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A B S T R A C T

Abstractive dialogue summarization requires distilling and rephrasing key information from noisy multi-speaker
documents. Combining pre-trained language models with input augmentation techniques has recently led
to significant research progress. However, existing solutions still struggle to select relevant chat segments,
primarily relying on open-domain and unsupervised annotators not tailored to the actual needs of the
summarization task. In this paper, we propose DearWatson, a task-aware utterance-level annotation framework
for improving the effectiveness and interpretability of pre-trained dialogue summarization models. Precisely,
we learn relevant utterances in the source document and mark them with special tags, that then act as
supporting evidence for the generated summary. Quantitative experiments are conducted on two datasets
made up of real-life messenger conversations. The results show that DearWatson allows model attention to
focus on salient tokens, achieving new state-of-the-art results in three evaluation metrics, including semantic
and factuality measures. Human evaluation proves the superiority of our solution in semantic consistency and
recall. Finally, extensive ablation studies confirm each module’s importance, also exploring different annotation
strategies and parameter-efficient fine-tuning of large generative language models.
1. Introduction

In today’s fast-paced world, dialogues have become ubiquitous
and indispensable means of communication, with online chat applica-
tions (e.g., Whatsapp, Messenger, WeChat) being the most prominent
case [1]. Automatic highlights can aid individuals and organizations in
managing and comprehending the increasingly overwhelming amount
of information exchange, ultimately supporting quick reviews and
decision-making.

In the natural language generation (NLG) field, abstractive dialogue
summarization is the task of producing a condensed and meaning-
ful summary of a multi-speaker conversation that is not a verbatim
representation of the original input. Compared to traditional writ-
ings, human-to-human dialogues pose unique challenges due to their
dynamic, interactive, and first-person nature, often informal, prolix,
and repetitive—peppered with false starts, backchanneling, speaker
role shifting, reconfirmations, hesitations, and interruptions [2]. Rel-
evant content is often scattered across participants and dialogue turns,
resulting in a lower information density and more diffuse topic cover-
age. These obstacles become even more pronounced when style and
register are diversified, the setting is multi-party (>2 interlocutors),
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and sources reflect heterogeneous real-life subjects. Despite the re-
cent strides achieved by pre-trained language models (PLMs), existing
summarizers have opaque behaviors and pay attention to information
pieces different from those included in the reference summary [3],
undermining trustability.

The latest research has focused on input augmentation techniques
to guide the generative model in identifying the most fundamental
concepts, incorporating auxiliary annotations into the dialogue text.
Prior studies have sought to automatically annotate keywords, redun-
dant utterances, and topics [4]. Nevertheless, these annotations usually
come from burdensome human efforts [5], open-domain toolkits [6]—not
suitable for dialogues, or unsupervised strategies [7–10]—not designed
to complement the task of interest, resulting in possible inconsisten-
cies and information loss. The annotation process (gold or silver)
is treated as a preprocessing step rather than a learning objective,
capping potential benefits and generalization. Furthermore, Srivastava
et al. [11] have recently demonstrated the advantages of training
or making zero-shot summary predictions exclusively with pertinent
source sentences determined through fixed algorithms grounded on
ROUGE-1 and topic segmentation. These advances raise expectations
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for learnable, reference-free, and dynamic annotation techniques, still
lacking contributions.

We propose DearWatson, a novel task-aware utterance-level anno-
tation framework designed to enhance the efficacy and interpretability
of neural dialogue summarizers. Drawing on the knowledge encoded
in PLMs, we train a classifier to detect the most relevant dialogue
utterances for the summarization task. Predicted utterances are then
wrapped with special tokens, and a pre-trained summarizer is fine-
tuned on the augmented input. As depicted in Fig. 1, we postulate
that pointing out the meaningful source spans allows the generative
model to better direct its attention to them; learning such annotations
together with the summary can enhance final performance and unlock
interpretability. We investigate two architectures following different
learning schemes: (i) joint, where the annotator and the summarizer are
treated as two independent units simultaneously trained, and the rel-
evant target utterances come from a self-supervised heuristic; (ii) end-
to-end, where the gradient backpropagates from the summarizer to the
annotator, whose tag placement directly optimizes summary genera-
tion. Differentiable utterance selection is achieved via Gumbel-Softmax
Trick [12]. We run extensive experiments on two widely used dialogue
summarization datasets, SAMSum [3] and DialogSum [13], demonstrat-
ing that our models push the state-of-the-art according to five automatic
evaluation metrics. Through ablation studies, we establish the signifi-
cance of each module, ranging from the annotator implementation and
underlying heuristic to the influence of the number of speakers and
utterances. Qualitative experiments show a less diluted distribution of
attention scores. Furthermore, human and ChatGPT-driven evaluations
corroborate the evidence role of the selected utterances in making the
summarizer behavior more transparent.

Our contributions can be summarized as follows:

• We pioneer input augmentation (summary-worthy utterance se-
lection) as an additional training objective, without any reliance
on human-crafted labels.

• We shed light on the overall efficacy of input augmentation in di-
alogue summarization, evaluating different annotation heuristics,
and uncovering substantial room for future improvements.

• Beyond joint learning, we propose an architecture capable of
making discrete choices without disrupting backpropagation. To
this end, we suggest the incorporation of Gumbel-based sam-
pling algorithms, a methodology previously unexplored in the
context of evidence generation [14]. Our research offers valuable
insight into the intricate comparison between joint learning and
end-to-end learning.

• We outperform all existing summarization baselines on two popu-
lar testbeds (up to +0.67/0.58/0.63 ROUGE-1/2/L F1 and +1.38
BERTScore, i.e., maximum 𝛥 for each metric regardless of the
dataset), and add interpretability with only minor incremental
training/inference costs associated with the extra tagging task.

• We carry out a rigorous human evaluation to demonstrate that
learned annotations are instrumental in understanding the dia-
logue segments that exert the greatest impact on a model predic-
tion.

• We mark the first instance of harnessing ChatGPT for abstrac-
tive dialogue summarization, gauging its validity in terms of
consistency with human judgment.

2. Related work

Dialogue summarization. Pre-trained language models have sparked a
paradigm shift in abstractive summarization [15,16], yielding unprece-
dented results even in multi-document [17,18] and low-resource [19–
21] settings. Although most prior work addresses single-speaker con-
tent, dialogue summarization is gaining traction. Nevertheless, trans-
ferring conventional models to chats is not straightforward: avoiding
overlooking essential information across turns is one of the primary
2

Fig. 1. Overview of DearWatson. Utterance annotation and summarization are
simultaneously mastered.

requirements [22]. Since core knowledge is often fragmented and
embodied in incomplete sentences, generating fluent summaries by ut-
terance extraction alone is impractical. Popular approaches involve ad-
hoc pretraining [23–29], while – following the steps of current trends
on graph signals [30–32] – a complementary procedure is injecting
structured data modeling conversation topics or dialogue acts [9,33].
In this paper, we enrich the dialogue text to enhance the effectiveness
and interpretability of any summarizer.

