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TWO-SIDED SINGULAR CONTROL OF AN INVENTORY WITH1

UNKNOWN DEMAND TREND∗2

SALVATORE FEDERICO† , GIORGIO FERRARI‡ , AND NEOFYTOS RODOSTHENOUS§3

Abstract. We study the problem of optimally managing an inventory with unknown demand4
trend. Our formulation leads to a stochastic control problem under partial observation, in which5
a Brownian motion with non-observable drift can be singularly controlled in both an upward and6
downward direction. We first derive the equivalent separated problem under full information, with7
state-space components given by the Brownian motion and the filtering estimate of its unknown drift,8
and we then completely solve this latter problem. Our approach uses the transition amongst three9
different but equivalent problem formulations, links between two-dimensional bounded-variation sto-10
chastic control problems and games of optimal stopping, and probabilistic methods in combination11
with refined viscosity theory arguments. We show substantial regularity of (a transformed version of)12
the value function, we construct an optimal control rule, and we show that the free boundaries delin-13
eating (transformed) action and inaction regions are bounded globally Lipschitz continuous functions.14
To our knowledge this is the first time that such a problem has been solved in the literature.15

Key words. bounded-variation stochastic control, partial observation, inventory management,16
Dynkin games, free boundaries17

AMS subject classifications. 93E20, 93E11, 91A55, 49J40, 90B0518

1. Introduction. In this paper, we consider the optimal management of inven-19

tory when the demand is stochastic and partially observed. There exists an enormous20

literature on optimal inventory management (see, e.g. [41] for an overview and the21

significance of inventory control in operations and profitability of companies). The22

optimal singular/impulsive control literature of stochastic inventory systems has so23

far assumed that the dynamics of the inventory is fully known to decision makers,24

see e.g. [1, 6, 7, 26, 27, 28, 38, 39, 40], amongst many others. Some of the most25

celebrated results are the optimality of (constant) threshold strategies determining26

(a) base-stock policies – maintaining inventory above a fixed shortage level – and (b)27

restrictions on the size of inventory, in order to manage storage-related costs. In this28

paper, we generalise the existing literature on the singular control of inventories by29

assuming that the demand rate or the mean of the random demand for the product is30

unknown to decision makers. This can be relevant to companies operating in newly31

established markets or producing a novel good, for which there is limited knowledge32

about the demand trend. In particular, we will show how the aforementioned optimal33

strategies are no longer triggered by constant thresholds, but by functions of the deci-34

sion maker’s learning process of the unknown demand rate. We further note that the35

analysis and results in this paper can also contribute to applications way beyond the36

inventory management literature; for instance, to cash balance management problems37

(see, e.g. [20]), when the drift of the cash process is unknown to managers.38

The model and general results. We consider decision makers who can observe39

in real time the evolution of the level of a Brownian inventory system St, which40
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2 S. FEDERICO, G. FERRARI, AND N. RODOSTHENOUS

represents the production minus the stochastic demand for the product at time t41

(see [26, 38, 40]). The inventory has a “net demand” rate µ, unknown to decision42

makers, and a stochastic part modelling the demand volatility. We assume that the43

random variable µ ∈ {µ0, µ1}, for µ0, µ1 ∈ R, and the decision makers’ prior belief is44

π := P(µ = µ1) ∈ (0, 1). This is continuously updated as new information is revealed45

according to the natural filtration FSt of S, and takes the form Πt := P(µ = µ1 | FSt )46

according to standard filtering techniques (see [34] for a survey). Decision makers can47

control the inventory via a bounded-variation process Pt = P+
t − P−t , where P±t are48

increasing processes defining the total amount of increase/decrease of inventory up to49

time t. The controlled inventory level is therefore given byXt = x+µt+ηBt+P
+
t −P−t ,50

for η > 0 and all t ≥ 0; positive values model the excess inventory, while the absolute51

value of negative X models the backlog in production.52

Both levels of excess inventory and backorder bear (non-necessarily symmetric)53

holding and shortage costs per unit of time, modelled via a suitable convex function54

C(X). High holding/storage costs for large X could suggest unloading part of excess55

inventory (e.g. start promotions, send to outlets, donate, ship to another facility, or56

destroy) at a cost K− proportional to unloaded volume P−. On the other hand, high57

shortage costs due to undesirable low X could suggest placing inventory replenishment58

orders at a cost K+ proportional to the ordered volume P+. However, there is59

a trade off due to the costs K± of controlling the inventory X to keep C(X) at60

“reasonable” levels. The question we thus study is “What is the optimal inventory61

management strategy that minimises the total expected (discounted) future holding,62

shortage and control costs, when the demand rate is unknown?”. We allow the rate63

of increase/reduction dP± to be unbounded and have an instantaneous effect on X,64

hence the question is mathematically formulated as a bounded-variation stochastic65

control problem of a linearly controlled one-dimensional diffusion with the novelty of66

a random (non-observable) drift µ.67

Indeed, we prove the existence of an optimal control strategy P ?± and charac-68

terise it via two boundary functions of the belief process Π, which split the space in69

three distinct but connected regions: (a) An action region divided in the areas below70

or above the boundaries, so that when X is relatively small or large, decision makers71

should increase or decrease X via P ?±, respectively, to bring X inside the area be-72

tween the two boundaries; and (b) an intermediate waiting (inaction) region, which73

is precisely the area between the two boundaries. We further prove the monotonicity74

of these boundaries and completely characterise them in terms of monotone Lipschitz75

continuous curves solving a system of nonlinear integral equations. To the best of76

our knowledge, the study and characterisation of the boundaries defining the solution77

of a bounded-variation stochastic control problem under partial information on the78

underlying diffusion dynamics, has never been addressed in the literature.79

Our contributions, approach and overview of mathematical analysis.80

Our contribution in this paper is twofold. From the point of view of its application,81

even though the literature on the optimal management of inventory is extremely rich,82

as already discussed, there is no model where the demand is assumed to be partially83

observed and lump-sum as well as singularly continuous actions on the inventory are84

allowed. From the mathematical theory perspective, the literature on the optimal85

policy characterisation in singular stochastic control problems with partial observa-86

tion is limited, and actually deals only with monotone controls [4, 12, 15, 35]. On87

the contrary, we allow the decision maker to both decrease and increase the underly-88

ing process by using controls of bounded-variation. Our paper thus provides a first89

example where partial observation features have been considered in the setting of a90
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INVENTORY CONTROL WITH UNKNOWN DEMAND TREND 3

bounded-variation control problem. By combining the well-established connection to91

Dynkin games, probabilistic methods of free-boundary theory and refined viscosity92

theory arguments, we present a methodology that allows to achieve the necessary93

regularity of the value function, leading to a characterisation of the optimal control94

rule. This is our second main contribution, on which we elaborate in the remaining of95

this section. Note that, other scenarios of partial information on the drift, considered96

for investment timing [14], asset trading [8], optimal liquidation [19], contract theory97

[16], lead to different mathematical formulations.98

By relying on classical filtering theory (see [34]), we first derive the equivalent Mar-99

kovian “separated problem”, which is a genuine two-dimensional bounded-variation100

singular stochastic control problem V with diffusive state-space dynamics (X,Π). The101

traditional “guess and verify” approach is not effective, since the associated variational102

formulation involves partial differential equations (PDEs) with (gradient) boundary103

conditions, whose explicit solutions are not possible in general. We instead use a more104

direct approach that allows for a thorough study of the value function V ’s regularity105

and structure, eventually leading to the optimal control strategy’s characterisation.106

Via changes of coordinates we first transform the original controlled process (X,Π)107

into (X,Φ) with (degenerate) decoupled dynamics and later into (X,Y ) for the prob-108

lem’s intrinsic parabolic formulation (see also [12, 29]). We connect our resulting109

two-dimensional bounded-variation stochastic control problems, under each formula-110

tion, to suitable zero-sum optimal stopping (Dynkin) games with two-dimensional,111

uncontrolled dynamics. We manage to characterise each games’ optimal stopping112

strategies via interlinked pairs of monotone and bounded free boundary functions113

a±(π), b±(ϕ) and c±(y), respectively. By using our probabilistic methodology in com-114

bination with viscosity theory arguments1 and switching between these three equiva-115

lent formulations: (a) we achieve the notable C1-global regularity of the transformed116

value function V (x, ϕ), and we deduce that its version V̂ (x, y) is actually such that117

V̂ ∈ C1(R2;R) and V̂xx is bounded in its relative continuation region; (b) we use118

these properties in order to construct an optimal control strategy in terms of the119

likelihood ratio-dependent process t 7→ b±(Φt) according to a Skorokhod reflection;120

(c) we obtain global Lipschitz continuity of the free boundaries c±(y), employed to121

show the global C1-regularity of the Dynkin game’s value v̂(x, y) and obtain a system122

of nonlinear integral equations solved by c±. It is worth observing that backtracking123

the involved change of variables, the characterisation of c± effectively turns into a124

characterisation of b± defining the optimal control policy (and consequently of a± in125

the original (x, π)–coordinates).126

The Lipschitz regularity result is of particular independent interest, given its127

importance in obstacle problems (see the introduction of [10] for a detailed account128

on this and its related literature). The simple argument of our proof, exploiting the129

geometry of the (x, ϕ)-plane and the particular structure of its transformation into the130

(x, y)-plane, provides a method – alternative to the more technical approach developed131

in [10] – for obtaining the Lipschitz regularity of the optimal stopping boundaries.132

Finally, note that by using our methodology, we manage to obtain the minimal133

(necessary) regularity in order to construct an optimal control strategy and verify134

1It is worth noticing that the combination of viscosity arguments and probabilistic techniques
of free-boundary problems have been already employed for the study of bounded-variation control
problems in [21], [23] and [24]. However, in those papers the dynamic programming equation takes the
form of a parameter-dependent ODE with gradient constraints, while in our paper it is a degenerate
PDE with gradient constraints.
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4 S. FEDERICO, G. FERRARI, AND N. RODOSTHENOUS

its optimality. As in multi-dimensional singular stochastic control settings proving135

regularity properties of the control value function can be very challenging, having a136

methodology that takes a different route by effectively combining various techniques,137

can be helpful in studying other problems with similar structure.138

Structure of the paper. The rest of this paper is organised as follows. In139

Section 2, we present the model, formulate the control problem, and derive the sep-140

arated problem V . In Section 3, we derive the first related optimal stopping game.141

Section 4 introduces the first useful change of coordinates. Section 5 then studies the142

regularity of the control problem’s (transformed) value function V . Section 6 presents143

the verification theorem and construction of an optimal control. Finally, in Section144

7, we: introduce the last change of variables; obtain the Lipschitz-continuity of the145

corresponding (transformed) free boundaries c±; prove the smooth-fit property of the146

transformed Dynkin game’s value function v̂; and derive the integral equations for c±.147

2. Problem Formulation and the Separated Problem. On a complete148

probability space (Ω,F ,P), we define a one-dimensional Brownian motion (Bt)t≥0149

whose P-augmented natural filtration is denoted by (FBt )t≥0. Moreover, we define150

a random variable µ which is independent of the Brownian motion B and can take151

two possible real values, namely µ ∈ {µ0, µ1}, where µ0, µ1 ∈ R. Without loss of152

generality, we assume henceforth that µ1 > µ0 and that π := P(µ = µ1) ∈ (0, 1).153

In absence of any intervention, the underlying (stochastic inventory) process St154

as observed by the decision maker, follows the dynamics dSt = µdt + ηdBt, with155

S0 = x ∈ R, for some η > 0. Recall that the drift µ of the process S is not observable156

by the decision maker, who can only monitor the evolution of the process S itself.157

