − 𝜎𝑏𝛽 ]ℎ 𝛿 = 0, ∀𝛿 (16)
𝑥 𝑛 𝑐𝑒𝑙𝑙 𝑥 𝑐𝑒𝑙𝑙 𝑐 𝑥 𝑥
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Fig. 10. T2-Diagonal mechanism: relevant stress components.
Fig. 11. Limit surface for T2-Diagonal mechanism: (a) 𝛷ℎ
𝑑 = 0 and 𝛷𝑣

𝑑 = 0 in the 𝜎𝑥 − 𝜎𝑦 − 𝜏𝑥𝑦 space for the frictional-cohesive case and isolines at 𝜎𝑥 = 0 for (b) purely frictional
and (c) frictional-cohesive joints. Generated with the parameters collected in Table 1.
so leading to

𝜎𝑏𝑥 = 𝑐𝑛 +
1

𝛽𝑐𝑒𝑙𝑙
(𝜎𝑥 − 𝑐𝑛). (17)

It is possible to proceed in an analogous way also when the vertical
limit equilibrium is considered, as depicted in Fig. 15(c). In this case,
8

the obtained limit equilibrium in the vertical direction reads

𝜏𝑏𝑥𝑦 = (−𝜎𝑥𝜇 + 𝑐𝜏 ) +
1

𝛽𝑐𝑒𝑙𝑙
[𝜏𝑥𝑦 − (−𝜎𝑥𝜇 + 𝑐𝜏 )]. (18)

Finally, as regards 𝜎𝑏𝑦 , we assume 𝜎𝑏𝑦 = 𝜎𝑦, since, as it can be seen
from Eqs. (17)–(18), no contribution is given to 𝜎𝑏 nor 𝜏𝑏 .
𝑥 𝑥𝑦
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Fig. 12. T2-Vertical mechanism: (a) failure path, (b) horizontal displacement 𝛿𝑥.

Fig. 13. T2-Vertical mechanism: relevant stress components.

An estimate of the stress state in the blocks in correspondence of
the assumed failure path is thus obtained considering 𝜎𝑏𝑥, 𝜎

𝑏
𝑦 , 𝜏

𝑏
𝑥𝑦 and the

strength of the block can be checked relying on 𝛷𝐶𝐷𝑃 as

𝛷𝑚𝑖𝑥
𝑣 = 𝛷𝐶𝐷𝑃 (𝜎𝑏𝑥, 𝜎

𝑏
𝑦 , 𝜏

𝑏
𝑥𝑦). (19)

Figs. 18(a) and 18(b) show the resulting limit surface 𝛷𝑚𝑖𝑥
𝑣 = 0,

being the corresponding limit surface for the blocks denoted as 𝛷𝐶𝐷𝑃
also reported for comparison. It can be clearly observed that the use
of the stresses 𝜎𝑏𝑥, 𝜎𝑏𝑦 and 𝜏𝑏𝑥𝑦 leads to a marked anisotropy of the
𝛷𝑚𝑖𝑥

𝑣 = 0 limit surface, due to the presence of the weakness surfaces
corresponding to the interfaces representing mortar joints.

We notice that, although not considered in this work for the sake
of simplicity, it is easily possible to differentiate the parameters of the
CDP model used for the T1 mechanism, which might be taken as phe-
nomenological, from those here adopted, which shall be representative
of the material composing the blocks.

3.2. MMSD

Once all the limit surfaces are derived, a multi-surface strength do-
main can be built by their intersection. Within the proposed approach,
such a multi-surface strength domain is then reformulated as a smooth
single-surface one. Such feature is particularly appealing since, as it
is well-known, sharp corners require cumbersome ad-hoc treatments
when the strength domain is used in numerical analyses. For such
aim, a strategy based on the use of the RealSoftMax function (also
known as Log-Sum-Exp function) (Zhang et al., 2021; Gao and Pavel,
2017) is here adopted. The latter can be employed to build a smooth
approximation of the max function, so allowing to obtain the envelope
of an arbitrary number of surfaces. In this regard, as shown by Gao and
Pavel (2017), it is here noted that such an approach also ensures the
convexity of the envelope and so of the MMSD.
9

To briefly illustrate the use of the RealSoftMax function, let us
consider 𝑁𝑠 limit surfaces in the (𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦) space, i.e. 𝛷𝑖, 𝑖 = 1,… , 𝑁𝑠.
Their single-surface envelope 𝛷𝑀𝑀𝑆𝐷 can be evaluated as:

𝛷𝑀𝑀𝑆𝐷(𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦) = RealSoftMax(𝛷1(𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦),… , 𝛷𝑁𝑠
(𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦)),