Annotation for abstractive summarization. Conceptually, Peyrard [34]
posits that a high-quality summary is closely tied to three dimen-
sions: informativeness, redundancy, and relevance. Past research has
actively accounted for these aspects by incorporating auxiliary informa-
tion into the dialogue. To bolster informativeness, some work tagged
linguistically-grounded keyphrases [35], domain terminologies [36],
and topic words [37]. To mitigate redundancy, the authors labeled
repetitive utterances with similarity-based methods [6,7]. To maximize
relevance, other groups carried out topic segmentation [5,8,9]. Feng
et al. [10] drawn support from forward passing on a pre-trained con-
versational response generation model to tag the input text based on
loss scores and utterance embeddings. Input augmentation has also
been exploited to control text generation, entailing the introduction
of auxiliary signals to enforce the desired output properties [22,38,
39]. All such annotations are procured through manual labor, pre-
defined heuristics, open-domain toolkits, or unsupervised techniques.
Instead, we conjecture that model performance remains subpar when
treating input augmentation outside of learning objectives. To our
knowledge, we are the first to optimize the annotator in tandem with
the summarization task.

3. Preliminaries

3.1. Task definition

Abstractive dialogue summarization endeavors to craft a creative
summary  of || tokens [𝑠1, 𝑠2,… , 𝑠

||] from a dialogue  consist-
ing of || utterances [𝐮1,𝐮2,… ,𝐮

||

]. [⋅] denotes concatenation. Each
utterance 𝐮𝑖 comprises |𝐮𝑖| tokens [𝐩𝑖, 𝑢𝑖,1, 𝑢𝑖,2,… , 𝑢𝑖,|𝐮𝑖|, 𝚂𝙴𝙿𝑖], where
𝑖 ∈ [1, ||], 𝐩𝑖 is the speaker, and 𝚂𝙴𝙿𝑖 signifies the utterance end.
Therefore, the task can be formalized as producing the summary 
given the input:  = [𝐩1, 𝑢1,1,… , 𝚂𝙴𝙿1,… ,𝐩

||

, 𝑢
||,1,… , 𝚂𝙴𝙿

||

].

3.2. Oracle dialogue annotation

Chat data is rife with irrelevant content, such as greetings and incon-
sequential turns, that does not contribute to producing an informative
resume. Hence, steering the model’s attention toward core utterances
may bear substantial opportunities. Gold utterance relevance labels for
a dialogue summarization task are generally not available, and acquir-
ing them would be a costly endeavor. To make our solution adaptable
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Fig. 2. Illustration of our joint and end-to-end DearWatson architectures. Following a shared initial phase for utterance classification, joint learning peculiarities are highlighted
n red, while the alternative end-to-end modifications are shown in green. The ‘‘//’’ symbol connotes backpropagation interruption points.
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nd effective in real-world scenarios, we have devised multiple self-
upervised heuristics. Taking a closer look, we propose three alternative
pproaches to designate a source utterance 𝐮𝑖 as relevant based on its
verlap (∩) with the gold summary reference.

• One-word-overlap: inspired by Wu et al. [38], 𝐮𝑖 must feature at
least one word (other than stopwords) from the target summary.

• Top-p-word-overlap: more severely, 𝐮𝑖 must rank within the top 𝑝%
of the source utterances that exhibit the highest similarity to the
target summary, measured using ROUGE-1.

• Top-p-semantic-overlap: measured using cosine similarity
as in [40,41]. To accomplish this, we leverage a state-of-the-art
Sentence Transformer,2 computing the normalized dot product
between semantically-informed utterance embeddings.

Please note that, unlike One-word-overlap, he hyperparameter 𝑝 offers
control over the annotation percentage. According to the relevance cri-
terion under investigation, we flag core utterances by inserting the spe-
cial tokens <hl> and <\hl> at their beginning and end, respectively.
Eq. (1) succinctly outlines the utterance map function for producing the
annotated dialogue ∗.

ann(𝐮𝑖) =
{

[⟨𝚑𝚕⟩𝑖,𝐩𝑖,… , ⟨\𝚑𝚕⟩𝑖, 𝚂𝙴𝙿𝑖] 𝐮𝑖∩ ≠ ∅
𝐮𝑖 𝐮𝑖∩ = ∅.

(1)

e note that this is only possible during training, since we obviously
o not have access to the target summary at inference time. Empirical
ests from our group exhibit that PLMs fine-tuned on oracle ∗, rather
han , gain up to 4.5 ROUGE-1/2/L average points (see Section 6.1
or details). These results attest to the great controllability power of the
tterance annotation strategy and motivate the architectures discussed
n Section 4, where we naturally eliminate the prior target knowledge
ssumption to define general-purpose annotate-then-summarize models.

. Method

This section will introduce two supervised architectures for high-
ighting relevant utterances and condensing the augmented dialogue.
irst, we will explore a joint paradigm, breaking down the goal into
wo subtasks learned simultaneously (Section 4.1). Then we will move
o an end-to-end framework, taking annotation and summarization as

single unit by differentiable input augmentation (Section 4.2). We
ketch both solutions in Fig. 2.

2 https://huggingface.co/sentence-transformers.
3

4.1. Joint learning paradigm

4.1.1. Utterance classification
We fine-tune a PLM to predict relevant utterances, i.e., dialogue

lines mentioning facts expected to appear in the resume. To achieve
this goal, the ann(𝐮𝑖) heuristic disclosed in Section 3.2 is treated as the
ource of ground-truth annotations. Technically, we supply  to a bidi-
ectional text encoder 𝐸𝑡(⋅), deriving a contextual hidden representation
𝑑 for each dialogue token:

𝐡𝐩1 ,𝐡𝑢1,1 ,… ,𝐡𝚂𝙴𝙿
||

] = 𝐸𝑡 () . (2)

We extend the model training to represent each utterance in the
orresponding SEP token. Indeed, on top of the encoder stack, we add
task-specific linear layer to project each utterance embedding 𝐡𝚂𝙴𝙿𝑖

into two-dimensional unnormalized logits 𝐥𝑖 (confidences for relevant
𝑇 and non-relevant 𝐹 classes):

[𝐥1,… , 𝐥
|𝐷|

] = 𝐖𝑐{𝐡𝚂𝙴𝙿1 ,… ,𝐡𝚂𝙴𝙿
|𝐷|

} + 𝐛𝑐 , (3)

where 𝐖𝑐 represent trainable weights and 𝐛𝑐 are bias parameters. We
optimize a binary cross-entropy loss 𝑐𝑒:

𝑐𝑒 = −
{𝑇 ,𝐹 }
∑

𝑖
𝑦𝑖 log(𝑝𝑖), (4)

where 𝑦𝑖 is the truth class label and 𝑝𝑖 is the softmax probability on the
output of Eq. (3) for the 𝑖th class.

4.1.2. Summarization
We unveil relevant utterances by applying the argmax function

to the output of the classification head, wrapping them with special
<hl><\hl> tokens. Finally, we feed the annotated dialogue ∗ to
a pre-trained transformer-based summarizer. To maximize the esti-
mated probability 𝑃𝜃 of the actual summary , we utilize a negative
log-likelihood loss function:

𝑛𝑙𝑙 = −
∑

𝑖
log𝑃𝜃(𝑠𝑖|∗). (5)

The classifier and the summarizer are jointly trained by minimizing
 = 𝑐𝑒 + 𝑛𝑙𝑙.

4.2. End-to-end paradigm

The utterance annotation process described in Section 4.1 halts the
gradient flow from the summarizer to the classifier. Non-
differentiability is caused by the argmax step function, which outputs
discrete class labels, i.e., hard assignments. When concerned with
discrete stochasticity, challenges arise regarding both sampling from

discrete distributions and gradient estimation thereof. Reinforcement

https://huggingface.co/sentence-transformers
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learning-free approaches often relax sampling functions by employ-
ing continuous approximations, such as Soft-argmax [42] or Gumbel-
Softmax [43]. Gumbel-based sampling algorithms, in particular, have
found success in a range of applications, such as generating text
through stochastic beam search for dialogue systems [44] and ma-
chine translation [45–47], as well as leaning communication protocols
in multi-agent games [48]. In this paper, our proposed end-to-end
architecture incorporates the Gumbel-Softmax Trick for categorical
reparameterization.