In light of this observation, the decision maker select their control strategy P based158

solely on their observation of the process S. By denoting the natural filtration of any159

process Y by FY := (FYt )t≥0, we can therefore define the set of admissible controls160

A := {P : Ω× R+ → R such that t 7→ Pt is right-continuous, (locally) of bounded161

variation and P is FS − adapted}.162

To be more precise, we consider the minimal decomposition of the bounded-variation163

control P ∈ A to be Pt = P+
t − P−t , where P+ and P− are then nondecreasing,164

right-continuous FS–adapted processes. From now on, we set P±0− = 0 a.s. for any165

P ∈ A. Hence, the reference (controlled inventory) process is given by166

XP
t := St + Pt = x+ µt+ ηBt + Pt, where P ∈ A.167

Note that, the uncontrolled inventory process (P ≡ 0) takes the form X0 = S.168

Given the aforementioned setting, the decision maker’s goal is to minimise the169

overall (discounted) cost of holding, shortage and controlling the inventory process.170

In mathematical terms, the bounded-variation control problem of the decision maker171

is given by172

(2.1) inf
P∈A

E

[∫ ∞
0

e−ρt
(
C(XP

t )dt+K+dP+
t +K−dP−t

)]
,173

where E denotes the expectation under the probability measure P, ρ > 0 is the decision174

maker’s discount rate of future costs, K+,K− > 0 are the marginal costs per unit175

of control exerted on XP , and C : R → R+ is a holding and shortage cost function176

which satisfies the following standing assumption.177
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INVENTORY CONTROL WITH UNKNOWN DEMAND TREND 5

Assumption 2.1. There exists constants p ≥ 2, α0, α1, α2 > 0 such that the178

following hold true:179

(i) 0 ≤ C(x) ≤ α0(1 + |x|p), for every x ∈ R;180

(ii) |C(x)− C(x′)| ≤ α1

(
1 + C(x) + C(x′)

)1− 1
p |x− x′|, for every x, x′ ∈ R;181

(iii) 0 ≤ λC(x) + (1 − λ)C(x′) − C(λx + (1 − λ)x′) ≤ α2λ(1 − λ)(1 + C(x) +182

C(x′))(1− 2
p )|x− x′|2, for every x, x′ ∈ R and λ ∈ (0, 1);183

(iv) limx→±∞ C ′(x) = ±∞.184

Notice that Assumption 2.1.(iii) above implies that C is convex and locally semi-185

concave. Hence, by [5, Corollary 3.3.8], we have C ∈ C1,Lip
loc (R;R+) (the class of186

continuously differentiable functions, whose first derivative is locally Lipschitz), so187

that the derivative in (iv) exists. A classical quadratic cost C(x) = (x−x)2, for some188

target level x ∈ R, clearly satisfies Assumption 2.1.189

Given the feature of a non-observable µ, (2.1) is not Markovian and cannot be190

therefore tackled via a dynamic programming approach. We derive below a new equiv-191

alent Markovian problem under full information, the so-called “separated problem”.192

This will be then solved by exploiting its connection to a zero-sum game of optimal193

stopping and by a careful analysis of the regularity of its value function.194

2.1. The separated problem. In order to derive the equivalent problem under195

full information, we use standard arguments from filtering theory (see, e.g. [34, Section196

4.2]) and we define the “belief” process Πt := P(µ = µ1 | FSt ), t ≥ 0, according to197

which, decision makers update their beliefs on the (true) value of the drift µ based198

on the arrival of new information via the observation of the process S. Then, the199

dynamics of XP and Π can be written as200

(2.2)

{
dXP

t = (µ1Πt + µ0(1−Πt))dt+ ηdWt + dPt, XP
0− = x ∈ R,

dΠt = γΠt(1−Πt)dWt, Π0 = π ∈ (0, 1),
201

where the innovation process W is an FS-Brownian motion on (Ω,F ,P) according to202

Lévy’s characterisation theorem (see, e.g., [34, Theorem 4.1]), and γ := (µ1 − µ0)/η >203

0. The triplet (XP ,Π, P ) is an FS-adapted time-homogeneous process on (Ω,F ,P). In204

(2.2), the (unknown/non-observable) drift µ ofX in the original model is replaced with205

its filtering estimate E[µ | FSt ]. Moreover, the belief (learning) process Π = (Πt)t≥0206

involved in the filtering is a bounded martingale on [0, 1] such that Π∞ ∈ {0, 1}, due207

to the fact that all information eventually gets revealed at time t =∞.208

Then, for (XP ,Π) as in (2.2), with (x, π) ∈ O := R× (0, 1), we define209

(2.3) V (x, π) := inf
P∈A

E

[∫ ∞
0

e−ρt
(
C(XP

t )dt+K+dP+
t +K−dP−t

)]
,210

where all processes involved are now FS-adapted. By uniqueness of the strong solution211

to the belief equation, a control P ? is optimal for (2.1) if and only if it is optimal for212

(2.3), and the values in (2.1) and (2.3) coincide.213

Note that, in light of the dynamics of (XP ,Π) in (2.2), a high value of Π close to 1214

would imply that the decision maker has a strong belief in a high drift µ1, while a low215

Π close to 0 would imply, on the contrary, a strong belief in a low drift µ0 scenario.216

Remark 2.2 (Full information cases). In the formulation (2.1), the case of prior217

belief π := P(µ = µ1) ∈ {0, 1} implies the certainty of the decision maker regarding218

whether µ = µ0 or µ = µ1. Hence, in this case, there is no uncertainty about the219

value of the drift µ, which is not a random variable any more. Respectively, in the220
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6 S. FEDERICO, G. FERRARI, AND N. RODOSTHENOUS

formulation (2.3), the case of prior belief Π0 = π ∈ {0, 1} yields that the belief process221

Π will actually remain constant through time, due to its dynamics which imply that222

Πt = π for all t > 0. Therefore, we equivalently have that such values of π ∈ {0, 1}223

correspond to the full information cases.224

In these cases, the optimal control problem becomes a standard one-dimensional225

bounded-variation stochastic control problem, for which an early study can be found226

in [26]. The resulting optimal control strategy is triggered by two constant boundaries227

within which the process XP is kept (via a Skorokhod reflection).228

Given the convexity of C as in Assumption 2.1, and the linear structure of P 7→229

XP in (2.2), we can show the next result by following standard arguments based on230

Komlós’ theorem (see, e.g., [21, Proposition 3.4] or [31, Theorem 3.3]).231

Proposition 2.3. There exists an optimal control P ? for (2.3). Moreover, this232

is unique (up to indistinguishability) if C is strictly convex.233

3. The First Related Optimal Stopping Game. We now derive a zero-234

sum optimal stopping game (Dynkin game) related to V , and we provide preliminary235

properties of its value function and of the geometry of its state space. In this section,236

the uncontrolled process X0 with Pt ≡ 0 for all t ≥ 0 becomes involved in the analysis,237

so we recall from (2.2) that (X0
t ,Πt)t≥0 ≡ (St,Πt)t≥0 is the two-dimensional strong238

Markov process solving239

(3.1)

{
dX0

t = (µ1Πt + µ0(1−Πt))dt+ ηdWt, X0
0 = x ∈ R,

dΠt = γΠt(1−Πt)dWt, Π0 = π ∈ (0, 1),
240

Proposition 3.1. Consider the process (X0
t ,Πt)t≥0 defined in (3.1) and define241

(3.2) v(x, π) := inf
σ

sup
τ

E(x,π)

[ ∫ τ∧σ

0

e−ρtC ′(X0
t )dt−K+e−ρτ1{τ<σ}+K

−e−ρσ1{τ>σ}

]
242

where the optimisation is taken over the set of FW -stopping times and E(x,π) denotes243

the expectation conditioned on (X0
0 ,Π0) = (x, π) ∈ O. Consider also the control value244

function V (x, π) defined in (2.3). Then, we have the following properties:245

(i) x 7→ V (x, π) is differentiable and v(x, π) = Vx(x, π).246

(ii) x 7→ V (x, π) is convex and therefore x 7→ v(x, π) is nondecreasing.247

(iii) π 7→ v(x, π) is nondecreasing.248

(iv ) (x, π) 7→ v(x, π) is continuous on R× (0, 1).249

Proof. In this proof, whenever we need to stress the dependence of the state250

process on its starting point, we denote by (X0;(x′,π′),Ππ′) the unique strong solution251

to (3.1) starting at (x′, π′) ∈ O at time zero. We prove separately the four parts.252

Proof of (i). Thanks to Proposition 2.3, it suffices to apply [31, Theorem 3.2]
upon setting G ≡ 0, γt := e−ρtK+, and νt := e−ρtK−, for t ≥ 0, we get

H(ω, t, x) := e−ρtC
(
x+ηWt(ω)+

∫ t

0

(
µ0+(µ1−µ0)Πs(ω)

)
ds
)
, (ω, t, x) ∈ Ω×R+×R,

and noticing that the proof in [31] can be easily adapted to our infinite-time horizon253

discounted setting with right-continuous controls (see also [21, Lemma A.1, Proposi-254

tion 3.4] for a proof in a related setting).255

Proof of (ii). Denote by (XP ;(x,π),Ππ) the unique strong solution to (2.2) when256

(XP
0− ,Π0) = (x, π). The convexity of V (x, π) with respect to x, can be easily shown257
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INVENTORY CONTROL WITH UNKNOWN DEMAND TREND 7

by exploiting the convexity of C(x) and the linear structure of (x, P ) 7→ XP ;(x,π), for258

any P ∈ A and (x, π) ∈ O. The nondecreasing property of v(·, π) then follows from259

the fact that v = Vx from part (i).260

Proof of (iii). Notice that X0
t = x + ηWt +

∫ t
0

(
µ1Πs + µ0(1 − Πs)

)
ds, t ≥ 0,261

and that π 7→ Ππ is nondecreasing due to standard comparison theorems for strong262

solutions to one-dimensional stochastic differential equations [30, Chapter 5.2]. Then,263

the claim follows from (3.2) and Assumption 2.1 according to which x 7→ C ′(x) is264

nondecreasing.265

Proof of (iv). By [31, Theorem 3.1] and Proposition 2.3 we know that, for any266

(x, π) ∈ O, (3.2) admits a saddle point. Take (xn, πn) → (x, π) as n ↑ ∞, and let267

(τ?, σ?) and (τ?n, σ
?
n) realise the saddle-points for (x, π) and (xn, πn), respectively.268

Then, we have269

v(x, π)− v(xn, πn) ≤ E

[ ∫ τ?∧σ?n

0

e−ρt
(
C ′(X

0;(x,π)
t )− C ′(X0;(xn,πn)

t )
)

dt

]
270

≤ E

[ ∫ ∞
0

e−ρt
∣∣∣C ′(X0;(x,π)

t )− C ′(X0;(xn,πn)
t )

∣∣∣dt].(3.3)271
272

Without loss of generality, we can take (xn, πn) ⊂ (x − ε, x + ε) × (π − ε, π + ε),273

for a suitable ε > 0 and for n sufficiently large. Then, by Assumption 2.1.(ii) and274

standard estimates using Assumption 2.1.(i), the expression of X0 and the fact that275

Π is bounded in [0, 1], we can invoke the dominated convergence theorem and obtain276

lim supn→∞(v(x, π) − v(xn, πn)) ≤ 0. In order to evaluate the difference v(xn, πn) −277

v(x, π), we now employ the couple of stopping times (τ?n, σ
?) and employ the same278

rationale leading to (3.3) so to obtain lim supn→∞(v(xn, πn)−v(x, π)) ≤ 0. Combining279

the last two inequalities, we obtain the desired continuity claim.280

In the rest of this section, we focus on the study of the optimal stopping game281

v presented in (3.2), due to its connection to our stochastic control problem (cf.282