(20)

where the RealSoftMax function is defined as:

RealSoftMax(𝛷1,… , 𝛷𝑁𝑠
) = 1

𝜑𝑠
log

𝑁𝑠
∑

𝑖=1
exp𝜑𝑠𝛷𝑖, (21)

with

𝜕RealSoftMax
𝜕𝝈

=
𝑁𝑠
∑

𝑗=1
𝑤𝑗

𝜕𝛷𝑗

𝜕𝝈
, 𝑤𝑗 =

𝑒𝜑𝑠𝛷𝑗

∑𝑁𝑠
𝑘=1 𝑒

𝜑𝑠𝛷𝑘
∈ [0, 1]. (22)

In the above equations, the arguments of 𝛷𝑖 have been omitted for
the sake of conciseness, the 𝑤𝑗 are weights assigned to each limit sur-
face 𝛷𝑗 and which depend on the stress state 𝝈, and 𝜑𝑠 is a parameter
which controls the degree of smoothness of the single-surface. As it can
be seen from the gradient and weight definitions in Eq. (22), a weight is
assigned to each failure mechanism, leading to a single-surface strength
domain that is inherently able to distinguish between the various fail-
ure mechanisms considered. Accordingly, a region where some of the
weights are different from zero may exist, implying the simultaneous
activation of different mechanisms.

As regards the parameter 𝜑𝑠, its influence on the strength domain
is shown in Fig. 19. As it can be noted, high values of 𝜑𝑠 (see e.g. 𝜑𝑠 =
1000) lead to strength domains very close to the max function (black
dotted line). Decreasing the value of 𝜑𝑠 (see e.g. 𝜑𝑠 = 50), a smoothing
mainly affecting corners and sharp edges can be observed. Finally, very
smoothed strength domains are obtained with small values of 𝜑𝑠 (see
e.g. 𝜑𝑠 = 10), where a non-negligible reduction of strength might be
observed. In practical applications in homogeneous continuum models,
the choice of 𝜑𝑠 should be a compromise between accuracy in rep-
resenting the strength domain and smoothing to guarantee numerical
convergence. In the following, for sake of comparison, 𝜑𝑠 = 1000 has
been adopted. Notice that the weights are readily available once the
parameter 𝜑𝑠 is set and the values of the 𝛷𝑗 are computed, so that no
further calibration nor computation is needed.

Fig. 20 shows the overall MMSD strength domain calculated for
the cases of purely frictional and frictional-cohesive joints. Different
colours based on the weights 𝑤𝑗 highlight the contribution of each 𝛷𝑗
(𝛷𝑣 is not reported since it partially coincides with 𝛷𝑑 , see also Fig. 21).
Another view of the overall strength domain is given in Fig. 21, where
the limit surfaces at 𝜏𝑥𝑦 = 0 and 𝜏𝑥𝑦 = 1.5 MPa are reported, for both
purely frictional and frictional-cohesive joints. As expected, the T2-
Horizontal mechanism together with the T3-Vertical play an important
role in shaping the strength domain.

4. Validation

In this section, a validation of the MMSD is presented. In particular,
in Section 4.1, the MMSD is validated against numerical results while,
in Section 4.2, a comparison of the MMSD with available experimental
measurements is provided.

4.1. Numerical validation

In order to validate the proposed strength domain, we rely on an
accurate FE model which is characterized by the same hypotheses used
for the micro-mechanical block-based model, i.e. it is its numerical
counterpart. Details regarding the FE model capabilities and settings
can be found in D’Altri et al. (2019). Briefly, blocks are modelled
through 8-nodes hexahedral finite elements having a CDP constitutive
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Fig. 14. Limit surface for T2-Vertical mechanism: (a) 𝛷𝑣 in the (𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦) space for the frictional-cohesive case and isolines at 𝜏𝑥𝑦 = 0 (b) for purely frictional and (c)
frictional-cohesive joints. Generated with the parameters collected in Table 1.
Fig. 15. T3-Vertical mechanism: (a) failure path, (b) horizontal displacement 𝛿𝑥, (c) vertical displacement 𝛿𝑦.
behaviour. The assembly of blocks is obtained using contact con-
straints, which are enforced using a master–slave node to surface
method. Frictional-cohesive contact properties are adopted. The model
parameters are those collected in Table 1. We here remark that the
proposed strength domain is based on few easy-to-calibrate mechanical
parameters inherited from the block-based model, thus no convergence
analysis for parameter calibration is needed.

