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TWO-SIDED SINGULAR CONTROL OF AN INVENTORY WITH
UNKNOWN DEMAND TREND*

SALVATORE FEDERICO', GIORGIO FERRARI}, AND NEOFYTOS RODOSTHENOUS?!

Abstract. We study the problem of optimally managing an inventory with unknown demand
trend. Our formulation leads to a stochastic control problem under partial observation, in which
a Brownian motion with non-observable drift can be singularly controlled in both an upward and
downward direction. We first derive the equivalent separated problem under full information, with
state-space components given by the Brownian motion and the filtering estimate of its unknown drift,
and we then completely solve this latter problem. Our approach uses the transition amongst three
different but equivalent problem formulations, links between two-dimensional bounded-variation sto-
chastic control problems and games of optimal stopping, and probabilistic methods in combination
with refined viscosity theory arguments. We show substantial regularity of (a transformed version of)
the value function, we construct an optimal control rule, and we show that the free boundaries delin-
eating (transformed) action and inaction regions are bounded globally Lipschitz continuous functions.
To our knowledge this is the first time that such a problem has been solved in the literature.

Key words. bounded-variation stochastic control, partial observation, inventory management,
Dynkin games, free boundaries

AMS subject classifications. 93E20, 93E11, 91A55, 49J40, 90B05

1. Introduction. In this paper, we consider the optimal management of inven-
tory when the demand is stochastic and partially observed. There exists an enormous
literature on optimal inventory management (see, e.g. [41] for an overview and the
significance of inventory control in operations and profitability of companies). The
optimal singular/impulsive control literature of stochastic inventory systems has so
far assumed that the dynamics of the inventory is fully known to decision makers,
see e.g. [1, 6, 7, 26, 27, 28, 38, 39, 40], amongst many others. Some of the most
celebrated results are the optimality of (constant) threshold strategies determining
(a) base-stock policies — maintaining inventory above a fixed shortage level — and (b)
restrictions on the size of inventory, in order to manage storage-related costs. In this
paper, we generalise the existing literature on the singular control of inventories by
assuming that the demand rate or the mean of the random demand for the product is
unknown to decision makers. This can be relevant to companies operating in newly
established markets or producing a novel good, for which there is limited knowledge
about the demand trend. In particular, we will show how the aforementioned optimal
strategies are no longer triggered by constant thresholds, but by functions of the deci-
sion maker’s learning process of the unknown demand rate. We further note that the
analysis and results in this paper can also contribute to applications way beyond the
inventory management literature; for instance, to cash balance management problems
(see, e.g. [20]), when the drift of the cash process is unknown to managers.

The model and general results. We consider decision makers who can observe
in real time the evolution of the level of a Brownian inventory system S, which
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2 S. FEDERICO, G. FERRARI, AND N. RODOSTHENOUS

represents the production minus the stochastic demand for the product at time ¢
(see [26, 38, 40]). The inventory has a “net demand” rate p, unknown to decision
makers, and a stochastic part modelling the demand volatility. We assume that the
random variable u € {pg, t11}, for po, u1 € R, and the decision makers’ prior belief is
7= P(u = p1) € (0,1). This is continuously updated as new information is revealed
according to the natural filtration 7} of S, and takes the form II; := P(u = py | FY)
according to standard filtering techniques (see [34] for a survey). Decision makers can
control the inventory via a bounded-variation process P; = P;” — P, where Pti are
increasing processes defining the total amount of increase/decrease of inventory up to
time ¢. The controlled inventory level is therefore given by X; = z+ut+nB;+P;"— P,
for n > 0 and all ¢t > 0; positive values model the excess inventory, while the absolute
value of negative X models the backlog in production.

Both levels of excess inventory and backorder bear (non-necessarily symmetric)
holding and shortage costs per unit of time, modelled via a suitable convex function
C(X). High holding/storage costs for large X could suggest unloading part of excess
inventory (e.g. start promotions, send to outlets, donate, ship to another facility, or
destroy) at a cost K~ proportional to unloaded volume P~. On the other hand, high
shortage costs due to undesirable low X could suggest placing inventory replenishment
orders at a cost KT proportional to the ordered volume P*. However, there is
a trade off due to the costs K* of controlling the inventory X to keep C(X) at
“reasonable” levels. The question we thus study is “What is the optimal inventory
management strategy that minimises the total expected (discounted) future holding,
shortage and control costs, when the demand rate is unknown?”. We allow the rate
of increase/reduction dP* to be unbounded and have an instantaneous effect on X,
hence the question is mathematically formulated as a bounded-variation stochastic
control problem of a linearly controlled one-dimensional diffusion with the novelty of
a random (non-observable) drift p.

Indeed, we prove the existence of an optimal control strategy P** and charac-
terise it via two boundary functions of the belief process II, which split the space in
three distinct but connected regions: (a) An action region divided in the areas below
or above the boundaries, so that when X is relatively small or large, decision makers
should increase or decrease X via P**, respectively, to bring X inside the area be-
tween the two boundaries; and (b) an intermediate waiting (inaction) region, which
is precisely the area between the two boundaries. We further prove the monotonicity
of these boundaries and completely characterise them in terms of monotone Lipschitz
continuous curves solving a system of nonlinear integral equations. To the best of
our knowledge, the study and characterisation of the boundaries defining the solution
of a bounded-variation stochastic control problem under partial information on the
underlying diffusion dynamics, has never been addressed in the literature.

Our contributions, approach and overview of mathematical analysis.
Our contribution in this paper is twofold. From the point of view of its application,
even though the literature on the optimal management of inventory is extremely rich,
as already discussed, there is no model where the demand is assumed to be partially
observed and lump-sum as well as singularly continuous actions on the inventory are
allowed. From the mathematical theory perspective, the literature on the optimal
policy characterisation in singular stochastic control problems with partial observa-
tion is limited, and actually deals only with monotone controls [4, 12, 15, 35]. On
the contrary, we allow the decision maker to both decrease and increase the underly-
ing process by using controls of bounded-variation. Our paper thus provides a first
example where partial observation features have been considered in the setting of a
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bounded-variation control problem. By combining the well-established connection to
Dynkin games, probabilistic methods of free-boundary theory and refined viscosity
theory arguments, we present a methodology that allows to achieve the necessary
regularity of the value function, leading to a characterisation of the optimal control
rule. This is our second main contribution, on which we elaborate in the remaining of
this section. Note that, other scenarios of partial information on the drift, considered
for investment timing [14], asset trading [8], optimal liquidation [19], contract theory
[16], lead to different mathematical formulations.

By relying on classical filtering theory (see [34]), we first derive the equivalent Mar-
kovian “separated problem”, which is a genuine two-dimensional bounded-variation
singular stochastic control problem V with diffusive state-space dynamics (X, II). The
traditional “guess and verify” approach is not effective, since the associated variational
formulation involves partial differential equations (PDEs) with (gradient) boundary
conditions, whose explicit solutions are not possible in general. We instead use a more
direct approach that allows for a thorough study of the value function V’s regularity
and structure, eventually leading to the optimal control strategy’s characterisation.

Via changes of coordinates we first transform the original controlled process (X, II)
into (X, ®) with (degenerate) decoupled dynamics and later into (X,Y) for the prob-
lem’s intrinsic parabolic formulation (see also [12, 29]). We connect our resulting
two-dimensional bounded-variation stochastic control problems, under each formula-
tion, to suitable zero-sum optimal stopping (Dynkin) games with two-dimensional,
uncontrolled dynamics. We manage to characterise each games’ optimal stopping
strategies via interlinked pairs of monotone and bounded free boundary functions
a+(m), by (p) and c4(y), respectively. By using our probabilistic methodology in com-
bination with viscosity theory arguments' and switching between these three equiva-
lent formulations: (a) we achieve the notable C''-global regularity of the transformed
value function V(z, ¢), and we deduce that its version V(z,y) is actually such that
V € CY(R%R) and V,, is bounded in its relative continuation region; (b) we use
these properties in order to construct an optimal control strategy in terms of the
likelihood ratio-dependent process t — by (®;) according to a Skorokhod reflection;
(¢) we obtain global Lipschitz continuity of the free boundaries ¢4 (y), employed to
show the global C'-regularity of the Dynkin game’s value 9(x, ) and obtain a system
of nonlinear integral equations solved by cy. It is worth observing that backtracking
the involved change of variables, the characterisation of cy effectively turns into a
characterisation of b1 defining the optimal control policy (and consequently of a4 in
the original (z,7)—coordinates).

The Lipschitz regularity result is of particular independent interest, given its
importance in obstacle problems (see the introduction of [10] for a detailed account
on this and its related literature). The simple argument of our proof, exploiting the
geometry of the (x, ¢)-plane and the particular structure of its transformation into the
(z,y)-plane, provides a method — alternative to the more technical approach developed
in [10] — for obtaining the Lipschitz regularity of the optimal stopping boundaries.

Finally, note that by using our methodology, we manage to obtain the minimal
(necessary) regularity in order to construct an optimal control strategy and verify

Tt is worth noticing that the combination of viscosity arguments and probabilistic techniques

of free-boundary problems have been already employed for the study of bounded-variation control
problems in [21], [23] and [24]. However, in those papers the dynamic programming equation takes the
form of a parameter-dependent ODE with gradient constraints, while in our paper it is a degenerate
PDE with gradient constraints.

This manuscript is for review purposes only.
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4 S. FEDERICO, G. FERRARI, AND N. RODOSTHENOUS

its optimality. As in multi-dimensional singular stochastic control settings proving
regularity properties of the control value function can be very challenging, having a
methodology that takes a different route by effectively combining various techniques,
can be helpful in studying other problems with similar structure.

