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TWO-SIDED SINGULAR CONTROL OF AN INVENTORY WITH
UNKNOWN DEMAND TREND\ast 

SALVATORE FEDERICO\dagger , GIORGIO FERRARI\ddagger , AND NEOFYTOS RODOSTHENOUS\S 

Abstract. We study the problem of optimally managing an inventory with unknown demand
trend. Our formulation leads to a stochastic control problem under partial observation, in which
a Brownian motion with nonobservable drift can be singularly controlled in both an upward and
downward direction. We first derive the equivalent separated problem under full information, with
state-space components given by the Brownian motion and the filtering estimate of its unknown drift,
and we then completely solve this latter problem. Our approach uses the transition among three
different but equivalent problem formulations, links between two-dimensional bounded-variation sto-
chastic control problems and games of optimal stopping, and probabilistic methods in combination
with refined viscosity theory arguments. We show substantial regularity of (a transformed version of)
the value function, we construct an optimal control rule, and we show that the free boundaries delin-
eating (transformed) action and inaction regions are bounded globally Lipschitz continuous functions.
To our knowledge this is the first time that such a problem has been solved in the literature.

Key words. bounded-variation stochastic control, partial observation, inventory management,
Dynkin games, free boundaries
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1. Introduction. In this paper, we consider the optimal management of inven-
tory when the demand is stochastic and partially observed. There exists an enormous
literature on optimal inventory management (see, e.g., [41] for an overview and the
significance of inventory control in operations and profitability of companies). The
optimal singular/impulsive control literature of stochastic inventory systems has so
far assumed that the dynamics of the inventory is fully known to decision makers;
see, e.g., [1, 6, 7, 26, 27, 28, 38, 39, 40], among many others. Some of the most
celebrated results are the optimality of (constant) threshold strategies determining
(a) base-stock policies---maintaining inventory above a fixed shortage level---and (b)
restrictions on the size of inventory, in order to manage storage-related costs. In this
paper, we generalize the existing literature on the singular control of inventories by
assuming that the demand rate or the mean of the random demand for the product is
unknown to decision makers. This can be relevant to companies operating in newly
established markets or producing a novel good, for which there is limited knowledge
about the demand trend. In particular, we will show how the aforementioned optimal
strategies are no longer triggered by constant thresholds but by functions of the deci-
sion maker's learning process of the unknown demand rate. We further note that the
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INVENTORY CONTROL WITH UNKNOWN DEMAND TREND 3077

analysis and results in this paper can also contribute to applications way beyond the
inventory management literature; for instance, to cash balance management problems
(see, e.g., [20]), when the drift of the cash process is unknown to managers.

The model and general results. We consider decision makers who can observe
in real time the evolution of the level of a Brownian inventory system St, which
represents the production minus the stochastic demand for the product at time t
(see [26, 38, 40]). The inventory has a ``net demand"" rate \mu , unknown to decision
makers, and a stochastic part modeling the demand volatility. We assume that the
random variable \mu \in \{ \mu 0, \mu 1\} , for \mu 0, \mu 1 \in \BbbR , and the decision makers' prior belief is
\pi := \sansP (\mu = \mu 1) \in (0,1). This is continuously updated as new information is revealed
according to the natural filtration \scrF S

t of S and takes the form \Pi t := \sansP (\mu = \mu 1 | \scrF S
t )

according to standard filtering techniques (see [34] for a survey). Decision makers can
control the inventory via a bounded-variation process Pt = P+

t  - P - 
t , where P\pm 

t are
increasing processes defining the total amount of increase/decrease of inventory up to
time t. The controlled inventory level is therefore given byXt = x+\mu t+\eta Bt+P+

t  - P - 
t

for \eta > 0 and all t\geq 0; positive values model the excess inventory, while the absolute
value of negative X models the backlog in production.

Both levels of excess inventory and backorder bear (nonnecessarily symmetric)
holding and shortage costs per unit of time, modeled via a suitable convex function
C(X). High holding/storage costs for large X could suggest unloading a part of
excess inventory (e.g., start promotions, send to outlets, donate, ship to another
facility, or destroy) at a cost K - proportional to unloaded volume P - . On the other
hand, high shortage costs due to undesirable low X could suggest placing inventory
replenishment orders at a cost K+ proportional to the ordered volume P+. However,
there is a trade-off due to the costs K\pm of controlling the inventory X to keep C(X)
at ``reasonable"" levels. The question we thus study is ``What is the optimal inventory
management strategy that minimizes the total expected (discounted) future holding,
shortage, and control costs, when the demand rate is unknown?"". We allow the rate
of increase/reduction dP\pm to be unbounded and have an instantaneous effect on X;
hence, the question is mathematically formulated as a bounded-variation stochastic
control problem of a linearly controlled one-dimensional diffusion with the novelty of
a random (nonobservable) drift \mu .

Indeed, we prove the existence of an optimal control strategy P  \star \pm and charac-
terize it via two boundary functions of the belief process \Pi , which split the space in
three distinct but connected regions: (a) An action region divided in the areas below
or above the boundaries, so that when X is relatively small or large, decision makers
should increase or decrease X via P  \star \pm , respectively, to bring X inside the area be-
tween the two boundaries; and (b) an intermediate waiting (inaction) region, which
is precisely the area between the two boundaries. We further prove the monotonicity
of these boundaries and completely characterize them in terms of monotone Lipschitz
continuous curves solving a system of nonlinear integral equations. To the best of
our knowledge, the study and characterization of the boundaries defining the solution
of a bounded-variation stochastic control problem under partial information on the
underlying diffusion dynamics has never been addressed in the literature.

Our contributions, approach, and overview of mathematical analysis.
Our contribution in this paper is twofold. From the point of view of its application,
even though the literature on the optimal management of inventory is extremely rich,
as already discussed, there is no model where the demand is assumed to be par-
tially observed and lump-sum and singularly continuous actions on the inventory are
allowed. From the mathematical theory perspective, the literature on the optimal

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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3078 S. FEDERICO, G. FERRARI, AND N. RODOSTHENOUS

policy characterization in singular stochastic control problems with partial observa-
tion is limited and actually deals only with monotone controls [4, 12, 15, 35]. On
the contrary, we allow the decision maker to both decrease and increase the underly-
ing process by using controls of bounded-variation. Our paper thus provides a first
example where partial observation features have been considered in the setting of a
bounded-variation control problem. By combining the well-established connection to
Dynkin games, probabilistic methods of free-boundary theory, and refined viscosity
theory arguments, we present a methodology that allows us to achieve the necessary
regularity of the value function, leading to a characterization of the optimal control
rule. This is our second main contribution, on which we elaborate in the remaining of
this section. Note that other scenarios of partial information on the drift, considered
for investment timing [14], asset trading [8], optimal liquidation [19], and contract
theory [16], lead to different mathematical formulations.

By relying on classical filtering theory (see [34]), we first derive the equivalent Mar-
kovian ``separated problem,"" which is a genuine two-dimensional bounded-variation
singular stochastic control problem V with diffusive state-space dynamics (X,\Pi ). The
traditional ``guess and verify"" approach is not effective, since the associated variational
formulation involves partial differential equations (PDEs) with (gradient) boundary
conditions, whose explicit solutions are not possible in general. We instead use a more
direct approach that allows for a thorough study of the value function V 's regularity
and structure, eventually leading to the optimal control strategy's characterization.

Via changes of coordinates we first transform the original controlled process (X,\Pi )
into (X,\Phi ) with (degenerate) decoupled dynamics and later into (X,Y ) for the prob-
lem's intrinsic parabolic formulation (see also [12, 29]). We connect our resulting two-
dimensional bounded-variation stochastic control problems, under each formulation,
to suitable zero-sum optimal stopping (Dynkin) games with two-dimensional, uncon-
trolled dynamics. We manage to characterize each games optimal stopping strategies
via interlinked pairs of monotone and bounded free-boundary functions a\pm (\pi ), b\pm (\varphi ),
and c\pm (y), respectively. By using our probabilistic methodology in combination with
viscosity theory arguments1 and switching between these three equivalent formula-
tions, (a) we achieve the notable C1-global regularity of the transformed value function
V (x,\varphi ), and we deduce that its version \widehat V (x, y) is actually such that \widehat V \in C1(\BbbR 2;\BbbR )
and \widehat Vxx is bounded in its relative continuation region; (b) we use these properties
in order to construct an optimal control strategy in terms of the likelihood ratio--
dependent process t \mapsto \rightarrow b\pm (\Phi t) according to a Skorokhod reflection; and (c) we obtain
global Lipschitz continuity of the free boundaries c\pm (y), employed to show the global
C1-regularity of the Dynkin game's value \widehat v(x, y), and obtain a system of nonlinear
integral equations solved by c\pm . It is worth observing that when backtracking the
involved change of variables, the characterization of c\pm effectively turns into a char-
acterization of b\pm defining the optimal control policy (and consequently of a\pm in the
original (x,\pi )--coordinates).

The Lipschitz regularity result is of particular independent interest, given its
importance in obstacle problems (see the introduction of [10] for a detailed account
on this and its related literature). The simple argument of our proof, exploiting the
geometry of the (x,\varphi )-plane and the particular structure of its transformation into the

1It is worth noticing that the combination of viscosity arguments and probabilistic techniques
of free-boundary problems have been already employed for the study of bounded-variation control
problems in [21], [23], and [24]. However, in those papers the dynamic programming equation
takes the form of a parameter-dependent ODE with gradient constraints, while in our paper it is a
degenerate PDE with gradient constraints.
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INVENTORY CONTROL WITH UNKNOWN DEMAND TREND 3079

(x, y)-plane, provides a method---alternative to the more technical approach developed
in [10]---for obtaining the Lipschitz regularity of the optimal stopping boundaries.

Finally, note that, by using our methodology, we manage to obtain the minimal
(necessary) regularity in order to construct an optimal control strategy and verify
its optimality. As in multidimensional singular stochastic control settings, proving
regularity properties of the control value function can be very challenging, and having
a methodology that takes a different route by effectively combining various techniques
can be helpful in studying other problems with similar structure.

Structure of the paper. The rest of this paper is organized as follows. In
section 2, we present the model, formulate the control problem, and derive the sep-
arated problem V . In section 3, we derive the first related optimal stopping game.
Section 4 introduces the first useful change of coordinates. Section 5 then studies
the regularity of the control problem's (transformed) value function V . Section 6
presents the verification theorem and construction of an optimal control. Finally, in
section 7, we introduce the last change of variables, obtain the Lipschitz continuity
of the corresponding (transformed) free boundaries c\pm , prove the smooth-fit property
of the transformed Dynkin game's value function \widehat v, and derive the integral equations
for c\pm .

2. Problem formulation and the separated problem. On a complete prob-
ability space (\Omega ,\scrF ,\sansP ), we define a one-dimensional Brownian motion (Bt)t\geq 0 whose
\sansP -augmented natural filtration is denoted by (\scrF B

t )t\geq 0. Moreover, we define a random
variable \mu which is independent of the Brownian motion B and can take two possible
real values, namely, \mu \in \{ \mu 0, \mu 1\} , where \mu 0, \mu 1 \in \BbbR . Without loss of generality, we
assume henceforth that \mu 1 >\mu 0 and that \pi := \sansP (\mu = \mu 1)\in (0,1).

In absence of any intervention, the underlying (stochastic inventory) process St

as observed by the decision maker follows the dynamics dSt = \mu dt + \eta dBt, with
S0 = x \in \BbbR , for some \eta > 0. Recall that the drift \mu of the process S is not observable
by the decision maker, who can only monitor the evolution of the process S itself.
In light of this observation, the decision maker selects their control strategy P based
solely on their observation of the process S. By denoting the natural filtration of any
process Y by \BbbF Y := (\scrF Y

t )t\geq 0, we can therefore define the set of admissible controls

\scrA := \{ P : \Omega \times \BbbR + \rightarrow \BbbR such that t \mapsto \rightarrow Pt is right-continuous, (locally) of bounded

variation, and P is \BbbF S  - adapted\} .

To be more precise, we consider the minimal decomposition of the bounded-variation
control P \in \scrA to be Pt = P+

t  - P - 
t , where P+ and P - are then nondecreasing, right-

continuous, \BbbF S--adapted processes. From now on, we set P\pm 
0 - = 0 a.s. for any P \in \scrA .

Hence, the reference (controlled inventory) process is given by

XP
t := St + Pt = x+ \mu t+ \eta Bt + Pt, where P \in \scrA .

Note that the uncontrolled inventory process (P \equiv 0) takes the form X0 = S.
Given the aforementioned setting, the decision maker's goal is to minimize the

overall (discounted) cost of holding, shortage, and controlling the inventory process.
In mathematical terms, the bounded-variation control problem of the decision maker
is given by

inf
P\in \scrA 

\sansE 

\biggl[ \int \infty 

0

e - \rho t
\bigl( 
C(XP

t )dt+K+dP+
t +K - dP - 

t

\bigr) \biggr] 
,(2.1)
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3080 S. FEDERICO, G. FERRARI, AND N. RODOSTHENOUS

where \sansE denotes the expectation under the probability measure \sansP , \rho > 0 is the decision
maker's discount rate of future costs, K+,K - > 0 are the marginal costs per unit of
control exerted on XP , and C :\BbbR \rightarrow \BbbR + is a holding and shortage cost function which
satisfies the following standing assumption.

Assumption 2.1. There exists constants p \geq 2, \alpha 0, \alpha 1, \alpha 2 > 0 such that the
following hold true:

(i) 0\leq C(x)\leq \alpha 0(1 + | x| p) for every x\in \BbbR ;
(ii) | C(x) - C(x\prime )| \leq \alpha 1

\bigl( 
1 +C(x) +C(x\prime )

\bigr) 1 - 1
p | x - x\prime | for every x,x\prime \in \BbbR ;

(iii) 0 \leq \lambda C(x) + (1  - \lambda )C(x\prime )  - C(\lambda x + (1  - \lambda )x\prime ) \leq \alpha 2\lambda (1  - \lambda )(1 + C(x) +

C(x\prime ))(1 - 
2
p )| x - x\prime | 2 for every x,x\prime \in \BbbR and \lambda \in (0,1);

(iv) limx\rightarrow \pm \infty C \prime (x) =\pm \infty .