Fig. 22 shows a sketch of the adopted accurate FE block-based
model. Simulations have been carried out on a unit square panel, with
a thickness to side ratio equal to 1/10 (see Fig. 22(a)). A load control
strategy has been adopted, where self-equilibrated uniform 𝜎𝑥, 𝜎𝑦 and
𝜏𝑥𝑦 are applied on the lateral boundary of the element. Rigid body
motions have been avoided by fixing the bottom vertices of the masonry
element.
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4.1.1. Purely frictional joints
Numerical results for the case of purely frictional joints are reported

in Fig. 23. In particular, sections of the MMSD strength domain are
shown at different stress levels. The CDP limit surface is also re-
ported for comparison, highlighting the effect of mechanisms involving
masonry joints. Yellow dots correspond to the stress states at which
the accurate FE block-based model showed failure. In particular, the
𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦 values of these dots are obtained from the stress–strain curves
resulting from numerical simulations by identifying the point where
linearity is lost (i.e. by taking the first point outside the linear elastic
range).

As it can be seen, a very good agreement is found between the
proposed strength domain and numerical results. Also, a good match
between the assumed failure mechanisms and the one obtained by the
accurate FE model can be observed. This is confirmed by Figs. 23(a)
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Fig. 16. T3-Vertical mechanism: relevant stress components.
Fig. 17. T3-Vertical mechanism: relationship between the stress applied to the unit cell 𝜎𝑥 and stress 𝜎𝑏
𝑥 in the block for horizontal opening.
and 23(b), in which some emblematic examples of failure mechanisms
obtained through the accurate FE model are reported.

We here highlight that portions of 𝛷𝑀𝑀𝑆𝐷 where T1 failure is
expected have not been investigated in detail, since the trivial CDP
solution is there foreseen. However, Fig. 23(a) highlights that, at 𝜏𝑥𝑦 =
0, good agreement is achieved also in such zones.

4.1.2. Frictional-cohesive joints
Results for the case of frictional-cohesive joints are reported in

Fig. 24, where the strength domain for 𝑐𝑛 = 𝑐𝜏 = 0 is also shown for
comparison. As it can be seen in Fig. 24(a), the effects of a non-null
cohesion is particularly visible in the region 𝜎𝑦 > 0. Also in this case,
𝛷𝑀𝑀𝑆𝐷 is in good agreement with the numerical results, confirming
the soundness of the proposed approach.

4.2. Experimental validation

We here briefly discuss the capability of the MMSD to reproduce
experimental results. To this purpose, the experimental campaign per-
formed by Page (1983), which is typically used to validate/calibrate
numerical models for masonry (Lourenço et al., 1998; Calderini and
Lagomarsino, 2006; Milani et al., 2006a; Pelà et al., 2011, 2013; Shen
et al., 2022; Malena et al., 2022; Chisari et al., 2022), has been herein
considered. Such data have been obtained by means of experimental
tests on masonry panels, with a regular periodic arrangement, loaded
under biaxial compression–tension along the principal directions. The
effects of interface orientation with respect to the loading directions on
the strength domain has been considered and characterized through the
angle 𝜃.

In order to characterize our strength domain, reference has been
made to the material parameters measured in Page (1983) (e.g. uniaxial
11
Table 2
Parameters adopted for the generation of the strength domain in agreement
with Calderini and Lagomarsino (2006) and Page (1983).

Bulk mechanical properties (CDP) Interface mechanical properties

𝛼 [–] 𝛽 [–] 𝛾 [–] 𝜁𝑐 [MPa] 𝑐𝜏 [MPa] 𝑐𝑛 [MPa] 𝜇 [–]

0.02 20.8 3 7.8 0.25 0.25 0.8

compressive strength and average cohesion) and assumed in Calderini
and Lagomarsino (2006) (e.g. uniaxial tensile strength of blocks and
friction coefficient) to comply with the same experimental data. The
adopted values are summarized in Table 2. The geometrical parameters,
𝑅 and 𝑓 , are identical to those previously adopted.

Results for three values of 𝜃, namely 𝜃 = 0◦, 𝜃 = 22.5◦ and
𝜃 = 45◦, are reported in Fig. 25. For the sake of comparison, we
also show the strength domains obtained by Calderini and Lagomarsino
(2006), through micro-mechanical analysis, and Stefanou et al. (2015),
through homogenization, which represent well-established state-of-the-
art approaches.