Structure of the paper. The rest of this paper is organised as follows. In
Section 2, we present the model, formulate the control problem, and derive the sep-
arated problem V. In Section 3, we derive the first related optimal stopping game.
Section 4 introduces the first useful change of coordinates. Section 5 then studies the
regularity of the control problem’s (transformed) value function V. Section 6 presents
the verification theorem and construction of an optimal control. Finally, in Section
7, we: introduce the last change of variables; obtain the Lipschitz-continuity of the
corresponding (transformed) free boundaries c4; prove the smooth-fit property of the
transformed Dynkin game’s value function v; and derive the integral equations for c.

2. Problem Formulation and the Separated Problem. On a complete
probability space (€, F,P), we define a one-dimensional Brownian motion (By);>0
whose P-augmented natural filtration is denoted by (F);>0. Moreover, we define
a random variable p which is independent of the Brownian motion B and can take
two possible real values, namely u € {uo, 11}, where po, 1 € R. Without loss of
generality, we assume henceforth that pu; > po and that 7 := P(u = p1) € (0,1).

In absence of any intervention, the underlying (stochastic inventory) process St
as observed by the decision maker, follows the dynamics dS; = udt + ndB;, with
Sy = x € R, for some i > 0. Recall that the drift x4 of the process S is not observable
by the decision maker, who can only monitor the evolution of the process S itself.
In light of this observation, the decision maker select their control strategy P based
solely on their observation of the process S. By denoting the natural filtration of any
process Y by FY := (F});>0, we can therefore define the set of admissible controls

A:={P:Q xR" = R such that ¢ — P; is right-continuous, (locally) of bounded
variation and P is F¥ — adapted}.

To be more precise, we consider the minimal decomposition of the bounded-variation
control P € A to be P, = P;" — P, where Pt and P~ are then nondecreasing,
right-continuous F°-adapted processes. From now on, we set Poi_ = 0 a.s. for any
P € A. Hence, the reference (controlled inventory) process is given by

XP =8+ P =x+ut+nB; + P, where P € A.

Note that, the uncontrolled inventory process (P = 0) takes the form X° = S.

Given the aforementioned setting, the decision maker’s goal is to minimise the
overall (discounted) cost of holding, shortage and controlling the inventory process.
In mathematical terms, the bounded-variation control problem of the decision maker
is given by

oo
(2.1) inf E [ / e P (C(X])dt+ KTdPt + K—dP[)|,
PeA | /o

where E denotes the expectation under the probability measure P, p > 0 is the decision
maker’s discount rate of future costs, KT, K~ > 0 are the marginal costs per unit
of control exerted on X¥, and C : R — R™ is a holding and shortage cost function
which satisfies the following standing assumption.

This manuscript is for review purposes only.
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INVENTORY CONTROL WITH UNKNOWN DEMAND TREND 5

ASSUMPTION 2.1. There exists constants p > 2, ag,aq1,as > 0 such that the
following hold true:

(i) 0 < C(z) < ag(l + [z|P), for every x € R;,

(ii) |C(z) = C(a")] < ar (14 C(x) + C(I'))liﬂx — /|, for every z,z’ € R;

(i) 0 < AC(z) + (1 = NC(@') — CAz+ (1 — Nz2') < a (1 =N (1 + C(x) +
C(x’))(l_%)kt —2'|2, for every z,2' € R and X € (0,1);

(tv) limy 100 C'(x) = to0.

Notice that Assumption 2.1.(ii7) above implies that C is convex and locally semi-
concave. Hence, by [5, Corollary 3.3.8], we have C' € C’llo’i“ip(R;RJr) (the class of
continuously differentiable functions, whose first derivative is locally Lipschitz), so
that the derivative in (iv) exists. A classical quadratic cost C(z) = (z —T)?, for some
target level T € R, clearly satisfies Assumption 2.1.

Given the feature of a non-observable u, (2.1) is not Markovian and cannot be
therefore tackled via a dynamic programming approach. We derive below a new equiv-
alent Markovian problem under full information, the so-called “separated problem”.
This will be then solved by exploiting its connection to a zero-sum game of optimal
stopping and by a careful analysis of the regularity of its value function.

2.1. The separated problem. In order to derive the equivalent problem under
full information, we use standard arguments from filtering theory (see, e.g. [34, Section
4.2]) and we define the “belief” process II; := P(u = 1 | Fy), t > 0, according to
which, decision makers update their beliefs on the (true) value of the drift u based
on the arrival of new information via the observation of the process S. Then, the
dynamics of XF and II can be written as

(2 2) dXtP = (,ulﬂt + /.LQ(l — Ht))dt + nth + dPt, X£ =z € R,
. dll; = ~IL(1 — IL;)dW4, I =m € (0,1),

where the innovation process W is an F*-Brownian motion on (2, F,P) according to
Lévy’s characterisation theorem (see, e.g., [34, Theorem 4.1]), and 7 := (1 — po)/n >
0. The triplet (X, II, P) is an F°-adapted time-homogeneous process on (€2, 7, P). In
(2.2), the (unknown/non-observable) drift 1 of X in the original model is replaced with
its filtering estimate E[u | F;]. Moreover, the belief (learning) process IT = (II;)¢>o
involved in the filtering is a bounded martingale on [0, 1] such that II, € {0,1}, due
to the fact that all information eventually gets revealed at time ¢ = oc.
Then, for (X ,I) as in (2.2), with (z,7) € O :=R x (0, 1), we define

(2.3) V(e,m):= if E { /0 e P (C(XT)dt + KTdP + K—dP,) |,

where all processes involved are now F¥-adapted. By uniqueness of the strong solution
to the belief equation, a control P* is optimal for (2.1) if and only if it is optimal for
(2.3), and the values in (2.1) and (2.3) coincide.

Note that, in light of the dynamics of (X7 II) in (2.2), a high value of II close to 1
would imply that the decision maker has a strong belief in a high drift p;, while a low
IT close to 0 would imply, on the contrary, a strong belief in a low drift po scenario.

Remark 2.2 (Full information cases). In the formulation (2.1), the case of prior
belief m := P(u = p1) € {0,1} implies the certainty of the decision maker regarding
whether © = pp or 4 = p1. Hence, in this case, there is no uncertainty about the
value of the drift u, which is not a random variable any more. Respectively, in the
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6 S. FEDERICO, G. FERRARI, AND N. RODOSTHENOUS

formulation (2.3), the case of prior belief Iy = 7 € {0, 1} yields that the belief process
II will actually remain constant through time, due to its dynamics which imply that
IT; = 7 for all ¢ > 0. Therefore, we equivalently have that such values of 7 € {0,1}
correspond to the full information cases.

In these cases, the optimal control problem becomes a standard one-dimensional
bounded-variation stochastic control problem, for which an early study can be found
in [26]. The resulting optimal control strategy is triggered by two constant boundaries
within which the process X is kept (via a Skorokhod reflection).

Given the convexity of C as in Assumption 2.1, and the linear structure of P
XP in (2.2), we can show the next result by following standard arguments based on
Komlés’ theorem (see, e.g., [21, Proposition 3.4] or [31, Theorem 3.3]).

PROPOSITION 2.3. There exists an optimal control P* for (2.3). Moreover, this
is unique (up to indistinguishability) if C is strictly convexz.

3. The First Related Optimal Stopping Game. We now derive a zero-
sum optimal stopping game (Dynkin game) related to V', and we provide preliminary
properties of its value function and of the geometry of its state space. In this section,
the uncontrolled process X° with P, = 0 for all t > 0 becomes involved in the analysis,
so we recall from (2.2) that (X?,I1;);>0 = (St, t)¢>0 is the two-dimensional strong
Markov process solving

(3.1)

dX? = (Il + po(1 — I0,))dt + ndW;, X§ =z €R,
dIly =1L (1 — Iy )dWr, Iy =m e (0,1),

PROPOSITION 3.1. Consider the process (XP,11;)i>0 defined in (3.1) and define

TNO

(3.2) v(z,m) = inf sup E(m)[/o e PO (XD At—K e P Loy + K e P Lm0y

where the optimisation is taken over the set of FW -stopping times and E(z,x) denotes
the expectation conditioned on (XJ,1y) = (z,m) € O. Consider also the control value
function V(x,m) defined in (2.3). Then, we have the following properties:
(i) x> V(x,m) is differentiable and v(x,m) = Vy(x,m).
(ii) x — V(x,m) is convex and therefore x — v(x, ) is nondecreasing.
(iii) m™— v(x,7) is nondecreasing.
(v ) (x,m) — v(x,7) is continuous on R x (0,1).

Proof. In this proof, whenever we need to stress the dependence of the state
process on its starting point, we denote by (XO‘(””"“/), H”') the unique strong solution
to (3.1) starting at (2, 7') € O at time zero. We prove separately the four parts.

Proof of (i). Thanks to Proposition 2.3, it suffices to apply [31, Theorem 3.2]
upon setting G =0, v, := e P*K*, and v := e P*K~, for t > 0, we get

t
H(w,t,z):= e—PtC<x+nWt(w)+/ (uo+(u1—uo)H8(w))ds), (w,t,z) € QxR XR,
0

and noticing that the proof in [31] can be easily adapted to our infinite-time horizon
discounted setting with right-continuous controls (see also [21, Lemma A.1, Proposi-
tion 3.4] for a proof in a related setting).

