Mechanochemical preparation, solid-state characterization and antimicrobial performance of copper and silver nitrate coordination polymers with L-and DL-arginine and histidine.

CONTENTS

- S1. CRYSTALLOGRAPHIC DATA
- S2. TGA AND DSC DATA
- S3. SOLID-STATE NMR SUPPORTING DATA
- S4. ANTIMICROBIAL ACTIVITY SUPPORTING DATA

S1. Crystallographic Data

	L-Arg·Cu	DL-Arg·Cu	L-His∙Cu	DL-His·Cu
Chemical formula	$C_6H_{14}N_6O_8Cu\cdot H_2O$	$C_6H_{14}N_6O_8Cu\cdot H_2O$	$C_6H_9N_5O_8Cu\cdot H_2O$	$C_6H_9N_5O_8Cu\cdot H_2C_6H_9N_5O_8Cu\cdot H_2O_8O_8Cu\cdot H_2O_8O_8Cu\cdot H_2O_8O_8Cu\cdot H_2O_8O_8Cu\cdot H_2O_8O_8Cu\cdot H_2O_8O_8O_8O_8O_8O_8O_8O_8O_8O_8O_8O_8O_8O$
M _r /g mol ⁻¹	379.79	379.79	720.61	360.74
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	P21	<i>P</i> 2 ₁ /c	P21	P21/c
a / Å	10.0142 (2)	13.4092 (7)	9.9964 (4)	12.9972 (12)
b / Å	10.7768 (2)	10.7584 (4)	9.9530 (4)	9.8254 (5)
c / Å	13.4634 (3)	10.0233 (4)	12.2937 (5)	10.0294 (8)
α/°	90	90	90	90
β/°	100.950 (2)	100.181 (4)	97.009 (4)	104.187 (8)
γ/°	90	90	90	90
V / ų	1426.53 (5)	1423.21 (11)	1214.02 (8)	1241.72 (17)
Z, Z'	Z, Z' 4, 2		2, 1	4, 1
d / mg cm ⁻³	d / mg cm ⁻³ 1.768		1.970	1.930
μ / mm ⁻¹	1.59	1.59	1.86	1.82
Measd refins	11944	6492	6121	9894
Indep refins	6517	3294	4125	3018
efIns with <i>l</i> > 2σ(<i>l</i>)	5706	2581	3613	2732
R _{int}	0.026	0.031	0.035	0.033
$R1 [F^2 > 2\sigma(F^2)]$	0.042	0.050	0.062	0.100
wR(F ²)	0.075	0.121	0.163	0.240

 Table S1. Crystallographic table for data obtained from single-crystal XRD.

S3. Solid-state NMR

Figure S3A. Top: ¹³C (150.9 MHz) CPMAS spectra of L-Arg·Ag and pure L-Arg, acquired at a spinning speed of 20 kHz at room temperature; bottom: ¹⁵N (60.8 MHz) CPMAS spectra of L-Arg·Ag and pure L-Arg, acquired at a spinning speed of 12 kHz at room temperature.

Figure S3B. Top: ¹³C (150.9 MHz) CPMAS spectra of DL-Arg·Ag and pure DL-Arg, acquired at a spinning speed of 20 kHz at room temperature; bottom: ¹⁵N (60.8 MHz) CPMAS spectra of DL-Arg·Ag and pure DL-Arg, acquired at a spinning speed of 12 kHz at room temperature.

Figure S3C. Top: ¹³C (150.9 MHz) CPMAS spectra of L-His·Ag, L-His₂·Ag and pure L-His, acquired at a spinning speed of 20 kHz at room temperature; bottom: ¹⁵N (60.8 MHz) CPMAS spectra of L-His₂·Ag and pure L-His, acquired at a spinning speed of 12 kHz at room temperature.

Figure S3D. Top: ¹³C (150.9 MHz) CPMAS spectra of DL-His·Ag, DL-His₂·Ag and pure DL-His, acquired at a spinning speed of 20 kHz at room temperature; bottom: ¹⁵N (60.8 MHz) CPMAS spectra of DL-His·Ag, DL-His₂·Ag and pure DL-His, acquired at a spinning speed of 12 kHz at room temperature.

Table S3a. ¹³C and ¹⁵N SSNMR isotropic chemical shift values (in ppm) of the peaks observed in the CPMAS spectra of the employed AAs.

L-Arg	DL-Arg	L-His	DL-His				
¹³ C SSNMR chemical shift (ppm)							
179.9	186.5	175.6	176.2				
178.7	184.3	138.1	137.7				
158.1	159.5	135.4	134.9				
55.6	58.3	114.6	116.0				
55.3	56.3	58.0	57.5				
42.3	43.3	27.7	33.1				
31.9	41.0						
31.1	35.4						
24.0	32.1						
23.6	26.4						
	23.6						
¹⁵ N SSNMR chemical shift (ppm)							
80.6	78.9	245.7	241.8				
79.0	70.1	167.3	168.9				
75.8	25.2	37.8	43.8				
72.6							
71.1							
69.5							
32.7							
27.5							

Table S3b. ¹³C and ¹⁵N SSNMR isotropic chemical shift values (in ppm) of the peaks observed in the CPMAS spectra of the achieved coordination polymers. When observed, J_{AgN} coupling constants (Hz) are reported in parentheses as averaged values between J_{109AgN} and J_{107AgN} .

L-Arg·Ag	DL-Arg·Ag	L-His·Ag	L-His₂∙Ag	DL-His·Ag	DL-His₂∙Ag			
¹³ C SSNMR chemical shift (ppm)								
178.7	178.7	178.3	178.1	175.9	178.1			
158.3	158.3	139.2	175.4	143.5	175.4			
56.7	56.6	119.8	140.6	133.6	140.6			
45.9	45.9	55.9	137.4	118.3	137.5			
36.8	36.8	30.3	134.1	56.3	134.0			
20.2	20.2		132.5	29.4	132.5			
			117.8		117.8			
			116.9		116.9			
			57.8		57.8			
			56.1		56.0			
			35.3		35.3			
			31.1		31.1			
¹⁵ N SSNMR chemical shift (ppm)								
371.6	371.6	/	374.3	368.0	374.1			
80.1	80.1	/	211.6 (91)	207.3 (73)	211.6 (83)			
71.7	71.5	/	208.5 (96)	159.7	208.7 (83)			
62.0	62.0	/	169.9	34.8	169.6			
23.0 (70)	23.1 (59)		167.7		167.6			
			40.2		40.2			

S4. Antimicrobial activity

Figure S4A. Normalized antimicrobial activity of compounds used in this study on their own as obtained by disk diffusion experiments on lysogeny media agar media. Values normalized to silver nitrate value of 1.0. Values above 1.05 are more antimicrobial than silver. N = 3.