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We provide a new virtual description of the symmetric group action on the cohomology of ordered configuration space

on SU2 up to translations. We use this formula to prove the Moseley-Proudfoot-Young conjecture. As a consequence we

obtain the graded Frobenius character of the Orlik-Terao algebra of type An.

1 Introduction

The Orlik-Terao algebra OTn is the subalgebra of rational functions on Cn generated by 1
xi−xj for all i 6= j. It has

been intensively studied in [Ter02, PS06, ST09, Ber10, Sch11, DGT14, Le14, Liu16, EPW16, MPY17, MMPR21].
Only recently, has an attempt to describe the symmetric group action on OTn been made by Moseley, Proudfoot,
and Young [MPY17]. They provided a recursive algorithm for computing the graded Frobenius character of the
OTn. That algorithm is based on a surprising relation between the Orlik-Terao algebra and the intersection
cohomology ring Mn of a certain hypertoric variety constructed from the root system of type An [BP09, MP15].

Computation of Mn using the aforementioned algorithm has suggested the following conjecture. Let Dn be
the cohomology algebra of the configuration spaces of n ordered points in SU2 up to translations.

Conjecture 1.1 ([MPY17, Conjecture 2.10]). For each n, there exists an isomorphism of graded Sn-
representations Dn 'Mn.

It has been verified for n ≤ 10 in [MPY17] and for n ≤ 22 in [MMPR21].
The algebra Dn has an independent interest, indeed each graded piece is the Whitehouse lift of Eulerian

Sn-representation up to a sign (Dk
n = sgnn ⊗ F

(n−1−k)
n see [GS87, Han90, Whi97, ER19]). The Eulerian

representations appear also in the study of the free Lie algebra [Reu93]. These representations are used
to decompose the Hochshild Cohomology and Cyclic Cohomology in simpler pieces [Whi97]. Moreover, Dn

appears in the Hochschild-Pirashvili homology of a wedge of circles and in the weight-zero compactly supported
cohomology of M2,n [GH22].

Some tentatives to prove the Moseley-Proudfoot-Young conjecture failed for two reason: firstly the only
known formula describing Dn is

Cn = (V(n) ⊕ qV(n−1,1))⊗Dn,

where Vλ is the Schur representation and Cn is the cohomology of the configuration space of R3. Although there
is an explicit formula for Cn involving plethysm (Theorem 2.6), inverting the Kronecker (tensor) product is very
difficult. The second issue is that the recursive formula of [MPY17] for Mn is complicate and involves plethysm,
Kronecker product and the character of Cn.

We overcome the first problem providing a new virtual formula for the graded Frobenius character of
Dn (Theorem 3.1) by using the Cohen–Taylor-Totaro-Křiz spectral sequence [CT78, Tot96, Kri94]. Instead of
working on the recursive formula [MPY17, Theorem 3.2], we use the isomorphism of graded Sn-representations

OTn 'Mn ⊗Rn

provided in [PS06, Proposition 7], where Rn is the symmetric algebra on Vn−1,1. Then we virtually invert Rn
(Theorem 4.2) with respect the Kronecker product and we prove the conjecture by induction on n (Theorem 4.7)
relying on a certain subspace Tn of OTn (Theorem 4.6). Finally, we obtain an explicit formula for the character
of OTn (Theorem 4.8) and the generating functions for the characters of Dn and of OTn (Theorem 4.11).
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2 Definitions

We introduce the main objects of study and some notations. The Orlik-Terao algebra was introduced in [Ter02]
and its Artinian reduction in [OT94]. In type An−1 the definitions specialize as follows.

Definition 2.1. The Orlik-Terao algebra of type An−1 is the ring OTn = Q[eij ]/I
OT
n generated by eij for

distinct i, j ∈ [n] and relations IOTn given by:

• eij + eji = 0 for all i, j distinct,
• eijejk + ejkeki + ekieij = 0 for all i, j, k distinct.

Definition 2.2. Let C•n := H2•(Confn(R3);Q) be the cohomology algebra of the ordered configuration space
of n points in R3.

The ring Cn can be presented as quotient of OTn by the equations

• e2
ij = 0 for all i, j distinct.

The above presentation was proved for the first time in [Coh76].

Definition 2.3. Let D•n := H2•(Confn(SU2)/SU2;Q) be the cohomology algebra of the ordered configuration
space of n points in SU2 up to translations.