Proof of (i). Denote by (X7(®7) TI™) the unique strong solution to (2.2) when
(X(f_ ,IIg) = (z,7). The convexity of V(z,7) with respect to z, can be easily shown

This manuscript is for review purposes only.
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by exploiting the convexity of C(z) and the linear structure of (z, P) — X T3®™  for
any P € A and (z,7) € O. The nondecreasing property of v(-,7) then follows from
the fact that v =V, from part (7).

Proof of (iii). Notice that X? = x + nW; + fot (padlg + po(1 — 11,))ds, t > 0,
and that 7 +— II"™ is nondecreasing due to standard comparison theorems for strong
solutions to one-dimensional stochastic differential equations [30, Chapter 5.2]. Then,
the claim follows from (3.2) and Assumption 2.1 according to which x — C'(z) is
nondecreasing.

Proof of (iv). By [31, Theorem 3.1] and Proposition 2.3 we know that, for any
(z,7) € O, (3.2) admits a saddle point. Take (z,,m,) — (z,7) as n T oo, and let
(*,0*) and (77,07}) realise the saddle-points for (x,7) and (x,,m,), respectively.
Then, we have

T* Aoy,
v(z,m) — v(Tp, ™) < E[/O e~ Pt (C’(X,?;(I’W)) — C’(XS;(I"J"))) dt}
(3.3) < E[/ et |o(x ) - x| dt].
0

Without loss of generality, we can take (z,,m,) C (x —e,x +¢) x (7 —e,m + ),
for a suitable ¢ > 0 and for n sufficiently large. Then, by Assumption 2.1.(i4) and
standard estimates using Assumption 2.1.(7), the expression of X° and the fact that
IT is bounded in [0, 1], we can invoke the dominated convergence theorem and obtain
limsup,, . (v(z,7) — v(zp, 7)) < 0. In order to evaluate the difference v(zy,m,) —
v(z, ), we now employ the couple of stopping times (7,7,0*) and employ the same
rationale leading to (3.3) so to obtain lim sup,,_, . (v(2y, 7)) —v(2, 7)) < 0. Combining
the last two inequalities, we obtain the desired continuity claim. 0

In the rest of this section, we focus on the study of the optimal stopping game
v presented in (3.2), due to its connection to our stochastic control problem (cf.
Proposition 3.1). To that end, we define the so-called continuation (waiting) region

(3.4) Cri={(z,m)€0: —K* <w(z,m) <K},
and the stopping region S; := S; T U S, ~, whose components are given by
(35) S;ti={(z,m) €0 v(z,7) < -K*t}, S ={(x,m)€0: v(z,m) > K }.

In light of the continuity of v in Proposition 3.1.(iv), we conclude that the con-
tinuation region C; is an open set, while the two components of the stopping regions
S1F are both closed sets. We can therefore define the free boundaries

(3.6) ai(m) :=sup{zeR:v(z,m) < —K*t} a_(n):=inf{z eR:v(z,m)> K }.

Here, and throughout the rest of this paper, we use the convention sup ) = —oo and
inf ) = +o0o. Then, by using the fact that v is nondecreasing with respect to z (see
Proposition 3.1.(i7)), we can obtain the structure of the continuation and stopping
regions, which take the form

(3.7) Cir={(z,m) €O0: ay(r) <z <a_(m)},
(38) S ={(z,m)€0: v<ay(r)} and Sy ={(z,m)€O0: z>a_(m)}.

Clearly, the continuity of v further implies that the free boundaries a4 are strictly
separated, namely a(7m) < a_(mw) for all mw € (0,1).
We now prove some preliminary properties of the free boundaries 7 — a4 (7).

This manuscript is for review purposes only.
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PROPOSITION 3.2. The free boundaries ax defined in (3.6) satisfy:
(i) ax(-) are nonincreasing on (0,1).
(#i) ay(-) is left-continuous and a_(-) is right-continuous on (0,1).
(iii) There exist constants ¥ € R, such that x%, < ay(m) < a_(m) < x*, for all
7 € (0,1). Moreover, letting (C')~1 be the generalised inverse of C', we have
a(m) < (O H—pK™*) and a_(7) > (C")"L(pK™) for all w € (0,1).
Proof. Proof of (i). This is a consequence of the definitions of a4 () in (3.6) and
the fact that v(z,-) is nondecreasing for any x € R; cf. Proposition 3.1.(4i%).
Proof of (ii). This follows from part (i) above and the closedness of the sets S;~.
Proof of (iii). The fact that ay(7) < (C")"1(—pK™*) and a_(7) > (C")"L(pK ™)
follows by noticing that S;" C {(z,7) € O : 2 < (C") ' (—pK™*)} and S; C {(z,7) €
O:z>(C")"Y(pK~)}. These inclusions can be shown as follows.
Firstly, by [36, Theorem 2.1], the continuous process Z = (Z;);>o with

t
Zime (X0 + [ e re(xds t20,
0

is such that, under P, ), for any (z,7) € O, (Ziro+)i>0 is an F-supermartingale,
while (Ziar+)i>0 is an F-submartingale. In order to see this, set (using the nota-
tion of [36]) Xy := (t, X, 1), M(z,m) := Eun[fy" e P'C/(XD)dt], Gi(t,x,7) =
e P(—Kt — M(z,n)), Ga(t,x,7) := e P(K~ — M(z,7)), G3(t,z,7) := 0, and ob-
serve that
v(z,m) = M(x,7) + Sug)_ Helg_ Ez,m) [Gl(r, XS,HT)]L{T<[,} + Go(o, Xg,HU)]l{[KT}].
TET 9

Here, E( r[sup,so e 7 |M (X, 11;)|] < 0o, because (3.1) and standard estimates em-
ploying Assumption 2.1 yield that |M (z,7)| < x(1 + |z|P~1).

Then, we let t > 0, (x,,7,) € S and notice that, due to the F-supermartingale
property of (Ziag+)i>0 under P(, - y and the fact that v > — K™, we can write

7
-K* = (2o, mo) > E(wonro) [6p(tAU*)U(X?/\a*’Ht/\J*) +/ 6pSC/(X2)d5]
0
. tAo*
> E(mmﬂo) [ — KTertra™) +/ e_pSCI(XSO)dS:|
0

tAc*
= K++E(%JO){/ epS(C”(Xg)+pK+)ds}
0
Hence,
1 tho*
0> E(wo,ﬂo) l:t / e Ps (C’(Xg) + pK+>d8:| )
0

which, by taking ¢ | 0 and invoking the integral mean-value theorem and the domi-
nated convergence theorem, yields 0 > C’(z,)+pK*; that is, S; C {(z,7) € O : z <
(C")~Y(—=pK™*)}. Analogous arguments, now employing the F-submartingale property
of (Zipr+)i>0 and that v < K, show that S C {(z,7) € O: = > (C") 1 (pK™)}.
In order to show the other bounds, we proceed as follows. Since p; > po and
II; € (0,1), we have P, y-a.s., for any ¢ > 0, that X0 > x + Wi + pot = XV
and X? < z + nW; + uit =: Yto. Therefore, the latter two estimates yield that
XV < xP < YS for all ¢ > 0. Combining these inequalities with the fact that C’(-)

This manuscript is for review purposes only.



INVENTORY CONTROL WITH UNKNOWN DEMAND TREND 9

is nondecreasing due to Assumption 2.1 and the definition (3.2) of the value function
v(z, ), we conclude that

(3.9 vo(x) <wv(z,m) <wvi(z), forall (z,m)eO,

where we have introduced the one-dimensional optimal stopping games

TN
vo(z) := inf sup E, [/ e PO (XY)dt — Kte P10y + K_e_p”1{7>a}}
o€T reT 0

TNO
vi(x) ;= inf sup E, [/ e_”tC”(Y?)dt — K e " licpy + K_e_p"l{7>(,}} ,
o€T reT 0

with the two expectations E, being conditional on X, 8 =z or Yg = x, respectively.
Because both vg(-) and v1(+) are nondecreasing on R, standard techniques allow to
show that due to Assumption 2.1.(iv) there exists finite x* , 2% such that {x € R :
z>at}={reR: v(r)>K }and{zeR: s <azi}={zeR: v(z) <K'}
Hence, combining the latter two regions together with the inequalities in (3.9), we
eventually get that

{zeR: 2>z} C{(z,m) € O: v(z,m) > K} =8,
+

(3.10) {reR: 2<ai} C{(z,m) €0 v(z,m) < —K*t} =8

Hence, ST # ) and the claim follows from (3.10). O

4. A Decoupling Change of Measure. In order to provide further results
about the optimal control problem (2.3) and the associated Dynkin game (3.2), it
is convenient to decouple the dynamics of the controlled inventory process X and
the belief process II. This can be achieved via a transformation of state space and a
change of measure, as we explain in the following subsections.

4.1. Transformation of process II to ®. We first recall from (2.2) (see also
(3.1)), that for any prior belief Il = 7 € (0, 1), we have II, € (0, 1) for all ¢t € (0, 00).
Hence, we define the process ®; :=II; /(1 — II;), t > 0, whose dynamics are given via
1t6’s formula by

(4.1) A®, = 4@, (YL, dt + dW;), By = = 2.

Note that, the process ® is known as the “likelihood ratio process” in the literature
of filtering theory (see, e.g. [29]).

4.2. Change of measure from P to Qr, for some fixed T" > 0. We begin
by defining the exponential martingale {7 := exp{—~y fOT [, dW, — % fOT 72112ds}, and
the measure Qr ~ P on (2, Fr) by dQr/dP = (7.