Proposition 3.1). To that end, we define the so-called continuation (waiting) region283

(3.4) C1 :=
{

(x, π) ∈ O : −K+ < v(x, π) < K−
}
,284

and the stopping region S1 := S1
+ ∪ S1

−, whose components are given by285

(3.5) S1
+ :=

{
(x, π) ∈ O : v(x, π) ≤ −K+

}
, S1

− :=
{

(x, π) ∈ O : v(x, π) ≥ K−
}
.286

In light of the continuity of v in Proposition 3.1.(iv), we conclude that the con-287

tinuation region C1 is an open set, while the two components of the stopping regions288

S1
± are both closed sets. We can therefore define the free boundaries289

a+(π) := sup
{
x ∈ R : v(x, π) ≤ −K+

}
, a−(π) := inf

{
x ∈ R : v(x, π) ≥ K−

}
.(3.6)290291

Here, and throughout the rest of this paper, we use the convention sup ∅ = −∞ and292

inf ∅ = +∞. Then, by using the fact that v is nondecreasing with respect to x (see293

Proposition 3.1.(ii)), we can obtain the structure of the continuation and stopping294

regions, which take the form295

C1 =
{

(x, π) ∈ O : a+(π) < x < a−(π)
}
,(3.7)296

S+
1 =

{
(x, π) ∈ O : x ≤ a+(π)

}
and S−1 =

{
(x, π) ∈ O : x ≥ a−(π)

}
.(3.8)297298

Clearly, the continuity of v further implies that the free boundaries a± are strictly299

separated, namely a+(π) < a−(π) for all π ∈ (0, 1).300

We now prove some preliminary properties of the free boundaries π 7→ a±(π).301
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Proposition 3.2. The free boundaries a± defined in (3.6) satisfy:302

(i) a±(·) are nonincreasing on (0, 1).303

(ii) a+(·) is left-continuous and a−(·) is right-continuous on (0, 1).304

(iii) There exist constants x∗± ∈ R, such that x∗+ ≤ a+(π) < a−(π) ≤ x∗−, for all305

π ∈ (0, 1). Moreover, letting (C ′)−1 be the generalised inverse of C ′, we have306

a+(π) ≤ (C ′)−1(−ρK+) and a−(π) ≥ (C ′)−1(ρK−) for all π ∈ (0, 1).307

Proof. Proof of (i). This is a consequence of the definitions of a±(·) in (3.6) and308

the fact that v(x, ·) is nondecreasing for any x ∈ R; cf. Proposition 3.1.(iii).309

Proof of (ii). This follows from part (i) above and the closedness of the sets S1
±.310

Proof of (iii). The fact that a+(π) ≤ (C ′)−1(−ρK+) and a−(π) ≥ (C ′)−1(ρK−)311

follows by noticing that S+
1 ⊆ {(x, π) ∈ O : x ≤ (C ′)−1(−ρK+)} and S−1 ⊆ {(x, π) ∈312

O : x ≥ (C ′)−1(ρK−)}. These inclusions can be shown as follows.313

Firstly, by [36, Theorem 2.1], the continuous process Z = (Zt)t≥0 with

Zt := e−ρtv(X0
t ,Πt) +

∫ t

0

e−ρsC ′(X0
s )ds, t ≥ 0,

is such that, under P(x,π), for any (x, π) ∈ O, (Zt∧σ?)t≥0 is an F-supermartingale,
while (Zt∧τ?)t≥0 is an F-submartingale. In order to see this, set (using the nota-
tion of [36]) Xt := (t,X0

t ,Πt), M(x, π) := E(x,π)[
∫∞

0
e−ρtC ′(X0

t )dt], G1(t, x, π) :=
e−ρt(−K+ −M(x, π)), G2(t, x, π) := e−ρt(K− −M(x, π)), G3(t, x, π) := 0, and ob-
serve that

v(x, π) = M(x, π) + sup
τ∈T

inf
σ∈T

E(x,π)

[
G1(τ,X0

τ ,Πτ )1{τ<σ} +G2(σ,X0
σ,Πσ)1{σ<τ}

]
.

Here, E(x,π)[supt≥0 e
−ρt|M(X0

t ,Πt)|] <∞, because (3.1) and standard estimates em-314

ploying Assumption 2.1 yield that |M(x, π)| ≤ κ(1 + |x|p−1).315

Then, we let t > 0, (xo, πo) ∈ S+
1 and notice that, due to the F-supermartingale316

property of (Zt∧σ?)t≥0 under P(xo,πo) and the fact that v ≥ −K+, we can write317

−K+ = v(xo, πo) ≥ E(xo,πo)

[
e−ρ(t∧σ

?)v(X0
t∧σ? ,Πt∧σ?) +

∫ t∧σ?

0

e−ρsC ′(X0
s )ds

]
318

≥ E(xo,πo)

[
−K+e−ρ(t∧σ

?) +

∫ t∧σ?

0

e−ρsC ′(X0
s )ds

]
319

= −K+ + E(xo,πo)

[ ∫ t∧σ?

0

e−ρs
(
C ′(X0

s ) + ρK+
)

ds

]
.320

321

Hence,

0 ≥ E(xo,πo)

[
1

t

∫ t∧σ?

0

e−ρs
(
C ′(X0

s ) + ρK+
)

ds

]
,

which, by taking t ↓ 0 and invoking the integral mean-value theorem and the domi-322

nated convergence theorem, yields 0 ≥ C ′(xo)+ρK+; that is, S+
1 ⊆ {(x, π) ∈ O : x ≤323

(C ′)−1(−ρK+)}. Analogous arguments, now employing the F-submartingale property324

of (Zt∧τ?)t≥0 and that v ≤ K−, show that S−1 ⊆ {(x, π) ∈ O : x ≥ (C ′)−1(ρK−)}.325

In order to show the other bounds, we proceed as follows. Since µ1 > µ0 and326

Πt ∈ (0, 1), we have P(x,π)-a.s., for any t ≥ 0, that X0
t ≥ x + ηWt + µ0t =: X0

t327

and X0
t ≤ x + ηWt + µ1t =: X

0

t . Therefore, the latter two estimates yield that328

X0
t ≤ X0

t ≤ X
0

t for all t ≥ 0. Combining these inequalities with the fact that C ′(·)329
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is nondecreasing due to Assumption 2.1 and the definition (3.2) of the value function330

v(x, π), we conclude that331

(3.9) v0(x) ≤ v(x, π) ≤ v1(x), for all (x, π) ∈ O,332

where we have introduced the one-dimensional optimal stopping games333

v0(x) := inf
σ∈T

sup
τ∈T

Ex

[ ∫ τ∧σ

0

e−ρtC ′(X0
t )dt−K+e−ρτ1{τ<σ} +K−e−ρσ1{τ>σ}

]
334

v1(x) := inf
σ∈T

sup
τ∈T

Ex

[ ∫ τ∧σ

0

e−ρtC ′(X
0

t )dt−K+e−ρτ1{τ<σ} +K−e−ρσ1{τ>σ}

]
,335

336

with the two expectations Ex being conditional on X0
0 = x or X

0

0 = x, respectively.337

Because both v0(·) and v1(·) are nondecreasing on R, standard techniques allow to338

show that due to Assumption 2.1.(iv) there exists finite x?−, x
?
+ such that {x ∈ R :339

x ≥ x?−} = {x ∈ R : v0(x) ≥ K−} and {x ∈ R : x ≤ x?+} = {x ∈ R : v1(x) ≤ −K+}.340

Hence, combining the latter two regions together with the inequalities in (3.9), we341

eventually get that342

{x ∈ R : x ≥ x?−} ⊆ {(x, π) ∈ O : v(x, π) ≥ K−} = S−1 ,
{x ∈ R : x ≤ x?+} ⊆ {(x, π) ∈ O : v(x, π) ≤ −K+} = S+

1 .
(3.10)343

344

Hence, S±1 6= ∅ and the claim follows from (3.10).345

4. A Decoupling Change of Measure. In order to provide further results346

about the optimal control problem (2.3) and the associated Dynkin game (3.2), it347

is convenient to decouple the dynamics of the controlled inventory process XP and348

the belief process Π. This can be achieved via a transformation of state space and a349

change of measure, as we explain in the following subsections.350

4.1. Transformation of process Π to Φ. We first recall from (2.2) (see also351

(3.1)), that for any prior belief Π0 = π ∈ (0, 1), we have Πt ∈ (0, 1) for all t ∈ (0,∞).352

Hence, we define the process Φt := Πt/(1−Πt), t ≥ 0, whose dynamics are given via353

Itô’s formula by354

(4.1) dΦt = γΦt(γΠtdt+ dWt), Φ0 = ϕ := π
1−π .355

Note that, the process Φ is known as the “likelihood ratio process” in the literature356

of filtering theory (see, e.g. [29]).357

4.2. Change of measure from P to QT , for some fixed T > 0. We begin358

by defining the exponential martingale ζT := exp{−γ
∫ T

0
ΠsdWs− 1

2

∫ T
0
γ2Π2

sds}, and359

the measure QT ∼ P on (Ω,FT ) by dQT /dP = ζT .360

Then, the process W ∗t := Wt+γ
∫ t

0
Πsds, t ∈ [0, T ], is a Brownian motion in [0, T ]361

under QT , and the dynamics of Φ in (4.1) simplifies to dΦt = γΦtdW
∗
t , t ∈ (0, T ],362

Φ0 = ϕ, hence Φ is an exponential martingale under QT . Consequently, applying363

the same change of measure to the process XP from (2.2), we obtain dXP
t = µ0dt+364

ηdW ∗t + dP+
t − dP−t , t ∈ [0, T ], XP

0− = x.365

In order to change the measure also in the cost criterion of our value function in366

(2.3), we further define the process Zt := (1 + Φt)/(1 + ϕ), t ∈ [0, T ], which can be367

verified via Itô’s formula to satisfy Zt = 1/ζt, for every t ∈ [0, T ]. Hence, denoting368
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by EQT the expectation under QT , we have that369

E

[ ∫ T

0

e−ρt
(
C(XP

t )dt+K+dP+
t +K−dP−t

) ]
370

=
1

1 + ϕ
EQT

[
(1 + ΦT )

∫ T

0

e−ρt
(
C(XP

t )dt+K+dP+
t +K−dP−t

)]
.(4.2)371

372

Since the process (1 + Φt)t≥0 defines a nonnegative martingale under QT , by an373

application of Itô’s formula we can write374

EQT

[
(1 + ΦT )

∫ T

0

e−ρtC(XP
t )dt

]
= EQT

[ ∫ T

0

e−ρt(1 + Φt)C(XP
t )dt

]
,375

EQT

[
(1 + ΦT )

∫ T

0

e−ρtdP±t

]
= EQT

[ ∫ T

0

e−ρt(1 + Φt)dP
±
t

]
.376

377

Hence, combining together the above expressions of the expectations EQT we get that378

(4.2) can be expressed in the form of379

E

[ ∫ T

0

e−ρt
(
C(XP

t )dt+K+dP+
t +K−dP−t

)]
380

=
1

1 + ϕ
EQT

[ ∫ T

0

e−ρt(1 + Φt)
(
C(XP

t )dt+K+dP+
t +K−dP−t

)]
.(4.3)381

382

4.3. Passing to the limit as T →∞ and to the new measure Q. We firstly383

notice that passing to the limit as T →∞ cannot be performed directly to the latter384

expression in (4.3), since the measure QT changes with T . Nevertheless, noticing that385

the right-hand side of (4.3) only depends on the law of the processes involved we can386

introduce a new auxiliary problem.387

To that end, first of all note that any P ∈ A has paths that are right-continuous388

and (locally) of bounded variation QT -a.s. and it is FS-adapted since FS = FW =389