Gumbel-softmax trick. Gumbel-Softmax is an efficient gradient esti-
mator for sampling from a categorical distribution, which unlocks
backpropagation through the entire network even when intermedi-
ate outputs are discrete—directly mapping the raw dialogue to the
summary on the augmented input. Let 𝑐 be our categorical variable
with probabilities {𝜋𝑇 , 𝜋𝐹 }. Categorical samples are encoded as two-
dimensional one-hot vectors at the corners of a mono-dimensional sim-
plex 𝛥1. Utterance relevance choices from our ||-length 𝑐 distribution
are estimated by generating 𝑧 ∈ 𝛥1:

𝑧𝑖 =
exp

((

log
(

𝜋𝑖
)

+ 𝑔𝑖
)

∕𝜏
)

∑{𝑇 ,𝐹 }
𝑗 exp

((

log
(

𝜋𝑗
)

+ 𝑔𝑗
)

∕𝜏
)

for 𝑖 ∈ {𝑇 , 𝐹 }, (6)

where 𝜏 is the softmax temperature and 𝑔𝑇 , 𝑔𝐹 are i.i.d. noise samples
rawn from Gumbel(0, 1) by pulling out 𝑢 ∼ Uniform(0, 1) and then

computing 𝑔 = − log (− log (𝑢)). At lower temperatures (𝜏 → 0), 𝑧
samples are identical to those from a categorical distribution; at higher
temperatures (𝜏 → ∞), 𝑧 samples are no longer one-hot and become
uniform. The Gumbel-Softmax distribution is smooth for 𝜏 > 0, thus
having a well-defined gradient. While 𝑧 samples are differentiable, our
annotation process requires a discrete selection. Hence, we adopt the
Straight-Through (ST) Gumbel-Softmax, which discretizes 𝑧 through
argmax in the forward pass and utilizes the continuous approximation
in the backward pass. using the ST Gumbel-Softmax on [𝐥1,… , 𝐥

||

],
we derive a one-hot matrix 𝐌𝑔𝑢𝑚𝑏𝑒𝑙 ∈ R||×2, where each utterance
is assigned the vector [0.0, 1.0] if relevant and [1.0, 0.0] otherwise. A
vectorial representation 𝐯𝑔𝑢𝑚𝑏𝑒𝑙 ∈ R|𝐷| is 𝐌𝑔𝑢𝑚𝑏𝑒𝑙(∶, 2).

Annotation gate. To preserve the gradient flow after classification,
it is necessary to identify a differentiable strategy also for dialogue
augmentation. Compared to joint learning, we (i) reframe the input
as 𝐱𝐄𝟐𝐄 by positioning the <hl></hl> tokens at the start and end of
each utterance, (ii) delineate a gating mechanism to dynamically turn
off the wrapping annotation of unselected utterances. If a dialogue line
is deemed irrelevant, we replace the embeddings of its <hl></hl>
tokens with those of space tokens (i.e., ‘‘ ’’), mimicking their absence
in the input. Mechanically, we obtain the representation of each token
𝐌𝑒𝑚𝑏 ∈ R|𝐱𝐄𝟐𝐄|×𝑑 by feeding 𝐱𝐄𝟐𝐄 to the summarizer’s input embedding
layer. We construct a mask 𝐯𝑔𝑎𝑡𝑒 ∈ R|𝐱𝐄𝟐𝐄| to cancel undesired special
tags, where the binary weight of each token 𝑡𝑖 ∈ 𝐱𝐄𝟐𝐄 is established
with the following function:

mask(𝑡𝑖) =
{

𝐯𝑔𝑢𝑚𝑏𝑒𝑙[utterance(𝑡𝑖)] 𝑡𝑖 ∈ {⟨𝚑𝚕⟩, ⟨∕𝚑𝚕⟩}
1 𝑡𝑖 ∉ {⟨𝚑𝚕⟩, ⟨∕𝚑𝚕⟩}.

(7)

We build a matrix 𝐌𝑠𝑝𝑎𝑐𝑒 ∈ R|𝐱𝐄𝟐𝐄|×𝑑 containing space-token em-
beddings for annotation tags of irrelevant utterances, 0-embeddings
otherwise. The matrix supplied to the summarizer is

(

𝐯𝑇𝑔𝑎𝑡𝑒 ⊙𝐌𝑒𝑚𝑏

)

+
𝐌𝑠𝑝𝑎𝑐𝑒, while the final loss is  = 𝑐𝑒 + 𝑛𝑙𝑙 as in Section 4.1.

5. Experimental setup

Implementation details, computing infrastructure, and experiment
hyperparameters are described in Appendix A. For all the models
reported in Section 5.2, we adopt the optimal configurations indicated
by the authors, tailored to our hardware capacity.
4

m

5.1. Dataset

On the steps of previous research, we carry out experiments on
SAMSum [3] and DialogSum [49], two modern testbeds for abstractive
dialogue summarization in the English language. SAMSum is prepared
by Samsung R&D Institute Poland. Linguists created and wrote con-
versations to reflect the complexity and proportion of daily topics.
DialogSum is gathered from a practice website and three publicly
available dialogue datasets, namely Dailydialog [50], DREAM [51],
MuTual [52]. For both of these two benchmarks, the style and reg-
ister are diversified (informal, semi-formal, formal), encompassing a
broad spectrum of everyday subjects, such as education, employment,
healthcare, chit-chats, meeting organization, shopping, recreation, and
travel. Summaries are presented in the third person and offer succinct
overviews of the discussed topics. Datasets statistics are detailed in
Table 1.

5.2. Models

Classification and summarization modules. Our annotate-then-summar-
ize framework is agnostic to the underlying models. We investigate
several transformer-based PLMs with different capacities (i.e., archi-
tectures, pretraining schemes), aiming to reuse their linguistic and
semantic knowledge. We also fine-tune large language models (LLMs)
with > 1B parameters. As for the classifier, we test representation
and generative networks to encode each utterance’s last token (SEP).
pecifically, we put into play RoBERTa [54], DeBERTaV2 [55], GPT-
2 [56], and OPT [57]. For Top-p-semantic-overlap, semantic similarity is
calculated with a RoBERTa-large model fine-tuned on natural language
inference (NLI).3 As for the summarizer, we evaluate BART [16]—the
most popular generative model for dialogue-oriented tasks [4], rooted
in denoising pretraining objectives, and FLAN-T5 [58]—a large-scale
model fine-tuned with instructions on a mixture of text-to-text tasks
(dialogue summarization excluded).

Baselines. We head-to-head compare our DearWatson models with a
plethora of competitive abstractive summarization baselines.

• BART, FLAN-T5. Vanilla models fine-tuned on non-augmented
dialogues, i.e., without our learnable annotation.

• MV-BART [9]. BART model with multi-view decoder attention
layers to incorporate conversation topics and progression stages.

• Coref-ATTN [33]. BART model with an additional coreference-
guided attention layer between the encoder and the decoder.

• S-BART [59]. BART model with a multi-granularity decoder in-
corporating utterance dependency graphs and action graphs.

• BART-DialoGPTAnn [10]. BART model trained on documents aug-
mented with unsupervised topic, keyword, and redundancy anno-
tations from DialoGPT [23].