Then, the process W} := W+~ fg IIsds, t € [0,T], is a Brownian motion in [0, 7]
under Qr, and the dynamics of ® in (4.1) simplifies to d®; = v®,dW;, t € (0,77,
dy = ¢, hence ® is an exponential martingale under Q. Consequently, applying
the same change of measure to the process X* from (2.2), we obtain dX} = uodt +
ndWy +dPt —dP,t€[0,T), X ==

In order to change the measure also in the cost criterion of our value function in
(2.3), we further define the process Z; := (1 + ®;)/(1+ ¢), ¢t € [0,T], which can be
verified via Itd’s formula to satisfy Z; = 1/(;, for every t € [0,T]. Hence, denoting

This manuscript is for review purposes only.



369

380

381
382
383
384
385
386
387
388
389
390
391
392

393

394

395
396

397

398
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by EQT the expectation under Qr, we have that

T
E{ / e (C(XF)dt+ KdP + K~dP) ]
0

1 T
(4.2) -1 EQr {(1 + @T)/ e Pt (C(ti)dt + KHdP + K‘dP{)} .
0

Since the process (1 + ®¢);>¢ defines a nonnegative martingale under Qr, by an
application of It6’s formula we can write

EQr {(1 + ®7) /OT ePtC’(XtP)dt] = EQr [/OT e i1+ @t)C(Xf)dt] :
EQr {(1 + @) /OT epthti} = EQr UOT e P 1+ @t)dpﬂ.

Hence, combining together the above expressions of the expectations EQT we get that
(4.2) can be expressed in the form of

T
E { / e=rt (C(Xg’)dt + K+dP + K‘dPt)}
0

T
(4.3) = ﬁ EQr [ / e P14+ ) (C(Xg’)dt + K+dP} + KdPt‘ﬂ .
0

4.3. Passing to the limit as 7' — oo and to the new measure Q. We firstly
notice that passing to the limit as T' — oo cannot be performed directly to the latter
expression in (4.3), since the measure Qr changes with T'. Nevertheless, noticing that
the right-hand side of (4.3) only depends on the law of the processes involved we can
introduce a new auxiliary problem.

To that end, first of all note that any P € A has paths that are right-continuous
and (locally) of bounded variation Qr-a.s. and it is FS-adapted since F¥ = FW =
FW". Then, define a new complete probability space (Q, F, Q) supporting a Brownian
motion (W;)i>o, let (F;)i>o be the raw filtration generated by W, and denote by
F := (F;)i>0 its augmentation with the Q-null sets. Hence, introducing

A:={P:QxR" — R such that ¢ — P, is right-continuous, (locally) of bounded
variation and P is F — adapted}7

by [13, Lemma 5.5] iadjgsted to our setting with right-continuous controls), given
P € A there exists P € A that is F,, —predictable and such that Lawq, (W*, P) =
Lawa(W, P). This in turn leads to (cf. [13, Corollary 5.6])

(4.4) Lawq, (W*, X", ®, P) = Lawg(W,X ,®,P),

where (YP,5) is the strong solution on (Q, F,F, Q) to the controlled stochastic dif-
ferential equation
AX, = podt +ndW, + dP; —dP,, Xy =uz,
d®; =, dW,, Dy ==

1—m?
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—+
with P~ denoting the nondecreasing processes providing the minimal decomposition
of PeAasP=P —P . - B
Denoting now by E the expectation on (€2, F) under Q, we have for every T > 0,

T
EQr [/ e (14 @) (C(X7)dt + KTdP,m + K~ dP;,) ]
0

T
_ E[/ (1 4+ ) (C(XD)at + K+ dP; + de;)} ,
0
due to (4.4). Therefore, combining the above equality with (4.3), we eventually get

T
E[/ e Pt (C(ti)dt + KTdP’ + K‘dPt)]
0
[ /" — P =+ ==

N — —pt + —

(4.5) 1+80E[/0 e (1+d>t)(C(Xt)dt+K APy + K dPt)],
Thanks to (4.5), we can now take limits as 7' — oo and obtain, in view of the

definitions (2.3) of the control value function and (4.1) of the starting value ¢, that

V(z,7)=(1- 77)7(90, ﬁ), or equivalently V(z,¢) = (1 + (p)V(x, ﬁ),
(4.6) _ _
where V (z,¢) := inf E

PcA

/ e (148, (C(X) )t + KHP! + K- dP; )] .
0

Therefore, in order to obtain the value function V(z, ) from (2.3), we could instead
solve first the above problem to get V' (z,¢) and then use the equality in (4.6). How-
ever, in order to simplify the notation, from now on in the study of V' we will simply

4.4. The optimal control problem with state-space process (X, ®) un-
der the new measure Q. Summarising the results from Sections 4.1-4.3, we hence-
forth focus on the study of the following optimal control problem

V (z,¢) := inf EQ
(47) PecA

= jof, Jow(P).

/e—ptu + @) (C(XF)at + KTapF + K‘dPt)}
0

under the dynamics
(4.8) dXF = podt + ndW; +dP;" —dP,, X =z €R,
’ d®; =~o,dW;, Oy = ¢ 1= 7= € (0,00),

for a standard Brownian motion W. In light of the equality in (4.6), this will lead
to the original value function V(z,7) from (2.3). In the remaining of Section 4, we
expand our study — beyond the values of the control problems — to the relationship
between the free boundaries in the two formulations, since these boundaries will even-
tually define the optimal control strategy (see Section 6).

4.5. The optimal stopping game associated to (4.7)—(4.8) under the new
measure Q. The next result is concerned with properties of the value function defined
in (4.7) and its connection to an associated optimal stopping game. The first existence
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claim follows from Proposition 2.3, since existence of an optimal control is preserved
under the change of measure performed in the previous section. The second claim can
be proved by employing arguments similar to those used in the proof of Proposition
3.1 above. Hence, the proof is omitted for brevity.

PROPOSITION 4.1. Consider the problem defined in (4.7)—(4.8).

(i) There exists an optimal control P* solving (4.7). Moreover, P* is unique (up
to indistinguishability) if C is strictly convez.

(ii) x — V(x, ) is conver and differentiable, such that V,(x,¢) = v(x,¢) on
R x (0,00), for

TAT
o(z, p) := inf sup EQ [/ e P 1+ @)C"(XP)dt — KT (14 @, )e 10y
7 0

T

(4.9) + K (1+ ‘I)U)eipa].{.r>g} ,
over the set of FW -stopping times and state-space process given by

(410) {dX,? = podt +ndW,, X% =z€eR,

d®; =@, dW;, Qo = := 7= € (0,00).

It further follows from the previous analysis, namely Sections 4.1-4.3, that the
value function v(z, 7) of the optimal stopping game in (3.2) is connected to the value
function o(x, ) of the new game introduced above in (4.9), according to (see also
(4.6) for the control value functions) the following equality

(4.11) oz, 0) = 1+ @) v(z, 155)-

In view of the above relationship, the value function @(-,-) inherits important prop-
erties which have already been proved for v(-,-) in Section 3. In particular, we have
directly from Proposition 3.1.(i7) and (iv) the following result.

PROPOSITION 4.2. The value function v defined in (4.9) satisfies:
(i) (z,0) = v(x,p) is continuous over R x (0,00);
(i) x — v(x,p) is nondecreasing.

Following similar steps as in Section 3 to study the new game (4.9), we define
below the so-called continuation (waiting) region

(4.12) Coi={(z,0) ERx (0,00): —Kt(1+¢)<v(z,9) <K (1+¢)},
and the stopping region Sy := Sy U S, ™, whose components are given by

S; = {(axgo) €ER x (0,00) : v(zw,p) < -KT(1 —|—<p)},

(4.13) Sy = {(.0) €R x (0,00) : t(,0) > K~ (1+)}.

Moreover, in light of the continuity of v in Proposition 4.2.(7), we conclude that the
continuation region Cy is an open set, while the two components of the stopping
regions S, are both closed sets. We can therefore define the free boundaries

by () := sup {x ER: v(z,p) < K+(1+80)},

(4.14) b_(p) :=inf{z e R: T(z,¢) > K~ (1+¢)}.
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Then, by using the fact that o is nondecreasing with respect to x (see Proposition
4.2.(i1)), we can obtain the structure of the continuation and stopping regions, as

Co={(z,9) ER x (0,00) : bi(p) <z <b_(p)},

(4.15) Sy={(z,0) ER x(0,00):2<by(¢)}, Sy ={(z,0) ER x(0,00):b_(p) <x}.

Clearly, the continuity of v implies that these free boundaries b are strictly separated,
namely b4 (@) < b_(¢p) for all v € (0,00).

Moreover, observe that the relationship in (4.11) together with the definitions
(3.4) and (4.12) of C; and Ca, respectively, imply that the latter two regions are equal
under the transformation from (z,7)- to (z, ¢)-coordinates. To be more precise, for
any (z,7) € R x (0,1), define the transformation T := (T1,T3) : R x (0,1) — R x
(0,00), by (T1(x,7), To(x, 7)) = (x, %), which is invertible and its inverse is given
by Tﬁl(x, @) = (z, 175), for (z, ) € Rx(0,00). Hence, T:Rx(0,1) = Rx(0,00) isa
global diffeomorphism, which implies together with the expressions of (3.4)—(3.5) and
(4.12)-(4.13) that Cy = T(Cy) and SF = T(S7). Taking this into account together
with the expressions (3.7)—(3.8) of C; and Si°, we can further conclude from the
expressions (4.15) of C; and S5 that

(4.16) bi(p) = ax (v55)-

Hence, in light of the previously proved results for a in Proposition 3.2, we also
obtain the following preliminary properties of the free boundaries ¢ — b4 (¢).