Notice that Assumption 2.1(iii) above implies that C is convex and locally semi-
concave. Hence, by [5, Corollary 3.3.8], we have C \in C1,Lip

loc (\BbbR ;\BbbR +) (the class of
continuously differentiable functions, whose first derivative is locally Lipschitz), so
that the derivative in (iv) exists. A classical quadratic cost C(x) = (x - x)2, for some
target level x\in \BbbR , clearly satisfies Assumption 2.1.

Given the feature of a nonobservable \mu , (2.1) is not Markovian and cannot there-
fore be tackled via a dynamic programming approach. We derive below a new equiv-
alent Markovian problem under full information, the so-called ``separated problem.""
This will be then solved by exploiting its connection to a zero-sum game of optimal
stopping and by a careful analysis of the regularity of its value function.

2.1. The separated problem. In order to derive the equivalent problem under
full information, we use standard arguments from filtering theory (see, e.g., [34, section
4.2]), and we define the ``belief"" process \Pi t := \sansP (\mu = \mu 1 | \scrF S

t ), t\geq 0, according to which
decision makers update their beliefs on the (true) value of the drift \mu based on the
arrival of new information via the observation of the process S. Then, the dynamics
of XP and \Pi can be written as\Biggl\{ 

dXP
t = (\mu 1\Pi t + \mu 0(1 - \Pi t))dt+ \eta dWt +dPt, XP

0 - = x\in \BbbR ,
d\Pi t = \gamma \Pi t(1 - \Pi t)dWt, \Pi 0 = \pi \in (0,1),

(2.2)

where the innovation process W is an \BbbF S-Brownian motion on (\Omega ,\scrF ,\sansP ) according to
L\'evy's characterization theorem (see, e.g., [34, Theorem 4.1]), and \gamma := (\mu 1  - \mu 0)/\eta >
0. The triplet (XP ,\Pi , P ) is an \BbbF S-adapted time-homogeneous process on (\Omega ,\scrF ,\sansP ). In
(2.2), the (unknown/nonobservable) drift \mu of X in the original model is replaced with
its filtering estimate \sansE [\mu | \scrF S

t ]. Moreover, the belief (learning) process \Pi = (\Pi t)t\geq 0

involved in the filtering is a bounded martingale on [0,1] such that \Pi \infty \in \{ 0,1\} , due
to the fact that all information eventually gets revealed at time t=\infty .

Then, for (XP ,\Pi ), as in (2.2), with (x,\pi )\in \scrO :=\BbbR \times (0,1), we define

V (x,\pi ) := inf
P\in \scrA 

\sansE 

\biggl[ \int \infty 

0

e - \rho t
\bigl( 
C(XP

t )dt+K+dP+
t +K - dP - 

t

\bigr) \biggr] 
,(2.3)

where all processes involved are now \BbbF S-adapted. By uniqueness of the strong solution
to the belief equation, a control P  \star is optimal for (2.1) if and only if it is optimal for
(2.3), and the values in (2.1) and (2.3) coincide.

Note that, in light of the dynamics of (XP ,\Pi ) in (2.2), a high value of \Pi close to 1
would imply that the decision maker has a strong belief in a high drift \mu 1, while a low
\Pi close to 0 would imply, on the contrary, a strong belief in a low drift \mu 0 scenario.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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INVENTORY CONTROL WITH UNKNOWN DEMAND TREND 3081

Remark 2.2 (Full information cases). In the formulation (2.1), the case of prior
belief \pi := \sansP (\mu = \mu 1) \in \{ 0,1\} implies the certainty of the decision maker regarding
whether \mu = \mu 0 or \mu = \mu 1. Hence, in this case, there is no uncertainty about the
value of the drift \mu , which is not a random variable anymore. Respectively, in the
formulation (2.3), the case of prior belief \Pi 0 = \pi \in \{ 0,1\} yields that the belief process
\Pi will actually remain constant through time, due to its dynamics which imply that
\Pi t = \pi for all t > 0. Therefore, we equivalently have that such values of \pi \in \{ 0,1\} 
correspond to the full information cases.

In these cases, the optimal control problem becomes a standard one-dimensional
bounded-variation stochastic control problem, for which an early study can be found
in [26]. The resulting optimal control strategy is triggered by two constant boundaries
within which the process XP is kept (via a Skorokhod reflection).

Given the convexity of C as in Assumption 2.1, and the linear structure of P \mapsto \rightarrow XP

in (2.2), we can show the next result by following standard arguments based on
Koml\'os' theorem (see, e.g., [21, Proposition 3.4] or [31, Theorem 3.3]).

Proposition 2.3. There exists an optimal control P  \star for (2.3). Moreover, this
is unique (up to indistinguishability) if C is strictly convex.

3. The first related optimal stopping game. We now derive a zero-sum
optimal stopping game (Dynkin game) related to V , and we provide preliminary
properties of its value function and of the geometry of its state space. In this section,
the uncontrolled process X0 with Pt \equiv 0 for all t\geq 0 becomes involved in the analysis,
so we recall from (2.2) that (X0

t ,\Pi t)t\geq 0 \equiv (St,\Pi t)t\geq 0 is the two-dimensional strong
Markov process solving\Biggl\{ 

dX0
t = (\mu 1\Pi t + \mu 0(1 - \Pi t))dt+ \eta dWt, X0

0 = x\in \BbbR ,
d\Pi t = \gamma \Pi t(1 - \Pi t)dWt, \Pi 0 = \pi \in (0,1).

(3.1)

Proposition 3.1. Consider the process (X0
t ,\Pi t)t\geq 0 defined in (3.1), and define

v(x,\pi ) := inf
\sigma 
sup
\tau 

\sansE (x,\pi )

\biggl[ \int \tau \wedge \sigma 

0

e - \rho tC \prime (X0
t )dt - K+e - \rho \tau 1\{ \tau <\sigma \} +K - e - \rho \sigma 1\{ \tau >\sigma \} 

\biggr] 
,

(3.2)

where the optimization is taken over the set of \BbbF W -stopping times, and \sansE (x,\pi ) denotes
the expectation conditioned on (X0

0 ,\Pi 0) = (x,\pi ) \in \scrO . Consider also the control value
function V (x,\pi ) defined in (2.3). Then, we have the following properties:

(i) x \mapsto \rightarrow V (x,\pi ) is differentiable and v(x,\pi ) = Vx(x,\pi ).
(ii) x \mapsto \rightarrow V (x,\pi ) is convex, and therefore x \mapsto \rightarrow v(x,\pi ) is nondecreasing.
(iii) \pi \mapsto \rightarrow v(x,\pi ) is nondecreasing.
(iv) (x,\pi ) \mapsto \rightarrow v(x,\pi ) is continuous on \BbbR \times (0,1).

Proof. In this proof, whenever we need to stress the dependence of the state
process on its starting point, we denote by (X0;(x\prime ,\pi \prime ),\Pi \pi \prime 

) the unique strong solution
to (3.1) starting at (x\prime , \pi \prime )\in \scrO at time zero. We prove separately the four parts.

Proof of (i). Thanks to Proposition 2.3, it suffices to apply [31, Theorem 3.2]
upon setting G\equiv 0, \gamma t := e - \rho tK+, and \nu t := e - \rho tK - for t\geq 0, and we get

H(\omega , t, x) := e - \rho tC
\Bigl( 
x+\eta Wt(\omega )+

\int t

0

\bigl( 
\mu 0+(\mu 1  - \mu 0)\Pi s(\omega )

\bigr) 
ds
\Bigr) 
, (\omega , t, x)\in \Omega \times \BbbR +\times \BbbR .
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3082 S. FEDERICO, G. FERRARI, AND N. RODOSTHENOUS

We notice that the proof in [31] can be easily adapted to our infinite time-horizon dis-
counted setting with right-continuous controls (see also [21, Lemma A.1, Proposition
3.4] for a proof in a related setting).

Proof of (ii). Denote by (XP ;(x,\pi ),\Pi \pi ) the unique strong solution to (2.2) when
(XP

0 - ,\Pi 0) = (x,\pi ). The convexity of V (x,\pi ) with respect to x can be easily shown
by exploiting the convexity of C(x) and the linear structure of (x,P ) \mapsto \rightarrow XP ;(x,\pi ) for
any P \in \scrA and (x,\pi ) \in \scrO . The nondecreasing property of v(\cdot , \pi ) then follows from
the fact that v= Vx from part (i).

Proof of (iii). Notice that X0
t = x + \eta Wt +

\int t

0

\bigl( 
\mu 1\Pi s + \mu 0(1  - \Pi s)

\bigr) 
ds, t \geq 0,

and that \pi \mapsto \rightarrow \Pi \pi is nondecreasing due to standard comparison theorems for strong
solutions to one-dimensional stochastic differential equations [30, Chapter 5.2]. Then,
the claim follows from (3.2) and Assumption 2.1 according to which x \mapsto \rightarrow C \prime (x) is
nondecreasing.

Proof of (iv). By [31, Theorem 3.1] and Proposition 2.3 we know that, for any
(x,\pi ) \in \scrO , (3.2) admits a saddle point. Take (xn, \pi n) \rightarrow (x,\pi ) as n \uparrow \infty , and let
(\tau  \star , \sigma  \star ) and (\tau  \star n, \sigma 

 \star 
n) realize the saddle-points for (x,\pi ) and (xn, \pi n), respectively.

Then, we have

v(x,\pi ) - v(xn, \pi n)\leq \sansE 

\biggl[ \int \tau  \star \wedge \sigma  \star 
n

0

e - \rho t
\Bigl( 
C \prime (X

0;(x,\pi )
t ) - C \prime (X

0;(xn,\pi n)
t )

\Bigr) 
dt

\biggr] 
\leq \sansE 

\biggl[ \int \infty 

0

e - \rho t
\bigm| \bigm| \bigm| C \prime (X

0;(x,\pi )
t ) - C \prime (X

0;(xn,\pi n)
t )

\bigm| \bigm| \bigm| dt\biggr] .(3.3)

Without loss of generality, we can take (xn, \pi n) \subset (x  - \varepsilon ,x + \varepsilon ) \times (\pi  - \varepsilon ,\pi + \varepsilon )
for a suitable \varepsilon > 0 and for n sufficiently large. Then, by Assumption 2.1(ii) and
standard estimates using Assumption 2.1(i), the expression of X0 and the fact that
\Pi is bounded in [0,1], we can invoke the dominated convergence theorem and obtain
limsupn\rightarrow \infty (v(x,\pi ) - v(xn, \pi n)) \leq 0. In order to evaluate the difference v(xn, \pi n) - 
v(x,\pi ), we now employ the couple of stopping times (\tau  \star n, \sigma 

 \star ) and employ the same
rationale leading to (3.3) so to obtain limsupn\rightarrow \infty (v(xn, \pi n) - v(x,\pi ))\leq 0. Combining
the last two inequalities, we obtain the desired continuity claim.

In the rest of this section, we focus on the study of the optimal stopping game
v presented in (3.2), due to its connection to our stochastic control problem (cf.
Proposition 3.1). To that end, we define the so-called continuation (waiting) region

\scrC 1 :=
\bigl\{ 
(x,\pi )\in \scrO :  - K+ < v(x,\pi )<K - \bigr\} (3.4)

and the stopping region \scrS 1 := \scrS 1
+ \cup \scrS 1

 - , whose components are given by

\scrS 1
+ :=

\bigl\{ 
(x,\pi )\in \scrO : v(x,\pi )\leq  - K+

\bigr\} 
, \scrS 1

 - :=
\bigl\{ 
(x,\pi )\in \scrO : v(x,\pi )\geq K - \bigr\} .(3.5)

In light of the continuity of v in Proposition 3.1(iv), we conclude that the con-
tinuation region \scrC 1 is an open set, while the two components of the stopping regions
\scrS 1

\pm are both closed sets. We can therefore define the free boundaries

a+(\pi ) := sup
\bigl\{ 
x\in \BbbR : v(x,\pi )\leq  - K+

\bigr\} 
, a - (\pi ) := inf

\bigl\{ 
x\in \BbbR : v(x,\pi )\geq K - \bigr\} .(3.6)

Here, and throughout the rest of this paper, we use the convention sup\emptyset =  - \infty and
inf \emptyset = +\infty . Then, by using the fact that v is nondecreasing with respect to x (see
Proposition 3.1(ii)), we can obtain the structure of the continuation and stopping
regions, which take the form
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INVENTORY CONTROL WITH UNKNOWN DEMAND TREND 3083

\scrC 1 =
\bigl\{ 
(x,\pi )\in \scrO : a+(\pi )<x< a - (\pi )

\bigr\} 
,(3.7)

\scrS +
1 =

\bigl\{ 
(x,\pi )\in \scrO : x\leq a+(\pi )

\bigr\} 
, and \scrS  - 

1 =
\bigl\{ 
(x,\pi )\in \scrO : x\geq a - (\pi )

\bigr\} 
.(3.8)

Clearly, the continuity of v further implies that the free boundaries a\pm are strictly
separated; namely, a+(\pi )<a - (\pi ) for all \pi \in (0,1).

We now prove some preliminary properties of the free boundaries \pi \mapsto \rightarrow a\pm (\pi ).