FW∗ . Then, define a new complete probability space (Ω,F ,Q) supporting a Brownian390

motion (W t)t≥0, let (Fot )t≥0 be the raw filtration generated by W , and denote by391

F := (F t)t≥0 its augmentation with the Q-null sets. Hence, introducing392

A :=
{
P : Ω× R+ → R such that t 7→ P t is right-continuous, (locally) of bounded393

variation and P is F− adapted
}
,394

by [13, Lemma 5.5] (adjusted to our setting with right-continuous controls), given395

P ∈ A there exists P ∈ A that is Fot+−predictable and such that LawQT (W ∗, P ) =396

LawQ(W,P ). This in turn leads to (cf. [13, Corollary 5.6])397

(4.4) LawQT (W ∗, XP ,Φ, P ) = LawQ(W,X
P
,Φ, P ),398

where (X
P
,Φ) is the strong solution on (Ω,F ,F,Q) to the controlled stochastic dif-

ferential equation{
dX

P

t = µ0dt+ ηdW t + dP
+

t − dP
−
t , X

P

0− = x,

dΦt = γΦtdW t, Φ0 = ϕ := π
1−π ,
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with P
±

denoting the nondecreasing processes providing the minimal decomposition399

of P ∈ A as P = P
+ − P−.400

Denoting now by E the expectation on (Ω,F) under Q, we have for every T > 0,401

EQT

[ ∫ T

0

e−ρt(1 + Φt)
(
C(XP

t )dt+K+dP+
t +K−dP−t

) ]
402

= E

[ ∫ T

0

e−ρt(1 + Φt)
(
C(X

P

t )dt+K+dP
+

t +K−dP
−
t

)]
,403

404

due to (4.4). Therefore, combining the above equality with (4.3), we eventually get405

E

[ ∫ T

0

e−ρt
(
C(XP

t )dt+K+dP+
t +K−dP−t

)]
406

=
1

1 + ϕ
E

[ ∫ T

0

e−ρt(1 + Φt)
(
C(X

P

t )dt+K+dP
+

t +K−dP
−
t

)]
,(4.5)407

408

Thanks to (4.5), we can now take limits as T → ∞ and obtain, in view of the409

definitions (2.3) of the control value function and (4.1) of the starting value ϕ, that410

V (x, π) = (1− π)V
(
x, π

1−π
)
, or equivalently V (x, ϕ) = (1 + ϕ)V

(
x, ϕ

1+ϕ

)
,

where V (x, ϕ) := inf
P∈A

E

[ ∫ ∞
0

e−ρt(1 + Φt)
(
C(X

P

t )dt+K+dP
+

t +K−dP
−
t

)]
.

(4.6)411

Therefore, in order to obtain the value function V (x, π) from (2.3), we could instead412

solve first the above problem to get V (x, ϕ) and then use the equality in (4.6). How-413

ever, in order to simplify the notation, from now on in the study of V we will simply414

write (Ω,F ,F,Q,EQ,W,X,Φ, P,A) instead of (Ω,F ,F,Q,E,W ,X,Φ, P ,A).415

4.4. The optimal control problem with state-space process (XP ,Φ) un-416

der the new measure Q. Summarising the results from Sections 4.1–4.3, we hence-417

forth focus on the study of the following optimal control problem418

V (x, ϕ) := inf
P∈A

EQ

[ ∫ ∞
0

e−ρt(1 + Φt)
(
C(XP

t )dt+K+dP+
t +K−dP−t

)]
=: inf

P∈A
J x,ϕ(P ).

(4.7)419

420

under the dynamics421

(4.8)

{
dXP

t = µ0dt+ ηdWt + dP+
t − dP−t , XP

0− = x ∈ R,
dΦt = γΦtdWt, Φ0 = ϕ := π

1−π ∈ (0,∞),
422

for a standard Brownian motion W . In light of the equality in (4.6), this will lead423

to the original value function V (x, π) from (2.3). In the remaining of Section 4, we424

expand our study – beyond the values of the control problems – to the relationship425

between the free boundaries in the two formulations, since these boundaries will even-426

tually define the optimal control strategy (see Section 6).427

4.5. The optimal stopping game associated to (4.7)–(4.8) under the new428

measure Q. The next result is concerned with properties of the value function defined429

in (4.7) and its connection to an associated optimal stopping game. The first existence430
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claim follows from Proposition 2.3, since existence of an optimal control is preserved431

under the change of measure performed in the previous section. The second claim can432

be proved by employing arguments similar to those used in the proof of Proposition433

3.1 above. Hence, the proof is omitted for brevity.434

Proposition 4.1. Consider the problem defined in (4.7)–(4.8).435

(i) There exists an optimal control P ? solving (4.7). Moreover, P ? is unique (up436

to indistinguishability) if C is strictly convex.437

(ii) x 7→ V (x, ϕ) is convex and differentiable, such that V x(x, ϕ) = v(x, ϕ) on438

R× (0,∞), for439

v̄(x, ϕ) := inf
σ

sup
τ

EQ

[ ∫ τ∧σ

0

e−ρt(1 + Φt)C
′(X0

t )dt−K+(1 + Φτ )e−ρτ1{τ<σ}440

+K−(1 + Φσ)e−ρσ1{τ>σ}

]
,(4.9)441

442

over the set of FW -stopping times and state-space process given by443

(4.10)

{
dX0

t = µ0dt+ ηdWt, X0
0 = x ∈ R,

dΦt = γΦtdWt, Φ0 = ϕ := π
1−π ∈ (0,∞).

444

It further follows from the previous analysis, namely Sections 4.1–4.3, that the445

value function v(x, π) of the optimal stopping game in (3.2) is connected to the value446

function v̄(x, ϕ) of the new game introduced above in (4.9), according to (see also447

(4.6) for the control value functions) the following equality448

(4.11) v̄(x, ϕ) = (1 + ϕ) v
(
x, ϕ

1+ϕ

)
.449

In view of the above relationship, the value function v̄(·, ·) inherits important prop-450

erties which have already been proved for v(·, ·) in Section 3. In particular, we have451

directly from Proposition 3.1.(ii) and (iv) the following result.452

Proposition 4.2. The value function v̄ defined in (4.9) satisfies:453

(i) (x, ϕ) 7→ v̄(x, ϕ) is continuous over R× (0,∞);454

(ii) x 7→ v̄(x, ϕ) is nondecreasing.455

Following similar steps as in Section 3 to study the new game (4.9), we define456

below the so-called continuation (waiting) region457

(4.12) C2 :=
{

(x, ϕ) ∈ R× (0,∞) : −K+(1 + ϕ) < v̄(x, ϕ) < K−(1 + ϕ)
}
,458

and the stopping region S2 := S2
+ ∪ S2

−, whose components are given by459

S+
2 :=

{
(x, ϕ) ∈ R× (0,∞) : v̄(x, ϕ) ≤ −K+(1 + ϕ)

}
,

S−2 :=
{

(x, ϕ) ∈ R× (0,∞) : v̄(x, ϕ) ≥ K−(1 + ϕ)
}
.

(4.13)460

461

Moreover, in light of the continuity of v̄ in Proposition 4.2.(i), we conclude that the462

continuation region C2 is an open set, while the two components of the stopping463

regions S2
± are both closed sets. We can therefore define the free boundaries464

b+(ϕ) := sup
{
x ∈ R : v(x, ϕ) ≤ K+(1 + ϕ)

}
,

b−(ϕ) := inf{x ∈ R : v(x, ϕ) ≥ K−(1 + ϕ)}.
(4.14)465

466

This manuscript is for review purposes only.



INVENTORY CONTROL WITH UNKNOWN DEMAND TREND 13

Then, by using the fact that v̄ is nondecreasing with respect to x (see Proposition467

4.2.(ii)), we can obtain the structure of the continuation and stopping regions, as468

C2 =
{

(x, ϕ) ∈ R× (0,∞) : b+(ϕ) < x < b−(ϕ)
}
,

S+
2 =
{

(x, ϕ)∈R×(0,∞) :x≤ b+(ϕ)
}
, S−2 =

{
(x, ϕ)∈R×(0,∞) : b−(ϕ)≤x

}
.

(4.15)469

470

Clearly, the continuity of v̄ implies that these free boundaries b± are strictly separated,471

namely b+(ϕ) < b−(ϕ) for all ϕ ∈ (0,∞).472

Moreover, observe that the relationship in (4.11) together with the definitions473

(3.4) and (4.12) of C1 and C2, respectively, imply that the latter two regions are equal474

under the transformation from (x, π)- to (x, ϕ)-coordinates. To be more precise, for475

any (x, π) ∈ R × (0, 1), define the transformation T := (T 1, T 2) : R × (0, 1) → R ×476

(0,∞), by (T 1(x, π), T 2(x, π)) = (x, π
1−π ), which is invertible and its inverse is given477

by T
−1

(x, ϕ) = (x, ϕ
1+ϕ ), for (x, ϕ) ∈ R×(0,∞). Hence, T : R×(0, 1)→ R×(0,∞) is a478

global diffeomorphism, which implies together with the expressions of (3.4)–(3.5) and479

(4.12)–(4.13) that C2 = T (C1) and S±2 = T (S±1 ). Taking this into account together480

with the expressions (3.7)–(3.8) of C1 and S±1 , we can further conclude from the481

expressions (4.15) of C2 and S±2 that482

(4.16) b±(ϕ) = a±
(

ϕ
1+ϕ

)
.483

Hence, in light of the previously proved results for a± in Proposition 3.2, we also484

obtain the following preliminary properties of the free boundaries ϕ 7→ b±(ϕ).485

Proposition 4.3. The free boundaries b± defined in (4.14) satisfy:486

(i) b±(·) are nonincreasing on (0,∞).487

(ii) b+(·) is left-continuous and b−(·) is right-continuous on (0,∞).488

(iii) b±(·) are bounded by x∗± as in Proposition 3.2: x∗+ ≤ b+(ϕ) < b−(ϕ) ≤ x∗−,489

for all ϕ ∈ (0,∞). Moreover, we have b+(ϕ) ≤ (C ′)−1(−ρK+) and b−(ϕ) ≥490

(C ′)−1(ρK−) for all ϕ ∈ (0,∞).491

Notice that the explicit relationship (4.16) between the free boundaries a± and b±492

that we proved above, is not only crucial for retrieving the original boundaries a±493

from b±, but it is also particularly useful in the proof of Proposition 4.3.(i) and (iii).494

In fact, proving the monotonicity and boundedness of b± by directly working on the495

Dynkin game (4.9) is not a straightforward task.496

Up this point, we managed to obtain the structure of the optimal stopping strate-497

gies and preliminary properties of the corresponding optimal stopping boundaries as-498

sociated with these strategies, for both Dynkin games (3.2) and (4.9) connected to499

the optimal control problems (2.3) and (4.7), respectively. Moreover, we managed to500

obtain some regularity results for the latter control value functions (see Propositions501

3.1, 4.1 and 4.2). In Sections 5 and 6 below, building on the aforementioned analy-502

sis, we show that the control value function V has the sufficient regularity needed to503

construct an optimal control strategy. This will involve the boundaries b±.504

5. HJB Equation and Regularity of V . In this section, we introduce the505

Hamilton-Jacobi-Bellman (HJB) equation (variational inequality) associated to the506

control value function V defined in (4.7) and state-space process (XP ,Φ) given by507

(4.8). First, let D ⊆ R2 be an open domain and define the space Ck,h(D;R) as508

the space of functions f : D → R which are k-times continuously differentiable with509

respect to the first variable and h-times continuously differentiable with respect to510

the second variable. When k = h we simply write Ch.511
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We begin our study with the following ex ante regularity result for V . Its technical512

proof can be found in the extended version of this paper [22].513

Proposition 5.1. The control value function V defined in (4.7) is locally semi-
concave; that is, for every R > 0 there exists LR > 0 such that for all λ ∈ [0, 1] and
all (x, ϕ), (x′, ϕ′) such that |(x, ϕ)| ≤ R and |(x′, ϕ′)| ≤ R, we have

λV (x, ϕ)+(1−λ)V (x′, ϕ′)−V (λ(x, ϕ)+(1−λ)(x′, ϕ′)) ≤ LRλ(1−λ)|(x, ϕ)−(x′, ϕ′)|2.