PROPOSITION 4.3. The free boundaries by defined in (4.14) satisfy:
(i) b+ (-) are nonincreasing on (0, 00).
(7) by (-) is left-continuous and b_(-) is right-continuous on (0,00).
(#ii) by () are bounded by x% as in Proposition 3.2: x% < bi(¢) < b_(¢) < ¥,
for all ¢ € (0,00). Moreover, we have by (p) < (C")"1(=pK™) and b_(p) >
(C"Y~Y(pK ™) for all ¢ € (0,00).

Notice that the explicit relationship (4.16) between the free boundaries ay and by
that we proved above, is not only crucial for retrieving the original boundaries a4
from by, but it is also particularly useful in the proof of Proposition 4.3.(7) and (#4i).
In fact, proving the monotonicity and boundedness of by by directly working on the
Dynkin game (4.9) is not a straightforward task.

Up this point, we managed to obtain the structure of the optimal stopping strate-
gies and preliminary properties of the corresponding optimal stopping boundaries as-
sociated with these strategies, for both Dynkin games (3.2) and (4.9) connected to
the optimal control problems (2.3) and (4.7), respectively. Moreover, we managed to
obtain some regularity results for the latter control value functions (see Propositions
3.1, 4.1 and 4.2). In Sections 5 and 6 below, building on the aforementioned analy-
sis, we show that the control value function V has the sufficient regularity needed to
construct an optimal control strategy. This will involve the boundaries 0.

*

5. HIB Equation and Regularity of V. In this section, we introduce the
Hamilton-Jacobi-Bellman (HJB) equation (variational inequality) associated to the
control value function V defined in (4.7) and state-space process (X, ®) given by
(4.8). First, let D C R? be an open domain and define the space C*"(D;R) as
the space of functions f : D — R which are k-times continuously differentiable with
respect to the first variable and h-times continuously differentiable with respect to
the second variable. When k = h we simply write C".
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We begin our study with the following ex ante regularity result for V. Its technical
proof can be found in the extended version of this paper [22].

PROPOSITION 5.1. The control value function V defined in (4.7) is locally semi-
concave; that is, for every R > 0 there exists Ly > 0 such that for all X € [0,1] and
all (x, ), (2, ¢") such that |(z, )| < R and |(z',¢")| < R, we have

AV (2, 0)+(1=NV (2, ') =V (A, )+ (1= (2", ¢") < LrA(1=N)|(z, )~ (a',¢")[*.
In particular, by [5, Theorem 2.1.7], we conclude that V is locally Lipschitz.

Given the locally Lipschitz continuity proved in the previous result, we now aim
at employing the HJB equation to investigate further regularity of V. To that end,
we define on f € C?(R x (0,00); R) the second order differential operator

1

Lf(w,0) = pofa(w, ) + 5 (1% faz (@, 0) + V202 o (2, 0) + 200 fro (z, ) -

By the dynamic programming principle, we expect that V solves (in a suitable sense)
the HJB equation (in the form of a variational inequality)

(5.1)

max {(p—Lyu(z, ¢) = (149)C (), —ua(z,9) = K+ (1+¢), uz (z,90) = K~ (1+¢) } =0,

for (z,) € R x (0,00). In particular, we now first show that the value function V'
of the control problem defined in (4.7) is a viscosity solution to (5.1); refer to [21,
Definition 4.5] for the formal definition in a similar setting and references related to the
validity of the dynamic programming principle. Following the arguments developed
in [25, Theorem 5.1, Section VIIL5], and using the a priori regularity obtained in
Proposition 5.1, one can show the following classical result.

PROPOSITION 5.2. The value function V defined in (4.7) is a locally Lipschitz
continuous viscosity solution to (5.1).

Recall definition (4.12) of the continuation region Cy of ¥(z,¢) in (4.9) and the
relationship V. (z, p) = v(z, ¢) on R x (0, 00) from Proposition 4.1.(i7), to see that

(5.2) Co={(z,0) eERx(0,00): —KT(1+¢) <Vu(z,0) <K (1+¢)}.

This implies that C, identifies also with the so-called “inaction region” of V, as sug-
gested also by the HIJB equation (5.1). Combining the latter fact with Proposition
5.2 clearly implies the following result.

COROLLARY 5.3. The value function V defined in (4.7) is a locally Lipschitz con-
tinuous viscosity solution to (p — L)u(z,¢) — (1 4+ ¢)C(x) =0, for all (z,¢) € Ca.

The result in Corollary 5.3 will be used in the forthcoming analysis to upgrade
the regularity of the value function in the closure of its inaction region which is the
main goal of Section 5. Before reaching this (final) step of our analysis in this section,
we prove that V is actually globally continuously differentiable.

PROPOSITION 5.4. The value function in (4.7) satisfies V € C*(R x (0,00);R).

Proof. In order to prove that V € C1(R x (0,00);R), we need to prove that
both (classical) derivatives V(z,¢), Vo, (2, ¢) of V(z,¢) in the directions z and ¢,
respectively, are continuous on R x (0, 00). We thus split the proof in two steps.

Step 1. Continuity of V. We already know from Proposition 4.1.(ii) that V, = ©
exists and from Proposition 4.2.(3) that (x, @) — o(x, ) is continuous over R x (0, 00).
Hence, we conclude that (x,¢) — V. (x, ) is continuous on R x (0, 0).
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Step 2. Continuity of V,. Let us now show that the (classical) derivative V,
exists at each (x,,¢,) € R x (0, 00).

We assume, without loss of generality?, that V is actually concave in a neighbor-
hood Z of (z,,,). Then, by concavity of V in Z, the right- and left-derivatives of V'
exist in the p-direction at (z,,p,). We denote these derivatives by VI (o, ©o) and

qu (20, po), respectively, and dile to concavity they satisfy V; (To, Po) > V: (Zo, @o)-
Then, in order to show that V, exists, it suffices to show that the strict inequal-

ity Vi, (2o, 90) > V;(zo,wo) cannot hold. Aiming for a contradiction, we assume

- —+
henceforth that V', (z,,¢,) >V, (%0, po) does hold true.

It follows from [37, Theorem 23.4] and the fact that V, exists and is continuous
(cf. Step 1 above) that there exist vectors

¢:= (Vw(xo,%),gp), n:= (Vw(xo,@o),n@) € D"V (w,,¢,) such that Co <Ny,

where we denote by DTV (z,,,) the superdifferential of V at (z,,¢,). For any
(z,¢) € Z, we then define

g(x, ) := V(xm ©o) + Val(to, 00)(x —x,) + 7790(@ — ¥o) A Cw(@ — ¥o)

and notice that V(z,, 0,) = 9(,, o), while we also get by concavity that V(z, ) <
g(z, ), for all (z,¢p) € Z. Next, we consider the sequence of functions (f™)nen C
C?(R x (0,00);R) defined by

S (@,0) == g(x,00) + 50y + (o) — o) — 2(p — @o)?, VneN.

Such a sequence satisfies the following collection of properties, for any n € N:
fn(xoai@o) = g(xov 900) = V(xov <»00)7
f™ >V in a neighborhood of (z,, ¥,),

fg(xoa 900) = Vw('rm on)a f;Lz(xov %00) =0= f;sa(xov ()00)7 f;L(p(x07 900) = —n.
Then, using the viscosity subsolution property of V at (z,,,) yields
0> (p = L) (@0, p0) = (1 +95)Clo) =3 +o0,

which gives the desired contradiction. Hence, by arbitrariness of (z,,¢,), we have
that V is differentiable in the direction (.

In view of the aforementioned differentiability in the direction ¢ and the semi-
concavity of V' (cf. Proposition 5.1) we conclude from [37, Theorem 25.5] that V., is
continuous on R x (0, 00). d

We are now ready to show the final result of this section, namely to upgrade
the regularity of the control value function to the minimal required regularity for
constructing a candidate optimal control policy and verify its optimality in Section 6.

To this end, we define for any (x, ) € R x (0,00) the transformation

(53) T:= (TlaTQ) (R (0,00) - R27 (Tl(l’,(p),TQ(JZ,(p)) = (x,x - %log(¢))a

2This can be done by replacing the (locally) semiconcave V (z, p) by W (z, ) := V(z,¢)—Co|(z—

To,® — o)|? for suitable Cp > 0 in the subsequent argument.
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which is invertible with inverse given by T-(z,y) = (z,e7®™¥), for (x, y) € R2.
Using the latter inverse transformation, we introduce the transformed version V(m, Y)
of the value function V'(x, ¢) defined in (4.7) by

(5.4) V(@,y) = V(z,ed"V),  (0,y) ¢ R
Moreover, direct calculations yield that
(5.5) Vo(@,y) + Vy(w,y) = Va(w,en ), (2,y) € R,

Given that T : R x (0,00) — R? is a global diffeomorphism, we have from (5.2) and
(5.5) that the open set

(5.6)

Cs:={(z,y) eR*: =K (1 + en TV < (‘A/x + ‘A/y)(as,y) <K~ (1+en@™¥) )} =T(Ca).

Finally, define the second-order linear differential operator on f € C*!(R?;R) by
(5.7) Lxy f(@,y) = 30° foa(@,9) + pofu(x,y) + 5 (1o + ) fy (2, y)

PROPOSITION 5.5. The transformed value functwn 1 defined in (5.4) is such that
V € CY(R%R) and V,, € L®(Cs;R). In addition, V is a classical solution to

(5.8) (p— Lxy)u(z,y)=C(z)(1+ en @Y for all (z,y) € Cs.