Proposition 3.2. The free boundaries a\pm defined in (3.6) satisfy the following:
(i) a\pm (\cdot ) are nonincreasing on (0,1).
(ii) a+(\cdot ) is left-continuous and a - (\cdot ) is right-continuous on (0,1).
(iii) There exist constants x\ast 

\pm \in \BbbR such that x\ast 
+ \leq a+(\pi ) < a - (\pi ) \leq x\ast 

 - for all
\pi \in (0,1). Moreover, letting (C \prime ) - 1 be the generalized inverse of C \prime , we have
a+(\pi )\leq (C \prime ) - 1( - \rho K+) and a - (\pi )\geq (C \prime ) - 1(\rho K - ) for all \pi \in (0,1).

Proof. Proof of (i). This is a consequence of the definitions of a\pm (\cdot ) in (3.6) and
the fact that v(x, \cdot ) is nondecreasing for any x\in \BbbR ; cf. Proposition 3.1(iii).

Proof of (ii). This follows from part (i) above and the closedness of the sets \scrS 1
\pm .

Proof of (iii). The fact that a+(\pi ) \leq (C \prime ) - 1( - \rho K+) and a - (\pi ) \geq (C \prime ) - 1(\rho K - )
follows by noticing that \scrS +

1 \subseteq \{ (x,\pi ) \in \scrO : x \leq (C \prime ) - 1( - \rho K+)\} and \scrS  - 
1 \subseteq \{ (x,\pi ) \in 

\scrO : x\geq (C \prime ) - 1(\rho K - )\} . These inclusions can be shown as follows.
Firstly, by [36, Theorem 2.1], the continuous process Z = (Zt)t\geq 0 with

Zt := e - \rho tv(X0
t ,\Pi t) +

\int t

0

e - \rho sC \prime (X0
s )ds, t\geq 0,

is such that, under \sansP (x,\pi ), for any (x,\pi )\in \scrO , (Zt\wedge \sigma  \star )t\geq 0 is an \BbbF -supermartingale, while
(Zt\wedge \tau  \star )t\geq 0 is an \BbbF -submartingale. In order to see this, set (using the notation of [36])
Xt := (t,X0

t ,\Pi t), M(x,\pi ) := \sansE (x,\pi )[
\int \infty 
0

e - \rho tC \prime (X0
t )dt], G1(t, x,\pi ) := e - \rho t( - K+  - 

M(x,\pi )), G2(t, x,\pi ) := e - \rho t(K -  - M(x,\pi )), G3(t, x,\pi ) := 0 and observe that

v(x,\pi ) =M(x,\pi ) + sup
\tau \in \scrT 

inf
\sigma \in \scrT 

\sansE (x,\pi )

\bigl[ 
G1(\tau ,X

0
\tau ,\Pi \tau )1\{ \tau <\sigma \} +G2(\sigma ,X

0
\sigma ,\Pi \sigma )1\{ \sigma <\tau \} 

\bigr] 
.

Here, \sansE (x,\pi )[supt\geq 0 e
 - \rho t| M(X0

t ,\Pi t)| ]<\infty , because (3.1) and standard estimates em-
ploying Assumption 2.1 yield that | M(x,\pi )| \leq \kappa (1 + | x| p - 1).

Then, we let t > 0, (xo, \pi o) \in \scrS +
1 and notice that, due to the \BbbF -supermartingale

property of (Zt\wedge \sigma  \star )t\geq 0 under \sansP (xo,\pi o) and the fact that v\geq  - K+, we can write

 - K+ = v(xo, \pi o)\geq \sansE (xo,\pi o)

\biggl[ 
e - \rho (t\wedge \sigma  \star )v(X0

t\wedge \sigma  \star ,\Pi t\wedge \sigma  \star ) +

\int t\wedge \sigma  \star 

0

e - \rho sC \prime (X0
s )ds

\biggr] 
\geq \sansE (xo,\pi o)

\biggl[ 
 - K+e - \rho (t\wedge \sigma  \star ) +

\int t\wedge \sigma  \star 

0

e - \rho sC \prime (X0
s )ds

\biggr] 
= - K+ + \sansE (xo,\pi o)

\biggl[ \int t\wedge \sigma  \star 

0

e - \rho s
\Bigl( 
C \prime (X0

s ) + \rho K+
\Bigr) 
ds

\biggr] 
.

Hence,

0\geq \sansE (xo,\pi o)

\biggl[ 
1

t

\int t\wedge \sigma  \star 

0

e - \rho s
\Bigl( 
C \prime (X0

s ) + \rho K+
\Bigr) 
ds

\biggr] 
,

which, by taking t \downarrow 0 and invoking the integral mean-value theorem and the domi-
nated convergence theorem, yields 0\geq C \prime (xo) + \rho K+; that is, \scrS +

1 \subseteq \{ (x,\pi ) \in \scrO : x\leq 
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3084 S. FEDERICO, G. FERRARI, AND N. RODOSTHENOUS

(C \prime ) - 1( - \rho K+)\} . Analogous arguments, now employing the \BbbF -submartingale property
of (Zt\wedge \tau  \star )t\geq 0 and that v\leq K - , show that \scrS  - 

1 \subseteq \{ (x,\pi )\in \scrO : x\geq (C \prime ) - 1(\rho K - )\} .
In order to show the other bounds, we proceed as follows. Since \mu 1 > \mu 0 and

\Pi t \in (0,1), we have \sansP (x,\pi )-a.s., for any t \geq 0, that X0
t \geq x + \eta Wt + \mu 0t =: X0

t and

X0
t \leq x+\eta Wt+\mu 1t=:X

0

t . Therefore, the latter two estimates yield thatX0
t \leq X0

t \leq X
0

t

for all t\geq 0. Combining these inequalities with the fact that C \prime (\cdot ) is nondecreasing due
to Assumption 2.1 and the definition (3.2) of the value function v(x,\pi ), we conclude
that

v0(x)\leq v(x,\pi )\leq v1(x) \forall (x,\pi )\in \scrO ,(3.9)

where we have introduced the one-dimensional optimal stopping games

v0(x) := inf
\sigma \in \scrT 

sup
\tau \in \scrT 

\sansE x

\biggl[ \int \tau \wedge \sigma 

0

e - \rho tC \prime (X0
t )dt - K+e - \rho \tau 1\{ \tau <\sigma \} +K - e - \rho \sigma 1\{ \tau >\sigma \} 

\biggr] 
,

v1(x) := inf
\sigma \in \scrT 

sup
\tau \in \scrT 

\sansE x

\biggl[ \int \tau \wedge \sigma 

0

e - \rho tC \prime (X
0

t )dt - K+e - \rho \tau 1\{ \tau <\sigma \} +K - e - \rho \sigma 1\{ \tau >\sigma \} 

\biggr] 
,

with the two expectations \sansE x being conditional on X0
0 = x or X

0

0 = x, respectively.
Because both v0(\cdot ) and v1(\cdot ) are nondecreasing on \BbbR , standard techniques allow us to
show that due to Assumption 2.1(iv) there exists finite x \star 

 - , x
 \star 
+ such that \{ x\in \BbbR : x\geq 

x \star 
 - \} = \{ x \in \BbbR : v0(x)\geq K - \} and \{ x \in \BbbR : x\leq x \star 

+\} = \{ x \in \BbbR : v1(x)\leq  - K+\} . Hence,
combining the latter two regions together with the inequalities in (3.9), we eventually
get that

\{ x\in \BbbR : x\geq x \star 
 - \} \subseteq \{ (x,\pi )\in \scrO : v(x,\pi )\geq K - \} = \scrS  - 

1 ,

\{ x\in \BbbR : x\leq x \star 
+\} \subseteq \{ (x,\pi )\in \scrO : v(x,\pi )\leq  - K+\} = \scrS +

1 .
(3.10)

Hence, \scrS \pm 
1 \not = \emptyset and the claim follows from (3.10).

4. A decoupling change of measure. In order to provide further results about
the optimal control problem (2.3) and the associated Dynkin game (3.2), it is conve-
nient to decouple the dynamics of the controlled inventory process XP and the belief
process \Pi . This can be achieved via a transformation of state space and a change of
measure, as we explain in the following subsections.

4.1. Transformation of process \Pi to \Phi . We first recall from (2.2) (see also
(3.1)) that, for any prior belief \Pi 0 = \pi \in (0,1), we have \Pi t \in (0,1) for all t \in (0,\infty ).
Hence, we define the process \Phi t := \Pi t/(1 - \Pi t), t\geq 0, whose dynamics are given via
It\^o's formula by

d\Phi t = \gamma \Phi t(\gamma \Pi tdt+dWt), \Phi 0 =\varphi := \pi 
1 - \pi .(4.1)

Note that the process \Phi is known as the ``likelihood ratio process"" in the literature of
filtering theory (see, e.g., [29]).

4.2. Change of measure from \bfsansP to \bfsansQ \bfitT , for some fixed \bfitT > 0. We begin
by defining the exponential martingale \zeta T := exp\{  - \gamma 

\int T

0
\Pi sdWs  - 1

2

\int T

0
\gamma 2\Pi 2

sds\} and
the measure \sansQ T \sim \sansP on (\Omega ,\scrF T ) by d\sansQ T /d\sansP = \zeta T .

Then, the process W \ast 
t :=Wt+\gamma 

\int t

0
\Pi sds, t\in [0, T ], is a Brownian motion in [0, T ]

under \sansQ T , and the dynamics of \Phi in (4.1) simplify to d\Phi t = \gamma \Phi tdW
\ast 
t , t \in (0, T ],

\Phi 0 = \varphi ; hence, \Phi is an exponential martingale under \sansQ T . Consequently, applying
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INVENTORY CONTROL WITH UNKNOWN DEMAND TREND 3085

the same change of measure to the process XP from (2.2), we obtain dXP
t = \mu 0dt+

\eta dW \ast 
t +dP+

t  - dP - 
t , t\in [0, T ], XP

0 - = x.
In order to change the measure also in the cost criterion of our value function in

(2.3), we further define the process Zt := (1 +\Phi t)/(1 +\varphi ), t \in [0, T ], which can be
verified via It\^o's formula to satisfy Zt = 1/\zeta t, for every t \in [0, T ]. Hence, denoting by
\sansE \sansQ T the expectation under \sansQ T , we have that

\sansE 

\biggl[ \int T

0

e - \rho t
\bigl( 
C(XP

t )dt+K+dP+
t +K - dP - 

t

\bigr) \biggr] 
=

1

1+\varphi 
\sansE \sansQ T

\biggl[ 
(1 +\Phi T )

\int T

0

e - \rho t
\Bigl( 
C(XP

t )dt+K+dP+
t +K - dP - 

t

\Bigr) \biggr] 
.(4.2)

Since the process (1 + \Phi t)t\geq 0 defines a nonnegative martingale under \sansQ T , by an
application of It\^o's formula we can write

\sansE \sansQ T

\biggl[ 
(1 +\Phi T )

\int T

0

e - \rho tC(XP
t )dt

\biggr] 
= \sansE \sansQ T

\biggl[ \int T

0

e - \rho t(1 +\Phi t)C(XP
t )dt

\biggr] 
,

\sansE \sansQ T

\biggl[ 
(1 +\Phi T )

\int T

0

e - \rho tdP\pm 
t

\biggr] 
= \sansE \sansQ T

\biggl[ \int T

0

e - \rho t(1 +\Phi t)dP
\pm 
t

\biggr] 
.

Hence, by combining together the above expressions of the expectations \sansE \sansQ T we get
that (4.2) can be expressed in the form of

\sansE 

\biggl[ \int T

0

e - \rho t
\Bigl( 
C(XP

t )dt+K+dP+
t +K - dP - 

t

\Bigr) \biggr] 
=

1

1+\varphi 
\sansE \sansQ T

\biggl[ \int T

0

e - \rho t(1 +\Phi t)
\Bigl( 
C(XP

t )dt+K+dP+
t +K - dP - 

t

\Bigr) \biggr] 
.(4.3)

4.3. Passing to the limit as \bfitT \rightarrow \infty and to the new measure \bfsansQ . We firstly
notice that passing to the limit as T \rightarrow \infty cannot be performed directly to the latter
expression in (4.3), since the measure \sansQ T changes with T . Nevertheless, noticing that
the right-hand side of (4.3) only depends on the law of the processes involved, we can
introduce a new auxiliary problem.

To that end, first of all note that any P \in \scrA has paths that are right-continuous
and (locally) of bounded-variation \sansQ T -a.s., and it is \BbbF S-adapted since \BbbF S = \BbbF W =
\BbbF W\ast 

. Then, define a new complete probability space (\Omega ,\scrF ,\sansQ ) supporting a Brownian
motion (W t)t\geq 0, let (\scrF o

t )t\geq 0 be the raw filtration generated by W , and denote by
\BbbF := (\scrF t)t\geq 0 its augmentation with the \sansQ -null sets. Hence, introducing

\scrA :=
\bigl\{ 
P : \Omega \times \BbbR + \rightarrow \BbbR such that t \mapsto \rightarrow P t is right-continuous, (locally) of bounded

variation, and P is \BbbF  - adapted
\bigr\} 

by [13, Lemma 5.5] (adjusted to our setting with right-continuous controls), given
P \in \scrA there exists P \in \scrA that is \scrF o

t+ - predictable and such that Law\sansQ T
(W \ast , P ) =

Law\sansQ (W,P ). This in turn leads to (cf. [13, Corollary 5.6])

Law\sansQ T
(W \ast ,XP ,\Phi , P ) = Law\sansQ (W,X

P
,\Phi , P ),(4.4)

where (X
P
,\Phi ) is the strong solution on (\Omega ,\scrF ,\BbbF ,\sansQ ) to the controlled stochastic dif-

ferential equation\Biggl\{ 
dX

P

t = \mu 0dt+ \eta dW t +dP
+

t  - dP
 - 
t , X

P

0 - = x,

d\Phi t = \gamma \Phi tdW t, \Phi 0 =\varphi := \pi 
1 - \pi ,
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3086 S. FEDERICO, G. FERRARI, AND N. RODOSTHENOUS

with P
\pm 

denoting the nondecreasing processes providing the minimal decomposition

of P \in \scrA as P = P
+  - P

 - 
.