The algebra Dn can be presented as Q[eij ]/I
D
n generated by eij for distinct i, j ∈ [n] and relations IDn given

by:

• eij + eji = 0 for all i, j distinct,
• (eij + ejk + eki)

2 = 0 for all i, j, k distinct,
•
∑

j 6=i eij = 0 for all i ∈ [n].

This presentation is due to Matherne, Miyata, Proudfoot, and Ramos [MMPR21, Theorem A4].

Definition 2.4. Let Mn = OTn/I
M
n be the quotient of the Orlik-Terao algebra by the relations:

•
∑

j 6=i eij = 0 for all i ∈ [n].

The algebra Mn was originally defined in a geometric way in [BP09, Corollary 4.5] (see also [MMPR21,
Theorem A.6]).

Theorem 2.5. The algebra M•n is isomorphic to IH2•(Xn;Q), the intersection cohomology of a hypertoric
variety Xn associated with the root system of the Lie algebra sln.

We use the standard notation for symmetric polynomial: let hλ, eλ, sλ, pλ for λ ` n a partition of n be the
complete homogeneous, elementary, Schur, and power sum symmetric polynomials, respectively. Given a graded
Sn-representation V we consider the graded Frobenius character chV (q), frequently will omit the dependence
on q. As an example if Vλ is the irreducible Schur representation in degree zero, then chVλ = sλ.

We denote the plethysm of symmetric functions f, g by f [g]. For W a representation of Sj we denote

W̃ = W�m the representation of the wreath product Sj o Sm = (Sj)
×m o Sm, where S×mj acts coordinatewise

and Sm by permuting the coordinates. Let V be a representation of Sm and V ⊗ W̃ be the representation of

Sj o Sm where S×mj acts only on W̃ and Sm on both factors. The group Sj o Sm is naturally a subgroup of Sjm,
the main property of the plethysm is

ch
Ind

Sjm
Sj oSm

V⊗W̃
= chV [chW ].

Let Lien be the submodule of the multilinear part of the free Lie algebra on n generators. As Sn
representation Lien = IndSnZn ζn where Zn is the cyclic group generated by an n-cycle in Sn and ζn is a primitive
root of the unity. We denote by lj its character, cf. Remark 4.10 for an explicit description. The following result
is due to Sundaram and Welker [SW97, Theorem 4.4(iii)], see also [HR15, Theorem 2.7].

Proposition 2.6. The graded character of Cn is

chCn =
∑
λ`n

qn−`(λ)
∏
j≥1

hmj [lj ],

where λ = (1m1 , 2m2 , . . . , nmn) in the exponential notation and `(λ) =
∑

jmj is the number of blocks.

Finally, we define Rn = S•V(n−1,1) and Λn = Λ•V(n−1,1) be the symmetric (resp. alternating) algebra on the

standard representation of Sn. We regard V(n−1,1) in degree one, hence chΛn =
∑n−1

i=0 q
isn−i,1i . See Remark 4.10

for an expression of chRn in term of Schur polynomials.
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3 Graded Frobenius characteristic of Dn

In this section we provide a virtual formula for chDn that will be used in the proof of Theorem 4.7. We denote by
ch′V the expression chV (−q) for V a graded Sn-representation. Let Pn be the Sn-representation by permutations,
i.e. Pn = V(n−1,1) ⊕ V(n). For a partition λ = (1m1 , 2m2 , . . . , nmn) ` n let Sλ be the subgroup of Sn stabilizing
λ, i.e. Sλ =

∏
j≥1 Sj o Smj .

Theorem 3.1. The graded character of Dn is:

chDn(q) =
∑
λ`n

qn−`(λ)

1− q
∏
j≥1

ch′Λ•(Pmj )[lj ]. (1)

Proof . We consider the Cohen–Taylor-Totaro-Křiz spectral sequence E•(SU2, n) [CT78, Tot96, Kri94] that
converge to H•(Confn(SU2)). In our case since SU2 is 3-dimensional and has nonzero cohomology only in
degree 0 and 3, we have that Ep,q2 = 0 if 3 - p and 2 - q. The Sn-representation on the second page is described
in [AAB14, Theorem 3.15]:

E3p,2q
2 (SU2, n) =

⊕
λ`n

`(λ)=n−q

IndSnSλ

(
�j(Ind

Sj
Zj
ζj)

�mj ⊗ Res
S`(λ)
Wλ

ΛpP`(λ)

)
. (2)

Since Res
S`(λ)
Wλ

P`(λ) = ⊕j≥1Pmj we have

chE2(s, t) =
∑
λ`n

t2(n−`(λ))
∏
j≥1

chΛ•Pmj
(s3)[lj ]. (3)