Proof. First of all, due to Corollary 5.3 and the expression of the transformed
value function in (5.4), one can easily verify that V is a viscosity solution to (5.8) on
C3 due to (5.6). Then, in light of Proposition 5.4 and the above smooth transformation,
we also obtain that V € C* (R%R).

By a standard localization argument based on the fact that Visa continuously
differentiable viscosity solution to (5.8) on Cs and results for Dirichlet boundary prob-
lems involving partial differential equations of parabolic type (see [33]), we have that
actually V € C21(C3;R) and solves (5.8) on C3 in a classical sense. Hence,

~

Ve (z,y) = —C(x)(1 + 7 ™) 4 oV (2, ) — po Vi@, y) — 3 (1o + 1) Vy (2, ),

for all (z,y) € C3. However, since we know that Ve C1(R%;R) and the right-hand
side of the above equation only involves continuous functions on R2, we conclude that
V. admits a continuous extension on C3 (where C3 denotes the closure of C3), so that
‘A/M € L>(C5;R). This completes the proof of the claim. 0

o=

6. Verification Theorem and Optimal Control. Given the regularity of v
obtained in Proposition 5.5 and the relation (5.4) between V and V defined in (4.7),
we are now able to prove a verification theorem. Namely, in what follows, we provide
the optimal control for V in terms of the boundaries b1 defined in (4.14). Before we
commence the analysis, recall also the properties of by proved in Proposition 4.3.

6.1. Construction of control P for state-space process (XP ®). For any
given (z,¢) € R x (0,00), we define the admissible control strategy P := Pt — P~
such that the following couple of properties hold true Q-a.s:

by (@) < Xl3 < b_(Dy), for almost all t > 0;
Pt _
(6.1) P = {XP <bi (P, )} / ]1{XP >b_ (. )}dP vt > 0;

(0,1] 5=
dz + dz=0, Vt >0,

AP+
/“ {(Xff+z7<1>t)ecz} 0 {(Xf,—z@t)ecz}
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where Aﬁti = ﬁti - Igti_

In practice, according to the aforementioned strategy, a lump-sum increase or
decrease of the inventory process X may be required, whenever the inventory level X;
happens to be either strictly below the boundary b, (®;) or above b_ (®;), respectively.
The purpose of these jumps of at most one of the controls ﬁti at each such ¢t >
0, of size either (by(®;) — X2 )t or (XF —b_(®;))", is to bring immediately the
inventory level X; inside the interval [by (®;),b_(®;)]. Mathematically, these are the
actions caused at any time ¢ > 0, by the jump parts Aﬁti of the controls P*. The
strategy further prescribes taking action (increase or decrease the inventory) when
the inventory process X, approaches, at any time ¢ > 0, either boundary by (®;) from
above or b_(®;) from below. The purpose of these actions now is to make sure (with a
minimal effort) that the inventory level X, is kept inside the interval [b4(®;),b_(P,)].
Mathematically, these actions are caused by the continuous parts of the respective
controls P* and are the so-called Skorokhod reflection-type policies.

The nonincreasing property of by (-) (see Proposition 4.3.(7)) further implies that,
the stronger the decision makers’ belief is about a high average inventory level p
(i.e. higher ¢, cf. (4.1)), they tend to unload part of excess inventory more often so
that inventory is kept below the optimal level b_(¢p), and delay placing replenishment
orders by setting a lower optimal base-stock level by ().

In multi-dimensional settings, the construction of a solution to a Skorokhod re-
flection problems is usually a delicate task, that is intimately related to the regularity
of the reflection boundary (see [17] and [32] for a discussion and literature review). In
our case, given that the dynamics of X P and ® are decoupled and that X* = X0+ P
(cf. (4.8)), the solution triplet (X[, @, ﬁt)tZO to the Skorokhod reflection problem at
the boundaries b+ can be constructed by adapting the iterative procedure developed in
[21, Section 4.3]. In particular, with reference to the notation adopted in [21], we define
o = inf{t > 00 @ < by (®y) —pot—nWik, 7o = 1inf{t > 0: 2 > b_(®;) — pot —nWs}
and 79 := 7 A7, . Notice that, because inf;>q (b—(®;) — b4 (®¢)) > 0 by Proposi-

tion 4.3.(iii), we have {r;” = 7, } = {70 = oo}. Then, we set Qn, = {7 = o0},
Qp = {7 <75}, Q. :={ry <75} and CY := z, for all t > 0, and recursively
introduce:

xZ, on Qooa

Ifk>1isodd, CF:=1qx+maxep, .4 (br(®s) —pos —nWs — ),  on Qy,
& 4 minge(r, 4 (b-(Ps) — pos —nWs —x)~, on Q_,

0, on Quo,

with 75 := < inf{t > 7,1 : CF > b_(®¢) — pot — Wy}, on Q,

inf{t > 7,1 : CF < by (®) — ot —nW;}, on_.
x, on e,
If k>2iseven, CF:={ 2+ maxXse(r, .4 (0+(Ps) — pos — Wy — )™,  on Q_,
T 4 minge(r, 4 (b-(Ps) — pos — Wy — )™,  on Q,

0, on Quo,

with 75 := < inf{t > 7,1 : CF > b_(®y) — pot — Wy}, on Q_,

inf{t > 7,1 : CF < by (®) — pot —nW;}, on Q.

In light of these definitions, one can then proceed as in [21, Section 4.3] in order to
conclude the existence of a solution to the reflection problem (6.1).
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18 S. FEDERICO, G. FERRARI, AND N. RODOSTHENOUS

It then follows from (6.1) above together with the definitions (4.14) of boundaries
b+, the region Cy from (4.15) and the fact that © = V, from Proposition 4.1. (i4), that

the nondecreasing processes P* are such that the state- space process (X P ,®) and
the induced (random) measures dP* on R+ satisfy:

(X,:,CI)t) € Cy, for Q® dt-a.e., with Cq as in (4.15);
(6.2) dP* has support on {t >0:V, (XtP,CDt) <-K+t(1+ @t)};
dP~ has support on {t>0: Vz(Xf,q))_K (14 ®,)}.

6.2. Transformation of controlled process (Xﬁ,q)) to (Xﬁ,Yﬁ). We now
use the transformation (5.3) from (z, ¢)- to (z,y)-coordinates, in order to define the
controlled process

(6.3) V=X~ Zlog(®:), t>0.

Recalling the transformed value function (5.4) and the relation in (5.5), we have

VX YD) =V (XP 3 EY0) (0, 4 V)(XP Y =V, (x], e XD,

under the dynamics

(6.0 dXP = podt +ndW; +dPf —dP;, X =z €R,

' AV = L(uo + m)dt + AP —dP7, YL =y:=a - Llog(p) € R.
Hence, we can express the control P defined in Section 6.1 in terms of the state- space
process (XP YP) via
(6.5)

(XF,Y,F)eCs, for Q® dt-a.e., where C3 is defined in (5.6);
dP+ has support on {t>0: (Vm + Vy)(XtP,YP) <-KT(1+ en(XF*YtP))};
dP~ has support on {t>0: (‘7@ + Vy)(XtP,YtP) >K (1+ e?(XtP_YtP)))}.

6.3. Optimality of control P. In this section we prove the optimality of the

control P defined through (6. 1), which is equivalently expressed by (6.2) in terms

of the state-space process (X7, P

(XP YP), see Sections 6.1-6.2.

®) and by (6.5) in terms of the state-space process

THEOREM 6.1 (Verification Theorem). The admissible control P € A defined
through (6.1) (see also (6.2) and (6.5)) is optimal for Problem (4.7). Actually, P is
the unique optimal control (up to indistinguishability) if C is strictly convex.

Proof. Let (Xoﬁ_,Yoﬁ) = (x y) = (z,2 — nlog(¢)/v) € C3 be given and fixed.
Define 7, := inf{t > 0 : |(XtP,YP)| > n} An, for n € N, with state-space process
(XP YP)asin (6.4), and recall that (X7, V) € C3, Q-a.s. for all ¢ > 0. In particular,
Lemma A.1 in Appendix A yields that for any ¢ > 0, Q((ti,@t) € () =1, and

therefore Q((Xtﬁ ,Y;ﬁ ) € C3) = 1. Then, given the regularity of V (cf. Proposition
5.5), we can employ the approximation argument via mollifiers developed in the proof
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of [25, Theorem 4.1, Chapter VIII], in order to conclude that
V) = e VXL v0)] ~ €] [ (exy — VXD D)
0

_EQ[/TnpS(‘A/ ‘Z;)(XP YP dPC Ze ps( XP YP) V(Xf_,sti))}
0

0<s<1,

where P¢ denotes the continuous part of P and the final sum is non-zero only for
(at most countably many) times s such that AP; := Py — P;_ # 0. Clearly, AP, =

Aﬁj - Aﬁ;, where Algsi = ]33[ PE and notice that

S—

Zeps{ V(xP vP) - ?(Xf_,iqi))—/om(

0<s<7,

<>

+V, )(Xsﬁ_ + u, sti + u)du

. /APJ(f/x + %)(Xf_ — u, sti — u)du} =0.
0

Hence, plugging the last formula into the penultimate one and using (5.8), the non-
negativity of V', the second and third property of control P in (6.5), we see that

V(x,y) > EQ{/ e ps(l—i—en(X )C(Xsﬁ)ds]
0
+EQ[ / PR (14 3T P 4 / P K (14 3T >)d133].
0 0