In particular, by [5, Theorem 2.1.7], we conclude that V is locally Lipschitz.514

Given the locally Lipschitz continuity proved in the previous result, we now aim515

at employing the HJB equation to investigate further regularity of V . To that end,516

we define on f ∈ C2(R× (0,∞);R) the second order differential operator517

Lf(x, ϕ) := µ0fx(x, ϕ) +
1

2

(
η2fxx(x, ϕ) + γ2ϕ2fϕϕ(x, ϕ) + 2γηϕfxϕ(x, ϕ)

)
.518

By the dynamic programming principle, we expect that V solves (in a suitable sense)519

the HJB equation (in the form of a variational inequality)520

(5.1)
max

{
(ρ−L)u(x, ϕ)−(1+ϕ)C(x),−ux(x, ϕ)−K+(1+ϕ), ux(x, ϕ)−K−(1+ϕ)

}
= 0,521

for (x, ϕ) ∈ R × (0,∞). In particular, we now first show that the value function V522

of the control problem defined in (4.7) is a viscosity solution to (5.1); refer to [21,523

Definition 4.5] for the formal definition in a similar setting and references related to the524

validity of the dynamic programming principle. Following the arguments developed525

in [25, Theorem 5.1, Section VIII.5], and using the a priori regularity obtained in526

Proposition 5.1, one can show the following classical result.527

Proposition 5.2. The value function V defined in (4.7) is a locally Lipschitz528

continuous viscosity solution to (5.1).529

Recall definition (4.12) of the continuation region C2 of v(x, ϕ) in (4.9) and the530

relationship V x(x, ϕ) = v(x, ϕ) on R× (0,∞) from Proposition 4.1.(ii), to see that531

(5.2) C2 =
{

(x, ϕ) ∈ R× (0,∞) : −K+(1 + ϕ) < V x(x, ϕ) < K−(1 + ϕ)
}
.532

This implies that C2 identifies also with the so-called “inaction region” of V , as sug-533

gested also by the HJB equation (5.1). Combining the latter fact with Proposition534

5.2 clearly implies the following result.535

Corollary 5.3. The value function V defined in (4.7) is a locally Lipschitz con-536

tinuous viscosity solution to (ρ− L)u(x, ϕ)− (1 + ϕ)C(x) = 0, for all (x, ϕ) ∈ C2.537

The result in Corollary 5.3 will be used in the forthcoming analysis to upgrade538

the regularity of the value function in the closure of its inaction region which is the539

main goal of Section 5. Before reaching this (final) step of our analysis in this section,540

we prove that V is actually globally continuously differentiable.541

Proposition 5.4. The value function in (4.7) satisfies V ∈ C1(R× (0,∞);R).542

Proof. In order to prove that V ∈ C1(R × (0,∞);R), we need to prove that543

both (classical) derivatives V x(x, ϕ), V ϕ(x, ϕ) of V (x, ϕ) in the directions x and ϕ,544

respectively, are continuous on R× (0,∞). We thus split the proof in two steps.545

Step 1. Continuity of V x. We already know from Proposition 4.1.(ii) that V x = v̄546

exists and from Proposition 4.2.(i) that (x, ϕ) 7→ v̄(x, ϕ) is continuous over R×(0,∞).547

Hence, we conclude that (x, ϕ) 7→ V x(x, ϕ) is continuous on R× (0,∞).548
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Step 2. Continuity of V ϕ. Let us now show that the (classical) derivative V ϕ549

exists at each (xo, ϕo) ∈ R× (0,∞).550

We assume, without loss of generality2, that V is actually concave in a neighbor-551

hood I of (xo, ϕo). Then, by concavity of V in I, the right- and left-derivatives of V552

exist in the ϕ-direction at (xo, ϕo). We denote these derivatives by V
+

ϕ (xo, ϕo) and553

V
−
ϕ (xo, ϕo), respectively, and due to concavity they satisfy V

−
ϕ (xo, ϕo) ≥ V

+

ϕ (xo, ϕo).554

Then, in order to show that V ϕ exists, it suffices to show that the strict inequal-555

ity V
−
ϕ (xo, ϕo) > V

+

ϕ (xo, ϕo) cannot hold. Aiming for a contradiction, we assume556

henceforth that V
−
ϕ (xo, ϕo) > V

+

ϕ (xo, ϕo) does hold true.557

It follows from [37, Theorem 23.4] and the fact that V x exists and is continuous
(cf. Step 1 above) that there exist vectors

ζ := (V x(xo, ϕo), ζϕ), η := (V x(xo, ϕo), ηϕ) ∈ D+V (xo, ϕo) such that ζϕ < ηϕ ,

where we denote by D+V (xo, ϕo) the superdifferential of V at (xo, ϕo). For any
(x, ϕ) ∈ I, we then define

g(x, ϕ) := V (xo, ϕo) + V x(xo, ϕo)(x− xo) + ηϕ(ϕ− ϕo) ∧ ζϕ(ϕ− ϕo)

and notice that V (xo, ϕo) = g(xo, ϕo), while we also get by concavity that V (x, ϕ) ≤
g(x, ϕ), for all (x, ϕ) ∈ I. Next, we consider the sequence of functions (fn)n∈N ⊂
C2(R× (0,∞);R) defined by

fn(x, ϕ) := g(x, ϕo) + 1
2 (ηϕ + ζϕ)(ϕ− ϕo)− n

2 (ϕ− ϕo)2, ∀ n ∈ N.

Such a sequence satisfies the following collection of properties, for any n ∈ N:558 
fn(xo, ϕo) = g(xo, ϕo) = V (xo, ϕo),

fn ≥ V in a neighborhood of (xo, ϕo),

fnx (xo, ϕo) = V x(xo, ϕo), f
n
xx(xo, ϕo) = 0 = fnxϕ(xo, ϕo), f

n
ϕϕ(xo, ϕo) = −n.

559

Then, using the viscosity subsolution property of V at (xo, ϕo) yields

0 ≥ (ρ− L)fn(xo, ϕo)− (1 + ϕo)C(xo)
n→∞−→ +∞,

which gives the desired contradiction. Hence, by arbitrariness of (xo, ϕo), we have560

that V is differentiable in the direction ϕ.561

In view of the aforementioned differentiability in the direction ϕ and the semi-562

concavity of V (cf. Proposition 5.1) we conclude from [37, Theorem 25.5] that V ϕ is563

continuous on R× (0,∞).564

We are now ready to show the final result of this section, namely to upgrade565

the regularity of the control value function to the minimal required regularity for566

constructing a candidate optimal control policy and verify its optimality in Section 6.567

To this end, we define for any (x, ϕ) ∈ R× (0,∞) the transformation568

(5.3) T := (T1, T2) : R× (0,∞)→ R2, (T1(x, ϕ), T2(x, ϕ)) =
(
x, x− η

γ log(ϕ)
)
,569

2This can be done by replacing the (locally) semiconcave V (x, ϕ) by W (x, ϕ) := V (x, ϕ)−C0|(x−
xo, ϕ− ϕo)|2 for suitable C0 > 0 in the subsequent argument.
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which is invertible with inverse given by T−1(x, y) = (x, e
γ
η (x−y)), for (x, y) ∈ R2.570

Using the latter inverse transformation, we introduce the transformed version V̂ (x, y)571

of the value function V (x, ϕ) defined in (4.7) by572

(5.4) V̂ (x, y) := V (x, e
γ
η (x−y)), (x, y) ∈ R2.573

Moreover, direct calculations yield that574

(5.5) V̂x(x, y) + V̂y(x, y) = V x(x, e
γ
η (x−y)), (x, y) ∈ R2.575

Given that T : R × (0,∞) → R2 is a global diffeomorphism, we have from (5.2) and576

(5.5) that the open set577

(5.6)

C3 :=
{

(x, y)∈R2 :−K+(1 + e
γ
η (x−y))<

(
V̂x + V̂y

)
(x, y)<K−(1 + e

γ
η (x−y))

}
=T (C2).578

Finally, define the second-order linear differential operator on f ∈ C2,1(R2;R) by579

(5.7) LX,Y f(x, y) := 1
2η

2fxx(x, y) + µ0fx(x, y) + 1
2 (µ0 + µ1)fy(x, y)580

Proposition 5.5. The transformed value function V̂ defined in (5.4) is such that581

V̂ ∈ C1(R2;R) and V̂xx ∈ L∞(C3;R). In addition, V̂ is a classical solution to582

(5.8)
(
ρ− LX,Y

)
u(x, y) = C(x)(1 + e

γ
η (x−y)), for all (x, y) ∈ C3.583

Proof. First of all, due to Corollary 5.3 and the expression of the transformed584

value function in (5.4), one can easily verify that V̂ is a viscosity solution to (5.8) on585

C3 due to (5.6). Then, in light of Proposition 5.4 and the above smooth transformation,586

we also obtain that V̂ ∈ C1(R2;R).587

By a standard localization argument based on the fact that V̂ is a continuously588

differentiable viscosity solution to (5.8) on C3 and results for Dirichlet boundary prob-589

lems involving partial differential equations of parabolic type (see [33]), we have that590

actually V̂ ∈ C2,1(C3;R) and solves (5.8) on C3 in a classical sense. Hence,591

1
2η

2V̂xx(x, y) = −C(x)(1 + e
γ
η (x−y)) + ρV̂ (x, y)− µ0V̂x(x, y)− 1

2 (µ0 + µ1)V̂y(x, y),592

for all (x, y) ∈ C3. However, since we know that V̂ ∈ C1(R2;R) and the right-hand593

side of the above equation only involves continuous functions on R2, we conclude that594

V̂xx admits a continuous extension on C3 (where C3 denotes the closure of C3), so that595

V̂xx ∈ L∞(C3;R). This completes the proof of the claim.596

6. Verification Theorem and Optimal Control. Given the regularity of V̂597

obtained in Proposition 5.5 and the relation (5.4) between V̂ and V defined in (4.7),598

we are now able to prove a verification theorem. Namely, in what follows, we provide599

the optimal control for V in terms of the boundaries b± defined in (4.14). Before we600

commence the analysis, recall also the properties of b± proved in Proposition 4.3.601

6.1. Construction of control P̂ for state-space process (X P̂ ,Φ). For any602

given (x, ϕ) ∈ R × (0,∞), we define the admissible control strategy P̂ := P̂+ − P̂−603

such that the following couple of properties hold true Q-a.s:604

(6.1)


b+(Φt) ≤ X P̂

t ≤ b−(Φt), for almost all t ≥ 0;

P̂+
t =

∫
[0,t]

1{XP̂s−≤b+(Φs)}
dP̂+

s , P̂−t =
∫

[0,t]