Denoting now by \sansE the expectation on (\Omega ,\scrF ) under \sansQ , we have, for every T > 0,

\sansE \sansQ T

\biggl[ \int T

0

e - \rho t(1 +\Phi t)
\bigl( 
C(XP

t )dt+K+dP+
t +K - dP - 

t

\bigr) \biggr] 
= \sansE 

\biggl[ \int T

0

e - \rho t(1 +\Phi t)
\Bigl( 
C(X

P

t )dt+K+dP
+

t +K - dP
 - 
t

\Bigr) \biggr] 
,

due to (4.4). Therefore, combining the above equality with (4.3), we eventually get

\sansE 

\biggl[ \int T

0

e - \rho t
\Bigl( 
C(XP

t )dt+K+dP+
t +K - dP - 

t

\Bigr) \biggr] 
=

1

1+\varphi 
\sansE 

\biggl[ \int T

0

e - \rho t(1 +\Phi t)
\Bigl( 
C(X

P

t )dt+K+dP
+

t +K - dP
 - 
t

\Bigr) \biggr] 
.(4.5)

Thanks to (4.5), we can now take limits as T \rightarrow \infty and obtain, in view of the
definitions (2.3) of the control value function and (4.1) of the starting value \varphi , that

V (x,\pi ) = (1 - \pi )V
\bigl( 
x, \pi 

1 - \pi 

\bigr) 
, or equivalently V (x,\varphi ) = (1 +\varphi )V

\bigl( 
x, \varphi 

1+\varphi 

\bigr) 
,

where V (x,\varphi ) := inf
P\in \scrA 

\sansE 

\biggl[ \int \infty 

0

e - \rho t(1 +\Phi t)
\Bigl( 
C(X

P

t )dt+K+dP
+

t +K - dP
 - 
t

\Bigr) \biggr] 
.

(4.6)

Therefore, in order to obtain the value function V (x,\pi ) from (2.3), we could instead
solve first the above problem to get V (x,\varphi ) and then use the equality in (4.6). How-
ever, in order to simplify the notation, from now on in the study of V we will simply
write (\Omega ,\scrF ,\BbbF ,\sansQ ,\sansE \sansQ ,W,X,\Phi , P,\scrA ) instead of (\Omega ,\scrF ,\BbbF ,\sansQ ,\sansE ,W ,X,\Phi , P ,\scrA ).

4.4. The optimal control problem with state-space process (\bfitX \bfitP ,\Phi ) un-
der the new measure \bfsansQ . Summarizing the results from sections 4.1--4.3, we hence-
forth focus on the study of the optimal control problem

V (x,\varphi ) := inf
P\in \scrA 

\sansE \sansQ 

\biggl[ \int \infty 

0

e - \rho t(1 +\Phi t)
\Bigl( 
C(XP

t )dt+K+dP+
t +K - dP - 

t

\Bigr) \biggr] 
=: inf

P\in \scrA 
\scrJ x,\varphi (P )

(4.7)

under the dynamics\Biggl\{ 
dXP

t = \mu 0dt+ \eta dWt +dP+
t  - dP - 

t , XP
0 - = x\in \BbbR ,

d\Phi t = \gamma \Phi tdWt, \Phi 0 =\varphi := \pi 
1 - \pi \in (0,\infty ),

(4.8)

for a standard Brownian motion W . In light of the equality in (4.6), this will lead to
the original value function V (x,\pi ) from (2.3). In the rest of section 4, we expand our
study---beyond the values of the control problems---to the relationship between the
free boundaries in the two formulations, since these boundaries will eventually define
the optimal control strategy (see section 6).

4.5. The optimal stopping game associated to (4.7)--(4.8) under the
new measure \bfsansQ . The next result is concerned with properties of the value function
defined in (4.7) and its connection to an associated optimal stopping game. The first
existence claim follows from Proposition 2.3, since existence of an optimal control
is preserved under the change of measure performed in the previous section. The
second claim can be proved by employing arguments similar to those used in the
proof of Proposition 3.1 above. Hence, the proof is omitted for brevity.
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INVENTORY CONTROL WITH UNKNOWN DEMAND TREND 3087

Proposition 4.1. Consider the problem defined in (4.7)--(4.8).
(i) There exists an optimal control P  \star solving (4.7). Moreover, P  \star is unique (up

to indistinguishability) if C is strictly convex.
(ii) x \mapsto \rightarrow V (x,\varphi ) is convex and differentiable such that V x(x,\varphi ) = v(x,\varphi ) on

\BbbR \times (0,\infty ) for

\=v(x,\varphi ) := inf
\sigma 
sup
\tau 

\sansE \sansQ 

\biggl[ \int \tau \wedge \sigma 

0

e - \rho t(1 +\Phi t)C
\prime (X0

t )dt - K+(1 +\Phi \tau )e
 - \rho \tau 1\{ \tau <\sigma \} 

+K - (1 +\Phi \sigma )e
 - \rho \sigma 1\{ \tau >\sigma \} 

\biggr] 
,(4.9)

over the set of \BbbF W -stopping times and state-space process given by\Biggl\{ 
dX0

t = \mu 0dt+ \eta dWt, X0
0 = x\in \BbbR ,

d\Phi t = \gamma \Phi tdWt, \Phi 0 =\varphi := \pi 
1 - \pi \in (0,\infty ).

(4.10)

It further follows from the previous analysis, namely, sections 4.1--4.3, that the
value function v(x,\pi ) of the optimal stopping game in (3.2) is connected to the value
function \=v(x,\varphi ) of the new game introduced above in (4.9), according to (see also
(4.6) for the control value functions) the following equality:

\=v(x,\varphi ) = (1 +\varphi )v
\bigl( 
x, \varphi 

1+\varphi 

\bigr) 
.(4.11)

In view of the above relationship, the value function \=v(\cdot , \cdot ) inherits important prop-
erties which have already been proved for v(\cdot , \cdot ) in section 3. In particular, we have
directly from Proposition 3.1(ii) and (iv) the following result.

Proposition 4.2. The value function \=v defined in (4.9) satisfies the following:
(i) (x,\varphi ) \mapsto \rightarrow \=v(x,\varphi ) is continuous over \BbbR \times (0,\infty );
(ii) x \mapsto \rightarrow \=v(x,\varphi ) is nondecreasing.

Following similar steps as in section 3 to study the new game (4.9), we define
below the so-called continuation (waiting) region

\scrC 2 :=
\bigl\{ 
(x,\varphi )\in \BbbR \times (0,\infty ) :  - K+(1 +\varphi )< \=v(x,\varphi )<K - (1 +\varphi )

\bigr\} 
(4.12)

and the stopping region \scrS 2 := \scrS 2
+ \cup \scrS 2

 - , whose components are given by

\scrS +
2 :=

\bigl\{ 
(x,\varphi )\in \BbbR \times (0,\infty ) : \=v(x,\varphi )\leq  - K+(1 +\varphi )

\bigr\} 
,

\scrS  - 
2 :=

\bigl\{ 
(x,\varphi )\in \BbbR \times (0,\infty ) : \=v(x,\varphi )\geq K - (1 +\varphi )

\bigr\} 
.

(4.13)

Moreover, in light of the continuity of \=v in Proposition 4.2(i), we conclude that the
continuation region \scrC 2 is an open set, while the two components of the stopping
regions \scrS 2

\pm are both closed sets. We can therefore define the free boundaries

b+(\varphi ) := sup
\bigl\{ 
x\in \BbbR : v(x,\varphi )\leq K+(1 +\varphi )

\bigr\} 
,

b - (\varphi ) := inf\{ x\in \BbbR : v(x,\varphi )\geq K - (1 +\varphi )\} .
(4.14)

Then, by using the fact that \=v is nondecreasing with respect to x (see Proposi-
tion 4.2.(ii)), we can obtain the structure of the continuation and stopping regions
as

\scrC 2 =
\bigl\{ 
(x,\varphi )\in \BbbR \times (0,\infty ) : b+(\varphi )<x< b - (\varphi )

\bigr\} 
,

\scrS +
2 =

\bigl\{ 
(x,\varphi )\in \BbbR \times (0,\infty ):x\leq b+(\varphi )

\bigr\} 
, \scrS  - 

2 =
\bigl\{ 
(x,\varphi )\in \BbbR \times (0,\infty ):b - (\varphi )\leq x

\bigr\} 
.

(4.15)
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3088 S. FEDERICO, G. FERRARI, AND N. RODOSTHENOUS

Clearly, the continuity of \=v implies that these free boundaries b\pm are strictly separated;
namely, b+(\varphi )< b - (\varphi ) for all \varphi \in (0,\infty ).

Moreover, observe that the relationship in (4.11) together with the definitions
(3.4) and (4.12) of \scrC 1 and \scrC 2, respectively, imply that the latter two regions are equal
under the transformation from (x,\pi )- to (x,\varphi )-coordinates. To be more precise, for
any (x,\pi )\in \BbbR \times (0,1), define the transformation T := (T 1, T 2) :\BbbR \times (0,1)\rightarrow \BbbR \times (0,\infty )
by (T 1(x,\pi ), T 2(x,\pi )) = (x, \pi 

1 - \pi ), which is invertible, and its inverse is given by

T
 - 1

(x,\varphi ) = (x, \varphi 
1+\varphi ), for (x,\varphi ) \in \BbbR \times (0,\infty ). Hence, T : \BbbR \times (0,1)\rightarrow \BbbR \times (0,\infty ) is a

global diffeomorphism, which implies together with the expressions of (3.4)--(3.5) and
(4.12)--(4.13) that \scrC 2 = T (\scrC 1) and \scrS \pm 

2 = T (\scrS \pm 
1 ). Taking this into account together with

the expressions (3.7)--(3.8) of \scrC 1 and \scrS \pm 
1 , we can further conclude from the expressions

(4.15) of \scrC 2 and \scrS \pm 
2 that

b\pm (\varphi ) = a\pm 
\bigl( 

\varphi 
1+\varphi 

\bigr) 
.(4.16)

Hence, in light of the previously proved results for a\pm in Proposition 3.2, we also
obtain the following preliminary properties of the free boundaries \varphi \mapsto \rightarrow b\pm (\varphi ).

Proposition 4.3. The free boundaries b\pm defined in (4.14) satisfy the following:
(i) b\pm (\cdot ) are nonincreasing on (0,\infty ).
(ii) b+(\cdot ) is left-continuous and b - (\cdot ) is right-continuous on (0,\infty ).
(iii) b\pm (\cdot ) are bounded by x\ast 

\pm as in Proposition 3.2: x\ast 
+ \leq b+(\varphi ) < b - (\varphi ) \leq x\ast 

 - 
for all \varphi \in (0,\infty ). Moreover, we have b+(\varphi ) \leq (C \prime ) - 1( - \rho K+) and b - (\varphi ) \geq 
(C \prime ) - 1(\rho K - ) for all \varphi \in (0,\infty ).

Notice that the explicit relationship (4.16) between the free boundaries a\pm and
b\pm that we proved above not only is crucial for retrieving the original boundaries a\pm 
from b\pm , but it is also particularly useful in the proof of Proposition 4.3(i) and (iii).
In fact, proving the monotonicity and boundedness of b\pm by directly working on the
Dynkin game (4.9) is not a straightforward task.

Up this point, we managed to obtain the structure of the optimal stopping strate-
gies and preliminary properties of the corresponding optimal stopping boundaries as-
sociated with these strategies, for both Dynkin games (3.2) and (4.9) connected to
the optimal control problems (2.3) and (4.7), respectively. Moreover, we managed
to obtain some regularity results for the latter control value functions (see Proposi-
tions 3.1, 4.1, and 4.2). In sections 5 and 6 below, building on the aforementioned
analysis, we show that the control value function V has the sufficient regularity needed
to construct an optimal control strategy. This will involve the boundaries b\pm .

5. HJB equation and regularity of \bfitV . In this section, we introduce the HJB
equation (variational inequality) associated to the control value function V defined in
(4.7) and state-space process (XP ,\Phi ) given by (4.8). First, let \scrD \subseteq \BbbR 2 be an open
domain, and define the space Ck,h(\scrD ;\BbbR ) as the space of functions f : \scrD \rightarrow \BbbR which
are k-times continuously differentiable with respect to the first variable and h-times
continuously differentiable with respect to the second variable. When k= h we simply
write Ch.

We begin our study with the following ex ante regularity result for V . Its technical
proof can be found in the extended version of this paper [22].

Proposition 5.1. The control value function V defined in (4.7) is locally semi-
concave; that is, for every R> 0 there exists LR > 0 such that for all \lambda \in [0,1] and all
(x,\varphi ), (x\prime ,\varphi \prime ) such that | (x,\varphi )| \leq R and | (x\prime ,\varphi \prime )| \leq R, we have
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INVENTORY CONTROL WITH UNKNOWN DEMAND TREND 3089

\lambda V (x,\varphi ) + (1 - \lambda )V (x\prime ,\varphi \prime ) - V (\lambda (x,\varphi ) + (1 - \lambda )(x\prime ,\varphi \prime ))

\leq LR\lambda (1 - \lambda )| (x,\varphi ) - (x\prime ,\varphi \prime )| 2.

In particular, by [5, Theorem 2.1.7], we conclude that V is locally Lipschitz.

Given the locally Lipschitz continuity proved in the previous result, we now aim
at employing the HJB equation to investigate further regularity of V . To that end,
we define on f \in C2(\BbbR \times (0,\infty );\BbbR ) the second-order differential operator

\scrL f(x,\varphi ) := \mu 0fx(x,\varphi ) +
1

2

\bigl( 
\eta 2fxx(x,\varphi ) + \gamma 2\varphi 2f\varphi \varphi (x,\varphi ) + 2\gamma \eta \varphi fx\varphi (x,\varphi )

\bigr) 
.