Topologically SU2 ' S3 is a formal orientable manifold, the only nonzero differential of E•(SU2, n) is d3 as
observed in [Pet20, §1.10] and in [Get99, Section 2]. The differential d3 is compatible with the Sn-action by the
functoriality property of the spectral sequence. It follows

chE2
(−q2, q3) = chE∞(−q2, q3), (4)

because this is the right evaluation that simplifies the coimage of d3 with its image.
Consider the map f : (R3)n−1 → (SU2)n defined by (x1, . . . , xn−1) 7→ (x1, . . . , xn−1, e) where e is the identity

of SU2 and R3 is identified with SU2 \ {e}. The map f restricts to the subspaces Confn−1(R3)→ Confn(SU2)
and the restricted map has a retraction defined by

(g1, g2, . . . , gn) 7→ (g−1
n g1, g

−1
n g2, . . . , g

−1
n gn−1).

This implies that E•(R3, n− 1) is a direct addendum of E•(SU2, n). Notice that Confn−1(R3)× SU2 '
Confn(SU2) via the map ((x1, . . . , xn−1), g) 7→ g · f(x), hence E∞(SU2, n) = E∞(R3, n− 1)⊗H•(SU2) as
graded vector spaces. Since E2(R3) is supported on the column p = 0, so is E∞(R3). Therefore E∞(SU2) is
supported only on the column p = 0 and p = 3, indeed the even cohomology of Confn(SU2) is supported in
degrees (0, 2q) and the odd one in degrees (3, 2q). So

chE∞(s, t) = chHeven(Confn(SU2))(t) + s3t−3 chHodd(Confn(SU2))(t).

Let π : Confn(SU2)→ Confn(SU2)/SU2 be the natural projection, it is a Sn-equivariant fiber bundle. The
Leray-Hirsch theorem for rational cohomology asserts that H(Confn(SU2);Q) is a free H(Confn(SU2)/SU2;Q)-
module with basis given by 1, ω for any nonzero ω ∈ H3(Confn(SU2)). The module structure is given by π∗ so
it is Sn-equivariant. We observe that Sn acts trivially on H0(Confn(SU2)) and on H3(Confn(SU2)), because
the latter is a 1-dimensional quotient of E3,0

2 (SU2) ∼= Pn. Therefore

chHeven(Confn(SU2))(t) = chH(Confn(SU2)/SU2)(t) = chDn(t2),

chHodd(Confn(SU2))(t) = t3 chH(Confn(SU2)/SU2)(t) = t3 chDn(t2).

We have chE∞(s, t) = (1 + s3) chDn(t2) and together with eq. (3) and (4) they imply

(1− q6) chDn(q6) =
∑
λ`n

q6(n−`(λ))
∏
j≥1

chΛ•Pmj
(−q6)[lj ].

That is our claim.
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Remark 3.2. The formula (1) has (1− q) in the denominator and seems to be an infinite series. However it
can be written as a polynomial in q of degree n− 1:

chDn(q) =
∑
λ`n

qn−`(λ)(1− q)cλ−1
∏
j≥1

ch′Λmj
[lj ],

where cλ = |{j | mj 6= 0}|. Furthermore, since the left hand side is a polynomial in q of degree n− 2, the
coefficient of qn−1 in the right hand side must be zero.

4 Proof of the MPY conjecture

Now we prove the conjecture and provide a new formula for the character of the Orlik-Terao algebra. The
Kronecker product of two symmetric function f ∗ g is the linear extension of the tensor product for representation,
i.e. chV⊗W = chV ∗ chW .

Theorem 4.1 ([PS06, Proposition 7]). For each n the equation

chOTn = chMn
∗ chRn

holds.

Lemma 4.2. Let V be any representation of the symmetric group Sn. We have:

chS•V ∗ ch′Λ•V = sn.

Proof . The Koszul complex for the ring S•V is a free resolution of Q = S•V/(V ). The bigraded character of
the Koszul complex is chS•V (s) ∗ chΛ•V (t), hence by exactness we have chS•V (q) ∗ chΛ•V (−q) = sn.

It follows that chRn is invertible with respect to the Kronecker product, whose inverse is ch′Λn .

Lemma 4.3. Let g be a symmetric function of degree j and m a positive integer. We have

ch′Λ•Pm [g] = hm[(1− q)g].

Proof . Using the identity hn−kek = sn−k,1k + sn−k+1,1k−1 we obtain

ch′Λ•Pn = (1− q)
n−1∑
k=0

(−q)ksn−k,1k =

n∑
k=0

(−q)khn−kek.