1{XP̂s−≥b−(Φs)}
dP̂−s , ∀t ≥ 0;∫ ∆P̂+

t

0

1{(XP̂t−+z,Φt)∈C2}
dz +

∫ ∆P̂−t

0

1{(XP̂t−−z,Φt)∈C2}
dz = 0, ∀t ≥ 0,

605
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where ∆P̂±t := P̂±t − P̂±t−.606

In practice, according to the aforementioned strategy, a lump-sum increase or607

decrease of the inventory process X may be required, whenever the inventory level Xt−608

happens to be either strictly below the boundary b+(Φt) or above b−(Φt), respectively.609

The purpose of these jumps of at most one of the controls P̂±t at each such t ≥610

0, of size either (b+(Φt) − X P̂
t−)+ or (X P̂

t− − b−(Φt))
+, is to bring immediately the611

inventory level Xt inside the interval [b+(Φt), b−(Φt)]. Mathematically, these are the612

actions caused at any time t ≥ 0, by the jump parts ∆P̂±t of the controls P̂±. The613

strategy further prescribes taking action (increase or decrease the inventory) when614

the inventory process Xt approaches, at any time t ≥ 0, either boundary b+(Φt) from615

above or b−(Φt) from below. The purpose of these actions now is to make sure (with a616

minimal effort) that the inventory level Xt is kept inside the interval [b+(Φt), b−(Φt)].617

Mathematically, these actions are caused by the continuous parts of the respective618

controls P̂± and are the so-called Skorokhod reflection-type policies.619

The nonincreasing property of b±(·) (see Proposition 4.3.(i)) further implies that,620

the stronger the decision makers’ belief is about a high average inventory level µ621

(i.e. higher ϕ, cf. (4.1)), they tend to unload part of excess inventory more often so622

that inventory is kept below the optimal level b−(ϕ), and delay placing replenishment623

orders by setting a lower optimal base-stock level b+(ϕ).624

In multi-dimensional settings, the construction of a solution to a Skorokhod re-625

flection problems is usually a delicate task, that is intimately related to the regularity626

of the reflection boundary (see [17] and [32] for a discussion and literature review). In627

our case, given that the dynamics of XP and Φ are decoupled and that XP = X0 +P628

(cf. (4.8)), the solution triplet (X P̂
t ,Φt, P̂t)t≥0 to the Skorokhod reflection problem at629

the boundaries b± can be constructed by adapting the iterative procedure developed in630

[21, Section 4.3]. In particular, with reference to the notation adopted in [21], we define631

τ+
0 := inf{t ≥ 0 : x < b+(Φt)−µ0t−ηWt}, τ−0 := inf{t ≥ 0 : x > b−(Φt)−µ0t−ηWt}632

and τ0 := τ+
0 ∧ τ

−
0 . Notice that, because inft≥0

(
b−(Φt) − b+(Φt)

)
> 0 by Proposi-633

tion 4.3.(iii), we have {τ+
0 = τ−0 } = {τ0 = ∞}. Then, we set Ω∞ := {τ0 = ∞},634

Ω+ := {τ+
0 < τ−0 }, Ω− := {τ−0 < τ+

0 } and C0
t := x, for all t ≥ 0, and recursively635

introduce:636

If k ≥ 1 is odd, Ckt :=


x, on Ω∞,

x+ maxs∈[τk−1,t]

(
b+(Φs)− µ0s− ηWs − x)+, on Ω+,

x+ mins∈[τk−1,t]

(
b−(Φs)− µ0s− ηWs − x)−, on Ω−,

637

with τk :=


∞, on Ω∞,

inf{t ≥ τk−1 : Ckt > b−(Φt)− µ0t− ηWt}, on Ω+,

inf{t ≥ τk−1 : Ckt < b+(Φt)− µ0t− ηWt}, on Ω−.

638

If k ≥ 2 is even, Ckt :=


x, on Ω∞,

x+ maxs∈[τk−1,t]

(
b+(Φs)− µ0s− ηWs − x)+, on Ω−,

x+ mins∈[τk−1,t]

(
b−(Φs)− µ0s− ηWs − x)−, on Ω+,

639

with τk :=


∞, on Ω∞,

inf{t ≥ τk−1 : Ckt > b−(Φt)− µ0t− ηWt}, on Ω−,

inf{t ≥ τk−1 : Ckt < b+(Φt)− µ0t− ηWt}, on Ω+.

640

641

In light of these definitions, one can then proceed as in [21, Section 4.3] in order to642

conclude the existence of a solution to the reflection problem (6.1).643
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It then follows from (6.1) above together with the definitions (4.14) of boundaries644

b±, the region C2 from (4.15) and the fact that v̄ = V x from Proposition 4.1.(ii), that645

the nondecreasing processes P̂± are such that the state-space process (X P̂ ,Φ) and646

the induced (random) measures dP̂± on R+ satisfy:647

(6.2)


(X P̂

t ,Φt) ∈ C2, for Q⊗ dt-a.e., with C2 as in (4.15);

dP̂+ has support on
{
t ≥ 0 : V x(X P̂

t ,Φt) ≤ −K+(1 + Φt)
}

;

dP̂− has support on
{
t ≥ 0 : V x(X P̂

t ,Φt) ≥ K−(1 + Φt)
}
.

648

6.2. Transformation of controlled process (X P̂ ,Φ) to (X P̂ , Y P̂ ). We now649

use the transformation (5.3) from (x, ϕ)- to (x, y)-coordinates, in order to define the650

controlled process651

(6.3) Y P̂t := X P̂
t −

η
γ log(Φt), t ≥ 0.652

Recalling the transformed value function (5.4) and the relation in (5.5), we have653

V̂ (X P̂
t , Y

P̂
t ) := V

(
X P̂
t , e

γ
η (XP̂t −Y

P̂
t )
)
, (V̂x + V̂y)(X P̂

t , Y
P̂
t ) = V x

(
X P̂
t , e

γ
η (XP̂t −Y

P̂
t )
)
,654

under the dynamics655

(6.4)

{
dX P̂

t = µ0dt+ ηdWt + dP̂+
t − dP̂−t , X P̂

0− = x ∈ R,
dY P̂t = 1

2 (µ0 + µ1)dt+ dP̂+
t − dP̂−t , Y P̂0− = y := x− η

γ log(ϕ) ∈ R.
656

Hence, we can express the control P̂ defined in Section 6.1 in terms of the state-space657

process (X P̂ , Y P̂ ) via658

(6.5)
(X P̂

t , Y
P̂
t ) ∈ C3, for Q⊗ dt-a.e., where C3 is defined in (5.6);

dP̂+ has support on
{
t ≥ 0 :

(
V̂x + V̂y

)
(X P̂

t , Y
P̂
t ) ≤ −K+

(
1 + e

γ
η (XP̂t −Y

P̂
t )
)}

;

dP̂− has support on
{
t ≥ 0 :

(
V̂x + V̂y

)
(X P̂

t , Y
P̂
t ) ≥ K−

(
1 + e

γ
η (XP̂t −Y

P̂
t ))
)}
.

659

6.3. Optimality of control P̂ . In this section we prove the optimality of the660

control P̂ defined through (6.1), which is equivalently expressed by (6.2) in terms661

of the state-space process (X P̂ ,Φ) and by (6.5) in terms of the state-space process662

(X P̂ , Y P̂ ), see Sections 6.1–6.2.663

Theorem 6.1 (Verification Theorem). The admissible control P̂ ∈ A defined664

through (6.1) (see also (6.2) and (6.5)) is optimal for Problem (4.7). Actually, P̂ is665

the unique optimal control (up to indistinguishability) if C is strictly convex.666

Proof. Let (X P̂
0−, Y

P̂
0−) = (x, y) ≡ (x, x − η log(ϕ)/γ) ∈ C3 be given and fixed.667

Define τn := inf{t ≥ 0 : |(X P̂
t , Y

P̂
t )| > n} ∧ n, for n ∈ N, with state-space process668

(X P̂ , Y P̂ ) as in (6.4), and recall that (X P̂
t , Y

P̂
t ) ∈ C3, Q-a.s. for all t ≥ 0. In particular,669

Lemma A.1 in Appendix A yields that for any t ≥ 0, Q
(
(X P̂

t ,Φt) ∈ C2
)

= 1, and670

therefore Q
(
(X P̂

t , Y
P̂
t ) ∈ C3

)
= 1. Then, given the regularity of V̂ (cf. Proposition671

5.5), we can employ the approximation argument via mollifiers developed in the proof672
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of [25, Theorem 4.1, Chapter VIII], in order to conclude that673

V̂ (x, y) = EQ

[
e−ρτn V̂ (X P̂

τn , Y
P̂
τn)

]
− EQ

[ ∫ τn

0

e−ρs
(
LX,Y − ρ

)
V̂ (X P̂

s , Y
P̂
s )ds

]
674

− EQ

[ ∫ τn

0

e−ρs
(
V̂x + V̂y

)
(X P̂

s , Y
P̂
s )dP̂ cs −

∑
0≤s≤τn

e−ρs
(
V̂ (X P̂

s , Y
P̂
s )− V̂ (X P̂

s−, Y
P̂
s−)
)]
,675

676

where P̂ c denotes the continuous part of P̂ and the final sum is non-zero only for677

(at most countably many) times s such that ∆P̂s := P̂s − P̂s− 6= 0. Clearly, ∆P̂s =678

∆P̂+
s −∆P̂−s , where ∆P̂±s := P̂±s − P̂±s− and notice that679 ∑

0≤s≤τn

e−ρs
{(
V̂ (X P̂

s , Y
P̂
s )− V̂ (X P̂

s−,Y
P̂
s−)
)
−
∫ ∆P̂+

s

0

(
V̂x + V̂y

)
(X P̂

s− + u, Y P̂s− + u)du680

+
∫ ∆P̂−s

0

(
V̂x + V̂y

)
(X P̂

s− − u, Y P̂s− − u)du

}
= 0.681

682

Hence, plugging the last formula into the penultimate one and using (5.8), the non-683

negativity of V̂ , the second and third property of control P̂ in (6.5), we see that684

V̂ (x, y) ≥ EQ

[ ∫ τn

0

e−ρs
(
1 + e

γ
η (XP̂s −Y

P̂
s )
)
C(X P̂

s )ds

]
685

+ EQ

[ ∫ τn

0

e−ρsK+
(
1 + e

γ
η (XP̂s −Y

P̂
s )
)
dP̂+

s +

∫ τn

0

e−ρsK−
(
1 + e

γ
η (XP̂s −Y

P̂
s )
)
dP̂−s

]
.686

687

Then, we take limits as n ↑ ∞ and we invoke Fatou’s lemma (given the nonnegativity688

of all the integrands above) to find that689

V̂ (x, y) ≥ EQ

[ ∫ ∞
0

e−ρs
(
1 + e

γ
η (XP̂s −Y

P̂
s )
)
C(X P̂

s )ds

]
690

+ EQ

[ ∫ ∞
0

e−ρsK+
(
1 + e

γ
η (XP̂s −Y

P̂
s )
)
dP̂+

s +

∫ ∞
0

e−ρsK−
(
1 + e

γ
η (XP̂s −Y

P̂
s )
)
dP̂−s

]
.691

692

Given now that X P̂ − Y P̂ = η log(Φ)/γ by definition (6.3), and that (5.4) yields693

V̂ (x, y) = V̂ (x, x − η log(ϕ)/γ) = V (x, ϕ), we further conclude from the latter in-694

equality that for any (x, ϕ) ∈ C2 (as we assumed (x, y) ≡ (x, x− η log(ϕ)/γ) ∈ C3)695