By the dynamic programming principle, we expect that V solves (in a suitable sense)
the HJB equation (in the form of a variational inequality)

max
\bigl\{ 
(\rho  - \scrL )u(x,\varphi ) - (1+\varphi )C(x), - ux(x,\varphi ) - K+(1+\varphi ), ux(x,\varphi ) - K - (1+\varphi )

\bigr\} 
= 0

(5.1)

for (x,\varphi ) \in \BbbR \times (0,\infty ). In particular, we now first show that the value function V
of the control problem defined in (4.7) is a viscosity solution to (5.1); refer to [21,
Definition 4.5] for the formal definition in a similar setting and references related to the
validity of the dynamic programming principle. Following the arguments developed
in [25, Theorem 5.1, section VIII.5], and using the a priori regularity obtained in
Proposition 5.1, one can show the following classical result.

Proposition 5.2. The value function V defined in (4.7) is a locally Lipschitz
continuous viscosity solution to (5.1).

Recall definition (4.12) of the continuation region \scrC 2 of v(x,\varphi ) in (4.9) and the
relationship V x(x,\varphi ) = v(x,\varphi ) on \BbbR \times (0,\infty ) from Proposition 4.1(ii) to see that

\scrC 2 =
\bigl\{ 
(x,\varphi )\in \BbbR \times (0,\infty ) :  - K+(1 +\varphi )<V x(x,\varphi )<K - (1 +\varphi )

\bigr\} 
.(5.2)

This implies that \scrC 2 identifies also with the so-called inaction region of V , as suggested
also by the HJB equation (5.1). Combining the latter fact with Proposition 5.2 clearly
implies the following result.

Corollary 5.3. The value function V defined in (4.7) is a locally Lipschitz
continuous viscosity solution to (\rho  - \scrL )u(x,\varphi ) - (1 +\varphi )C(x) = 0 for all (x,\varphi )\in \scrC 2.

The result in Corollary 5.3 will be used in the forthcoming analysis to upgrade
the regularity of the value function in the closure of its inaction region, which is the
main goal of section 5. Before reaching this (final) step of our analysis in this section,
we prove that V is actually globally continuously differentiable.

Proposition 5.4. The value function in (4.7) satisfies V \in C1(\BbbR \times (0,\infty );\BbbR ).

Proof. In order to prove that V \in C1(\BbbR \times (0,\infty );\BbbR ), we need to prove that
both (classical) derivatives V x(x,\varphi ), V \varphi (x,\varphi ) of V (x,\varphi ) in the directions x and \varphi ,
respectively, are continuous on \BbbR \times (0,\infty ). We thus split the proof in two steps.

Step 1. Continuity of V x. We already know from Proposition 4.1(ii) that V x = \=v
exists and from Proposition 4.2(i) that (x,\varphi ) \mapsto \rightarrow \=v(x,\varphi ) is continuous over \BbbR \times (0,\infty ).
Hence, we conclude that (x,\varphi ) \mapsto \rightarrow V x(x,\varphi ) is continuous on \BbbR \times (0,\infty ).

Step 2. Continuity of V \varphi . Let us now show that the (classical) derivative V \varphi 

exists at each (xo,\varphi o)\in \BbbR \times (0,\infty ).
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3090 S. FEDERICO, G. FERRARI, AND N. RODOSTHENOUS

We assume, without loss of generality,2 that V is actually concave in a neighbor-
hood \scrI of (xo,\varphi o). Then, by concavity of V in \scrI , the right- and left-derivatives of V

exist in the \varphi -direction at (xo,\varphi o). We denote these derivatives by V
+

\varphi (xo,\varphi o) and

V
 - 
\varphi (xo,\varphi o), respectively, and due to concavity they satisfy V

 - 
\varphi (xo,\varphi o)\geq V

+

\varphi (xo,\varphi o).

Then, in order to show that V \varphi exists, it suffices to show that the strict inequal-

ity V
 - 
\varphi (xo,\varphi o) > V

+

\varphi (xo,\varphi o) cannot hold. Aiming for a contradiction, we assume

henceforth that V
 - 
\varphi (xo,\varphi o)>V

+

\varphi (xo,\varphi o) does hold true.

It follows from [37, Theorem 23.4] and the fact that V x exists and is continuous
(cf. Step 1 above) that there exist vectors

\zeta := (V x(xo,\varphi o), \zeta \varphi ), \eta := (V x(xo,\varphi o), \eta \varphi ) \in D+V (xo,\varphi o) such that \zeta \varphi < \eta \varphi ,

where we denote by D+V (xo,\varphi o) the superdifferential of V at (xo,\varphi o). For any
(x,\varphi )\in \scrI , we then define

g(x,\varphi ) := V (xo,\varphi o) + V x(xo,\varphi o)(x - xo) + \eta \varphi (\varphi  - \varphi o)\wedge \zeta \varphi (\varphi  - \varphi o)

and notice that V (xo,\varphi o) = g(xo,\varphi o), while we also get by concavity that V (x,\varphi )\leq 
g(x,\varphi ) for all (x,\varphi ) \in \scrI . Next, we consider the sequence of functions (fn)n\in \BbbN \subset 
C2(\BbbR \times (0,\infty );\BbbR ) defined by

fn(x,\varphi ) := g(x,\varphi o) +
1
2 (\eta \varphi + \zeta \varphi )(\varphi  - \varphi o) - n

2 (\varphi  - \varphi o)
2 \forall n\in \BbbN .

Such a sequence satisfies the following collection of properties for any n\in \BbbN :\left\{     
fn(xo,\varphi o) = g(xo,\varphi o) = V (xo,\varphi o),

fn \geq V in a neighborhood of (xo,\varphi o),

fn
x (xo,\varphi o) = V x(xo,\varphi o), f

n
xx(xo,\varphi o) = 0= fn

x\varphi (xo,\varphi o), f
n
\varphi \varphi (xo,\varphi o) = - n.

Then, using the viscosity subsolution property of V at (xo,\varphi o) yields

0\geq (\rho  - \scrL )fn(xo,\varphi o) - (1 +\varphi o)C(xo)
n\rightarrow \infty  - \rightarrow +\infty ,

which gives the desired contradiction. Hence, by arbitrariness of (xo,\varphi o), we have
that V is differentiable in the direction \varphi .

In view of the aforementioned differentiability in the direction \varphi and the semi-
concavity of V (cf. Proposition 5.1), we conclude from [37, Theorem 25.5] that V \varphi is
continuous on \BbbR \times (0,\infty ).

We are now ready to show the final result of this section, namely, to upgrade
the regularity of the control value function to the minimal required regularity for
constructing a candidate optimal control policy and verify its optimality in section 6.

To this end, we define, for any (x,\varphi )\in \BbbR \times (0,\infty ), the transformation

T := (T1, T2) :\BbbR \times (0,\infty )\rightarrow \BbbR 2, (T1(x,\varphi ), T2(x,\varphi )) =
\bigl( 
x,x - \eta 

\gamma log(\varphi )
\bigr) 
,(5.3)

which is invertible with inverse given by T - 1(x, y) = (x, e
\gamma 
\eta (x - y)) for (x, y)\in \BbbR 2. Using

the latter inverse transformation, we introduce the transformed version \widehat V (x, y) of the
value function V (x,\varphi ) defined in (4.7) by\widehat V (x, y) := V (x, e

\gamma 
\eta (x - y)), (x, y)\in \BbbR 2.(5.4)

2This can be done by replacing the (locally) semiconcave V (x,\varphi ) by W (x,\varphi ) := V (x,\varphi ) - C0| (x - 
xo,\varphi  - \varphi o)| 2 for suitable C0 > 0 in the subsequent argument.
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INVENTORY CONTROL WITH UNKNOWN DEMAND TREND 3091

Moreover, direct calculations yield that

\widehat Vx(x, y) + \widehat Vy(x, y) = V x(x, e
\gamma 
\eta (x - y)), (x, y)\in \BbbR 2.(5.5)

Given that T : \BbbR \times (0,\infty ) \rightarrow \BbbR 2 is a global diffeomorphism, we have from (5.2) and
(5.5) that the open set

\scrC 3 :=
\bigl\{ 
(x, y)\in \BbbR 2 : - K+(1 + e

\gamma 
\eta (x - y))<

\bigl( \widehat Vx + \widehat Vy

\bigr) 
(x, y)<K - (1 + e

\gamma 
\eta (x - y))

\bigr\} 
= T (\scrC 2).

(5.6)

Finally, define the second-order linear differential operator on f \in C2,1(\BbbR 2;\BbbR ) by

\scrL X,Y f(x, y) :=
1
2\eta 

2fxx(x, y) + \mu 0fx(x, y) +
1
2 (\mu 0 + \mu 1)fy(x, y).(5.7)

Proposition 5.5. The transformed value function \widehat V defined in (5.4) is such that\widehat V \in C1(\BbbR 2;\BbbR ) and \widehat Vxx \in L\infty (\scrC 3;\BbbR ). In addition, \widehat V is a classical solution to\bigl( 
\rho  - \scrL X,Y

\bigr) 
u(x, y) =C(x)(1 + e

\gamma 
\eta (x - y)) \forall (x, y)\in \scrC 3.(5.8)

Proof. First of all, due to Corollary 5.3 and the expression of the transformed
value function in (5.4), one can easily verify that \widehat V is a viscosity solution to (5.8) on
\scrC 3 due to (5.6). Then, in light of Proposition 5.4 and the above smooth transformation,
we also obtain that \widehat V \in C1(\BbbR 2;\BbbR ).

By a standard localization argument based on the fact that \widehat V is a continuously
differentiable viscosity solution to (5.8) on \scrC 3 and results for Dirichlet boundary prob-
lems involving PDEs of parabolic type (see [33]), we have that actually \widehat V \in C2,1(\scrC 3;\BbbR )
and solves (5.8) on \scrC 3 in a classical sense. Hence,

1
2\eta 

2 \widehat Vxx(x, y) = - C(x)(1 + e
\gamma 
\eta (x - y)) + \rho \widehat V (x, y) - \mu 0

\widehat Vx(x, y) - 1
2 (\mu 0 + \mu 1)\widehat Vy(x, y)

for all (x, y) \in \scrC 3. However, since we know that \widehat V \in C1(\BbbR 2;\BbbR ), and the right-hand
side of the above equation only involves continuous functions on \BbbR 2, we conclude that\widehat Vxx admits a continuous extension on \scrC 3 (where \scrC 3 denotes the closure of \scrC 3) so that\widehat Vxx \in L\infty (\scrC 3;\BbbR ). This completes the proof of the claim.

6. Verification theorem and optimal control. Given the regularity of \widehat V
obtained in Proposition 5.5 and the relation (5.4) between \widehat V and V defined in (4.7),
we are now able to prove a verification theorem. Namely, in what follows, we provide
the optimal control for V in terms of the boundaries b\pm defined in (4.14). Before we
commence the analysis, recall also the properties of b\pm proved in Proposition 4.3.

6.1. Construction of control \widehat \bfitP for state-space process (\bfitX 
\widehat \bfitP ,\Phi ). For any

given (x,\varphi ) \in \BbbR \times (0,\infty ), we define the admissible control strategy \widehat P := \widehat P+  - \widehat P - 

such that the following couple of properties hold true \sansQ -a.s:\left\{             

b+(\Phi t)\leq X
\widehat P
t \leq b - (\Phi t) for almost all t\geq 0;\widehat P+

t =

\int 
[0,t]

1\{ X \widehat P
s - \leq b+(\Phi s)\} 

d \widehat P+
s , \widehat P - 

t =

\int 
[0,t]

1\{ X \widehat P
s - \geq b - (\Phi s)\} 

d \widehat P - 
s \forall t\geq 0;\int \Delta \widehat P+

t

0

1\{ (X \widehat P
t - +z,\Phi t)\in \scrC 2\} 

dz +

\int \Delta \widehat P - 
t

0

1\{ (X \widehat P
t -  - z,\Phi t)\in \scrC 2\} 

dz = 0 \forall t\geq 0,

(6.1)

where \Delta \widehat P\pm 
t := \widehat P\pm 

t  - \widehat P\pm 
t - .
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In practice, according to the aforementioned strategy, a lump-sum increase or
decrease of the inventory processX may be required, whenever the inventory levelXt - 
happens to be either strictly below the boundary b+(\Phi t) or above b - (\Phi t), respectively.
The purpose of these jumps of at most one of the controls \widehat P\pm 

t at each such t \geq 
0, of size either (b+(\Phi t)  - X

\widehat P
t - )

+ or (X
\widehat P
t -  - b - (\Phi t))

+, is to bring immediately the
inventory level Xt inside the interval [b+(\Phi t), b - (\Phi t)]. Mathematically, these are the
actions caused at any time t \geq 0 by the jump parts \Delta \widehat P\pm 

t of the controls \widehat P\pm . The
strategy further prescribes taking action (increase or decrease the inventory) when
the inventory process Xt approaches, at any time t\geq 0, either boundary b+(\Phi t) from
above or b - (\Phi t) from below. The purpose of these actions now is to make sure (with a
minimal effort) that the inventory level Xt is kept inside the interval [b+(\Phi t), b - (\Phi t)].
Mathematically, these actions are caused by the continuous parts of the respective
controls \widehat P\pm and are the so-called Skorokhod reflection-type policies.

The nonincreasing property of b\pm (\cdot ) (see Proposition 4.3(i)) further implies that
the stronger the decision makers' belief is about a high average inventory level \mu 
(i.e., higher \varphi , cf. (4.1)), the more they tend to unload a part of excess inventory, so
that inventory is kept below the optimal level b - (\varphi ), and delay placing replenishment
orders by setting a lower optimal base-stock level b+(\varphi ).