Then, we take limits as n 1 co and we invoke Fatou’s lemma (given the nonnegativity
of all the integrands above) to find that

V(z,y) > EQ[/OOO —ﬂ8(1+en<X Y. >)C(Xf)ds]

+EQU e K (14 ed 3T YN apr 4 / e_pSK_(l+63(X5_Yf))d}3;}
0 0

Given now that X — VP = nlog(®)/v by definition (6.3), and that (5.4) yields
V(z,y) = V(r,z — nlog(e )/’Q— V(z, ), we further conclude from the latter in-
equality that for any (z,¢) € Co (as we assumed (z,y) = (z,z — nlog(v)/v) € Cs)

(6.6) V(x,p) > EQ [/e_ps(l—l—(I)S)C(Xf)ds—&—/e_ps (1+9,) (K*ﬂﬁ:‘—f—K‘dﬁ;)].
0 0
Combining this inequality with definition (4.7),ie. V(x,0) < 7%,’90(?)7 we prove that

P is an optimal control, for any (z,¢) € Co.
Suppose now that (x,¢) is such that x < by (¢), so that (x,¢) € Si. Then,
according to (6.1) (see also (6.2)), and using (6.6), we have that

Tuo(P) = K*(1+ ) (b4(¢) — 2) + T, (0),0(P)
bi(p) o
sV@mm@—/ V(2 0) = V(. o).

xT

Proceeding similarly also for (, ¢) such that = > b_(¢), we conclude that P is indeed
optimal for any (x,¢) € R2. O
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7. Refined Regularity of the Free Boundaries and their Characteriza-
tion. In this section we will obtain substantial regularity of the value o(x, ¢) of the
Dynkin game (4.9), as well as an analytical characterisation of its correspondmg free
boundaries by, and consequently the optimal control rule P (see Theorem 6.1).

7.1. Parabolic formulation and Lipschitz continuity of the free bound-
aries. In view of a further change of variables, in line with (6.3), we define Y;? :=
XD — %log(q)t), t >0, with X° as in (4.10). Then, by It&’s formula, we have

1) {dXtO = podt +ndW;, X% =z €R,

AV = §(po +m)dt, Y =y:=x— Llog(p) €R,

and (4.9) rewrites in terms of the new coordinates (z,y) = (X§,YY) as

o(x,y) :=infSUpEQ[/ e ”t(1+e*<X Yf)C’(X?)dt—e—pT(1+en<X Y>)
ag T 0

(7.2) Kt Tircoy +e” pa(l—i—eW(X Y)>K ]l{_,_>g}] (x en (@ y))

for (x,y) € R2. In view of the relationship in (7.2), the value function o(-,-) inherits
important properties which have already been proved for o(-,-). To be more precise,
we first conclude immediately from Proposition 4.2.(i) the following result.

PROPOSITION 7.1. The value function (x,y) — 0(x,y) defined in (7.2) is contin-
uous over R?.
=V,(z, exp{ﬂy(x —y)/n}) by Proposition
Va(z,y) —|—V (z,y) for all (z,y) € R%, and
) takes the form

Moreover, since o(x, exp{y(x — y)/n})
4.1.(i1), it follows from (5.5) that v(z,y) =
consequently the open set Cs defined in (5.

6
(7.3) C3 ={(z,y) e R*: K+(1—|—eﬂw y)) o(z,y) < K~ (l—l—e'l("” y)} T(Cs).
Hence, by also defining the closed sets
Sf = {(z,y) €R?: B(z,y) < —KH(1+er" W)},
Sy = {(z,y) € R?: ¥(z,y) > K- (1+ eW(‘T*y))},
the global diffeomorphism T from (5.3) implies that S = T(SF) as well, where Cy
and Sy are the continuation and stopping regions (4.12)-(4.13) for the Dynkin game
v in (4.9). Combining these relationships with the structure of the latter regions in
(4.15) yields that Cs and S3* are connected.

In order to obtain the explicit structure of the regions C3 and S5, we now define
the generalised inverses of the nonincreasing by (cf. Proposition 4.3) by

(7.5) b;l(x):=sup{cp€(0,oo):b+(<p)2m}, b= ' (x):=inf{p € (0,00):b_(p) <z}.

Since the map ¢ — Th(z, ¢) in (5.3) is decreasing for any given z € R (cf. the functions
by are nonincreasing due to Proposition 4.3.(i)), we have

(7.4)

(z,y) €Cs & (:1076%(9“9)) €Cr& x— Llog(b- Ya)<y<a— Zlog(by L)),

while similar relations hold true for the characterisation of Ssi. Then, by defining

(7.6) i (w) == o — Zlog (b1 (2)),
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we can obtain the structure of the continuation and stopping regions of v, as

S ={(z,y) eR*: y>c;'(x)} and Sy ={(z,y) eR*: y<c '(2)}.

(77 Cs={(z,y) eR?*: ¢Zl(z) <y <c ()},

The next lemma can be proved thanks to (7.5), (7.6) and Proposition 4.3.

LEMMA 7.2. The functions cz'(-) defined in (7.6) are strictly increasing, while
' (+) is left-continuous and ¢ (-) is right-continuous on R.

In light of Lemma 7.2, for y € R, we may define the functions
(7.8) ci(y) :=inf{z €eR: y<ci'(x)} and c_(y) :=sup{z e R: y>c ' (z)}.

In the following result, we prove that y — c4(y) identify with the optimal free bound-
aries of the Dynkin game ¥ in (7.2) and provide some important properties such as
their global Lipschitz continuity.

PROPOSITION 7.3. The free boundaries c+ defined in (7.8). Then,
(1) c+(-) are nondecreasing on R and we have x% < ci(y) < c_(y) < a* for all
y € R (with 2% as in Proposition 3.2). Moreover, c4(y) < (C')~}(—pK™T)
and c_(y) > (C") Y (pK™) for all y € R;
(i) c+ () are Lipschitz-continuous on R with Lipschitz constant L = 1, namely
0<ci(y) —cx(y) <y—y', forally >y
(iii) The structure of the continuation and stopping regions for (7.2) take the form

Cs={(z,y) €eR*: ¢y (y) <z <c (y)},
S; ={(z,9) €eR?: z<c,(y)} and Sy ={(z,y) € R?: 2> c_(y)}

Proof. Proof of (i). The first part of the claim follows from Lemma 7.2, together
with the definition (7.8) of c+. The second and third parts of the claim are due to
the fact that 77 as in (5.3) is the identity.

Proof of (ii). Using the definitions (7.6) of ¢z' and the monotonicity of b3" (see
proof of Lemma 7.2) we get

(7.9) ez (x) —ci' (@) =z — 1 log(b3!(x)) — 2’ + 1 log(bz'(z')) >x—a', Va>2a

Combining this with definitions (7.8) and part (i), we obtain the desired claim.
Proof of (iii). This is again due to the definitions (7.8) of ¢4, their monotonicity
from part (i) and the expressions of the sets in (7.7). 0

7.2. Global C'-regularity of ©. For any (r,y) € R? given and fixed, we con-
sider the strong solution to the dynamics in (7.1), denoted by Xto’x =z + pot + Wi
and Yto’y =y+ %(ul + up)t, t > 0 and we define
(7.10)

P, y)i=inf{t > 0: (X0, YOV €8F), o, y)i=inf{t > 0: (X0, Y,0) € S5},

Notice that, in light of the one-to-one and onto transformations T and T, the
pair (7*(x,y),0*(x,y)) realises a saddle point for the Dynkin game with value v(x, y)
in (7.2) if and only if, by setting 7 := e%(m_y)/(l + e%(z_y)), the stopping times
Flx,m) = inf{t > 0: (XP", 1I7) € S} and &(x,7) := inf{t > 0 : (X", 1IF) € S}
form a saddle point for the game with value v(x, 7) in (3.2). In order to prove the latter
claim, one can apply [36, Theorem 2.1] (see also [18, Theorem 2.1]) by proceeding as
in the proof of item (iii) in the proof of Proposition 3.2.
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In the sequel, we aim at deriving the global C'-regularity of #(,-). In order to
accomplish that, we need the following result about the regularity (in the probabilistic
sense) of (7*,0%).

LEMMA 7.4. Suppose that (xn,Yn)nens C Cs is such that (zn,yn) = (To,Yo),
where y, € R and z, := cy(yo) (resp., o := c—(Yo)), then 7*(xn,yn) — 0 (resp.,
o*(Tn,yn) — 0), Q-a.s..

Proof. We prove the claim for 7*(xy,,yn), since the proof for o*(z,,y,) can be
performed analogously. Fix w € 2 and assume (aiming for a contradiction) that
limsup,,_, oo 7*(zn, yn)(wg =: § > 0. Namely, there exists a subsequence, still labelled
by (Zn,Yn), such that X" (w) > ¢, (YY), for all n € N* and ¢ € [0,6/2], that is,

(7.11) @y + pot +nWi(w) > i (Y + 2(u1 + po)t)  VneN*, Vte[0,6/2].

Hence, taking the limit as n — oo and considering that ¢y is continuous (see Propo-
sition 7.3.(i1)), nWi(w) > c4(yo + 3 (p1 + p0)t) — To — pot, for all ¢t € [0,6/2]. Using
now the Lipschitz continuity of ¢} (see again Proposition 7.3.(ii)), we further obtain
VneN*and Vit e [0,5/2] that

(7.12)  qWi(w) > c4(Yo) — 5(11 + po) Tt = x0 — pot = —5 (1 + p0) ™ + pio) 1.