By inspecting Fig. 25, it can be noted that 𝛷𝑀𝑀𝑆𝐷 is in good agree-
ment with the experimental data set Page (1983) for all the considered
values of 𝜃. The proposed strength domain accurately represents ma-
sonry anisotropy, which is particularly visible for 𝜃 = 22.5◦. This can
be seen in Fig. 25(b), where the linear branch of 𝛷𝑀𝑀𝑆𝐷, inherited
from the horizontal mechanism, allows to capture the anisotropy in the
experimental measurements.

5. Conclusions

In this paper, a simple approach to derive a single-surface multi-
failure strength domain for homogeneous continuum modelling of ma-
sonry has been proposed. The approach has been here shown for the
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Fig. 18. Limit surface for T3-Vertical mechanism: (a) comparison between 𝛷𝑚𝑖𝑥
𝑣 and 𝛷𝐶𝐷𝑃 and (b) isolines at 𝜏𝑥𝑦 = 0.
Fig. 19. Influence of the smoothing parameter 𝜑𝑠 on the RealSoftMax intersection 𝛷𝑀𝑀𝑆𝐷 = RealSoftMax(𝛷𝐶𝐷𝑃 , 𝛷ℎ , 𝛷𝑑 , 𝛷𝑣 , 𝛷𝑚𝑖𝑥
𝑣 ) for the case of frictional-cohesive joints: (a) slice

of the strength domain for 𝜎𝑥 = 0 MPa and (b) focus on the tensile cap of the T2-Horizontal mechanism. Generated with the parameters collected in Table 1.
in-plane behaviour of masonry. The strength domain has been obtained
basing on micro-mechanical analyses employing a block-based model.
After the identification of three failure typologies, i.e. crushing failure,
joint failure and mixed failure, the corresponding limit surfaces have
been obtained through limit equilibrium considerations. Moreover, a
12
novel approach for mixed failure, relying on the failure criteria of both
blocks and joints, has been proposed.

A multi-surface strength domain, which can be used to characterize
an homogeneous continuum model equivalent to the underlying block-
based model, has been obtained by intersecting all the limit surfaces.
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Fig. 20. Representation of the resulting strength domain 𝛷𝑀𝑀𝑆𝐷 obtained by RealSoftMax intersection 𝛷𝑀𝑀𝑆𝐷 = RealSoftMax(𝛷𝐶𝐷𝑃 , 𝛷ℎ , 𝛷𝑑 , 𝛷𝑣 , 𝛷𝑚𝑖𝑥
𝑣 ): (a) purely frictional joints,

(b) frictional-cohesive joints. Generated with 𝜑𝑠 = 1000 and the parameters collected in Table 1.

Fig. 21. Isolines of 𝛷𝑀𝑀𝑆𝐷 at different values of 𝜏𝑥𝑦: (a) and (c) for purely frictional joints, (b) and (d) for frictional-cohesive joints (𝑐𝑛 = 𝑐𝜏 = 0.5 MPa).
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Fig. 22. Block-based numerical model: (a) load control strategy and (b) finite element discretization and contact surfaces.

Fig. 23. Isolines of 𝛷𝑀𝑀𝑆𝐷 for the case of purely frictional joints: (a) 𝜏𝑥𝑦, (b)–(d) 𝜎𝑥. Failure mechanisms identified through the block-based model are also reported for comparison:
grey regions correspond to failure in blocks.
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Fig. 24. Isolines of 𝛷𝑀𝑀𝑆𝐷 for the case of frictional-cohesive joints: (a) 𝜏𝑥𝑦, (b)–(d) 𝜎𝑥 (the purely frictional case is reported for comparison).

Fig. 25. Strength domain comparison with the experimental results obtained by Page (1983), as well as the strength domains obtained by Calderini and Lagomarsino (2006)
and Stefanou et al. (2015), for different bed joint orientations: (a) 𝜃 = 0◦, (b) 𝜃 = 22.5◦ and (c) 𝜃 = 45◦.
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Such strength domain has been then reformulated into a single-surface
one relying on the RealSoftMax function, which allows to preserve the
distinction between all the failure mechanisms. The resulting strength
domain is also characterized by the same easy-to-calibrate parameters
of the block-based model.

The obtained strength domain has been compared with the numeri-
cal strength domain extracted from an accurate FE block-based model,
representing the numerical counterpart of the micro-mechanical block-
based model. Good agreement between the proposed strength domain
and the numerical results has been found, for both the case of purely
frictional and frictional-cohesive joints. The proposed strength domain
has been compared also with available experimental measurements,
showing good agreement and capability of the approach to account for
different material parameters.

Further developments will include the implementation of the
strength domain within an homogeneous continuum model for ma-
sonry, also exploring a multi-failure representation of the post-peak
response, essential for the analysis of masonry structures.
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