In multidimensional settings, the construction of a solution to a Skorokhod reflec-
tion problems is usually a delicate task that is intimately related to the regularity of
the reflection boundary (see [17] and [32] for a discussion and literature review). In our
case, given that the dynamics of XP and \Phi are decoupled and that XP =X0+P (cf.

(4.8)), the solution triplet (X
\widehat P
t ,\Phi t, \widehat Pt)t\geq 0 to the Skorokhod reflection problem at the

boundaries b\pm can be constructed by adapting the iterative procedure developed in
[21, section 4.3]. In particular, with reference to the notation adopted in [21], we define
\tau +0 := inf\{ t\geq 0 : x < b+(\Phi t) - \mu 0t - \eta Wt\} , \tau  - 0 := inf\{ t\geq 0 : x > b - (\Phi t) - \mu 0t - \eta Wt\} ,
and \tau 0 := \tau +0 \wedge \tau  - 0 . Notice that, because inft\geq 0

\bigl( 
b - (\Phi t)  - b+(\Phi t)

\bigr) 
> 0 by Propo-

sition 4.3(iii), we have \{ \tau +0 = \tau  - 0 \} = \{ \tau 0 = \infty \} . Then, we set \Omega \infty := \{ \tau 0 = \infty \} ,
\Omega + := \{ \tau +0 < \tau  - 0 \} , \Omega  - := \{ \tau  - 0 < \tau +0 \} , and C0

t := x for all t \geq 0 and recursively
introduce the following:

If k\geq 1 is odd, Ck
t :=

\left\{     
x on \Omega \infty ,

x+maxs\in [\tau k - 1,t]

\bigl( 
b+(\Phi s) - \mu 0s - \eta Ws  - x)+ on \Omega +,

x+mins\in [\tau k - 1,t]

\bigl( 
b - (\Phi s) - \mu 0s - \eta Ws  - x) - on \Omega  - ,

with \tau k :=

\left\{     
\infty on \Omega \infty ,

inf\{ t\geq \tau k - 1 : C
k
t > b - (\Phi t) - \mu 0t - \eta Wt\} on \Omega +

inf\{ t\geq \tau k - 1 : C
k
t < b+(\Phi t) - \mu 0t - \eta Wt\} on \Omega  - .

If k\geq 2 is even, Ck
t :=

\left\{     
x on \Omega \infty ,

x+maxs\in [\tau k - 1,t]

\bigl( 
b+(\Phi s) - \mu 0s - \eta Ws  - x)+ on \Omega  - ,

x+mins\in [\tau k - 1,t]

\bigl( 
b - (\Phi s) - \mu 0s - \eta Ws  - x) - on \Omega +,

with \tau k :=

\left\{     
\infty on \Omega \infty ,

inf\{ t\geq \tau k - 1 : C
k
t > b - (\Phi t) - \mu 0t - \eta Wt\} on \Omega  - ,

inf\{ t\geq \tau k - 1 : C
k
t < b+(\Phi t) - \mu 0t - \eta Wt\} on \Omega +.

In light of these definitions, one can then proceed as in [21, section 4.3] in order to
conclude the existence of a solution to the reflection problem (6.1).

It then follows from (6.1) above together with the definitions (4.14) of boundaries
b\pm , the region \scrC 2 from (4.15), and the fact that \=v = V x from Proposition 4.1(ii) that
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INVENTORY CONTROL WITH UNKNOWN DEMAND TREND 3093

the nondecreasing processes \widehat P\pm are such that the state-space process (X
\widehat P ,\Phi ) and

the induced (random) measures d \widehat P\pm on \BbbR + satisfy\left\{     
(X

\widehat P
t ,\Phi t)\in \scrC 2, for\sansQ \otimes dt - a.e.,with\scrC 2 as in (4.15);

d \widehat P+ has support on
\bigl\{ 
t\geq 0 : V x(X

\widehat P
t ,\Phi t)\leq  - K+(1 +\Phi t)

\bigr\} 
;

d \widehat P - has support on
\bigl\{ 
t\geq 0 : V x(X

\widehat P
t ,\Phi t)\geq K - (1 +\Phi t)

\bigr\} 
.

(6.2)

6.2. Transformation of controlled process (X
\widehat P ,\Phi ) to (\bfitX 

\widehat \bfitP , \bfitY 
\widehat \bfitP ). We now

use the transformation (5.3) from (x,\varphi )- to (x, y)-coordinates in order to define the
controlled process

Y
\widehat P

t :=X
\widehat P
t  - \eta 

\gamma log(\Phi t), t\geq 0.(6.3)

Recalling the transformed value function (5.4) and the relation in (5.5), we have

\widehat V (X
\widehat P
t , Y

\widehat P
t ) := V

\bigl( 
X

\widehat P
t , e

\gamma 
\eta (X

\widehat P
t  - Y

\widehat P
t )
\bigr) 
, (\widehat Vx + \widehat Vy)(X

\widehat P
t , Y

\widehat P
t ) = V x

\bigl( 
X

\widehat P
t , e

\gamma 
\eta (X

\widehat P
t  - Y

\widehat P
t )
\bigr) 
,

under the dynamics\Biggl\{ 
dX

\widehat P
t = \mu 0dt+ \eta dWt +d \widehat P+

t  - d \widehat P - 
t , X

\widehat P
0 - = x\in \BbbR ,

dY
\widehat P

t = 1
2 (\mu 0 + \mu 1)dt+d \widehat P+

t  - d \widehat P - 
t , Y

\widehat P
0 - = y := x - \eta 

\gamma log(\varphi )\in \BbbR .
(6.4)

Hence, we can express the control \widehat P defined in section 6.1 in terms of the state-space
process (X

\widehat P , Y \widehat P ) via
\left\{       
(X

\widehat P
t , Y

\widehat P
t )\in \scrC 3, for\sansQ \otimes dt - a.e.,where\scrC 3 is defined in (5.6);

d \widehat P+ has support on
\bigl\{ 
t\geq 0 :

\bigl( \widehat Vx + \widehat Vy

\bigr) 
(X

\widehat P
t , Y

\widehat P
t )\leq  - K+

\bigl( 
1 + e

\gamma 
\eta (X

\widehat P
t  - Y

\widehat P
t )
\bigr) \bigr\} 

;

d \widehat P - has support on
\bigl\{ 
t\geq 0 :

\bigl( \widehat Vx + \widehat Vy

\bigr) 
(X

\widehat P
t , Y

\widehat P
t )\geq K - \bigl( 1 + e

\gamma 
\eta (X

\widehat P
t  - Y

\widehat P
t ))
\bigr) \bigr\} 

.

(6.5)

6.3. Optimality of control \widehat \bfitP . In this section we prove the optimality of the
control \widehat P defined through (6.1), which is equivalently expressed by (6.2) in terms

of the state-space process (X
\widehat P ,\Phi ) and by (6.5) in terms of the state-space process

(X
\widehat P , Y \widehat P ); see sections 6.1--6.2.

Theorem 6.1 (Verification theorem). The admissible control \widehat P \in \scrA defined
through (6.1) (see also (6.2) and (6.5)) is optimal for (4.7). Actually, \widehat P is the unique
optimal control (up to indistinguishability) if C is strictly convex.

Proof. Let (X
\widehat P
0 - , Y

\widehat P
0 - ) = (x, y)\equiv (x,x - \eta log(\varphi )/\gamma )\in \scrC 3 be given and fixed. Define

\tau n := inf\{ t \geq 0 : | (X \widehat P
t , Y

\widehat P
t )| > n\} \wedge n, for n \in \BbbN , with state-space process (X

\widehat P , Y \widehat P )
as in (6.4), and recall that (X

\widehat P
t , Y

\widehat P
t ) \in \scrC 3, \sansQ -a.s. for all t\geq 0. In particular, Lemma

A.1 in Appendix A yields that, for any t \geq 0, \sansQ 
\bigl( 
(X

\widehat P
t ,\Phi t) \in \scrC 2

\bigr) 
= 1, and therefore

\sansQ 
\bigl( 
(X

\widehat P
t , Y

\widehat P
t ) \in \scrC 3

\bigr) 
= 1. Then, given the regularity of \widehat V (cf. Proposition 5.5), we

can employ the approximation argument via mollifiers developed in the proof of [25,
Theorem 4.1, Chapter VIII], in order to conclude that

\widehat V (x, y) = \sansE \sansQ 

\biggl[ 
e - \rho \tau n \widehat V (X

\widehat P
\tau n , Y

\widehat P
\tau n)

\biggr] 
 - \sansE \sansQ 

\biggl[ \int \tau n

0

e - \rho s
\bigl( 
\scrL X,Y  - \rho 

\bigr) \widehat V (X
\widehat P
s , Y

\widehat P
s )ds

\biggr] 

 - \sansE \sansQ 

\left[  \int \tau n

0

e - \rho s
\bigl( \widehat Vx + \widehat Vy

\bigr) 
(X

\widehat P
s , Y

\widehat P
s )d \widehat P c

s  - 
\sum 

0\leq s\leq \tau n

e - \rho s
\Bigl( \widehat V (X

\widehat P
s , Y

\widehat P
s ) - \widehat V (X

\widehat P
s - , Y

\widehat P
s - )
\Bigr) \right]  ,
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3094 S. FEDERICO, G. FERRARI, AND N. RODOSTHENOUS

where \widehat P c denotes the continuous part of \widehat P and the final sum is nonzero only for
(at most countably many) times s such that \Delta \widehat Ps := \widehat Ps  - \widehat Ps - \not = 0. Clearly, \Delta \widehat Ps =
\Delta \widehat P+

s  - \Delta \widehat P - 
s , where \Delta \widehat P\pm 

s := \widehat P\pm 
s  - \widehat P\pm 

s - , and notice that

\sum 
0\leq s\leq \tau n

e - \rho s

\biggl\{ \bigl( \widehat V (X
\widehat P
s , Y

\widehat P
s ) - \widehat V (X

\widehat P
s - ,Y

\widehat P
s - )
\bigr) 
 - 
\int \Delta \widehat P+

s

0

\bigl( \widehat Vx + \widehat Vy

\bigr) 
(X

\widehat P
s - + u,Y

\widehat P
s - + u)du

+

\int \Delta \widehat P - 
s

0

\bigl( \widehat Vx + \widehat Vy

\bigr) 
(X

\widehat P
s -  - u,Y

\widehat P
s -  - u)du

\biggr\} 
= 0.

Hence, plugging the last formula into the penultimate one and using (5.8), the non-
negativity of \widehat V , and the second and third property of control \widehat P in (6.5), we see
that

\widehat V (x, y)\geq \sansE \sansQ 

\biggl[ \int \tau n

0

e - \rho s
\bigl( 
1 + e

\gamma 
\eta (X

\widehat P
s  - Y

\widehat P
s )
\bigr) 
C(X

\widehat P
s )ds

\biggr] 
+ \sansE \sansQ 

\biggl[ \int \tau n

0

e - \rho sK+
\bigl( 
1 + e

\gamma 
\eta (X

\widehat P
s  - Y

\widehat P
s )
\bigr) 
d \widehat P+

s +

\int \tau n

0

e - \rho sK - \bigl( 1 + e
\gamma 
\eta (X

\widehat P
s  - Y

\widehat P
s )
\bigr) 
d \widehat P - 

s

\biggr] 
.

Then, we take limits as n \uparrow \infty , and we invoke Fatou's lemma (given the nonnegativity
of all the integrands above) to find that

\widehat V (x, y)\geq \sansE \sansQ 

\biggl[ \int \infty 

0

e - \rho s
\bigl( 
1 + e

\gamma 
\eta (X

\widehat P
s  - Y

\widehat P
s )
\bigr) 
C(X

\widehat P
s )ds

\biggr] 
+ \sansE \sansQ 

\biggl[ \int \infty 

0

e - \rho sK+
\bigl( 
1 + e

\gamma 
\eta (X

\widehat P
s  - Y

\widehat P
s )
\bigr) 
d \widehat P+

s +

\int \infty 

0

e - \rho sK - \bigl( 1 + e
\gamma 
\eta (X

\widehat P
s  - Y

\widehat P
s )
\bigr) 
d \widehat P - 

s

\biggr] 
.

Given now that X
\widehat P  - Y

\widehat P = \eta log(\Phi )/\gamma by definition (6.3), and that (5.4) yields\widehat V (x, y) = \widehat V (x,x - \eta log(\varphi )/\gamma ) = V (x,\varphi ), we further conclude from the latter inequality
that for any (x,\varphi )\in \scrC 2 (as we assumed (x, y)\equiv (x,x - \eta log(\varphi )/\gamma )\in \scrC 3,)

V (x,\varphi )\geq \sansE \sansQ 

\biggl[ \int \infty 

0

e - \rho s
\bigl( 
1 +\Phi s

\bigr) 
C(X

\widehat P
s )ds+

\int \infty 

0

e - \rho s
\bigl( 
1 +\Phi s

\bigr) \bigl( 
K+d \widehat P+

s +K - d \widehat P - 
s

\bigr) \biggr] 
.

(6.6)

Combining this inequality with definition (4.7), i.e., V (x,\varphi )\leq \scrJ x,\varphi ( \widehat P ), we prove that\widehat P is an optimal control for any (x,\varphi )\in \scrC 2.
Suppose now that (x,\varphi ) is such that x < b+(\varphi ), so that (x,\varphi ) \in \scrS +

2 . Then,
according to (6.1) (see also (6.2)), and using (6.6), we have that

\scrJ x,\varphi ( \widehat P ) =K+(1 +\varphi )
\bigl( 
b+(\varphi ) - x) +\scrJ b+(\varphi ),\varphi ( \widehat P )

\leq V (b+(\varphi ),\varphi ) - 
\int b+(\varphi )

x

V x(z,\varphi ) = V (x,\varphi ).

Proceeding similarly also for (x,\varphi ) such that x> b - (\varphi ), we conclude that \widehat P is indeed
optimal for any (x,\varphi )\in \BbbR 2.