• SWING [60]. BART model trained with NLI signals to encourage
coverage and factuality.

• DialSent [61]. BART model post-trained to rephrase from dia-
logues to narratives before fine-tuning for dialogue summariza-
tion.

The large version is harnessed across each BART-derived model to
promote fairness.

5.3. Metrics

We quantify classification effectiveness with recall, precision, F1-
score, and accuracy for positive utterance classification 𝑇 . Following
the trail of common practice, we evaluate summarization performance
in terms of ROUGE-1/2/L F1 scores [62]. Inspired by Moro et al. [63],

3 https://huggingface.co/sentence-transformers/roberta-large-nli-stsb-
ean-tokens.

https://huggingface.co/sentence-transformers/roberta-large-nli-stsb-mean-tokens
https://huggingface.co/sentence-transformers/roberta-large-nli-stsb-mean-tokens
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Table 1
SAMSum and DialogSum dataset statistics. Word counts are determined by the NLTK tokenizer [53].

# Dialogues # Participants # Turns # Dialogue words # Summary words

Mean Std Range Mean Std Range Mean Std Range Mean Std Range

SamSum

Train 12,460 2.40 0.83 [1, 14] 11.17 6.45 [1, 46] 124.5 94.2 [13, 1017] 23.44 12.72 [2, 73]
Dev 818 2.39 0.84 [2, 12] 10.83 6.37 [3, 30] 121.6 94.6 [18, 691] 23.42 12.71 [4, 68]
Test 819 2.36 0.83 [2, 11] 11.25 6.35 [3, 30] 126.7 95.7 [17, 669] 23.12 12.20 [4, 71]

DialogSum

Train 12,460 2.01 0.13 [2, 7] 9.49 4.16 [2, 61] 197 97.83 [52, 1389] 31.02 13.51 [7, 212]
Dev 500 2.01 0.13 [2, 4] 9.38 3.99 [2, 29] 194.38 90.81 [55, 672] 28.96 12.63 [7, 89]
Test 500 2.01 0.09 [2, 3] 9.71 4.99 [2, 65] 202.22 108.84 [54, 1258] 25.59 11.01 [6, 96]
c
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Table 2
Relevant utterance classification results on SAMSum and DialogSum test sets (3-runs
average). All scores correspond to the annotation strategy that has been empirically
identified as the most effective for each dataset, specifically, One-word-overlap for
SAMSum and Top-p-word-overlap for DialogSum. Each dataset’s results are categorized
into two sections. Top: classification-only fine-tuning; bold and underline denote best
and second-best scores. Bottom: annotate-then-summarize fine-tuning; ↑ highlights
relative improvements.

Recall Precision F1 Accuracy

SAMSum

GPT-2-XL 86.11 75.97 80.72 80.43
OPT-1.3B 84.10 77.78 80.82 81.00
DeBERTaV2-xlarge 87.34 74.27 80.27 79.60
RoBERTa-large 82.15 79.90 81.01 81.70

RoBERTa-large(𝐷𝑊𝐽𝐿) 83.03 ↑ 78.68 80.79 81.24
RoBERTa-large(𝐷𝑊𝐸2𝐸 ) 85.00 ↑ 78.43 81.59 ↑ 81.77 ↑

DialogSum

GPT-2-XL 67.67 63.35 65.44 70.17
OPT-1.3B 67.16 65.02 66.07 71.22
DeBERTaV2-xlarge 65.57 62.18 63.83 69.07
RoBERTa-large 69.33 68.95 69.14 74.24

RoBERTa-large(𝐷𝑊𝐽𝐿) 61.38 66.67 63.91 73.30
RoBERTa-large(𝐷𝑊𝐸2𝐸 ) 67.47 67.23 67.35 73.95

we also measure an aggregated ROUGE judgment:  = avg(𝑟1 ,𝑟2 ,𝑟𝐿)∕1+𝜎2𝑟 ,
where 𝑟1∕2∕𝐿 ∈ [0, 1] and 𝜎2𝑟 is the F1 variance.4 To refine summary
quality assessment and go beyond lexical superficiality, we make use of
BERTScore [64] and BARTScore [65], two recently-developed model-
based metrics that have been shown to correlate well with human
judgments (i.e., semantic coverage, coherence, informativeness, rel-
evance, fluency, and factual consistency dimensions). Higher scores
indicate better overall results. Metric settings and interpretability hints
are documented in Appendix A.2.

6. Results

6.1. Quantitative evaluation

Utterance classification. Table 2 displays preliminary fine-tuning results
about the influence of the PLM choice on the classification component
alone. The reported results are based on the most effective annotation
strategy identified for each dataset in the downstream summarization
task. A thorough exploration of the strategy’s impact is detailed in the
next paragraph. Notably, RoBERTa stands out from the other models,
exhibiting the highest F1 and accuracy scores, despite having up to 4.5x
fewer parameters. Accordingly, we opt for RoBERTa as the classifica-
tion backbone in all our complete solutions, denoted by 𝐷𝑊𝐽𝐿 (joint
learning) and 𝐷𝑊𝐸𝐸 (end-to-end).

4  penalizes model results with discrepant unigram, bigram, and longest
ommon subsequence overlaps.
5

Annotation strategy. The way ‘‘relevance’’ is defined for source utter-
ances can have a profound impact on the quality of the generated
summary. Table 3 highlights how the choice of different annotation
strategies directly affects summarization metrics. Interestingly, the op-
timal strategy appears to be highly dependent on the dataset at hand,
revealing contrasting preferences between SAMSum and DialogSum. To
be specific, One-word-overlap appears to be the best choice for SAMSum
and the worst for DialogSum. Given the similar nature of the two
benchmarks, we posit that a pivotal factor influencing the ultimate
performance lies in achieving a harmonious balance between anno-
tated and non-annotated oracle utterances, essentially the equilibrium
between positive and negative classification examples. To go into this
interplay, we present the percentage of annotated utterances for each
strategy-dataset combination. For the top-𝑝 heuristics, the annotation
percentage is equal to 𝑝; we report the best value registered after a
grid search in the hyperparameter space (see Table A.7 for details).
Adding weight to our hypothesis is the optimal value of 𝑝, which
losely approaches 42%. Simultaneously, in SAMSum and DialogSum,
ne-word-overlap annotates approximately ≈48% and ≈64% of the

ource utterances, respectively, indicating a greater likelihood of false
ositive relevance labels in the latter. Regarding the evaluation of
op-p-word-overlap and Top-p-semantic-overlap in DialogSum, our find-

ngs show that the former excels in joint learning and secures higher
erformance rankings in end-to-end training. As a result, we opt for
op-p-word-overlap.