Recall the subtraction formula (see for example in [LR11, §3.3])

hm[f − g] =

m∑
i=0

(−1)khm−k[f ]ek[g],

we obtain

hm[(1− q)g] =

m∑
k=0

(−1)khm−k[g]ek[qg]

=

m∑
k=0

(−q)k(hm−kek)[g]

= ch′Λ•Pm [g].

Using the Lemma above we can rewrite the character of Dn as follow.
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Corollary 4.4. The graded character of Dn is

chDn(q) =
1

1− q
∑
λ`n

∏
j≥1

hmj [q
j−1(1− q)lj ]. (5)

Proof . It follows from Theorem 3.1 and Theorem 4.3.

Lemma 4.5. Let λ = (1m1 , 2m2 , . . . ) be a partition of n and gj , fmj be symmetric functions of degree j and
mj respectively. We have:

ch′Λ•Pn ∗
∏
j≥1

fmj [gj ] =
∏
j≥1

fmj [gj ∗ ch′Λ•Pj ].

Proof . Firstly observe that

ResSn∏
j≥1 Sjmj

Pn =
⊕
j≥1

Pjmj ,

and so

ResSn∏
j≥1 Sjmj

Λ•Pn =
⊗
j≥1

Λ•Pjmj .

Using the projection formula (sometimes called Frobenius reciprocity) we obtain:

ch′Λ•Pn ∗
∏
j≥1

fmj [gj ] =
∏
j≥1

ch′Λ•Pjmj
∗fmj [gj ].

Thus it is enough to show

ch′Λ•Pjm ∗f [g] = f [g ∗ ch′Λ•Pj ].

This last equality is linear and multiplicative in the entry f : the linearity is trivial and the multiplicativity follow
from the argument above

ch′Λ•Pjm ∗(f1f2)[g] = ch′Λ•Pjm ∗(f1[g]f2[g])

= (ch′Λ•Pjm1
∗f1[g])(ch′Λ•Pjm2

∗f2[g]).

Therefore we may assume f = pm. Again ch′Λ•Pjm ∗pm[g] = pm[g ∗ ch′Λ•Pj ] is linear and multiplicative in the
entry g and so we reduce to the case g = pj .

It remains to prove that ch′Λ•Pjm ∗pjm = pm[pj ∗ ch′Λ•Pj ]. Since (pλ)λ are orthogonal idempotent with respect
to the Kronecker product

ch′Λ•Pn ∗pn = χ′Λ•Pn(cn)pn

where χ′V (σ) is the graded character of σ ∈ Sn with q replaced by −q and cn ∈ Sn be an n-cycle. It is easy to
see that

χ′Λ•Pn(cn) = 1 + (−1)n−1(−q)n = 1− qn

on the canonical base of Λ•Pn: let (vi)i the standard base of Pn, the product of some vj is invariant for cn if
and only if each generator appears a fixed number of times (i.e. 0 or 1 times). Finally the equalities

pm[pj ∗ ch′Λ•Pj ] = pm[(1− qj)pj ]

= (1− qjm)pjm

= ch′Λ•Pjm ∗pjm

conclude the proof.
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For each monomial m =
∏
k eik,jk ∈ Q[ei,j ] we define the support of m as the finest set partition B(m) ` [n]

such that for all k ik and jk belong to the same block of B(m). We also define the type of m as the partition
λ(m) ` n collecting the size of blocks of B(m). Notice that the relations defining OTn (Theorem 2.1) are sum
of monomials with the same support, hence the notion of support and type are well defined in OTn. Moreover,
monomials with different supports are linearly independent.

For B ` [n] a set partition let TB ⊂ OTn be the vector space generated by all monomials m such that
B(m) = B. For S ⊆ [n] we define TS = TB where B is the finest set partition of [n] with a block equal to
S. Given two monomials m,m′ such that mm′ 6= 0 in OTn, we have that B(mm′) is the finest set partition
coarsening both B(m) and B(m′), hence

TB ∼=
l⊗
i=1

TBi

where we denote by Bi the blocks of B = {B1, B2, . . . , Bl}.
Consider a partition λ ` n, let Tλ be the vector space generated by all monomials of type λ. Choose a

set partition Bλ ` [n] whose blocks Bi are of length λi and let SBλ be the subgroup of Sn stabilizing Bλ, if
λ = (1m1 , 2m2 , . . . , nmn) then SBλ

∼=
∏
j≥1 Sj o Smj . We have

Tλ ∼= IndSnSBλ
TBλ

as representation of Sn, where SBi acts on the factor TBi of TBλ = ⊗|B|i=1TBi and Smj permutes the mj factors
of size j. For the sake of notation we set Tn = T(n).