7. Refined regularity of the free boundaries and their characterization.
In this section we will obtain substantial regularity of the value \=v(x,\varphi ) of the Dynkin
game (4.9), as well as an analytical characterization of its corresponding free bound-
aries b\pm , and consequently the optimal control rule \widehat P (see Theorem 6.1).
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INVENTORY CONTROL WITH UNKNOWN DEMAND TREND 3095

7.1. Parabolic formulation and Lipschitz continuity of the free bound-
aries. In view of a further change of variables, in line with (6.3), we define Y 0

t :=
X0

t  - \eta 
\gamma log(\Phi t), t\geq 0, with X0 as in (4.10). Then, by It\^o's formula, we have\Biggl\{ 

dX0
t = \mu 0dt+ \eta dWt, X0

0 = x\in \BbbR ,
dY 0

t = 1
2 (\mu 0 + \mu 1)dt, Y 0

0 = y := x - \eta 
\gamma log(\varphi )\in \BbbR ,

(7.1)

and (4.9) rewrites in terms of the new coordinates (x, y) = (X0
0 , Y

0
0 ) as

\widehat v(x, y) := inf
\sigma 
sup
\tau 

\sansE \sansQ 

\biggl[ \int \tau \wedge \sigma 

0

e - \rho t
\Bigl( 
1 + e

\gamma 
\eta (X0

t  - Yt)
\Bigr) 
C \prime (X0

t )dt - e - \rho \tau 
\Bigl( 
1 + e

\gamma 
\eta (X0

\tau  - Y\tau )
\Bigr) 

\times K+1\{ \tau <\sigma \} + e - \rho \sigma 
\Bigl( 
1 + e

\gamma 
\eta (X0

\sigma  - Y\sigma )
\Bigr) 
K - 1\{ \tau >\sigma \} 

\biggr] 
= \=v

\Bigl( 
x, e

\gamma 
\eta (x - y)

\Bigr) 
(7.2)

for (x, y) \in \BbbR 2. In view of the relationship in (7.2), the value function \widehat v(\cdot , \cdot ) inherits
important properties which have already been proved for \=v(\cdot , \cdot ). To be more precise,
we first conclude immediately from Proposition 4.2(i) the following result.

Proposition 7.1. The value function (x, y) \mapsto \rightarrow \widehat v(x, y) defined in (7.2) is contin-
uous over \BbbR 2.

Moreover, since \=v(x, exp\{ \gamma (x  - y)/\eta \} ) = V x(x, exp\{ \gamma (x  - y)/\eta \} ) by Proposi-
tion 4.1(ii), it follows from (5.5) that \widehat v(x, y) = \widehat Vx(x, y) + \widehat Vy(x, y) for all (x, y) \in \BbbR 2,
and consequently the open set \scrC 3 defined in (5.6) takes the form

\scrC 3 =
\bigl\{ 
(x, y)\in \BbbR 2 : - K+

\bigl( 
1 + e

\gamma 
\eta (x - y)

\bigr) 
< \widehat v(x, y)<K - \bigl( 1 + e

\gamma 
\eta (x - y)

\bigr) \bigr\} 
= T (\scrC 2).(7.3)

Hence, by also defining the closed sets

\scrS +
3 :=

\bigl\{ 
(x, y)\in \BbbR 2 : \widehat v(x, y)\leq  - K+

\bigl( 
1 + e

\gamma 
\eta (x - y)

\bigr) \bigr\} 
,

\scrS  - 
3 :=

\bigl\{ 
(x, y)\in \BbbR 2 : \widehat v(x, y)\geq K - \bigl( 1 + e

\gamma 
\eta (x - y)

\bigr) \bigr\} 
,

(7.4)

the global diffeomorphism T from (5.3) implies that \scrS \pm 
3 = T (\scrS \pm 

2 ) as well, where \scrC 2
and \scrS \pm 

2 are the continuation and stopping regions (4.12)--(4.13) for the Dynkin game
\=v in (4.9). Combining these relationships with the structure of the latter regions in
(4.15) yields that \scrC 3 and \scrS 3

\pm are connected.
In order to obtain the explicit structure of the regions \scrC 3 and \scrS 3

\pm , we now define
the generalized inverses of the nonincreasing b\pm (cf. Proposition 4.3) by

b - 1
+ (x) := sup\{ \varphi \in (0,\infty ):b+(\varphi )\geq x\} , b - 1

 - (x) := inf\{ \varphi \in (0,\infty ):b - (\varphi )\leq x\} .(7.5)

Since the map \varphi \mapsto \rightarrow T2(x,\varphi ) in (5.3) is decreasing for any given x\in \BbbR (cf. the functions
b\pm are nonincreasing due to Proposition 4.3(i)), we have

(x, y)\in \scrC 3 \leftrightarrow 
\bigl( 
x, e

\gamma 
\eta (x - y)

\bigr) 
\in \scrC 2 \leftrightarrow x - \eta 

\gamma log(b - 1
 - (x))< y < x - \eta 

\gamma log(b - 1
+ (x)),

while similar relations hold true for the characterization of \scrS \pm 
3 . Then, by defining

c - 1
\pm (x) := x - \eta 

\gamma log(b - 1
\pm (x)),(7.6)

we can obtain the structure of the continuation and stopping regions of \widehat v as

\scrC 3 = \{ (x, y)\in \BbbR 2 : c - 1
 - (x)< y < c - 1

+ (x)\} ,
\scrS +
3 = \{ (x, y)\in \BbbR 2 : y\geq c - 1

+ (x)\} , and \scrS  - 
3 = \{ (x, y)\in \BbbR 2 : y\leq c - 1

 - (x)\} .
(7.7)

The next lemma can be proved thanks to (7.5), (7.6), and Proposition 4.3.
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3096 S. FEDERICO, G. FERRARI, AND N. RODOSTHENOUS

Lemma 7.2. The functions c - 1
\pm (\cdot ) defined in (7.6) are strictly increasing, while

c - 1
+ (\cdot ) is left-continuous and c - 1

 - (\cdot ) is right-continuous on \BbbR .

In light of Lemma 7.2, for y \in \BbbR , we may define the functions

c+(y) := inf\{ x\in \BbbR : y\leq c - 1
+ (x)\} and c - (y) := sup\{ x\in \BbbR : y\geq c - 1

 - (x)\} .(7.8)

In the following result, we prove that y \mapsto \rightarrow c\pm (y) identify with the optimal free bound-
aries of the Dynkin game \widehat v in (7.2) and provide some important properties such as
their global Lipschitz continuity.

Proposition 7.3. The free boundaries c\pm are defined in (7.8). Then,
(i) c\pm (\cdot ) are nondecreasing on \BbbR , and we have x\ast 

+ \leq c+(y) < c - (y) \leq x\ast 
 - for all

y \in \BbbR (with x\ast 
\pm as in Proposition 3.2). Moreover, c+(y) \leq (C \prime ) - 1( - \rho K+)

and c - (y)\geq (C \prime ) - 1(\rho K - ) for all y \in \BbbR ;
(ii) c\pm (\cdot ) are Lipschitz continuous on \BbbR with Lipschitz constant L = 1, namely,

0\leq c\pm (y) - c\pm (y
\prime )\leq y - y\prime for all y\geq y\prime .

(iii) The structures of the continuation and stopping regions for (7.2) take the form

\scrC 3 = \{ (x, y)\in \BbbR 2 : c+(y)<x< c - (y)\} ,
\scrS +
3 = \{ (x, y)\in \BbbR 2 : x\leq c+(y)\} , and \scrS  - 

3 = \{ (x, y)\in \BbbR 2 : x\geq c - (y)\} .

Proof. Proof of (i). The first part of the claim follows from Lemma 7.2, together
with the definition (7.8) of c\pm . The second and third parts of the claim are due to
the fact that T1 as in (5.3) is the identity.

Proof of (ii). Using the definitions (7.6) of c - 1
\pm and the monotonicity of b - 1

\pm (see
proof of Lemma 7.2), we get

c - 1
\pm (x) - c - 1

\pm (x\prime ) = x - \eta 
\gamma log(b - 1

\pm (x)) - x\prime + \eta 
\gamma log(b - 1

\pm (x\prime ))\geq x - x\prime \forall x\geq x\prime .(7.9)

Combining this with definitions (7.8) and part (i), we obtain the desired claim.
Proof of (iii). This is again due to the definitions (7.8) of c\pm , their monotonicity

from part (i), and the expressions of the sets in (7.7).

7.2. Global \bfitC 1-regularity of \widehat \bfitv . For any (x, y) \in \BbbR 2 given and fixed, we con-
sider the strong solution to the dynamics in (7.1), denoted by X0,x

t = x+ \mu 0t+ \eta Wt

and Y 0,y
t = y+ 1

2 (\mu 1 + \mu 0)t, t\geq 0, and we define

\tau  \star (x, y) := inf\{ t\geq 0:(X0,x
t , Y 0,y

t )\in \scrS +
3 \} , \sigma  \star (x, y) := inf\{ t\geq 0:(X0,x

t , Y 0,y
t )\in \scrS  - 

3 \} .
(7.10)

Notice that, in light of the one-to-one and onto transformations T and T , the
pair (\tau  \star (x, y), \sigma  \star (x, y)) realizes a saddle point for the Dynkin game with value \widehat v(x, y)
in (7.2) if and only if, by setting \pi := e

\gamma 
\eta (x - y)/(1 + e

\gamma 
\eta (x - y)), the stopping times\widetilde \tau (x,\pi ) := inf\{ t\geq 0 : (X0,x

t ,\Pi \pi 
t )\in \scrS +

1 \} and \widetilde \sigma (x,\pi ) := inf\{ t\geq 0 : (X0,x
t ,\Pi \pi 

t )\in \scrS  - 
1 \} form

a saddle point for the game with value v(x,\pi ) in (3.2). In order to prove the latter
claim, one can apply [36, Theorem 2.1] (see also [18, Theorem 2.1]) by proceeding as
in the proof of item (iii) in the proof of Proposition 3.2.

In what follows, we aim at deriving the global C1-regularity of \widehat v(\cdot , \cdot ). In order to
accomplish that, we need the following result about the regularity (in the probabilistic
sense) of (\tau  \star , \sigma  \star ).

Lemma 7.4. Suppose that (xn, yn)n\in \BbbN \ast \subset \scrC 3 is such that (xn, yn) \rightarrow (xo, yo),
where yo \in \BbbR and xo := c+(yo) (resp., xo := c - (yo)); then \tau  \star (xn, yn) \rightarrow 0 (resp.,
\sigma  \star (xn, yn)\rightarrow 0), \sansQ -a.s.
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INVENTORY CONTROL WITH UNKNOWN DEMAND TREND 3097

Proof. We prove the claim for \tau  \star (xn, yn), since the proof for \sigma  \star (xn, yn) can be
performed analogously. Fix \omega \in \Omega and assume (aiming for a contradiction) that
limsupn\rightarrow \infty \tau  \star (xn, yn)(\omega ) =: \delta > 0. Namely, there exists a subsequence, still labeled
by (xn, yn), such that X0,xn

t (\omega )> c+(Y
0,yn

t ) for all n\in \BbbN \ast and t\in [0, \delta /2]; that is,

xn + \mu 0t+ \eta Wt(\omega )> c+
\bigl( 
yn + 1

2 (\mu 1 + \mu 0)t
\bigr) 

\forall n\in \BbbN \ast \forall t\in [0, \delta /2].(7.11)

Hence, taking the limit as n\rightarrow \infty and considering that c+ is continuous (see Propo-
sition 7.3(ii)), \eta Wt(\omega ) \geq c+(yo +

1
2 (\mu 1 + \mu 0)t)  - xo  - \mu 0t for all t \in [0, \delta /2]. Using

now the Lipschitz continuity of c+ (see again Proposition 7.3.(ii)), we further obtain
for all n\in \BbbN \ast and for all t\in [0, \delta /2] that

\eta Wt(\omega )\geq c+(yo) - 1
2 (\mu 1 + \mu 0)

 - t - xo  - \mu 0t =  - 1
2

\bigl( 
(\mu 1 + \mu 0)

 - + \mu 0

\bigr) 
t.(7.12)

However, by the law of iterated logarithm, we have that (7.12) can only happen for
\omega belonging to a \sansQ -null set, and the proof is complete.

Remark 7.5. From the previous proof one can easily observe that, by replacing the
strict inequality with the large one in (7.11), we can actually prove that \v \tau  \star (xn, yn)\rightarrow 0
and \v \sigma  \star (xn, yn)\rightarrow 0, \sansQ -a.s., where

\v \tau  \star (x, y) := inf\{ t\geq 0 : (X0,x
t , Y 0,y

t )\in Int(\scrS +
3 )\} ,(7.13)

\v \sigma  \star (x, y) := inf\{ t\geq 0 : (X0,x
t , Y 0,y

t )\in Int(\scrS  - 
3 )\} .(7.14)

We now show that the value function \widehat v(x, y) of the Dynkin game (7.2) is smooth
across the topological boundary \partial \scrC 3 of the continuation region \scrC 3 from (7.3) in both
directions x and y. The proof borrows ideas from [11] and exploits the probabilistic
expressions of the derivatives of \widehat v, Lemma 7.4, and Remark 7.5. Full details can be
found in the extended version of this paper [22].

Proposition 7.6 (Smooth-fit). Let yo \in \BbbR , and set xo := c\pm (yo). Then the value
function \widehat v defined in (7.2) satisfies

lim
(x,y)\rightarrow (xo,yo)

(x,y)\in \scrC 3

\widehat vx(x, y) =\mp \gamma 

\eta 
K\pm e

\gamma 
\eta (xo - yo), lim

(x,y)\rightarrow (xo,yo)

(x,y)\in \scrC 3

\widehat vy(x, y) =\pm \gamma 

\eta 
K\pm e

\gamma 
\eta (xo - yo).