(6.6) V (x, ϕ) ≥ EQ

[ ∫ ∞
0

e−ρs
(
1+Φs

)
C(X P̂

s )ds+

∫ ∞
0

e−ρs
(
1+Φs

)(
K+dP̂+

s +K−dP̂−s
)]
.696

Combining this inequality with definition (4.7), i.e. V (x, ϕ) ≤ J x,ϕ(P̂ ), we prove that697

P̂ is an optimal control, for any (x, ϕ) ∈ C2.698

Suppose now that (x, ϕ) is such that x < b+(ϕ), so that (x, ϕ) ∈ S+
2 . Then,699

according to (6.1) (see also (6.2)), and using (6.6), we have that700

J x,ϕ(P̂ ) = K+(1 + ϕ)
(
b+(ϕ)− x) + J b+(ϕ),ϕ(P̂ )701

≤ V (b+(ϕ), ϕ)−
∫ b+(ϕ)

x

V x(z, ϕ) = V (x, ϕ).702
703

Proceeding similarly also for (x, ϕ) such that x > b−(ϕ), we conclude that P̂ is indeed704

optimal for any (x, ϕ) ∈ R2.705
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7. Refined Regularity of the Free Boundaries and their Characteriza-706

tion. In this section we will obtain substantial regularity of the value v̄(x, ϕ) of the707

Dynkin game (4.9), as well as an analytical characterisation of its corresponding free708

boundaries b±, and consequently the optimal control rule P̂ (see Theorem 6.1).709

7.1. Parabolic formulation and Lipschitz continuity of the free bound-710

aries. In view of a further change of variables, in line with (6.3), we define Y 0
t :=711

X0
t −

η
γ log(Φt), t ≥ 0, with X0 as in (4.10). Then, by Itô’s formula, we have712

(7.1)

{
dX0

t = µ0dt+ ηdWt, X0
0 = x ∈ R,

dY 0
t = 1

2 (µ0 + µ1)dt, Y 0
0 = y := x− η

γ log(ϕ) ∈ R,
713

and (4.9) rewrites in terms of the new coordinates (x, y) = (X0
0 , Y

0
0 ) as714

v̂(x, y) := inf
σ

sup
τ

EQ

[ ∫ τ∧σ

0

e−ρt
(

1 + e
γ
η (X0

t−Yt)
)
C ′(X0

t )dt− e−ρτ
(

1 + e
γ
η (X0

τ−Yτ )
)
×715

K+1{τ<σ} + e−ρσ
(

1 + e
γ
η (X0

σ−Yσ)
)
K−1{τ>σ}

]
= v̄

(
x, e

γ
η (x−y)

)
(7.2)716

717

for (x, y) ∈ R2. In view of the relationship in (7.2), the value function v̂(·, ·) inherits718

important properties which have already been proved for v̄(·, ·). To be more precise,719

we first conclude immediately from Proposition 4.2.(i) the following result.720

Proposition 7.1. The value function (x, y) 7→ v̂(x, y) defined in (7.2) is contin-721

uous over R2.722

Moreover, since v̄(x, exp{γ(x− y)/η}) = V x(x, exp{γ(x− y)/η}) by Proposition723

4.1.(ii), it follows from (5.5) that v̂(x, y) = V̂x(x, y) + V̂y(x, y) for all (x, y) ∈ R2, and724

consequently the open set C3 defined in (5.6) takes the form725

C3 =
{

(x, y) ∈ R2 : −K+
(
1 + e

γ
η (x−y)

)
< v̂(x, y) < K−

(
1 + e

γ
η (x−y)

)}
= T (C2).(7.3)726727

Hence, by also defining the closed sets728

S+
3 :=

{
(x, y) ∈ R2 : v̂(x, y) ≤ −K+

(
1 + e

γ
η (x−y)

)}
,

S−3 :=
{

(x, y) ∈ R2 : v̂(x, y) ≥ K−
(
1 + e

γ
η (x−y)

)}
,

(7.4)729

730

the global diffeomorphism T from (5.3) implies that S±3 = T (S±2 ) as well, where C2731

and S±2 are the continuation and stopping regions (4.12)–(4.13) for the Dynkin game732

v̄ in (4.9). Combining these relationships with the structure of the latter regions in733

(4.15) yields that C3 and S3
± are connected.734

In order to obtain the explicit structure of the regions C3 and S3
±, we now define735

the generalised inverses of the nonincreasing b± (cf. Proposition 4.3) by736

(7.5) b−1
+ (x) :=sup{ϕ∈ (0,∞) : b+(ϕ)≥x}, b−1

− (x) := inf{ϕ∈ (0,∞) : b−(ϕ)≤x}.737

Since the map ϕ 7→ T2(x, ϕ) in (5.3) is decreasing for any given x ∈ R (cf. the functions738

b± are nonincreasing due to Proposition 4.3.(i)), we have739

(x, y) ∈ C3 ⇔
(
x, e

γ
η (x−y)

)
∈ C2 ⇔ x− η

γ log(b−1
− (x)) < y < x− η

γ log(b−1
+ (x)),740

while similar relations hold true for the characterisation of S±3 . Then, by defining741

(7.6) c−1
± (x) := x− η

γ log(b−1
± (x)),742
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we can obtain the structure of the continuation and stopping regions of v̂, as743

C3 = {(x, y) ∈ R2 : c−1
− (x) < y < c−1

+ (x)},
S+

3 = {(x, y) ∈ R2 : y ≥ c−1
+ (x)} and S−3 = {(x, y) ∈ R2 : y ≤ c−1

− (x)}.
(7.7)744

745

The next lemma can be proved thanks to (7.5), (7.6) and Proposition 4.3.746

Lemma 7.2. The functions c−1
± (·) defined in (7.6) are strictly increasing, while747

c−1
+ (·) is left-continuous and c−1

− (·) is right-continuous on R.748

In light of Lemma 7.2, for y ∈ R, we may define the functions749

(7.8) c+(y) := inf{x ∈ R : y ≤ c−1
+ (x)} and c−(y) := sup{x ∈ R : y ≥ c−1

− (x)}.750

In the following result, we prove that y 7→ c±(y) identify with the optimal free bound-751

aries of the Dynkin game v̂ in (7.2) and provide some important properties such as752

their global Lipschitz continuity.753

Proposition 7.3. The free boundaries c± defined in (7.8). Then,754

(i) c±(·) are nondecreasing on R and we have x∗+ ≤ c+(y) < c−(y) ≤ x∗− for all755

y ∈ R (with x∗± as in Proposition 3.2). Moreover, c+(y) ≤ (C ′)−1(−ρK+)756

and c−(y) ≥ (C ′)−1(ρK−) for all y ∈ R;757

(ii) c±(·) are Lipschitz-continuous on R with Lipschitz constant L = 1, namely758

0 ≤ c±(y)− c±(y′) ≤ y − y′, for all y ≥ y′.759

(iii) The structure of the continuation and stopping regions for (7.2) take the form760

C3 = {(x, y) ∈ R2 : c+(y) < x < c−(y)},761

S+
3 = {(x, y) ∈ R2 : x ≤ c+(y)} and S−3 = {(x, y) ∈ R2 : x ≥ c−(y)}.762763

Proof. Proof of (i). The first part of the claim follows from Lemma 7.2, together764

with the definition (7.8) of c±. The second and third parts of the claim are due to765

the fact that T1 as in (5.3) is the identity.766

Proof of (ii). Using the definitions (7.6) of c−1
± and the monotonicity of b−1

± (see767

proof of Lemma 7.2) we get768

(7.9) c−1
± (x)− c−1

± (x′) = x− η
γ log(b−1

± (x))−x′+ η
γ log(b−1

± (x′)) ≥ x−x′, ∀ x ≥ x′.769

Combining this with definitions (7.8) and part (i), we obtain the desired claim.770

Proof of (iii). This is again due to the definitions (7.8) of c±, their monotonicity771

from part (i) and the expressions of the sets in (7.7).772

7.2. Global C1-regularity of v̂. For any (x, y) ∈ R2 given and fixed, we con-773

sider the strong solution to the dynamics in (7.1), denoted by X0,x
t = x+ µ0t+ ηWt774

and Y 0,y
t = y + 1

2 (µ1 + µ0)t, t ≥ 0 and we define775

(7.10)
τ?(x, y) := inf{t ≥ 0 : (X0,x

t , Y 0,y
t )∈S+

3 }, σ?(x, y) := inf{t ≥ 0 : (X0,x
t , Y 0,y

t )∈S−3 }.776

Notice that, in light of the one-to-one and onto transformations T and T , the777

pair (τ?(x, y), σ?(x, y)) realises a saddle point for the Dynkin game with value v̂(x, y)778

in (7.2) if and only if, by setting π := e
γ
η (x−y)/(1 + e

γ
η (x−y)), the stopping times779

τ̃(x, π) := inf{t ≥ 0 : (X0,x
t ,Ππ

t ) ∈ S+
1 } and σ̃(x, π) := inf{t ≥ 0 : (X0,x

t ,Ππ
t ) ∈ S−1 }780

form a saddle point for the game with value v(x, π) in (3.2). In order to prove the latter781

claim, one can apply [36, Theorem 2.1] (see also [18, Theorem 2.1]) by proceeding as782

in the proof of item (iii) in the proof of Proposition 3.2.783
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In the sequel, we aim at deriving the global C1-regularity of v̂(·, ·). In order to784

accomplish that, we need the following result about the regularity (in the probabilistic785

sense) of (τ?, σ?).786

Lemma 7.4. Suppose that (xn, yn)n∈N∗ ⊂ C3 is such that (xn, yn) → (xo, yo),787

where yo ∈ R and xo := c+(yo) (resp., xo := c−(yo)), then τ?(xn, yn) → 0 (resp.,788

σ?(xn, yn)→ 0), Q-a.s..789

Proof. We prove the claim for τ?(xn, yn), since the proof for σ?(xn, yn) can be790

performed analogously. Fix ω ∈ Ω and assume (aiming for a contradiction) that791

lim supn→∞ τ?(xn, yn)(ω) =: δ > 0. Namely, there exists a subsequence, still labelled792

by (xn, yn), such that X0,xn
t (ω) > c+(Y 0,yn

t ), for all n ∈ N∗ and t ∈ [0, δ/2], that is,793

(7.11) xn + µ0t+ ηWt(ω) > c+
(
yn + 1

2 (µ1 + µ0)t
)

∀ n ∈ N∗, ∀ t ∈ [0, δ/2].794

Hence, taking the limit as n→∞ and considering that c+ is continuous (see Propo-795

sition 7.3.(ii)), ηWt(ω) ≥ c+(yo + 1
2 (µ1 + µ0)t) − xo − µ0t, for all t ∈ [0, δ/2]. Using796

now the Lipschitz continuity of c+ (see again Proposition 7.3.(ii)), we further obtain797

∀ n ∈ N∗ and ∀ t ∈ [0, δ/2] that798

ηWt(ω) ≥ c+(yo)− 1
2 (µ1 + µ0)−t− xo − µ0t = − 1

2

(
(µ1 + µ0)− + µ0

)
t.(7.12)799800

However, by the law of iterated logarithm, we have that (7.12) can only happen for801

ω belonging to a Q-null set and the proof is complete.802

Remark 7.5. From the previous proof one can easily observe that, by replacing the803

strict inequality with the large one in (7.11), we can actually prove that τ̌?(xn, yn)→ 0804

and σ̌?(xn, yn)→ 0, Q-a.s., where805

τ̌?(x, y) := inf{t ≥ 0 : (X0,x
t , Y 0,y

t ) ∈ Int(S+
3 )},(7.13)806

σ̌?(x, y) := inf{t ≥ 0 : (X0,x
t , Y 0,y

t ) ∈ Int(S−3 )}.(7.14)807808

We now show that the value function v̂(x, y) of the Dynkin game (7.2) is smooth809

across the topological boundary ∂C3 of the continuation region C3 from (7.3) in both810

directions x and y. The proof borrows ideas from [11] and exploits the probabilistic811

expressions of the derivatives of v̂, Lemma 7.4 and Remark 7.5. Full details can be812

found in the extended version of this paper [22].813

Proposition 7.6 (Smooth-fit). Let yo ∈ R and set xo := c±(yo). Then the
value function v̂ defined in (7.2) satisfies

lim
(x,y)→(xo,yo)

(x,y)∈C3

v̂x(x, y) = ∓γ
η
K±e

γ
η (xo−yo), lim

(x,y)→(xo,yo)

(x,y)∈C3

v̂y(x, y) = ±γ
η
K±e

γ
η (xo−yo).