ialogue summarization. Overall results are delighted in Table 4, con-
idering the optimal annotation strategy identified for each dataset. The
emarkable outcomes produced by the oracle utterance annotations (up
o +5.60/3.71/4.34 ROUGE-1/2/L F1, +4.68 BERTScore F1, +0.132
ARTScore F1) clearly affirm the powerful effect of <hl></hl> tag-
ing and set out a promising theoretical upper bound (i.e., perfect clas-
ifier with 0 false positives and negatives). Expressly, the annotation
onfers more benefits as the number of parameters decreases, reaching

peak with BART. When evaluated on SAMSum, our DearWatson
odels outmatch vanilla summarizers in almost all dominant metrics,

specially precision measures. Moving to DialogSum, a BART-based
ackbone becomes sufficient to get competitive or superior ROUGE
1 scores, while greatly improving semantic and factual metrics (up
o +13.82 BERTScore F1 and +0.871 BARTScore F1 compared to
WING and DialSent). In the context of ROUGE metrics, making a
efinitive choice between 𝐷𝑊𝐽𝐿 and 𝐷𝑊𝐸𝐸 proves challenging, as the

two training modes exhibit distinct performance gaps in SAMSum and
DialogSum. 𝐷𝑊𝐽𝐿 is more robust and predictable, attributed to its finer
error containment, which becomes increasingly challenging as the ar-
chitecture grows. On the other hand, 𝐷𝑊𝐸𝐸 consistently favor semantic
metrics. In addition, DearWatson multi-task learning positively affects
the prediction of relevant utterances, further enhancing RoBERTa ca-
pabilities; this becomes particularly evident when promoting more
interaction through 𝐷𝑊𝐸𝐸 . Our FLAN-T5(𝐷𝑊𝐽𝐿) eclipses MV-BART on
SAMSum and clearly sets a new state-of-the-art, beating multi-view,
coreference-centered, multi-modal, and NLI-based alternatives.
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Table 3
Quantitative summarization results on the SAMSum and DialogSum test sets after fine-tuning with different target annotation
strategies. Oracle-annotated utterances are specified on the right. Bold and underline denote the best and second-best scores
for each dataset.

ROUGE-F BERTScore-F BARTScore-F Ann. utterances

SAMSum

BART(𝐷𝑊𝐽𝐿) ⋅ One-word-overlap 44.50 53.61 −2.784 47.59%BART(𝐷𝑊𝐸2𝐸 ) ⋅ One-word-overlap 44.33 53.72 −2.783

BART(𝐷𝑊𝐽𝐿) ⋅ Top-p-word-overlap 43.91 53.31 −2.787 42.25%
BART(𝐷𝑊𝐸2𝐸 ) ⋅ Top-p-word-overlap 43.52 53.07 −2.778 40.7%

BART(𝐷𝑊𝐽𝐿) ⋅ Top-p-semantic-overlap 43.79 53.29 −2.799 42.25%
BART(𝐷𝑊𝐸2𝐸 ) ⋅ Top-p-semantic-overlap 43.86 53.06 −2.798 40.7%

DialogSum

BART(𝐷𝑊𝐽𝐿) ⋅ One-word-overlap 37.36 51.19 −2.841 63.67%BART(𝐷𝑊𝐸2𝐸 ) ⋅ One-word-overlap 37.33 51.40 −2.842

BART(𝐷𝑊𝐽𝐿) ⋅ Top-p-word-overlap 38.29 52.45 −2.847 41.71%
BART(𝐷𝑊𝐸2𝐸 ) ⋅ Top-p-word-overlap 38.60 52.83 −2.826 39.91%

BART(𝐷𝑊𝐽𝐿) ⋅ Top-p-semantic-overlap 37.59 51.76 −2.822 41.71%
BART(𝐷𝑊𝐸2𝐸 ) ⋅ Top-p-semantic-overlap 38.66 52.78 −2.834 39.91%
Table 4
Quantitative summarization results on the SAMSum and DialogSum test sets after fine-tuning (3-runs average). Top: abstractive baselines. Bottom: backbone vanilla models and
our annotate-then-summarize variants, including oracle utterance annotations, joint learning, and end-to-end learning. Bold and underline denote the best and second-best scores,
excluding target-aware oracle results. The green gradient spotlights our relative percentage improvement compared to backbone models (the deeper, the more).

Model ROUGE-1 ROUGE-2 ROUGE-L BERTScore BARTScore

R P F R P F R P F R P F R P F

SAMSum

MV-BART 57.51 55.85 54.05 30.74 29.49 28.56 53.16 51.54 50.57 53.90 53.46 53.64 −2.915 −2.661 −2.788
Coref-ATTN 56.61 57.12 53.93 29.79 30.68 28.58 52.26 52.49 50.39 53.32 53.89 53.56 −2.915 −2.674 −2.794
S-BART 51.22 56.00 50.70 25.84 28.12 25.50 48.17 51.87 48.08 48.86 52.36 50.57 −3.110 −2.895 −3.003
BART-DialoGPTAnn 54.90 57.90 53.70 29.53 31.22 28.79 51.54 53.72 50.81 50.48 42.95 46.66 −2.975 −3.617 −3.296
SWING 57.19 55.27 53.04 30.34 29.99 28.36 52.91 51.59 50.08 53.75 52.49 53.07 −2.906 −2.728 −2.817
DialSent 55.68 57.26 53.54 30.05 31.14 28.91 51.55 52.82 50.21 52.86 53.92 53.34 −2.95 −2.722 −2.836

BART 58.08 53.93 53.06 30.66 28.74 28.08 53.02 49.83 49.44 54.06 51.52 52.74 −2.901 −2.726 −2.813
Ours ⋅ BART(𝐷𝑊𝑜𝑟𝑎𝑐𝑙𝑒) 60.73 60.34 58.64 32.70 32.86 31.79 55.04 54.97 53.78 57.44 57.41 57.42 −2.788 −2.574 −2.681
Ours ⋅ BART(𝐷𝑊𝐽𝐿)* 57.76 55.79 53.92 31.22 30.41 29.16 53.16 51.58 50.43 54.27 53.04 53.61 −2.885 −2.684 −2.784
Ours ⋅ BART(𝐷𝑊𝐸2𝐸 )* 57.80 55.49 53.75 30.80 30.12 28.84 53.23 51.47 50.40 54.39 53.14 53.72 −2.891 −2.675 −2.783

FLAN-T5 58.36 56.59 54.38 32.36 31.46 30.05 54.15 52.79 51.35 55.10 53.73 54.36 −2.822 −2.668 −2.745
Ours ⋅ FLAN-T5(𝐷𝑊𝑜𝑟𝑎𝑐𝑙𝑒) 59.45 58.12 56.22 33.15 32.55 31.31 55.33 54.32 53.09 56.69 55.65 56.13 −2.788 −2.612 −2.700
Ours ⋅ FLAN-T5(𝐷𝑊𝐽𝐿)* 57.90 58.09 55.05 32.26 32.56 30.63 53.89 54.08 51.98 55.10 54.82 54.91 −2.827 −2.646 −2.737
Ours ⋅ FLAN-T5(𝐷𝑊𝐸2𝐸 ) 57.94 56.57 54.13 32.14 31.33 29.86 53.99 52.87 51.28 54.74 53.37 54.00 −2.828 −2.659 −2.744

DialogSum

SWING 54.47 44.85 47.67 24.99 20.82 21.99 50.79 43.28 45.72 45.81 41.04 43.45 −3.576 −3.343 −3.459
DialSent 46.46 52.16 47.60 21.05 24.34 21.76 44.60 49.26 45.79 36.61 41.36 39.01 −3.760 −3.633 −3.697

BART 53.37 43.83 46.55 23.87 20.00 21.00 49.82 42.32 44.70 54.59 48.33 51.45 −2.865 −2.824 −2.844
Ours ⋅ BART(𝐷𝑊𝑜𝑟𝑎𝑐𝑙𝑒) 58.67 48.01 51.24 27.50 22.95 24.27 53.60 45.38 48.13 57.61 51.09 54.34 −2.741 −2.730 −2.735
Ours ⋅ BART(𝐷𝑊𝐽𝐿)* 53.78 45.47 47.79 24.05 20.84 21.62 49.93 43.45 45.47 55.23 43.45 45.47 −2.861 −2.833 −2.847
Ours ⋅ BART(𝐷𝑊𝐸2𝐸 )* 52.53 47.38 48.18 23.70 21.79 21.95 48.84 44.82 45.66 54.67 50.97 52.83 −2.867 −2.785 −2.826

* Statistical significance (Pitman’s permutation test, p < 0.05).
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Annotation statistics. Table 5 wraps up fine-grained and coarse-grained
annotation coverage statistics in augmented dialogue. On average,
models trained in a joint learning mode are more likely to label short
utterances.