Lemma 4.6. We have
chOTn =

∑
λ`n

∏
j≥1

hmj [chTj ].

Proof . The Orlik-Terao algebra decomposes

OTn =
⊕
B`[n]

TB

=
⊕
B`[n]

|B|⊗
i=1

TBi

=
⊕
λ`n

IndSnSBλ

`(λ)⊗
i=1

TBi

=
⊕
λ`n

IndSn∏
j Sjmj

(⊗
j≥1

Ind
Sjmj
Sj oSmj

T̃j

)

as Sn-representation. Taking the character we obtain the claimed relation.

Theorem 4.7. We have
chDn = chMn

and
chTn = qn−1ln ∗ chRn .

Proof . We prove both equality by induction on n. The base case n = 1 is trivial. For the inductive step we
consider:

chMn = chOTn ∗ ch′Λn

=
1

(1− q)
∑
λ`n

∏
j≥1

hmj [chTj ∗ ch′Λ•Pj ]

= chTn ∗ ch′Λn +
1

(1− q)
∑
λ`n
λ6=(n)

∏
j≥1

hmj [q
j−1(1− q)lj ].
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The first equality follows from Theorem 4.1 and Lemma 4.2. The second one follows from Lemma 4.6 and
Lemma 4.5 together with the identity ch′Λ•Pj = (1− q) ch′Λj . The last one follows from the inductive hypothesis
and Theorem 4.2. We have proven the identity

chMn − chTn ∗ ch′Λn =
1

(1− q)
∑
λ`n
λ 6=(n)

∏
j≥1

hmj [q
j−1(1− q)lj ] = chDn −qn−1ln,

where the last equality is given by Theorem 4.4. Since chDn and chMn has degree less than n− 1 and chTn ∗ ch′Λn
bigger than n− 2, chMn

= chDn and chTn ∗ ch′Λn = qn−1ln hold. Therefore chTn = qn−1ln ∗ chRn .

Corollary 4.8. We obtain the character of OTn:

chOTn =
∑
λ`n

qn−`(λ)
∏
j≥1

hmj [lj ∗ chRj ]. (6)

Proof . It follows from Theorem 4.7 and Theorem 4.6.

An important object for the proof of Theorem 4.7 is the Rn-module Tn. It is a submodule of the free module
OTn and its Frobenius character is equal to the one of the free module Rn ⊗Q T

n−1
n . This observations lead to

the following conjecture:

Conjecture 4.9. The Rn-module Tn is free.

Remark 4.10. The formula (6) is completely explicit because chRj and lj are known. Indeed

chRn = (1− q)
∑
λ`n

sλ(1, q, q2, ...)sλ = (1− q)hn
[

X

1− q

]
by [Pro03, Section 5.6] or [Sta99, Exercise 7.73] where X = h1. Moreover,

ln =
1

n

∑
d|n

µ(d)p
n
d

d ,

by [Reu93, Theorem 8.3], ln is known as the Lyndon symmetric function or as Gessel-Reutenauer symmetric
function [GR93].

Let Exp be the plethystic exponential defined by

Exp(f) := exp

(∑
k≥1

pk[f ]

k

)
=
∑
k≥0

hk[f ],

see [LR11, Section 5.3] for the equivalence between the two formulas. We denote by Log the inverse of Exp and
we define the symmetric functions

L =
∑
n≥1

qn−1tnln = −Log(1− qtX)

q
.

Corollary 4.11. The generating functions for chD and chOT are:∑
n≥1

chDn(q)tn =
1

1− q
(Exp((1− q)L)− 1), (7)

∑
n≥1

chOTn(q)tn = Exp

(
(1− q)L ∗ Exp

(
X

1− q

))
− 1. (8)
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Proof . Let f be a symmetric function and call fj be the homogeneous part of degree j. Assume that f has
zero constant term, i.e. f =

∑
j≥1 fj , then

Exp(f) =
∏
j≥1

Exp(fj)

=
∏
j≥1

∑
m≥0

hm[fj ]

=
∑
λ

∏
j≥1

hmj [fj ],

where the sum is taken over all partitions λ = (1m1 , 2m2 , . . . ). The corollary follows by taking f = (1− q)L and
f = (1− q)L ∗ Exp((1− q)−1X).

Formulas of this paper are checked and implemented in SageMath [Sage]. The code is available at

https://github.com/paga92/character_OT.
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