We are now ready to derive the global C1-regularity of v̂ as well as the local814

boundedness of its second derivative in x.815

Proposition 7.7. The value function v̂ defined in (7.2) satisfies v̂ ∈ C1(R2;R)816

and v̂xx ∈ L∞loc(R2;R).817

Proof. By standard arguments based on the strong Markov property and Dirichlet818

boundary problems involving second-order partial differential equations of parabolic819

type, one can show that v̂ in (7.2) is a classical C2,1-solution to (ρ− LX,Y )u(x, y)−820 (
1+e

γ
η (x−y)

)
C ′(x) = 0, for all (x, y) ∈ C3, where LX,Y is the second-order differential821
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operator defined in (5.7) and C3 is given by (7.3) (see also Proposition 7.3.(iii)). Also,822

v̂ ∈ C∞ in the interior of S±3 . Hence, by Proposition 7.6 we have that v̂ ∈ C1(R2;R).823

Arguing now as in the proof of Proposition 5.5, we have that v̂xx admits a con-824

tinuous extension to C3, and is therefore bounded therein. Hence, for y ∈ R, we have825

that v̂x(·, y) is Lipschitz continuous on [c+(y), c−(y)], with Lipschitz constant K(y)826

which is locally bounded on R. Combining this with the fact that v̂x(·, y) is infin-827

itely many times continuously differentiable in S±3 , thus locally bounded therein, we828

conclude that v̂xx ∈ L∞loc(R2;R).829

7.3. Integral equations for the free boundaries. By Proposition 7.7, and830

by using standard arguments based on the strong Markov property (cf. [18] and [36]),831

we have that the value function v̂ defined in (7.2) and the free boundaries c± satisfy832 

(
LX,Y − ρ

)
v̂(x, y) = −(1 + e

γ
η (x−y))C ′(x), c+(y) < x < c−(y), y ∈ R(

LX,Y − ρ
)
v̂(x, y) = ρK+(1 + e

γ
η (x−y)), x < c+(y), y ∈ R(

LX,Y − ρ
)
v̂(x, y) = −ρK−(1 + e

γ
η (x−y)), x > c−(y), y ∈ R

−K+(1 + e
γ
η (x−y)) ≤ v̂(x, y) ≤ K+(1 + e

γ
η (x−y)), (x, y) ∈ R2

833

834

We recall that LX,Y is the second-order differential operator defined in (5.7), v̂ ∈835

C1(R2;R), v̂xx ∈ L∞loc(R2;R) and v̂ ∈ C2,1 inside C3 (cf. Propositions 7.3.(iii) and836

7.7). Hence, via the above results and a suitable application of (a week version of)837

Itô’s lemma (see, e.g., [2, Lemma 8.1, Theorem 8.5] and [3, Theorem 2.1]), we firstly838

obtain an integral representation of v̂; since this result is nowadays somehow classical,839

we omit details.840

Proposition 7.8. Consider the free boundaries c± defined in (7.8) and (X0, Y 0)841

from (7.1). Then, for any (x, y) ∈ R2, the value function v̂ of (7.2) can be written as842

v̂(x, y) = EQ
(x,y)

[ ∫ ∞
0

e−ρs
(
1 + e

γ
η (X0

s−Y
0
s )
)
C ′(X0

s )1{c+(Y 0
s )<X0

s<c−(Y 0
s )}ds

]
843

+ EQ
(x,y)

[ ∫ ∞
0

e−ρsρ
(
1 + e

γ
η (X0

s−Y
0
s )
)(
K−1{X0

s≥c−(Y 0
s )} −K+1{X0

s≤c+(Y 0
s )}
)
ds

]
,844

845

where EQ
(x,y) is the expectation under Q(x,y) such that (X0, Y 0) starts at (x, y) ∈ R2.846

The previous representation of v̂ allows us to determine a system of integral847

equations for c± (see (7.8) for their definition and Proposition 7.3 for their properties),848

which is the main aim of this section. To this end, denote by G(z;m, ν) the density849

function of a Gaussian random variable with mean m and variance ν2.850

Proposition 7.9. Let q(x, y) := 1 + e
γ
η (x−y). The free boundaries c± defined in851

(7.8) solve the system of integral equations852

∓K±q(c±(y), y) =

∫ ∞
0

e−ρs
(∫

R
q(z, Y 0

s )

{
C ′(z)1{c+(Y 0

s )<z<c−(Y 0
s )}853

+K−1{z≥c−(Y 0
s )} −K+1{z≤c+(Y 0

s )}

}
G(z; c±(y) + µ0s, η

2s)dz

)
ds.854

855

Moreover, (c+, c−) is the unique solution pair belonging to the set D+ ×D−, where856

D+:=
{
g : R→ R : g is continuous, nondecreasing, s.t. x∗+ ≤ g(y) ≤ (C ′)−1(−ρK+)

}
857

D−:=
{
g : R→ R : g is continuous, nondecreasing, s.t. (C ′)−1(ρK−) ≤ g(y) ≤ x∗−

}
.858859
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Proof. The integral equations follow by taking x = c±(y) in Proposition 7.8,860

employing the value function’s continuity (i.e. v̂(c±(y), y) = ∓K±
(
1 + exp{γ(c±(y)−861

y)/η}
)
, for any y ∈ R), and finally noticing that Y 0 is a deterministic process and862

that X
0,c±(y)
s is Gaussian under Q with mean c±(y) + µ0s and variance η2s.863

The fact that c± belong to the classes D± follows from their continuity, mono-864

tonicity, and boundedness in Proposition 7.3.865

Finally, we can proceed as in [9, Lemmata 3.15, 3.16, Proposition 3.17, Theorem866

3.18] to prove the uniqueness. Notice that the problem in [9] has a finite time-horizon867

T and the free boundaries satisfy suitable terminal conditions at T . However, a careful868

investigation of the proof of [9, Lemma 3.15] reveals that such terminal conditions can869

be replaced in our problem by the transversality condition (already satisfied by v̂3)870

(7.15) lim
T↑∞

EQ
(x,y)

[
e−ρTuα(X0

T , Y
0
T )
]

= 0,871

imposed on a candidate value function uα (cf. [9, Eq. (3.56)]). The arguments in the872

proofs of [9, Lemma 3.16, Proposition 3.17, Theorem 3.18] do not exploit the terminal873

conditions of the free boundaries, so that they can be adapted to the present setting.874

Remark 7.10. The complete characterisation of the boundaries c± provided by875

Proposition 7.9 together with (7.6), yield a complete description of the free boundaries876

b±, at which the optimal control rule P̂ constructed in (6.1)–(6.2) (see Section 6.1 for877

details) commands the process (X P̂
t ,Φt)t≥0 to be reflected.878

Indeed, once c± are determined by solving (numerically) the system of integral879

equations in Proposition 7.9, we can use (7.6) to obtain b−1
± , and consequently deter-880

mine b± by inverting (7.5). However, such a numerical treatment is non trivial and881

outside the scopes of the present work, we do not address it in this paper.882

Appendix A. Technical Result.883

Lemma A.1. Let W be a one-dimensional Brownian motion on the complete fil-884

tered probability space (Ω,F ,F,Q), {τk}k≥1 be a strictly increasing sequence of F-885

stopping times diverging a.s., ζ, β, c > 0, α ∈ R, f : R → R be nonincreasing, and886

g : R→ R be Lipschitz-continuous. Then, for each t > 0,887

Q

( ∞⋃
k=1

{
t ∈ (τk−1, τk]

}
∩
{
t ∈ arg max

s∈[τk−1,t]
(f(ceαs+βWs)− ζWs + g(s))

})
= 0888

Q

( ∞⋃
k=1

{
t ∈ (τk−1, τk]

}
∩
{
t ∈ arg min

s∈[τk−1,t]
(f(ceαs+βWs)− ζWs + g(s))

})
= 0.889

Proof. We show the claim only for the argmax. Fix t > 0 and set Ωk :=
{
t ∈

(τk−1, τk]
}

. The proof can be concluded by showing that for each k ≥ 1,

Q
(
t ∈ argmaxs∈[τk−1,t]

(f(ceαs+βWs)− ζWs + g(s)) | Ωk
)

= 0.

3Using the relationship (7.2) between v̂ and v and the definition (7.1) of (X0, Y 0), we obtain

EQ
(x,y)

[
e−ρT |v̂(X0

T , Y
0
T )|
]

= EQ
(x,y)

[
e−ρT

∣∣∣v(X0
T , e

γ
η
(X0
T−Y

0
T )
)∣∣∣]

≤ (K+ ∨K−)EQ
(x,exp{ γ

η
(x−y)})

[
e−ρT

(
1 + ΦT

)]
= (K+ ∨K−)

(
1 + e

γ
η
(x−y))

e−ρT ,

where the last step is due to the martingale property of the process Φ.
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With a change of measure, the above is equivalent to890

Q̂
(
t ∈ argmaxs∈[τk−1,t]

(f(ceβW
∗
s )− ζW ∗s + h(s)) | Ωk

)
= 0,891

for another F-Brownian motion W ∗ and h : R → R Lipschitz-continuous. Now, for
each τk−1 < s ≤ t, we have(

f(ceβW
∗
t )− ζW ∗t

)
−
(
f(ceβW

∗
s )− ζW ∗s

)
≤ −ζ(W ∗t −W ∗s ), if W ∗t −W ∗s ≥ 0.

By the path-properties of the Brownian motion, we have Q̂
(
· |Ωk

)
-a.s.

lim sup
s→t−

W∗t −W
∗
s

t−s = +∞.

In particular, Q̂
(
· |Ωk

)
-a.s., there exists a sequence sn → t− (possibly depending on

ω) such that

W ∗t −W ∗sn ≥ 0 ∀n and lim sup
n→∞

W∗t −W
∗
sn

t−sn = +∞.

Hence, the claim follows by observing that, Q̂
(
· |Ωk

)
-a.s., we have892

lim inf
s→t−

1

t− s
[(
f(ceβW

∗
t )− ζW ∗t + h(t)

)
−
(
f(ceβW

∗
s )− ζW ∗s + h(s)

)]
893

≤ lim inf
n→∞

1

t− sn
[(
f(ceβW

∗
t )− ζW ∗t + h(t)

)
−
(
f(ceβW

∗
sn )− ζW ∗sn + h(sn)

)]
894

≤ lim inf
n→∞

(
− ζW

∗
t −W

∗
sn

t−sn

)
+ lim sup

n→∞

|h(t)−h(sn)|
t−sn895

= −ζ lim sup
n→∞

W∗t −W
∗
sn

t−sn + lim sup
n→∞

|h(t)−h(sn)|
t−sn = −∞.896
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