Impact of speakers and utterances. Fig. 3 breaks down the  effec-
iveness by number of participants and utterances. Please note that
ialogSum only has 2 or 3 speakers (see Table 1). Irrespective of the
odel or learning approach, as the number of utterances increases,
OUGE scores gradually decline in SAMSum. In contrast, in DialogSum,

hey exhibit a less predictable pattern, characterized by alternating
pikes of good and poor performance. Importantly, SAMSum dialogues
ith 5+ speakers are accompanied by a marked  reduction. We

exclude speaker number classes with fewer than three occurrences.
6

a

6.2. Cross-attention analysis and interpretability

We analyze the cross-attention values between the input dialogue
and the generated summary to explicate the performance boost per-
mitted by relevant utterance annotations. Fig. 4 contrasts the behavior
of BART and BART(𝐷𝑊𝐽𝐿) on a qualitative SAMSum example. The
standard BART model places little focus on salient dialogue tokens
uch as [bring, piece, later, on], causing essential facts to be
issing from the resume. In BART(𝐷𝑊𝐽𝐿), we observe a discernible

mphasis on the importance of <hl></hl> tokens. Moreover, the
odel concentrates more on the pertinent facts while attenuating at-

ention toward others. During inference, selected utterances act as
vidence for the final generation, making the model more interpretable.
ig. 5 portrays input–output qualitative case studies that elucidate the

dvantages of our models.
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Fig. 3. Relation between overall summarization ROUGE scores () and the number of speakers/utterances in conversations.

Fig. 4. Attention matrix visualization, the more intense the color, the higher the weight. A comparison between BART(𝐷𝑊𝐽𝐿) (left) and BART (right). The vertical axis is the
generated summary, and the horizontal axis is the source dialogue. Presented tokens are partial for ease of perception. Our framework guides the model to emphasize tokens that
are more likely to be relevant for the summary.
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Fig. 5. Qualitative examples of predicted relevant utterances (highlighted in yellow) and their assistance to high-quality summarization and interpretability. Red text indicates
generation errors. Taking BART as the backbone, we illustrate the inference of our fine-tuned joint learning model (left) and end-to-end model (right).
Table 5
Average relevant utterance annotation and generation statistics. % of annotated
utterances out of the total. % of annotated words out of the total. Number of generated
words. Number of generated tokens.

Dataset Model Ann. Ann. Gen. Gen.
utterances words words tokens

SAMSum

BART 50.14 65.3 25.7 28.62
BART(𝐷𝑊𝐽𝐿) 51.49 67.05 24.74 27.66
BART(𝐷𝑊𝐸2𝐸 ) 51.49 67.05 25.0 27.95
FLAN-T5 52.58 67.97 24.97 30.94
FLAN-T5(𝐷𝑊𝐽𝐿) 52.58 67.97 23.92 29.59
FLAN-T5(𝐷𝑊𝐸2𝐸 ) 49.92 64.85 24.79 30.76

DialogSum BART 35.47 43.88 30.91 34.66
BART(𝐷𝑊𝐽𝐿) 51.49 67.05 29.66 33.48
BART(𝐷𝑊𝐸2𝐸 ) 39.97 47.99 27.99 31.68

6.3. Efficiency

Efficiency takes the spotlight in Fig. 6, proving the practical us-
ability of the proposed method. In contrast to plain models lack-
ing an annotator, the training process for our 𝐷𝑊𝐽𝐿 and 𝐷𝑊𝐸2𝐸
classifier+summarizer models demands an additional 2 h at most on
DialogSum, while it only takes up to 16 extra minutes on SAMSum.
During inference, RoBERTa-large runs in ≈8 s for the entire DialogSum
test set and ≈13 s for the SAMSum test set. As a result, the additional
cost introduced by the annotator is negligible and cannot exceed the
runtime variability effect between different runs. In fact, the overall
8

inference times of 𝐷𝑊𝐽𝐿 and 𝐷𝑊𝐸2𝐸 are even shorter than those of
BART. The shorter average length of the summaries produced by our
models adds to the rationale for this time efficiency ( Table 5).

6.4. Human evaluation

In the quest to better gauge summarization merits, we conduct
an in-depth human evaluation of three highly-comparable models
on SAMSum: the previous state-of-the-art holder MV-BART and ours
BART(𝐷𝑊𝐽𝐿), BART(𝐷𝑊𝐸𝐸 ). The exclusive focus on SAMSum is firmly
supported by its widespread popularity and frequent adoption as the
sole benchmark in previous research work [9,22,33]. Motivated by [60,
66,67], we use a direct comparison strategy, which has been shown
to be more reliable, sensitive, and less labor intensive than rating
scales. We sample 50 instances from the test set. For each instance, 3
English-proficient graders are presented with summaries inferred from
2 out of 3 sources and asked to select the better one with respect
to 3 dimensions. A ‘‘Tie’’ is declared if a judge perceives the two
summaries to be of equal quality. When all possible pair combinations
are scrutinized, the total number of preference labels per annotator is
450. We randomize the order of pairs and summaries per example to
guard the rating against being gamed. Zooming in, the rating axes are
defined as follows. Recall considers whether the generated summary
covers all the target content units. Precision checks if the generated
summary covers only the target content units (i.e., no superfluous or
redundant information). Faithfulness examines whether the generated
summary is factually consistent with the dialogue. The final score of
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Fig. 6. Runtime analysis (3-runs average) over the SAMSum and DialogSum test sets, BART-based backbone. Our model results include both annotation and generation times.
Fig. 7. Human evaluation results. DearWatson joint learning and end-to-end learning achieve significantly higher recall and faithfulness than the previous state-of-the-art (student
t-test, p<0.05), corroborating the benefits of supervised input augmentation.
each model is given by the percentage of times that its summaries are
selected as the better ones, minus the percentage of times that they are
not. Appendix B illustrates our setup with human instructions.

The results are showcased in Fig. 7. Sampled instances and human
judges are published for transparency and further applications.5 The
verage Kendall coefficient among all inter-annotator agreements is
5.25%. The annotation process took approximately 6 h per judge, 18 h
n total. DearWatson models rank better on recall (+200% joint, +100%
nd-to-end) and faithfulness (+2324% joint, +103% end-to-end) at the
ost of a moderate drop in prediction (−83% joint, −67% end-to-end).

These findings reflect that the summaries inferred with our framework
cover more semantic facts presented in the ground truth, successfully
addressing the missing information issue. Conversely, they suggest a
moderate correlation between automatic metrics and desired output
properties, confirmed in Section 6.6.