We are now ready to derive the global C1-regularity of \widehat v as well as the local
boundedness of its second derivative in x.

Proposition 7.7. The value function \widehat v defined in (7.2) satisfies \widehat v \in C1(\BbbR 2;\BbbR )
and \widehat vxx \in L\infty 

loc(\BbbR 2;\BbbR ).

Proof. By standard arguments based on the strong Markov property and Dirichlet
boundary problems involving second-order PDEs of parabolic type, one can show that\widehat v in (7.2) is a classical C2,1-solution to (\rho  - \scrL X,Y )u(x, y) - 

\bigl( 
1+ e

\gamma 
\eta (x - y)

\bigr) 
C \prime (x) = 0 for

all (x, y) \in \scrC 3, where \scrL X,Y is the second-order differential operator defined in (5.7),
and \scrC 3 is given by (7.3) (see also Proposition 7.3(iii)). Also, \widehat v \in C\infty in the interior of
\scrS \pm 
3 . Hence, by Proposition 7.6 we have that \widehat v \in C1(\BbbR 2;\BbbR ).

Arguing now as in the proof of Proposition 5.5, we have that \widehat vxx admits a contin-
uous extension to \scrC 3 and is therefore bounded therein. Hence, for y \in \BbbR , we have that\widehat vx(\cdot , y) is Lipschitz continuous on [c+(y), c - (y)], with Lipschitz constant K(y) which
is locally bounded on \BbbR . Combining this with the fact that \widehat vx(\cdot , y) is infinitely many
times continuously differentiable in \scrS \pm 

3 , thus locally bounded therein, we conclude
that \widehat vxx \in L\infty 

loc(\BbbR 2;\BbbR ).
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3098 S. FEDERICO, G. FERRARI, AND N. RODOSTHENOUS

7.3. Integral equations for the free boundaries. By Proposition 7.7, and
by using standard arguments based on the strong Markov property (cf. [18] and [36]),
we have that the value function \widehat v defined in (7.2) and the free boundaries c\pm satisfy\left\{               

\bigl( 
\scrL X,Y  - \rho 

\bigr) \widehat v(x, y) = - (1 + e
\gamma 
\eta (x - y))C \prime (x), c+(y)<x< c - (y), y \in \BbbR ,\bigl( 

\scrL X,Y  - \rho 
\bigr) \widehat v(x, y) = \rho K+(1 + e

\gamma 
\eta (x - y)), x < c+(y), y \in \BbbR ,\bigl( 

\scrL X,Y  - \rho 
\bigr) \widehat v(x, y) = - \rho K - (1 + e

\gamma 
\eta (x - y)), x > c - (y), y \in \BbbR ,

 - K+(1 + e
\gamma 
\eta (x - y))\leq \widehat v(x, y)\leq K+(1 + e

\gamma 
\eta (x - y)), (x, y)\in \BbbR 2.

We recall that \scrL X,Y is the second-order differential operator defined in (5.7), \widehat v \in 
C1(\BbbR 2;\BbbR ), \widehat vxx \in L\infty 

loc(\BbbR 2;\BbbR ), and \widehat v \in C2,1 inside \scrC 3 (cf. Propositions 7.3(iii) and 7.7).
Hence, via the above results and a suitable application of (a weak version of) It\^o's
lemma (see, e.g., [2, Lemma 8.1, Theorem 8.5] and [3, Theorem 2.1]), we firstly obtain
an integral representation of \widehat v; since this result is nowadays somehow classical, we
omit details.

Proposition 7.8. Consider the free boundaries c\pm defined in (7.8) and (X0, Y 0)
from (7.1). Then, for any (x, y)\in \BbbR 2, the value function \widehat v of (7.2) can be written as

\widehat v(x, y) = \sansE \sansQ 
(x,y)

\biggl[ \int \infty 

0

e - \rho s
\bigl( 
1 + e

\gamma 
\eta (X0

s - Y 0
s )
\bigr) 
C \prime (X0

s )1\{ c+(Y 0
s )<X0

s<c - (Y 0
s )\} ds

\biggr] 
+ \sansE \sansQ 

(x,y)

\biggl[ \int \infty 

0

e - \rho s\rho 
\bigl( 
1 + e

\gamma 
\eta (X0

s - Y 0
s )
\bigr) \bigl( 
K - 1\{ X0

s\geq c - (Y 0
s )\}  - K+1\{ X0

s\leq c+(Y 0
s )\} 
\bigr) 
ds

\biggr] 
,

where \sansE \sansQ 
(x,y) is the expectation under \sansQ (x,y) such that (X0, Y 0) starts at (x, y)\in \BbbR 2.

The previous representation of \widehat v allows us to determine a system of integral
equations for c\pm (see (7.8) for their definition and Proposition 7.3 for their properties),
which is the main aim of this section. To this end, denote by G(z;m,\nu ) the density
function of a Gaussian random variable with mean m and variance \nu 2.

Proposition 7.9. Let q(x, y) := 1 + e
\gamma 
\eta (x - y). The free boundaries c\pm defined in

(7.8) solve the system of integral equations

\mp K\pm q(c\pm (y), y) =

\int \infty 

0

e - \rho s

\biggl( \int 
\BbbR 
q(z,Y 0

s )

\biggl\{ 
C \prime (z)1\{ c+(Y 0

s )<z<c - (Y 0
s )\} 

+K - 1\{ z\geq c - (Y 0
s )\}  - K+1\{ z\leq c+(Y 0

s )\} 

\biggr\} 
G(z; c\pm (y) + \mu 0s, \eta 

2s)dz

\biggr) 
ds.

Moreover, (c+, c - ) is the unique solution pair belonging to the set \scrD + \times \scrD  - , where

\scrD + :=
\bigl\{ 
g :\BbbR \rightarrow \BbbR : g is continuous, nondecreasing s.t. x\ast 

+ \leq g(y)\leq (C \prime ) - 1( - \rho K+)
\bigr\} 
,

\scrD  - :=
\bigl\{ 
g :\BbbR \rightarrow \BbbR : g is continuous, nondecreasing s.t. (C \prime ) - 1(\rho K - )\leq g(y)\leq x\ast 

 - 
\bigr\} 
.

Proof. The integral equations follow by taking x = c\pm (y) in Proposition 7.8,
employing the value function's continuity (i.e., \widehat v(c\pm (y), y) =\mp K\pm \bigl( 1+exp\{ \gamma (c\pm (y) - 
y)/\eta \} 

\bigr) 
for any y \in \BbbR ), and finally noticing that Y 0 is a deterministic process and that

X
0,c\pm (y)
s is Gaussian under \sansQ with mean c\pm (y) + \mu 0s and variance \eta 2s.
The fact that c\pm belong to the classes \scrD \pm follows from their continuity, mono-

tonicity, and boundedness in Proposition 7.3.
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INVENTORY CONTROL WITH UNKNOWN DEMAND TREND 3099

Finally, we can proceed as in [9, Lemmata 3.15, 3.16, Proposition 3.17, Theorem
3.18] to prove the uniqueness. Notice that the problem in [9] has a finite time-horizon
T, and the free boundaries satisfy suitable terminal conditions at T . However, a careful
investigation of the proof of [9, Lemma 3.15] reveals that such terminal conditions can
be replaced in our problem by the transversality condition (already satisfied by \widehat v3)

lim
T\uparrow \infty 

\sansE \sansQ 
(x,y)

\bigl[ 
e - \rho Tu\alpha (X

0
T , Y

0
T )
\bigr] 
= 0,(7.15)

imposed on a candidate value function u\alpha (cf. [9, equation (3.56)]). The arguments
in the proofs of [9, Lemma 3.16, Proposition 3.17, Theorem 3.18] do not exploit the
terminal conditions of the free boundaries, so that they can be adapted to the present
setting.

Remark 7.10. The complete characterization of the boundaries c\pm provided by
Proposition 7.9 together with (7.6) yield a complete description of the free boundaries
b\pm , at which the optimal control rule \widehat P constructed in (6.1)--(6.2) (see section 6.1 for

details) commands the process (X
\widehat P
t ,\Phi t)t\geq 0 to be reflected.

Indeed, once c\pm are determined by solving (numerically) the system of integral
equations in Proposition 7.9, we can use (7.6) to obtain b - 1

\pm and consequently deter-
mine b\pm by inverting (7.5). However, such a numerical treatment is nontrivial and
outside the scope of the present work, and we do not address it in this paper.

Appendix A. Technical Result.

Lemma A.1. Let W be a one-dimensional Brownian motion on the complete fil-
tered probability space (\Omega ,\scrF ,\BbbF ,\sansQ ), let \{ \tau k\} k\geq 1 be a strictly increasing sequence of
\BbbF -stopping times diverging a.s., let \zeta , \beta , c > 0, let \alpha \in \BbbR , let f :\BbbR \rightarrow \BbbR be nonincreas-
ing, and let g :\BbbR \rightarrow \BbbR be Lipschitz continuous. Then, for each t > 0,

\sansQ 

\Biggl( \infty \bigcup 
k=1

\bigl\{ 
t\in (\tau k - 1, \tau k]

\bigr\} 
\cap 
\biggl\{ 
t\in arg max

s\in [\tau k - 1,t]
(f(ce\alpha s+\beta Ws) - \zeta Ws + g(s))

\biggr\} \Biggr) 
= 0,

\sansQ 

\Biggl( \infty \bigcup 
k=1

\bigl\{ 
t\in (\tau k - 1, \tau k]

\bigr\} 
\cap 
\biggl\{ 
t\in arg min

s\in [\tau k - 1,t]
(f(ce\alpha s+\beta Ws) - \zeta Ws + g(s))

\biggr\} \Biggr) 
= 0.

Proof. We show the claim only for the argmax. Fix t > 0, and set \Omega k :=
\bigl\{ 
t \in 

(\tau k - 1, \tau k]
\bigr\} 
. The proof can be concluded by showing that, for each k\geq 1,

\sansQ 
\bigl( 
t\in argmaxs\in [\tau k - 1,t](f(ce

\alpha s+\beta Ws) - \zeta Ws + g(s)) | \Omega k

\bigr) 
= 0.

With a change of measure, the above is equivalent to\widehat \sansQ \bigl( t\in argmaxs\in [\tau k - 1,t](f(ce
\beta W\ast 

s ) - \zeta W \ast 
s + h(s)) | \Omega k

\bigr) 
= 0

for another \BbbF -Brownian motion W \ast and h : \BbbR \rightarrow \BbbR Lipschitz continuous. Now, for
each \tau k - 1 < s\leq t, we have\bigl( 

f(ce\beta W
\ast 
t ) - \zeta W \ast 

t

\bigr) 
 - 
\bigl( 
f(ce\beta W

\ast 
s ) - \zeta W \ast 

s

\bigr) 
\leq  - \zeta (W \ast 

t  - W \ast 
s ) if W \ast 

t  - W \ast 
s \geq 0.

3Using the relationship (7.2) between \widehat v and v and the definition (7.1) of (X0, Y 0), we obtain

\sansE \sansQ 
(x,y)

\Bigl[ 
e - \rho T | \widehat v(X0

T , Y 0
T )| 

\Bigr] 
= \sansE \sansQ 

(x,y)

\Bigl[ 
e - \rho T

\bigm| \bigm| \bigm| v\Bigl( X0
T , e

\gamma 
\eta 
(X0

T - Y 0
T )

\Bigr) \bigm| \bigm| \bigm| \Bigr] 
\leq (K+ \vee K - )\sansE \sansQ 

(x,\mathrm{e}\mathrm{x}\mathrm{p}\{ \gamma 
\eta 
(x - y)\} )

\Bigl[ 
e - \rho T

\Bigl( 
1 +\Phi T

\Bigr) \Bigr] 
= (K+ \vee K - )

\bigl( 
1 + e

\gamma 
\eta 
(x - y)\bigr) 

e - \rho T ,

where the last step is due to the martingale property of the process \Phi .
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3100 S. FEDERICO, G. FERRARI, AND N. RODOSTHENOUS

By the path-properties of the Brownian motion, we have \widehat \sansQ \bigl( \cdot | \Omega k

\bigr) 
-a.s.

limsup
s\rightarrow t - 

W\ast 
t  - W\ast 

s

t - s =+\infty .

In particular, \widehat \sansQ \bigl( \cdot | \Omega k

\bigr) 
-a.s., there exists a sequence sn \rightarrow t - (possibly depending on

\omega ) such that

W \ast 
t  - W \ast 

sn \geq 0 \forall n and limsup
n\rightarrow \infty 

W\ast 
t  - W\ast 

sn

t - sn
=+\infty .

Hence, the claim follows by observing that, \widehat \sansQ \bigl( \cdot | \Omega k

\bigr) 
-a.s., we have

lim inf
s\rightarrow t - 

1

t - s

\bigl[ \bigl( 
f(ce\beta W

\ast 
t ) - \zeta W \ast 

t + h(t)
\bigr) 
 - 
\bigl( 
f(ce\beta W

\ast 
s ) - \zeta W \ast 

s + h(s)
\bigr) \bigr] 

\leq lim inf
n\rightarrow \infty 

1

t - sn

\bigl[ \bigl( 
f(ce\beta W

\ast 
t ) - \zeta W \ast 

t + h(t)
\bigr) 
 - 
\bigl( 
f(ce\beta W

\ast 
sn ) - \zeta W \ast 

sn + h(sn)
\bigr) \bigr] 

\leq lim inf
n\rightarrow \infty 

\Bigl( 
 - \zeta 

W\ast 
t  - W\ast 

sn

t - sn

\Bigr) 
+ limsup

n\rightarrow \infty 

| h(t) - h(sn)| 
t - sn

= - \zeta limsup
n\rightarrow \infty 

W\ast 
t  - W\ast 

sn

t - sn
+ limsup

n\rightarrow \infty 

| h(t) - h(sn)| 
t - sn

= - \infty .
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