However, by the law of iterated logarithm, we have that (7.12) can only happen for
w belonging to a Q-null set and the proof is complete. ]

Remark 7.5. From the previous proof one can easily observe that, by replacing the
strict inequality with the large one in (7.11), we can actually prove that 7*(z,,, y,) — 0
and 5*(z,, yn) — 0, Q-a.s., where

(7.13) P, y) = inf{t > 0: (X207, V,2Y) € Int(SF)},
(7.14) &*(x,y) == inf{t > 0: (X", YY) € Int(S5)}.

We now show that the value function ¥(z,y) of the Dynkin game (7.2) is smooth
across the topological boundary dCz of the continuation region C3 from (7.3) in both
directions x and y. The proof borrows ideas from [11] and exploits the probabilistic
expressions of the derivatives of ¥, Lemma 7.4 and Remark 7.5. Full details can be
found in the extended version of this paper [22].

PROPOSITION 7.6 (Smooth-fit). Let y, € R and set x, := c+(yo). Then the
value function U defined in (7.2) satisfies

lim  Uy(x,y) = :FlKie%(w”_y"), lim  9y(z,y) = +) g ed(@omve),
(z,9) = (20,y0) n (z,9) = (0,y0) n
(z,y)€Cs (w,y)eCs

We are now ready to derive the global Cl-regularity of ¥ as well as the local
boundedness of its second derivative in x.

PROPOSITION 7.7. The value function ¥ defined in (7.2) satisfies v € C1(R?;R)
and Uy, € L (R?%;R).

loc
Proof. By standard arguments based on the strong Markov property and Dirichlet
boundary problems involving second-order partial differential equations of parabolic
type, one can show that ¥ in (7.2) is a classical C*!-solution to (p — Lx vy )u(z,y) —
(1 +e%(‘”_y))0'(aﬁ) =0, for all (x,y) € C3, where Lx y is the second-order differential
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operator defined in (5.7) and Cs is given by (7.3) (see also Proposition 7.3.(ii7)). Also,
v € O in the interior of Sgi. Hence, by Proposition 7.6 we have that o € C'(R?;R).

Arguing now as in the proof of Proposition 5.5, we have that U,, admits a con-
tinuous extension to Csz, and is therefore bounded therein. Hence, for y € R, we have
that U, (-,y) is Lipschitz continuous on [c4(y), c—(y)], with Lipschitz constant K (y)
which is locally bounded on R. Combining this with the fact that v,(-,y) is infin-
itely many times continuously differentiable in Sgi, thus locally bounded therein, we
conclude that v, € L2 (R%;R). ad

loc

7.3. Integral equations for the free boundaries. By Proposition 7.7, and
by using standard arguments based on the strong Markov property (cf. [18] and [36]),
we have that the value function v defined in (7.2) and the free boundaries c4 satisfy

(Lxy = p)B(@,y) = —(1+ e V)0 (@), cily) <@ <c(y), yeR
(Lxy = p)o(@,y) = pKH(1+en"Y), r<ci(y), yeR
(Lxy = p)B(,y) = —pK~(1+ 7)), z>c(y), yeR

(z—y)

K1+ e ) <z, y) < KH(1+en® ), (z,y) € R

We recall that Lx y is the second-order differential operator defined in (5.7), v €
CL(R%R), Uy € L (R%R) and © € C*! inside C3 (cf. Propositions 7.3.(iii) and

loc
7.7). Hence, via the above results and a suitable application of (a week version of)

It6’s lemma (see, e.g., [2, Lemma 8.1, Theorem 8.5] and [3, Theorem 2.1]), we firstly
obtain an integral representation of U; since this result is nowadays somehow classical,
we omit details.

PROPOSITION 7.8. Consider the free boundaries c+ defined in (7.8) and (X°,Y?)
from (7.1). Then, for any (x,y) € R?, the value function ¥ of (7.2) can be written as

o(z,y) = EQ ) [/O et (14 e ))C/(Xg)]l{c+(Y30)<XQ<c(Yf’)}ds}
e ol 0 _
+E3.) UO *p(1+ e X YD) (K1 xose_voyy — Kﬂl{xgsmn@)})dS} :

where E?Z ) S the expectation under Q4. such that (X Y0) starts at (z,y) € R2.

The previous representation of v allows us to determine a system of integral
equations for c4 (see (7.8) for their definition and Proposition 7.3 for their properties),
which is the main aim of this section. To this end, denote by G(z;m,v) the density
function of a Gaussian random variable with mean m and variance v/2.

PROPOSITION 7.9. Let q(z,y) :=1+ en @Y The free boundaries c+ defined in
(7.8) solve the system of integral equations

T KEq(ca(y),y) = /0 ( /R q(z,w){O'<z>1{c+<yg)<z<c(Y;})}

+ K 1 (voyy — K 1 face, (voy }G(Z; cx(y) + pos, TIZS)dZ> ds.

Moreover, (cq,c_) is the unique solution pair belonging to the set Dy x D_, where

Dy:={g:R = R: g is continuous, nondecreasing, s.t. 2%, < g(y) < (C") "' (—pK™)}
D_:={g:R — R: g is continuous, nondecreasing, s.t. (C')'(pK~) < g(y) < z* }.
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Proof. The integral equations follow by taking x = c+(y) in Proposition 7.8,
employing the value function’s continuity (i.e. 0(c+(y),y) = FK* (1 +exp{y(cs(y) —
y)/ 77}), for any y € R), and finally noticing that Y is a deterministic process and

that XS’Ci(y) is Gaussian under Q with mean c (y) + uos and variance 7?s.

The fact that ct belong to the classes Dy follows from their continuity, mono-
tonicity, and boundedness in Proposition 7.3.

Finally, we can proceed as in [9, Lemmata 3.15, 3.16, Proposition 3.17, Theorem
3.18] to prove the uniqueness. Notice that the problem in [9] has a finite time-horizon
T and the free boundaries satisfy suitable terminal conditions at T. However, a careful
investigation of the proof of [9, Lemma 3.15] reveals that such terminal conditions can
be replaced in our problem by the transversality condition (already satisfied by %)

: Q
(7.15) %1%10 E e

[e™Tua (X7, Y7)] =0,

imposed on a candidate value function u, (cf. [9, Eq. (3.56)]). The arguments in the
proofs of [9, Lemma 3.16, Proposition 3.17, Theorem 3.18] do not exploit the terminal
conditions of the free boundaries, so that they can be adapted to the present setting.0

Remark 7.10. The complete characterisation of the boundaries ¢+ provided by
Proposition 7.9 together with (7.6), yield a complete description of the free boundaries
b, at which the optimal control rule P constructed in (6.1)~(6.2) (see Section 6.1 for
details) commands the process (X[, ®;);>0 to be reflected.

Indeed, once c4 are determined by solving (numerically) the system of integral
equations in Proposition 7.9, we can use (7.6) to obtain b1, and consequently deter-
mine by by inverting (7.5). However, such a numerical treatment is non trivial and
outside the scopes of the present work, we do not address it in this paper.

Appendix A. Technical Result.

LEMMA A.1. Let W be a one-dimensional Brownian motion on the complete fil-
tered probability space (Q, F,F,Q), {7x}r>1 be a strictly increasing sequence of F-
stopping times diverging a.s., (,5,¢ > 0, a € R, f : R = R be nonincreasing, and
g : R — R be Lipschitz-continuous. Then, for each t > 0,

? (U {t € (Tk,l,Tk]} N {t € arg max (f(ceas+ﬂw5) — (W, +g(s))}> =0

Pt} SE€[Tp_1,t]

Q <U {te (-1, m]} N{t €arg min (f(ce®TPWe) — (W, +g(5))}> =0.

o1 SE[Tr—_1,t]

Proof. We show the claim only for the argmax. Fix ¢ > 0 and set € := {t €
(Tk—1,7k]}. The proof can be concluded by showing that for each k > 1,

Q(t € a’rgmaxse[ﬂc—ht](f(ceas—i_ﬁws) - CWS + g(S)) | Qk) =0.

3Using the relationship (7.2) between 9 and © and the definition (7.1) of (X°,Y9), we obtain

] - .5
< (K+ Vv K_)E?x exp{ZL(z—y)}) [e_PT<1 + ‘PT)] = (K+ Vv K_)(l + 6%(z7y>)e—pT’
! n

where the last step is due to the martingale property of the process .
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With a change of measure, the above is equivalent to
Q(te argmaxsemfht](f(ceBW:) — (W +h(s) | Q%) =0,

for another F-Brownian motion W* and h : R — R Lipschitz-continuous. Now, for
each 7,1 < s < t, we have

(F(ee®™) = W) = (F(ee®™7) = CWy) < —C(Wy = W32), if Wy — W7 >0.

By the path-properties of the Brownian motion, we have (5( - Qk)—a.s.

1 Wt*_W —
lim sup —4——= = +oo.
s—t—

In particular, CAQ( . |Qk)—a.s., there exists a sequence s,, — t~ (possibly depending on
w) such that

. W, Wz
Wi —=Wg; >0 Vn and limsup ———= = +o0.

n— oo

Hence, the claim follows by observing that, (AQ( . |Qk)—a.s., we have

liminf —— [(F(ce®0) — ¢y + h(t)) — (F(ce®™) = CW) + h(s))]

s—t— — S
< liminf — [(F(ce®™0) — Wy + h(t)) — (F(ce™an) — (W2 + h(sy))]
<liminf (= ¢ ) 4 lmsup MO=RC)
n—oo n n—o00 n
= —(limsup L‘Z::Z:“ + lim sup 7|h(tg:};£s")l = —00. 0

n— oo n—o0
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