6.5. ChatGPT evaluation

Scaling the model or data size has primarily raised the performance
bar of NLP tasks, boosting model capacity and showing up emergent
abilities [68–70]. Current LLMs are general-purpose language task
solvers (to some extent) and are often regarded as an initial form of
artificial general intelligence [71]. In response to these achievements,
newly published work has provided meta-evaluations of ChatGPT in
zero-shot settings, attempting to ascertain whether it can evaluate
text like a human expert. Gilardi et al. [72] reveal that ChatGPT
outperforms MTurk crowd-workers in several annotation tasks. Wang
et al. [73] substantiate that ChatGPT surpasses previous automatic met-
rics in abstractive summarization and attains state-of-the-art correlation
with human judgments, making it a premier NLG evaluator. In this
paper, we deploy ChatGPT to rank dialogue summarizers for the first
time in the literature. In detail, we consider the same evaluation setting
described in Section 6.4 (i.e., sample, models, quality dimensions)
and give aspect-specific instructions to prompt the reference-based
assessment of the generated summary on a 3-point Likert scale. Fig. 8
documents average results per model and metric. Details are reported
in Appendix C.

5 Annotations will be released in case of acceptance.
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6.6. Correlation with human judgment

We check out the correlation between automatic metrics (ChatGPT
included) and human judgments in terms of semantic recall, precision,
and faithfulness. We first convert human evaluation results and auto-
matic metric scores to a scale of {−1, 0, 1}, corresponding to {LOSE,
TIE, WIN}. Fig. 9 depicts the results with Kendall’s Tau [74] as the
correlation measure, which evaluates the ordinal association between
two quantities. Note that Kendall–Tau ranges in [−1, 1], with 1 denoting
a perfect positive association. Remarkably, ChatGPT correlates the most
with humans, representing the most suitable technique to measure the
degree to which a model resolves missing information. On the contrary,
BERTScore and BARTScore perform surprisingly poorly. We hypothe-
size that this is due to their model-based nature and pretraining on
documents different from conversations. We find ROUGE-L recall being
the best metric for assessing factuality. Despite the higher proficiency
of ChatGPT in capturing quality dimensions, its correlation with human
raters reaches a maximum of 0.2. This indicates that ChatGPT, although
a valuable metric, cannot completely substitute human judgment in the
abstractive dialogue summarization field. In general terms, all metrics
struggle to measure semantic fact recall, deviating noticeably from
human labels.

7. Conclusion

In this paper, we introduce DearWatson, a new annotate-then-
generate framework for abstractive dialogue summarization. Drawing
inspiration from the human distillation process, we train a model to
predict relevant utterances and consciously build a resume with respect
to the essential facts. To achieve this, we jointly optimize the placement
of relevance-marker tokens in the input and the summarization of the
augmented dialogue. Experiments and ablation studies on SAMSum and
DialogSum demonstrate that our models set new state-of-the-art results,
significantly improving semantic recall and faithfulness. Cross-attention
analysis unveils that our framework instructs pretrained language mod-
els to better select and preserve summary-worth content. At inference
time, classified utterances also provide evidence for the output, favor-
ing interpretability. To provide insights for future research, we measure
the correlation between reported automatic metrics, prompt-guided

ChatGPT scores, and human judgments.
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Fig. 8. ChatGPT evaluation results. DearWatson end-to-end models exhibit higher precision and faithfulness.
Fig. 9. Kendall–Tau correlation (%) of automatic metrics with human judgments.
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Appendix A. Reproducibility

A.1. Implementation and training details

Hardware setup and environment. Each experiment is performed on a
workstation using a single Nvidia GeForce RTX3090 GPU with 24 GB of
dedicated memory, 64 GB of RAM, and an Intel® Core™ i9-10900X1080
CPU @ 3.70 GHz. The reference operating system is Ubuntu 20.04.3
LTS. To elevate portability and consistency, our development envi-
ronment is constructed on top of a docker container with a de-facto
standard HuggingFace image.7

Dataset preprocessing. We download SamSum from HuggingFace
Datasets.8 We retain the original text content of conversations, encom-
passing cased words, slang words, typos, and emoticons. The ‘‘:’’ token
is included in the speaker span 𝐩𝑖. We replace newlines with [SEP]
utterance segmenters.

Models. Table A.6 enumerates the models used in this study, linking
to specific versions. They are transformer-based, have a subword vo-
cabulary, and are pre-trained on massive corpora through denoising
self-supervised tasks, i.e., reconstruction of artificially masked or cor-
rupted spans. Broadly speaking, self-supervision is a powerful technique
to address the challenge of limited labeled data, finding success in var-
ious applications such as information retrieval [75] and gene function
discovery [76,77]. Given the contained size of SAMSum dialogues, no
model has a maximum input size that requires truncation. It is worth
mentioning that early experiments were also made with DialogLED [78]
as backbone—an efficient model pre-trained for dialogue understand-
ing and summarization on long meeting and TV series transcripts.
However, the different nature and domain of pretraining dialogues
ended up being unsuitable for the objectives of this paper.

Baselines. For each summarization baseline, we rest on the official
SAMSum-specific checkpoints released by the authors, which we em-
ploy to re-run inferences and calculate metric scores. The only excep-
tion is Coref-ATTN, for which the model has not been released, and we
refer directly to the official predictions.

Fine-tuning. Our code is founded on Python 3.10.8, PyTorch 1.12.0
[79], and HuggingFace Transformers [80]. We train each model for
five epochs and select the best checkpoints in the validation set with
 score. We choose the AdamW optimizer [81] and leave 42 as the
default global seed. Sticking to Jang et al. [43], we anneal the Gumbel
softmax value 𝜏 according to a high-low schedule. Both BART and
FLAN-T5 are trained with teacher forcing: at training time, the inputs
are previous tokens from the ground truth; at test time, the inputs are
prior tokens predicted by the decoder. To make fine-tuning of GPT-
2, OPT, and FLAN-T5 possible with our hardware, we exploit PEFT.9
Precisely, we carry out 8-bit model quantization and adopt Low-Rank
Adaption (LoRA) [82] to only learn a small number of extra model

7 https://hub.docker.com/r/huggingface/transformers-pytorch-gpu.
8 https://huggingface.co/datasets/samsum.
9 https://github.com/huggingface/peft.

https://www.maggioli.com/who-we-are/company-profile
https://hub.docker.com/r/huggingface/transformers-pytorch-gpu
https://huggingface.co/datasets/samsum
https://github.com/huggingface/peft
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Table A.6
List of the classification (top) and summarization (bottom) models used in this study.

Model # Params Architecture URL

E D Details

DeBERTa-V2-xlarge 900M ✓ 24-layers, 1536-hidden, 24-heads https://huggingface.co/microsoft/deberta-v2-xlarge
RoBERTa-large 355M ✓ 24-layers, 1024-hidden, 16-heads https://huggingface.co/roberta-large
GPT-2-XL 1.5B ✓ 48-layers, 1600-hidden, 25-heads https://huggingface.co/gpt2-xl
OPT-1.3B 1.3B ✓ 24-layers, 2048-hidden, 32-heads https://huggingface.co/facebook/opt-1.3b

BART-large 406M ✓ ✓ 12-layers, 1024-hidden, 16-heads https://huggingface.co/facebook/bart-large
FLAN-T5-XXL 11B ✓ ✓ 24-layers, 4096-hidden, 64-heads https://huggingface.co/google/flan-t5-xxl
SWING (BART-large) 406M ✓ ✓ 12-layers, 1024-hidden, 16-heads https://github.com/amazon-science/AWS-SWING
MV-BART-large ∼406M ✓ ✓ 12-layers, 1024-hidden, 16-heads https://github.com/SALT-NLP/Multi-View-Seq2Seq
Coref-ATTN (BART-large) ∼406M ✓ ✓ 12-layers, 1024-hidden, 16-heads hhttps://github.com/seq-to-mind/coref_dial_summ
DialSent (BART-large) ∼406M ✓ ✓ 12-layers, 1024-hidden, 16-heads https://github.com/jiaqisjtu/dialsent-pgg
Table A.7
Explored hyperparameters along with their empirical search grid. Training time (top) and inference time (bottom).

Hyperparameter Search space

Top-p annotationb {0.30, 0.40, 0.41, …, 0.45a(𝐷𝑊𝐸2𝐸 ), …, 0.47a(𝐷𝑊𝐽𝐿), …, 0.50}
Dropout rate 0.1
Learning rate {1e−5, 2e−5a, 3e−5. 4e−5}, linear scheduler
Optimizer 0.9 𝛽1, 0.999 𝛽2, 1e−2 weight decay
Batch size 2
Epochs 5 (validation every epoch)
𝜏b {1, …, 14a, …, 21}
Lora_dropoutc 0.1
Lora_rankc {16a, 32, 64}
Lora_alphac {32a, 64, 128}

Decoding strategy beam search, n_beams = 5
min_length = 8, max_length = 100
repetition_penalty = 1

a The final picked values.
b Specific for end-to-end strategies.

c Specific for large language models.
arameters. Training our best model, FLAN-T5(𝐷𝑊𝐽𝐿), requires 20 GB
VRAM and 25 h; 2.13 kg CO2e carbon footprint, 16.57 kWh energy
needed.

Hyperparameters. We list the hyperparameters used to train our Dear-
Watson models in Table A.7. Surveyed values include default set-
tings [16,58]; final choices result from a grid search.

Number of parameters. The architectural sizes of our solutions equal
the sum of the classifier and summarizer parameters, independently
of the training strategy. By combining a RoBERTa-large annotator
and a BART-large generator, our BART(𝐷𝑊𝐽𝐿∕𝐸2𝐸 ) model is ∼761.6M
(all trained). Similarly, FLAN-T5(𝐷𝑊𝐽𝐿∕𝐸2𝐸 ) is ∼3.2B (of which only
363.8M are trained).

Experiment tracking. We track all our trainings with Weights & Biases10

and monitor CO2 emissions with CodeCarbon.11

A.2. Metrics

We quantify automatic metric scores using NLG-Metricverse [83].
Note that different libraries may result in different scores. Table A.8
lists all hyperparameters. Owing to the grander correlation with human
judgment, we compute BERTScore with DeBERTa-xlarge instead of the
default RoBERTa-large, as recommended by the authors from version
0.3.11. To increase interpretability and avoid slight range variations,
we set rescale_with_baseline=True. Note that BARTScore
computes the generation probability 𝑝(𝐲|𝐱, 𝜃) of a sequence 𝐲 condi-
tioned on another sequence 𝐱, where 𝜃 are the weights of a BART
model. Because of this generative approach, the evaluation dimensions
vary depending on how 𝐲 and 𝐱 are defined. As for the other metrics,

10 https://wandb.ai.
11 https://github.com/mlco2/codecarbon.
11
we consider the Recall, Precision, and F1 settings, thereby feeding
BARTScore with a summary hypothesis (𝐡) and a summary reference
(𝐫). Recall (𝐡 → 𝐫, 𝑝(𝐫|𝐡, 𝜃)) quantifies how easily a gold reference could
be generated by the hypothesis (i.e., semantic coverage). Precision
(𝐫 → 𝐡, 𝑝(𝐡|𝐫, 𝜃)) assesses how likely the summary hypothesis could
be constructed based on the gold reference. F score (𝐡 ↔ 𝐫) takes the
arithmetic average of recall and precision.

Appendix B. ChatGPT evaluation details

We leverage the ChatGPT API and treat the gpt-3.5-turbo
model as a reference-based metric for judging artificial summaries. We
feed predictions individually, utilizing the prompt in Fig. B.10—which,
after several attempts, results as the best one. The prompt makes the
model aware of task and aspect details, forcing ChatGPT to output
scores only.

• Recall. 1 = ‘‘reference contents are not covered at all’’. 3 =
‘‘reference contents are fully covered’’.

• Precision. 1 = ‘‘the generated summary has many contents not cov-
ered by the reference (unnecessary or redundant information)’’. 3
= ‘‘the generated summary contains only reference contents’’.

• Faithfulness. 1 = ‘‘the generated summary is not semantically con-
sistent with the dialogue (hallucinations, polarity inversions, en-
tity misusage)’’. 3 = ‘‘the generated summary is perfectly factual
with respect to the dialogue’’.

A new chat session is created for every summary to ensure that Chat-
GPT results (i.e., single digits) are not influenced by the annotation
history. As for decoding hyperparameters, we leave default values
(e.g., temperature = 1, top_p = 1).

https://huggingface.co/microsoft/deberta-v2-xlarge
https://huggingface.co/roberta-large
https://huggingface.co/gpt2-xl
https://huggingface.co/facebook/opt-1.3b
https://huggingface.co/facebook/bart-large
https://huggingface.co/google/flan-t5-xxl
https://github.com/amazon-science/AWS-SWING
https://github.com/SALT-NLP/Multi-View-Seq2Seq
https://github.com/seq-to-mind/coref_dial_summ
https://github.com/jiaqisjtu/dialsent-pgg
https://wandb.ai
https://github.com/mlco2/codecarbon
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Table A.8
Hyperparameters initialization for utilized NLG metrics. Arrows indicate the reading key (i.e., ↑ = higher is better).

Metric Definition Bound Hyperparameters

ROUGE Unigrams, bigrams, and longest common
subsequence lexical overlaps

[0, 1] ↑ rouge_types=[‘‘rouge1’’,‘‘rouge2’’,‘‘rougeL’’],
use_aggregator=True,
use_stemmer=True,
metric_to_select=‘‘fmeasure’’

BERTScore IDF-weighted n-gram hard-alignment via
contextualized embeddings

[−1, 1]∗ ↑ model_type=‘‘microsoft/deberta-xlarge-mnli’’,
idf=True, batch_size=64, nthreads=4,
rescale_with_baseline=True,∗
use_fast_tokenizer=False,
return_average_scores=False

BARTScore Semantic multi-perspective evaluation as the
logarithmic probability of generating a text
conditioned on another one

] − ∞, 0[ ↑ model_checkpoint=‘‘bartscore-large-cnn’’,
batch_size=4, segment_scores=False
Fig. B.10. ChatGPT annotation prompt (target: value on a 3-point Likert scale). [metric] equals ‘‘recall’’, ‘‘precision’’, or ‘‘faithfulness’’. The [input] can be a ‘‘resume’’
(recall/precision) or a ‘‘document’’ (faithfulness). [definition] spans explain the meaning of boundary min/max scores for the metric under investigation.
Fig. C.11. Human assessment interface.

Appendix C. Human evaluation details

The interface with human evaluation instructions is sketched in
Fig. C.11.

Appendix D. Scientific artifacts

The licenses for all the models and software used in this paper are
listed below in parentheses: NLTK (Apache License 2.0), py-ROUGE
(Apache License 2.0), BERTScore (MIT License) BARTScore (Apache
License 2.0), SAMSum (CC BY-NC-ND 4.0), GPT-2 (MIT License),
OPT (non-commercial), DeBERTa (MIT License), RoBERTa (GPL-2.0
License), MV-BART (MIT License), Coref-ATTN (not specified), S-BART
(MIT License), BART-DialoGPTAnn (not specified), SWING (Apache
License 2.0), BART (MIT License), FLAN-T5 (Apache 2.0), DialSent (not
specified).
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